SURGICAL ANATOMY

DEAVER
GENERAL ARRANGEMENT OF CONTENTS

SURGICAL ANATOMY

A TREATISE ON HUMAN ANATOMY IN ITS APPLICATION TO THE PRACTICE OF MEDICINE AND SURGERY

BY

JOHN B. DEAVER, M.D.
SURGEON-IN-CHIEF TO THE GERMAN HOSPITAL, PHILADELPHIA

IN THREE VOLUMES

ILLUSTRATED BY ABOUT 400 PLATES NEARLY ALL DRAWN FOR THIS WORK FROM ORIGINAL DISSECTIONS

VOL. I.
UPPER EXTREMITY; BACK OF NECK; SHOULDER; TRUNK; CRANIUM; SCALP; FACE

LONDON
REBMAN, LIMITED
129, SHAFTESBURY AVENUE, W. C.
1901
Copyright, 1899, by P. Blakiston's Son & Co.
TO

Surgeons and to Students of Surgery and Anatomy,

WHOSE LABORS IT IS INTENDED TO LIGHTEN IN A FIELD WHERE
LABOR ALONE IS THE PRICE OF ATTAINMENT,

THIS WORK

IS RESPECTFULLY DEDICATED
BY THEIR FRIEND AND FELLOW- STUDENT

THE AUTHOR.
CONTENTS OF VOLUME I.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPER EXTREMITY,</td>
<td>17</td>
</tr>
<tr>
<td>Surface Anatomy of the Upper Extremity,</td>
<td>17</td>
</tr>
<tr>
<td>The Forearm and Wrist,</td>
<td>31</td>
</tr>
<tr>
<td>The Hand,</td>
<td>32</td>
</tr>
<tr>
<td>Nerve Stretching and Nerve Section,</td>
<td>38</td>
</tr>
<tr>
<td>Dissection,</td>
<td>47</td>
</tr>
<tr>
<td>The Front of the Arm,</td>
<td>96</td>
</tr>
<tr>
<td>The Front of the Forearm,</td>
<td>125</td>
</tr>
<tr>
<td>The Front of the Hand,</td>
<td>152</td>
</tr>
<tr>
<td>The Back of the Arm,</td>
<td>188</td>
</tr>
<tr>
<td>The Back of the Forearm,</td>
<td>195</td>
</tr>
<tr>
<td>The Back of the Hand,</td>
<td>209</td>
</tr>
<tr>
<td>JOINTS,</td>
<td>212</td>
</tr>
<tr>
<td>The Stero-clavicular Joint,</td>
<td>215</td>
</tr>
<tr>
<td>The Scapulo-clavicular Joint,</td>
<td>221</td>
</tr>
<tr>
<td>The Shoulder-joint,</td>
<td>222</td>
</tr>
<tr>
<td>The Elbow-joint,</td>
<td>224</td>
</tr>
<tr>
<td>Radio-ulnar Articulations,</td>
<td>233</td>
</tr>
<tr>
<td>The Radio-carpal Articulation,</td>
<td>234</td>
</tr>
<tr>
<td>The Carpal Joints,</td>
<td>238</td>
</tr>
<tr>
<td>Carpo-metacarpal Articulations,</td>
<td>242</td>
</tr>
<tr>
<td>The Intermetacarpal Articulations,</td>
<td>245</td>
</tr>
<tr>
<td>The Interphalangeal Articulations,</td>
<td>247</td>
</tr>
<tr>
<td>DISLOCATIONS,</td>
<td>247</td>
</tr>
<tr>
<td>ANATOMY OF THE LONG BONES,</td>
<td>256</td>
</tr>
<tr>
<td>EXCISIONS,</td>
<td>260</td>
</tr>
<tr>
<td>DEVELOPMENT OF THE BONES,</td>
<td>266</td>
</tr>
<tr>
<td>FRACTURES,</td>
<td>269</td>
</tr>
<tr>
<td>AMPUTATIONS,</td>
<td>279</td>
</tr>
<tr>
<td>LIGATIONS OF THE ARTERIES,</td>
<td>294</td>
</tr>
<tr>
<td>STRETCHING OF THE NERVES,</td>
<td>311</td>
</tr>
<tr>
<td>THE BACK OF THE NECK, SHOULDER, AND TRUNK,</td>
<td>351</td>
</tr>
<tr>
<td>Ligaments of the Vertebral Column,</td>
<td>412</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Fractures and Dislocations of the Vertebra</td>
<td>424</td>
</tr>
<tr>
<td>Dissection</td>
<td>424</td>
</tr>
<tr>
<td>The Spinal Cord</td>
<td>428</td>
</tr>
<tr>
<td>Surface Anatomy of the Cranium</td>
<td>451</td>
</tr>
<tr>
<td>Surface Anatomy of the Face</td>
<td>456</td>
</tr>
<tr>
<td>Scalp</td>
<td>465</td>
</tr>
<tr>
<td>Face</td>
<td>489</td>
</tr>
<tr>
<td>Pterygo-maxillary Region</td>
<td>540</td>
</tr>
<tr>
<td>The Membranes and Vessels of the Brain</td>
<td>568</td>
</tr>
<tr>
<td>Intra-cranial Course and Mode of Exit of the Cranial Nerves</td>
<td>591</td>
</tr>
<tr>
<td>Index</td>
<td>601</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS.

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Forearm Pronated,</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>Forearm Supinated, Showing Ulnar Deflection,</td>
<td>21</td>
</tr>
<tr>
<td>III</td>
<td>Landmarks of Anterior Surface,</td>
<td>24</td>
</tr>
<tr>
<td>IV</td>
<td>Landmarks of Posterior Surface,</td>
<td>25</td>
</tr>
<tr>
<td>V</td>
<td>Dislocated Shoulder and Normal Shoulder,</td>
<td>29</td>
</tr>
<tr>
<td>VI</td>
<td>Principal Flexor Furrows,</td>
<td>34</td>
</tr>
<tr>
<td>VII</td>
<td>Lines of Arteries—Palm of Hand,</td>
<td>35</td>
</tr>
<tr>
<td>VIII</td>
<td>Anterior View of Upper Extremity—Motor Points,</td>
<td>40</td>
</tr>
<tr>
<td>IX</td>
<td>Motor Points and Lines of Incisions for Posterior Circumflex Artery and Musculo-spiral Nerve,</td>
<td>41</td>
</tr>
<tr>
<td>X</td>
<td>Dorsum of Scapula Showing Acromial Angle</td>
<td>43</td>
</tr>
<tr>
<td>XI</td>
<td>Lines of Incisions for Dissection and Line for Axillary Artery,</td>
<td>45</td>
</tr>
<tr>
<td>XII</td>
<td>Superficial Fascia of Pectoral Region,</td>
<td>49</td>
</tr>
<tr>
<td>XIII</td>
<td>Anterior Cutaneous and Lateral Cutaneous Nerves,</td>
<td>52</td>
</tr>
<tr>
<td>XIV</td>
<td>Mammary Gland,</td>
<td>55</td>
</tr>
<tr>
<td>XV</td>
<td>Deep Fascia or Pectoral Fascia and Axillary Fascia,</td>
<td>59</td>
</tr>
<tr>
<td>XVI</td>
<td>Diagram of Pectoral Fascia and Axillary Fascia,</td>
<td>62</td>
</tr>
<tr>
<td>XVII</td>
<td>Pectoralis Major Muscle and Pectoralis Minor Muscle,</td>
<td>65</td>
</tr>
<tr>
<td>XVIII</td>
<td>Superficial Infra-clavicular Triangle,</td>
<td>70</td>
</tr>
<tr>
<td>XIX</td>
<td>Deep Infra-clavicular Triangle,</td>
<td>71</td>
</tr>
<tr>
<td>XX</td>
<td>Contents of Axilla Shown by Dissection Made from Before Backward,</td>
<td>76</td>
</tr>
<tr>
<td>XXI</td>
<td>Contents of Axilla Shown by Dissection Made from Below Upward,</td>
<td>77</td>
</tr>
<tr>
<td>XXII</td>
<td>Anastomoses of Arteries Around the Scapula,</td>
<td>84</td>
</tr>
<tr>
<td>XXIII</td>
<td>Axillary or Brachial Plexus of Nerves,</td>
<td>87</td>
</tr>
<tr>
<td>XXIV</td>
<td>Incisions for Dissection of Arm and Right Axillary Region,</td>
<td>94</td>
</tr>
<tr>
<td>XXV</td>
<td>Cutaneous Nerves of Arm and Forearm,</td>
<td>97</td>
</tr>
<tr>
<td>XXVI</td>
<td>Superficial Veins of Front of Arm and Forearm,</td>
<td>100</td>
</tr>
<tr>
<td>XXVII</td>
<td>Superficial Veins of Back of Forearm and Hand,</td>
<td>101</td>
</tr>
<tr>
<td>XXVIII</td>
<td>Superficial Lymphatic Vessels and Glands of Front of Upper Extremity,</td>
<td>105</td>
</tr>
<tr>
<td>XXIX</td>
<td>Brachial Artery and Biceps Muscle,</td>
<td>110</td>
</tr>
<tr>
<td>XXX</td>
<td>Brachial Artery and Branches,</td>
<td>111</td>
</tr>
<tr>
<td>XXXI</td>
<td>Biceps Muscle,</td>
<td>115</td>
</tr>
<tr>
<td>XXXII</td>
<td>View of Arm—Biceps Removed,</td>
<td>118</td>
</tr>
<tr>
<td>XXXIII</td>
<td>Lines of Arteries of Upper Extremity and of Median and Ulnar Nerves,</td>
<td>122</td>
</tr>
<tr>
<td>XXXIV</td>
<td>Bicipital Fascia and Vessels and Nerves at Elbow,</td>
<td>128</td>
</tr>
<tr>
<td>XXXV</td>
<td>Triangle of Elbow and Superficial Muscles of Forearm,</td>
<td>131</td>
</tr>
<tr>
<td>XXXVI</td>
<td>Triangle of Elbow, Flexor Sublimis Digatorum Muscle, Radial Artery, and Radial Nerve,</td>
<td>135</td>
</tr>
<tr>
<td>XXXVII</td>
<td>Deep Flexor Muscles, Radial Artery and Nerve, Ulnar Artery and Nerve, and Median Nerve,</td>
<td>140</td>
</tr>
<tr>
<td>XXXVIII</td>
<td>Arteries and Nerves of Front of Forearm,</td>
<td>141</td>
</tr>
<tr>
<td>XXXIX</td>
<td>Arteries of Forearm and Hand,</td>
<td>145</td>
</tr>
<tr>
<td>Plate</td>
<td>Illustration Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>XI.</td>
<td>Incisions for Dissection of Hand,</td>
<td>150</td>
</tr>
<tr>
<td>XII.</td>
<td>Superficial Palmar Fascia,</td>
<td>153</td>
</tr>
<tr>
<td>XII.</td>
<td>Deep Palmar Fascia and Palmaris Brevis Muscle,</td>
<td>156</td>
</tr>
<tr>
<td>XII.</td>
<td>Superficial Palmar Arch and Digital Nerves,</td>
<td>159</td>
</tr>
<tr>
<td>XII.</td>
<td>Arteries and Nerves of Front of Forearm,</td>
<td>163</td>
</tr>
<tr>
<td>XII.</td>
<td>Fibrous and Synovial Sheaths of Flexor Tendons,</td>
<td>166</td>
</tr>
<tr>
<td>XII.</td>
<td>Insertion of Lumbrical and Interosseous Muscles,</td>
<td>169</td>
</tr>
<tr>
<td>XII.</td>
<td>Deep Palmar Arch and Interosseous Muscles,</td>
<td>173</td>
</tr>
<tr>
<td>XII.</td>
<td>Lines of Arteries—Palm of Hand,</td>
<td>176</td>
</tr>
<tr>
<td>XII.</td>
<td>Arteries of Hand,</td>
<td>177</td>
</tr>
<tr>
<td>I.</td>
<td>Cutaneous Nerves of Arm and Forearm,</td>
<td>181</td>
</tr>
<tr>
<td>II.</td>
<td>Musculo-spiral Nerve and Superior Profunda Artery,</td>
<td>184</td>
</tr>
<tr>
<td>III.</td>
<td>Muscles of the Back of the Scapula and Arm,</td>
<td>185</td>
</tr>
<tr>
<td>III.</td>
<td>Superficial Veins of Back of Forearm and Hand,</td>
<td>190</td>
</tr>
<tr>
<td>IV.</td>
<td>Superficial Muscles of Back of Forearm,</td>
<td>194</td>
</tr>
<tr>
<td>V.</td>
<td>Deep Muscles of Back of Forearm, Posterior Interosseous Artery and Nerve,</td>
<td>200</td>
</tr>
<tr>
<td>VI.</td>
<td>Anterior and Posterior Interosseous Arteries,</td>
<td>203</td>
</tr>
<tr>
<td>VII.</td>
<td>Tendons and Arteries of Back of Hand,</td>
<td>206</td>
</tr>
<tr>
<td>VIII.</td>
<td>Sterno-clavicular Joint—Anterior and Posterior Views,</td>
<td>214</td>
</tr>
<tr>
<td>IX.</td>
<td>Scapulo-clavicular, Acromio-clavicular, and Scapulo-humeral Joints—Anterior View,</td>
<td>218</td>
</tr>
<tr>
<td>X.</td>
<td>Scapulo-clavicular and Acromio-clavicular Joints, and Glenoid Ligament,</td>
<td>219</td>
</tr>
<tr>
<td>XI.</td>
<td>Elbow Joint—External and Internal Views,</td>
<td>225</td>
</tr>
<tr>
<td>XII.</td>
<td>Inferior Radio-ulnar Joint—Anterior View,</td>
<td>230</td>
</tr>
<tr>
<td>XIII.</td>
<td>Inferior Radio-ulnar, Radio-carpal, Intercarpal, and Carpo-metacarpal Joints—Posterior View,</td>
<td>231</td>
</tr>
<tr>
<td>XIV.</td>
<td>Inferior Radio-ulnar, Radio-carpal, Intercarpal, and Carpo-metacarpal Joints—Anterior View,</td>
<td>235</td>
</tr>
<tr>
<td>XV.</td>
<td>Section of Joints of Wrist and Hand,</td>
<td>239</td>
</tr>
<tr>
<td>XVI.</td>
<td>Metacarpo-phalangeal and Interphalangeal Ligaments (Middle Finger),</td>
<td>244</td>
</tr>
<tr>
<td>XVII.</td>
<td>Dislocated Shoulder and Normal Shoulder,</td>
<td>249</td>
</tr>
<tr>
<td>XVIII.</td>
<td>Skiagraph of Fetal Skeleton. By M. I. Wilbert,</td>
<td>257</td>
</tr>
<tr>
<td>XIX.</td>
<td>Displacement in Fracture of the Middle of the Clavicle,</td>
<td>268</td>
</tr>
<tr>
<td>XXX.</td>
<td>Fracture of Anatomical Neck of Scapula,</td>
<td>268</td>
</tr>
<tr>
<td>XXX.</td>
<td>Fracture Through Surgical Neck,</td>
<td>272</td>
</tr>
<tr>
<td>XXX.</td>
<td>Fracture Above Insertion of Deltoid Muscle,</td>
<td>272</td>
</tr>
<tr>
<td>XXXI.</td>
<td>Fracture Below Insertion of Deltoid Muscle,</td>
<td>276</td>
</tr>
<tr>
<td>XXXI.</td>
<td>Colles’ Fracture,</td>
<td>276</td>
</tr>
<tr>
<td>XXXII.</td>
<td>Transverse Section of Forearm Just Below Middle,</td>
<td>286</td>
</tr>
<tr>
<td>XXXIII.</td>
<td>Transverse Section of Arm Below Insertion of Deltoid Muscle,</td>
<td>290</td>
</tr>
<tr>
<td>XXXIV.</td>
<td>Transverse Section of Arm Above Condyles of Humerus,</td>
<td>291</td>
</tr>
<tr>
<td>XXXV.</td>
<td>Aneurysmal Varix; Varicose Aneurysm; Method of Antyllus; Hunter’s Method; Brsdor’s Method; Wardrop’s Method,</td>
<td>295</td>
</tr>
<tr>
<td>XXXVI.</td>
<td>Lines of Arteries of Upper Extremity and of Median and Ulnar Nerves,</td>
<td>300</td>
</tr>
<tr>
<td>XXXVII.</td>
<td>Lines of Incisions for Ligations of Arteries and Stretching of Nerves,</td>
<td>301</td>
</tr>
<tr>
<td>XXXVIII.</td>
<td>Operations for Exposure of Third Port, Axillary Artery, and Large Branches of Brachial, Brachial Artery and Median Nerve at Middle of Arm, and Ulnar Nerve in Lower Half of Arm,</td>
<td>316</td>
</tr>
<tr>
<td>XXXIX.</td>
<td>Axillary Artery and Large Branches of Brachial Plexus—Third Portion,</td>
<td>317</td>
</tr>
<tr>
<td>XXX.</td>
<td>Brachial Artery and Median Nerve at Middle of Arm,</td>
<td>319</td>
</tr>
<tr>
<td>XXXII.</td>
<td>Ulnar Nerve in Lower Half of Arm,</td>
<td>321</td>
</tr>
<tr>
<td>XXXIII.</td>
<td>Diagram of Collateral Circulation,</td>
<td>324</td>
</tr>
<tr>
<td>XXXIII.</td>
<td>Diagram of Collateral Circulation,</td>
<td>325</td>
</tr>
<tr>
<td>XXXIV.</td>
<td>Brachial Artery and Median Nerve at Elbow, Radial Artery and Radial Nerve at Middle of Forearm, Radial Artery in Lower Third of Forearm, and Ulnar Artery and Nerve Above Wrist,</td>
<td>328</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS.

LXXXV. Brachial Artery and Median Nerve at Elbow, 329
LXXXVI. Radial Artery and Nerve at Middle of Forearm, 331
LXXXVII. Radial Artery Above Wrist, 333
LXXXVIII. Ulnar Artery and Ulnar Nerve Above Wrist, 335
LXXXIX. Incision for Radial Artery in "Snuff-box," 337
XC. Radial Artery in "Snuff-box," 339
XCI. Posterior Circumflex Artery and Circumflex Nerve, 341
XCII. Subscapular Artery, Middle and Lower Subscapular Nerves, 343
XCII. Musculo-spiral Nerve Above External Condyle of Humerus, 345
XCIV. Musculo-spiral Nerve Above External Condyle of Humerus, 347
XCIV. Median Nerve Above Wrist, 349
XCV. Surface Marks of Back, 353
XCVII. Lordosis; Normal Curve; Kyphosis; Lateral Curvature, 358
XCVIII. Early Lumbar Caries, Normal Curve Effaced; Normal Curve; Advanced Dorsolumbar Caries, Angular Curvature, 359
XCIX. Relation of Viscera of Thorax and Abdomen to Bony Prominences of Back, 363
CI. Incisions for Dissection, 365
CII. Cutaneous Nerves of Back, 369
CIII. Muscles of Back, 373
CIII. Post-scapular Muscles and Triceps Muscle, 381
CIV. Anastomoses of Arteries Around the Scapula, 385
CV. Subscapularis Muscle and Subscapular Triangle, 390
CVI. Serratus Magnus Muscle, 391
CVII. Muscles of Back, 396
CVIII. Deep Muscles of Back, 397
CIX. Suboccipital Triangle, 406
CX. Ligaments of Spinal Column, 413
CXI. Occipito-atlantal and Atlanto-axoidean Ligaments—Anterior and Posterior Views, 417
CXII. Ligaments in Posterior Surface of Upper Part of Anterior Wall of Spinal Canal, Central Atlanto-axoid Joint, 421
CXIII. Spinal Veins, 425
CXIV. Spinal Cord and Membranes, 429
CXV. Cauda Equina, 433
CXVI. Sections of Spinal Cord (W. R. Gowers), 437
CXVII. Spinal Cord, 439
CXVIII. Nerve-tracts of Spinal Cord, 441
CXIX. Approximate Relation to the Spinal Nerves of the Various Motor, Sensory, and Reflex Functions of the Spinal Cord (Gowers), 447
CXX. Cranial Landmarks and Lines of Cerebral Fissures, 453
CXXI. Incisions for Dissection, 461
CXXII. Layers of Scalp, 463
Cirsoïd Anérysmus, 463
CXXIII. Superficial Fascia of Scalp, 467
CXXIV. Arteries of Scalp and Face, 472
CXXV. Nerves of Scalp and Facial Nerve, 473
CXXVI. Arteries, Nerves, and Muscles of Scalp and Face, 477
CXXVII. Temporal Fascia and Nerves of Face, 484
CXXVIII. Temporal Muscle, 485
CXXIX. Incisions for Dissection and Lines for Vessels and Nerves of Face, 487
CXXX. Muscles of Face and Scalp, 491
CXXXI. Tensor Tarsi and Corrugator Superèili Muscles, 496
CXXXII. Arteries of Scalp and Face, 504
CXXXIII. Arteries, Nerves, and Muscles of Scalp and Face, 505
CXXXIV. Veins of Scalp, Face, and Neck, 509
CXXXV. Palpebral Fissure and Eyeball—Eyelids Everted, 513
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXXXVI</td>
<td>Lacrymal Apparatus and Meibomian Glands</td>
<td>517</td>
</tr>
<tr>
<td>CXXXVII</td>
<td>Pinna</td>
<td>525</td>
</tr>
<tr>
<td>CXXXVIII</td>
<td>Intrinsic Muscles of Pinna</td>
<td>527</td>
</tr>
<tr>
<td>CXXXIX</td>
<td>Nerves of Scalp and Facial Nerve</td>
<td>531</td>
</tr>
<tr>
<td>CXL</td>
<td>Operation for Exposure of Facial Nerve</td>
<td>536</td>
</tr>
<tr>
<td>CXLI</td>
<td>Temporal Fascia and Nerves of Face</td>
<td>537</td>
</tr>
<tr>
<td>CXLII</td>
<td>Pterygoid Muscles and Internal Maxillary Artery</td>
<td>542</td>
</tr>
<tr>
<td>CXLIII</td>
<td>Internal Maxillary Artery and Branches</td>
<td>546</td>
</tr>
<tr>
<td>CXLIV</td>
<td>Inferior Maxillary Nerve</td>
<td>550</td>
</tr>
<tr>
<td>CXLV</td>
<td>Olfactory Nerves and Internal View of the Sphenopalatine and Otic Ganglia,</td>
<td>554</td>
</tr>
<tr>
<td>CXLVI</td>
<td>Superior and Inferior Maxillary Nerves</td>
<td>559</td>
</tr>
<tr>
<td>CXLVII</td>
<td>Diploic Veins</td>
<td>569</td>
</tr>
<tr>
<td>CXLVIII</td>
<td>Dura Mater, Arachnoid, and Meningeal Vessels</td>
<td>573</td>
</tr>
<tr>
<td>CXLIX</td>
<td>Sinuses and Processes of Dura Mater</td>
<td>578</td>
</tr>
<tr>
<td>CL</td>
<td>Sinuses and Cranial Nerves</td>
<td>579</td>
</tr>
<tr>
<td>CLI</td>
<td>Lines for Sinuses</td>
<td>585</td>
</tr>
</tbody>
</table>
PREFACE.

This book has been twelve years in preparation. During this time, while no change has been made in its plan, its scope has been much enlarged, to meet a wider field than for which it was first intended. My original purpose was to furnish for students a text-book of Surgical Anatomy, then much needed and not obtainable by them. I have made a book which will be serviceable, I hope, not alone to them, but to practising physicians and surgeons. While, I regret to say, this subject is much neglected in our American institutions, there came to be, nevertheless, during the progress of this work, an increasing and encouraging recognition of its importance. In some schools the course was much enlarged; in others new courses were established. In my own classes the work has constantly grown, until it has become not alone an adjunct to, and application of, descriptive anatomy, but rather the bridge between that study and practice of surgery itself. To meet these requirements it has not been sufficient for me to emphasize and clarify the facts of descriptive anatomy as required of undergraduates. I have been compelled to bring to them the knowledge of anatomy which I have used and as I have used it in surgical practice.

My book has kept pace with this change and growth. I have in no case cut down descriptions nor the teaching devoted to surgical anatomy, nor directions for and procedure in dissection, but I have added much relating to surgical work. I have endeavored to regard fully the necessities of undergraduates, and at the same time have had in mind constantly the requirements which they will meet as surgeons in their chosen field, and have tried to make for them a sufficient work of reference for use in actual practice.

I am aware that much of the ground, particularly that portion relating to regional anatomy, has been covered by other books. The valuable works of Cunningham, McLaughlin, Holden, Treves, Heath, Owen, and others, the companions and guides of many years, have been at my hand for constant reference. I welcome this opportunity to acknowledge my great indebtedness to them.

I have hoped, gathering freely from every source, adding much from surgical
experience, and arranging the whole as systematically as possible, to make for the
student and practical doctor a work of reference which is, comparatively speaking,
complete.

The illustrations have been for the most part made from dissections, and are,
therefore, original and accurate. Too much praise can not be given the artists
and engravers who have expended in their production infinite care and an interest
which has been most conscientious. I believe that use will lead to appreciation of
the great value of their labors.

I take this opportunity to thank, and acknowledge the services of, Dr. Carl
Hamann, my old student and house surgeon, now Professor of Anatomy in
the Western Reserve University, Cleveland, Ohio, for reading the manuscript;
Dr. J. Rex Hobensack, formerly my prosector in the University of Pennsyl-
vania, for the excellent dissections from which the illustrations were made and
for other valuable services in the preparation of this book, and Dr. A. D. Whiting,
for making the index.

1634 Walnut Street,
Philadelphia.
SURGICAL ANATOMY.

UPPER EXTREMITY.

SURFACE ANATOMY OF THE UPPER EXTREMITY.

Divisions.—The upper extremity is divisible into the shoulder, the arm, the forearm, the wrist, and the hand.

The Articulations to be studied are the shoulder; the elbow; the superior and inferior radio-ulnar; the radio-carpal, or wrist; the carpo-metacarpal; the metacarpo-phalangeal, of which there are five; and the phalangeal, of which there are nine.

The various Movements should be borne in mind. The upper extremity, as a whole, can be rotated on its axis at the shoulder-joint, so great freedom being provided that any part of the body can be touched by one or the other hand. At the elbow the movements are flexion and extension; the former is limited by the contact of the forearm with the arm, and the latter by the contact of the olecranon process of the ulna with the humerus. Through the radio-ulnar articulations the forearm is supinated and pronated, and extreme pronation and supination are permitted by rotation of the humerus. Through the radio-carpal, or wrist, articulation the hand is flexed and extended on the forearm. The metacarpo-phalangeal and inter-phalangeal articulations provide for the opening and closing of the fist and the spreading of the fingers.

If the forearm be supinated and in the extended position, it will be noticed that a line drawn in the long axis of the arm will form at the elbow an obtuse angle, with a line drawn in the long axis of the forearm. The opening of the angle is directed outward. (Plate II.) This difference in direction is known as the ulnar deflection, and should be carefully noted, as it is of importance in the treatment of fractures at or near the elbow-joint. The strength of the arm and its adaptability to various functions depend to some extent upon the maintenance of this angle. With the forearm extended and midway between pronation and
supination, the lines are practically parallel; while in extreme pronation, the lines form an obtuse angle, the opening of which is directed inward instead of outward.

Surface Markings.—Before commencing the dissection of the upper extremity the surface markings should be studied. The clavicle is readily felt, even in the stoutest persons. It is convex forward at its inner two-thirds, and concave forward at its outer one-third. The clavicle has a slightly downward slope when the body is in the upright position and with the arm at the side; but it is a little raised when the body is in the supine position. Advantage is taken of these facts in the reduction and treatment of fractures and dislocations of the clavicle. Its articulation with the sternum is easily felt, while that with the acromion process of the scapula, forming the bony arch of the shoulder, is not so easily distinguished. This prominence, formed by the bony arch of the shoulder, must not be confounded with the roundness of the shoulder, which is occasioned by the greater tuberosity and head of the humerus and the superimposed deltoid muscle. After amputation at the shoulder-joint the prominence of the shoulder remains, but the roundness is lost, owing to the removal of the upper end of the humerus. The relation of these bony points is important in the diagnosis of dislocations of the head of the humerus. A “deltoid tubercle” is sometimes present at the outer one-third of the clavicle, and must not be mistaken for an exostosis.

The **infra-clavicular fossa.**—This is a depression seen immediately below the middle of the clavicle, and corresponds to the interval between the origins of the pectoralis major and deltoid muscles. It is less evident in muscular persons than in those not so well developed.

The **coracoid process** does not give rise to any visible external eminence, except in very thin persons, but can be palpated by introducing the finger into the infra-clavicular fossa and displacing the anterior border of the deltoid upward and outward.

The **acromion process** and the spine of the scapula are subcutaneous and very prominent. The acromion may consist of one or two separate pieces which have failed to co-ossify with the spine of the scapula; so that there may be one or two epiphyses, which, if incompletely united with the rest of the bone, might be mistaken for fragments of a fractured acromion. The epiphyses, if present, will be found on both sides, while it would be rare to find a fracture on more than one side. The angle formed by the acromion process and the spine of the scapula is readily made out, and affords a convenient point from which to measure in comparing the lengths of the arms. In taking these measurements, the lower points selected are the external condyle of the humerus and the tip of the styloid process of the radius. The two arms should, it is needless to mention, be placed in the same position.
UPPER EXTREMITY—FOREARM PRONATED.
UPPER EXTREMITY—FOREARM SUPINATED, SHOWING ULNAR DEFLECTION.
Anterior fold of axilla

Deltoid

Biceps

Internal condyle

Olecranon

Triceps

Posterior fold of axilla

UPPER EXTREMITY—LANDMARKS OF ANTERIOR SURFACE.
The **biceps muscle** stands out as a well-rounded prominence on the anterior surface of the arm. It is limited on each side by a more or less well-marked groove. The internal groove contains the principal vessels and nerves of the arm; the outer, the cephalic vein.

The **deltoid muscle** can be easily recognized covering the greater tuberosity of the humerus. Paralysis and subsequent atrophy of this muscle will cause part of the roundness of the shoulder to disappear. Through this muscle the greater tuberosity of the humerus can be distinctly felt. The prominence immediately below the acromion, and felt most plainly if the arm be rotated on its long axis, is the greater tuberosity. To the inner side of and a little below the greater, the lesser tuberosity can be felt. By making pressure in a vertical line between these two prominences, the arm being rotated outward and hanging at the side, the bicipital groove, which accommodates the long tendon of the biceps, can be felt. In dislocation of this tendon—which, however, is quite rare—the groove becomes much more perceptible to the sense of touch.

The **head of the humerus** is most readily felt by inserting the fingers into the axilla. In subglenoid dislocation of the head it will be felt in the axilla as a very prominent mass.

The **coraco-acromial ligament** is distinctly felt under the anterior fibers of the deltoid. The midpoint of this ligament corresponds to the site of the bicipital groove and the long tendon of the biceps.

The **course of the axillary artery**, with the arm at a right angle to the body, is indicated by a line extending from a point slightly to the inner side of the middle of the clavicle to the middle of the bend of the elbow.

The **axilla**—The lower margin of the anterior wall of the axilla (the lower border of the pectoralis major) follows the fifth rib. Normally, the **glands** of the axilla are not palpable. The skin of the floor of the axilla is covered by an elongated patch of hair. In the skin and superficial fascia of the floor of the axilla are modified sebaceous and sweat glands. These, especially the sebaceous glands, not infrequently become infected, when, if not treated antiseptically, they may infect the glands of the axilla. These glands are occasionally the site of primary malignant disease. An abscess of the axilla should be opened midway between the anterior and posterior walls, the incision being carried from the arm toward the chest to avoid injuring the large vessels which course along the outer wall.

The **course of the vessels and nerves** of the arm, as in other parts of the body, is along protected routes. They pass from the axilla along the inner side of the arm, thence in front of the elbow, and between the muscles of the upper forearm. In the lower third of the forearm they lie near the surface, between the flexor tendons. Upon the digits they lie on the sides, where they are more pro-
tected. The veins, injury of which is less dangerous than that of either the arteries or the nerves, are more superficial.

The deep and the superficial veins communicate freely at the joints, thus insuring a free and uninterrupted return circulation during strong and continuous muscular contraction. They have a larger total capacity than the arteries, and this alone is ample reason for the slower flow of the venous current. They contain numerous valves, which are necessary on account of the deficient contractile power of the veins. The blood in them can not recede, because of the closing of the valves, which hold it in lock until extraneous muscular contraction or cardiac and vasomotor vis a tergo push the contained blood forward; or until a change of position favors the descent of the blood by gravity. The promptness with which the veins are emptied by gravity is quickly and easily demonstrated by the simple experiment of holding one hand over the head while the other hangs loosely at the side. If, after remaining in this position for about one-half of a minute, the hands are brought together in front, the previously uplifted one will appear bloodless while the other will show well-filled vessels.

The course of the brachial artery, with the arm at a right angle to the body, corresponds to a line extending from a little to the inner side of the middle of the clavicle to the middle of the bend of the elbow. The artery is overlapped by the inner edge of the biceps muscle. It is readily reached in any part of its course, and is easily compressed at its middle, where it lies upon the insertion of the coraco-brachialis, opposite the insertion of the deltoid.

The dimple behind the elbow, so much admired in a well-rounded forearm, and so evident in children, who are generally well supplied with fat, is the depression below the outer humeral condyle. It indicates the position of the head of the radius, which can be felt rotating when the arm is alternately pronated and supinated. In thin persons, and on the back of the forearm while in extreme pronation, the bicipital tuberosity of the radius can be felt below the head of the radius.

The supra-condyloid process is a hook-shaped spicule of bone which occasionally projects from above the inner condyle of the humerus. It often gives origin to a third head of the pronator radii teres muscle, which covers the brachial artery. This process must not be mistaken for an exostosis; it is the rudiment of a process of bone which forms the supra-condyloid foramen in some of the mammalia. In these animals the foramen transmits the brachial artery and the median nerve.

Bursæ are present over the olecranon, the back of the upper end of the ulna, and each condyle.

The condyles and olecranon.—The bony prominences at the elbow are important in the diagnosis of fractures and dislocations occurring in this locality. These prominences are the internal and external condyles of the humerus and the
DISLOCATED SHOULDER AND NORMAL SHOULDER

29
SURFACE ANATOMY OF THE UPPER EXTREMITY.

The olecranon process of the ulna. In their normal condition, with the forearm fully extended, the tip of the olecranon and the two condyles lie in the same transverse line. If the forearm be flexed, the olecranon process will lie below a line drawn from one condyle to the other. The vertical limits of the elbow-joint are indicated above by an intercondyloid line; below, by the lowest part of the head of the radius.

Extreme elbow flexion arrests the flow of blood in the brachial artery below this joint.

THE FOREARM AND WRIST.

The ulna is subcutaneous along its posterior border throughout its entire length, when the forearm is supinated, but, in pronation, the muscles of the back of the forearm overlap the ulna and obscure it. Irregularities of the posterior border of the shaft are, therefore, very readily detected during supination.

The radius is so enveloped by muscle in its upper half that, with the exception of its head, it is beyond reach; but in its lower part it is quite accessible, being even subcutaneous at its lower end. The lower end of the radius extends further downward and forward than does that of the ulna.

The course of the radial artery corresponds to a line extending from the middle of the bend of the elbow to the inner side of the base of the styloid process of the radius. The artery is overlapped in its upper one-half by the supinator longus muscle. To reach it at this part of its course it is therefore necessary to displace the inner edge of this muscle outward.

The ulnar artery takes a curved course, which may be represented by two lines: The line for the upper one-third of the artery is drawn from a point one-half of an inch below the middle of the bend of the elbow to the inner border of the forearm at the junction of its upper with its middle one-third; the line for the lower two-thirds of the artery is drawn from midway between the internal condyle and the middle of the bend of the elbow to the radial side of the pisiform bone. In consequence of the superficial location of the arteries of the upper limb, and their occasional anomalous course, their exact position should be ascertained by digital palpation before the skin is incised.

Study of the front of the carpus reveals the following points: The tubercle of the scaphoid, below the styloid process of the radius and to the inner side of the thumb extensors; the trapezium, a little below the tubercle of the scaphoid; the pisiform bone, just below the ulna on the palmar surface, at the base of the hypothenar eminence; the cuneiform bone, upon the inner side of the pisiform; several transverse furrows in front of the wrist, the lowest of which marks the upper edge of the anterior annular ligament and the line of the intercarpal joint; the
tendons, when the wrist is flexed; the pulsation of the radial artery where it lies on the outer side of the flexor tendons (between the tendons of the supinator longus and flexor carpi radialis); the tendon of the flexor carpi ulnaris, which overlaps the ulnar artery, thus masking its pulsation. The level of the radio-carpal, or wrist, joint corresponds to the interval between the styloid process of the radius and the tubercle of the scaphoid. Incisions into the front of the wrist for the evacuation of pus should be made upon the ulnar side of the flexor carpi radialis tendon, and rather close to it, so as to avoid the radial artery, externally, and the median nerve internally, which lies a little to the ulnar side of this tendon. Too deep an incision may enter the flexor sheath or great carpal bursa.

The pulse.—The pulsation of the radial artery in front of the lower end of the radius, upon the radial side of the flexor carpi radialis tendon, is commonly known as the "pulse." Sometimes the superficialis volae arises high up and descends with the radial, thus giving the impression of a double pulse (pulsus duplex). At other times the radial artery turns backward over the radius higher up than usual, and then the pulse is not found in its normal position.

"The anatomic snuff-box" is a designation given by the French to the space upon the radial side of the back of the wrist between the first and second thumb extensors. It is bounded above by the styloid process of the radius, below by the base of the metacarpal bone of the thumb, upon the radial side by the tendons of the extensor ossis metacarpi pollicis and extensor primi internodii pollicis, and upon the ulnar side by the tendon of the extensor secundii internodii pollicis. In it are found the superficial radial vein; the radial artery, as it dips forward into the first interosseous space to form the deep palmar arch; and the base of the first metacarpal bone. The artery gives off in this space the posterior carpal, the first dorsal interosseous, the dorsales pollicis, and the dorsalis indicis artery.

"Tenalgia crepitans" is the name given to a grating sensation present at the back of the wrist in synovitis of the sheaths of the extensor tendons of the fingers—thecitis—and in the dryness accompanying uric acid disease.

THE HAND.

The palm of the hand presents two eminences, a depression, and three furrows. The eminences are the thenar—the ball of the thumb—and the hypothenar. The thenar eminence is produced by the short muscles of the thumb, and the hypothenar eminence by the short muscles of the little finger. The thenar eminence is situated at the base of the thumb, and the hypothenar at the base of the little finger. The depression of the palm or hollow of the hand is triangular in shape. The base of the triangle is formed by the elevations at the roots of the fingers, the sides by the
PRINCIPAL FLEXOR FURROWS.

34
thenar and hypothenar eminences, and the apex by the junction of the thenar and hypothenar eminences.

The palmar flexor furrow is composed of two parts, an ulnar and a radial. The ulnar part (convex upward) extends from in front of the head of the fifth metacarpal bone to the web between the index and middle fingers, and the radial part (convex downward) extends from in front of the head of the metacarpal bone of the index finger to the hypothenar eminence. When the fingers are flexed, the transverse portions of these furrows form a deep fissure with a central interruption. This fissure indicates the position of the heads of the metacarpal bones; the upper limits of the synovial sheaths of the flexor tendons of the index, middle, and ring fingers; the division of the palmar fascia into four slips, and the transverse metacarpal ligament; while a little below it the digital arteries bifurcate into their terminal branches. An arched furrow also extends around the base of the thenar eminence from the outer end of the radial portion of the palmar flexor furrow to the base of the thenar eminence. It is placed opposite the carpo-metacarpal joint of the thumb; this relation is analogous to that of the other two furrows to the metacarpophalangeal joints. If the metacarpal bone of the thumb be viewed as the first phalanx,—which it is from a developmental point of view,—the analogy is more complete, all three furrows marking the position of the basal articulations of the primary phalanges.

On the palmar surface of the finger there are three transverse furrows; the last two locate the position of the interphalangeal joints, the first furrow being nearly midway between the metacarpophalangeal and the first interphalangeal articulations.

With the thumb strongly abducted, a line drawn from its lower border transversely across the palm of the hand represents, for all practical purposes, the lowest point in the course of the superficial palmar arch. A line drawn one-half of an inch to the proximal side of that for the superficial arch, and parallel to it, represents the course of the deep arch.

The intersosseous arteries, both dorsal and palmar, run along the intersosseous spaces, thus making it desirable when opening abscesses of either the front or back of the hand to carry the incision over the metacarpal bones rather than over the interspaces.

The sesamoid bones of the thumb lie just beyond the metacarpophalangeal joint,—that is, to its distal side,—so that in amputation through the joint the incision into the articulation should be made on the proximal side of these bones.

The knuckles, consisting of three rows, are formed by the distal ends of the proximal bones. Thus, the heads of the metacarpals form the first, the distal ends of the first phalanges the second, and the distal ends of the second phalanges the
SURGICAL ANATOMY.

third, row. To enter the knuckle-joint for amputation the knife should be carried a little in advance of the prominence of the knuckle.

Nerve Stretching and Nerve Section have now become so well-recognized and common procedures that the following few instructions may be an aid to the student, both in retaining his knowledge of the anatomic relations and in subsequent practical surgical utility:

The entire axillary or brachial plexus can be stretched in the axilla through an incision made in the line of the axillary artery. Each branch or cord must be identified, raised upon a blunt hook or aneurysm needle, and pulled with moderate tension in proportion to the size of the nerve being manipulated. The median nerve is found upon the outer side of the brachial artery in its upper third, anterior to the artery in its middle third, and on its inner side in its lower third. It can be reached in the lower end of the forearm through an incision parallel with the ulnar border of the flexor carpi radialis tendon, where it will be found between this tendon and the outermost tendon of the flexor sublimis digitorum. The external cutaneous or musculo-cutaneous nerve, before it pierces the coraco-brachialis muscle, lies upon the outer side of the median nerve, and lower down, between the biceps and brachialis anticus muscles. Upon the outer side of the tendon of the biceps it becomes an occupant of the superficial fascia.

The internal cutaneous nerve is found upon the inner side of the brachial artery in the upper third of the arm, and upon the inner side of this vessel and the median nerve in the middle of the arm.

The ulnar nerve, in the upper two-thirds of the arm, is on the inner side of the internal cutaneous, and is readily differentiated from it because of its larger size. It is easily found behind the internal condyle, one of the best locations for securing it with little effort and slight danger of confounding it with other structures. It is also readily found in the lower part of the forearm, under the flexor carpi ulnaris tendon on the inner side of the ulnar artery.

The musculo-spiral nerve is found deeply situated upon the outer side of the lower end of the arm, between the brachialis anticus and the supinator longus; in the antecubital fossa, opposite the tendon of the biceps and the bifurcation of the brachial artery, it divides into the radial and posterior interosseous, where both nerves may be stretched.

The radial nerve is also readily found at the middle of the front of the fore-
PLATE VIII.

ANTERIOR VIEW OF UPPER EXTREMITY — MOTOR POINTS.

40
PLATE IX

MOTOR POINTS AND LINES OF INCISIONS FOR POSTERIOR CIRCUMFLEX ARTERY AND MUSCULO-SPRIRAL NERVE.
DORSUM OF SCAPULA SHOWING ACROMIAL ANGLE.
LINES OF INCISIONS FOR DISSECTION AND LINE FOR AXILLARY ARTERY.
The motor points are places where the nerves become superficial by perforating the deep fascia, or where they emerge through or between muscles to take a superficial course. It is at these points that response is most readily secured to a concentrated electric current from a small electrode, causing marked tingling and decided muscular contraction with a strength of current that is hardly, or not at all, noticeable at other parts of the cutaneous surface. The points are well shown in the annexed figures.

Measurements of the arm are made from the tip of the acromion, or the angle of junction of the acromion with the spine of the scapula, to the external condyle, and with the forearm extended and supinated from this to the tip of the styloid process of the radius. Each point should be identified and marked with a dot of ink, for the custom of identifying these points while measuring with a tape may cause errors of one-quarter or one-half of an inch in two successive measurements by the same individual. This is particularly important in medico-legal cases.

Dissection.—The dissection of the upper extremity includes as much of the front and back of the chest as is connected with the arm, together with the shoulder, axilla, arm, forearm, and hand. Preparatory to making the dissection, the cadaver should be placed upon its back, with the arm at a right angle to the body, and resting upon a flat board, to which the hand should be fastened in supination. A block four to six inches in thickness should be placed under the shoulders. For purposes of preservation the part should be bandaged as high as the middle of the arm, preferably with some oiled paper, oiled muslin, or rubber, to prevent drying. This covering should be removed as the dissection progresses and reapplied when discontinuing.

In reflecting the skin it is advisable to make as large flaps as possible. My reason is a two-fold one: first, there is no better covering than the skin to preserve the moisture of the underlying structures; and, second, the dissector is thus enabled to review the surface anatomy of the part, from time to time, and study carefully the relations of the surface markings to the deeper structures. In removing the skin from the front of the chest no more than three incisions are, therefore, advisable: one extending along the middle of the entire length of the sternum, another from the upper end of this incision along the clavicle to its acromial end, and thence downward over the shoulder to the outer side of the middle of the arm, and a third from the lower end of the sternal incision transversely outward to the line of the posterior fold of the axilla.
Now grasp only the skin at the superior sternal angle with a pair of forceps and gradually reflect it by severing its connection to the underlying fascia with a knife; but as soon as enough has been turned back to be readily grasped by the fingers, they should take the place of the forceps, because the work thus becomes easier and is more rapidly and more neatly executed. The superficial fascia and its nerves and vessels thus become exposed, though in the infra-clavicular and shoulder regions there will be seen a thin layer of muscular fibers passing over the clavicle into the neck. This is the origin, or inferior attachment, of the platysma myoides muscle, a superficial structure by which the skin of the neck is moved. It is a remnant of a well-marked and useful structure—the *panniculus carnosus*—a thin layer of muscular fibers existing in the lower animals; it is situated in the superficial fascia, and enables its possessor to shake off flies and other insects by rapid vibratory motions of the hide. It is the underlying red muscular structure which one sees in fancy figures cut in quarters of beef and mutton. A slash of the knife immediately after skinning causes a wide separation of the severed ends of the still warm muscular fibers, which contract as soon as cut.

The skin over the sternum is rather thicker than over the lateral regions of the thorax, can not readily be raised up in folds, and retracts considerably when divided. In males it is often covered with a growth of hair. Keloid growths are not uncommonly seen here.

The superficial fascia consists of both a superficial layer of connective tissue, quite rich in adipose substance, occupying its meshes, and a deep layer, which is membranous and resembles the deep fascia to which it is attached. Between the two layers are found the mammary gland, the vessels, and the nerves. Over the sternum the adipose tissue is less abundant than elsewhere in the anterior thoracic region; and in corpulent persons, therefore, the sternal area is relatively depressed. The fascia is firmly adherent to the periosteum of the sternum.

The vessels of the superficial fascia are as follows: Five or six perforating branches of the internal mammary artery, which appear near the sternum and are directed outward, the upper three usually going to the mammary gland and becoming enlarged in women during lactation, the lower two or three supplying the pectoralis major. The upper five or six anterior intercostal branches of the internal mammary also appear upon the front of the chest to supply the pectoral muscles and the mammary gland. Thoracic branches of the acromio-thoracic artery—two or three small vessels—descend upon the chest at the middle of the clavicle to supply the pectoralis major and anastomose with the preceding. The acromial branches of the same go to the shoulder and supply the deltoid; they anastomose upon the top of the shoulder with the supra-scapular and posterior circumflex arteries. The descending branches pass down the delto-pectoral sulcus beside the
Branch of transversalis colli a.
Branch of acromio-thoracic a.
Branch of long thoracic a.
Mammary gland in superficial fascia
Perforating branches of internal mammary a.
PLATE XIII.

ANTERIOR CUTANEOUS AND LATERAL CUTANEOUS NERVES.
cephalic vein. The *long thoracic artery* sends branches to the mammary gland and the superficial fascia. All of these vessels supply the fascia and skin of this region, and are accompanied by veins and lymphatics, which latter become visible during inflammatory diseases.

The *nerves* in the fascia of this region are branches of the cervical plexus and the intercostals. The *cervical plexus* sends down *inner* or *supra-sternal branches*, which pass over the sternal end of the clavicle to the upper part of the sternal region of the chest, *middle* or *supra-clavicular branches*, to the infra-clavicular region; and *external* or *supra-acromial branches*, to the upper and back part of the shoulder. These three sets comprise the descending branches of this plexus. The *anterior cutaneous branches* of the upper six intercostal nerves pierce the pectoral major to supply the skin and fascia over this muscle and the region of the sternum. A few twigs from the third and fourth go to the mammary gland. The *lateral cutaneous nerves*, branches of the intercostals, pierce the external intercostal muscles and emerge between the digitations of the serratus magnus muscle. They divide into anterior and posterior branches, the former turning upward over the lower border of the pectoralis major to the fascia and skin of the chest and to the mammary gland, and the posterior passing backward to the dorsum of the trunk over the anterior margin of the latissimus dorsi.

The *lymphatic vessels* of the anterior chest region converge toward the axillary glands, are quite sparse, and in their normal condition are as difficult to distinguish here as elsewhere.

The *mammary glands*—smooth, rounded prominences—form the bust or breasts of women. They are rudimentary in the male, although exceptional instances have been reported of men nursing children from their breasts. They are more or less hemispheroid, with the flat or concave base resting upon the deeper layer of the superficial fascia. They extend from the third to the seventh rib and from the edge of the sternum to the anterior axillary border. Their longest diameter extends upward and outward toward the axilla. The outline of the base of the gland is not circular, but rather triangular, inasmuch as there are two extensions—an upper and a lower—of variable size, one toward the axilla, the other toward the sternum. The upper of these axillary extensions may even curve around the lower border of the great pectoral muscle; furthermore, a completely detached portion of the gland or a supernumerary gland may lie in the axilla and be the starting-point of a tumor.

Small portions of the gland may lie beneath the deep fascia, in or upon the pectoralis major, and the suspensory ligaments may, according to Stiles, contain glandular processes. All of these facts are of importance in the diagnosis and treatment of mammary carcinoma. In the female they vary in size during life,
being rudimentary in childhood, developing at puberty, and becoming more enlarged during pregnancy, to reach their highest development after childbirth and during lactation. They diminish after lactation, and thus alternately become larger and smaller during successive births, until the child-bearing and suckling periods have been passed, when they atrophy and again assume a rudimentary state.

The mamma is composed of tissue of a glandular, fibrous, and fatty type. The glandular structure is racemose, and consists of small, secreting lobules, with confluent ducts, the lobules uniting to form lobes, each of which has a single main duct terminating in the nipple. There are from fifteen to twenty of these lactiferous or galactophorous ducts. They converge toward the nipple and form under the areola ampullae or dilatations, which serve as reservoirs for the milk; they again contract as they enter the nipple and open upon the summit by orifices smaller than the ducts themselves. The ducts are composed of connective tissue and longitudinal muscular fibers, and are lined with tessellated epithelium, continuous with the skin externally and with the glandular epithelium internally. The fibrous structure consists of the perimammary investiture of superficial fascia (capsule of the gland) and its intramammary extensions, which form supporting and connecting septa between the lobes of the gland. Some processes of the fascia go to the nipple and skin and are called suspensory ligaments (ligaments of Sir Astley Cooper). The fatty tissue covers the surface of the gland and its component lobes and consists of two portions, the perimammary and interlobar; it does not, however, exist within or immediately beneath the nipple. The amount of the fatty tissue, rather than that of the glandular structure, determines the size of the breast. The deep surface of the capsule of the gland is connected to the deep or pectoral fascia by loose connective tissue, in which a bursa sometimes exists. At times this connective tissue is so loose in female savages, as in the Hottentots, that the glands can be thrown over the shoulder, and a child suckled while being carried upon the back. Surmounting the mammary gland is a conic elevation, the nipple.

The **nipple**, or *mamilla*, is found over the fourth intercostal space, and is a dark-colored, flattened, cylindric elevation, composed of erectile tissue, and very sensitive. It is on the left side and, more especially in the male, is a guide to the location of the apex beat of the heart, which is found one and one-half inches below and three-fourths of an inch to its inner side. It has a puckered, wrinkled skin, some papillae, and upon its summit are the openings of the lactiferous ducts. It is composed of vessels mixed with smooth muscular fibers, and is erectile. It is surrounded by a pigmented areola, of a delicate rose color in virgins, which becomes darker during pregnancy, subsequently fading somewhat, but not enough to regain its original appearance. In the areola near the base of the nipple are numerous sebaceous glands,—the tubercles of Montgomery,—which enlarge during pregnancy
and lactation and have the appearance of subcutaneous tubercles. They secrete a greasy substance to protect the nipple during suckling. These glands may be primarily affected by carcinoma or sarcoma, which may secondarily involve the mammary gland.

The skin of the nipple is thin and very sensitive, and is often the seat of painful and intractable fissures during nursing. Chronic inflammation of the skin of the nipple (eczema) is at times the accompaniment of beginning Paget's disease, mammary epithelioma, and cancer of the breast.

Blood and Nerve Supply.—The mammary gland is nourished by the long thoracic branch of the axillary artery, the anterior intercostal, and, especially, the perforating, branches of the internal mammary artery, and the intercostal arteries. The veins accompany the arteries and also form an anastomotic circle about the nipple (circulus venosus, Haller), from which large branches carry its contents to the circumference of the gland, whence it is taken to the axillary and internal mammary veins.

The lymphatic channels play a conspicuous rôle in inflammatory and neoplastic processes. Most of the mammary lymphatics go to the axillary glands, though a few enter the anterior mediastinal lymphatics, following the mammary branches of the internal mammary artery. When the breasts are unusually large, the lymphatics communicate across the sternum; this is one of the anatomic explanations of the occurrence of cancer in both breasts. In advanced cases of carcinoma of the breast the glands in the infra- and supra-clavicular fossæ often become involved, in addition to the axillary glands. The lymph from the mammary gland first passes into the glands along the anterior fold of the axilla and then into those along the axillary vessels. As metastasis from cancers follows the course of the lymphatics, the glands along the anterior fold are first involved and then those along the axillary vessels are affected. In its course the lymph will, after a time, involve the glands along the subclavians vessels. The anastomosis between the submammary lymphatics and the intramammary lymphatics is so free that the operation for carcinoma of the breast which promises the best results is that which removes the entire gland, the skin wide of the diseased area, totally excises the submammary and paramammary connective tissue, the pectoral fascia, sternal portion of the pectoralis major, the pectoralis minor, the lymphatics and connective tissue of the armpit, deep infraclavicular and subclavians triangles. The lymphatics of the axilla, deep infraclavicular triangle, and subclavians triangle are not necessarily involved through the superficial lymphatic channels, but may be directly infected through the submammary lymphatic vessels. If the axillary vein be wounded in the operation for removal of the breast, a small opening may be closed by pinching up the torn place and applying a lateral
ligature; but if the wound be large, the vein must be tied to either side of the rent. When the axillary vein is included in malignant tissue, ligatures should be applied above and below and the involved portion of the vein excised.

The nerve supply is from the anterior cutaneous branches of the third, fourth, and fifth intercostal, the descending branches of the cervical plexus, and the lateral cutaneous branches of the third, fourth, and fifth intercostals. This arrangement of the nerves explains the pains felt in the shoulder, neck, back, and down the arm in painful breast affections, such as cancer, mastitis, and abscess.

The largest artery divided in excision of the breast is the long thoracic, also called deep external mammary in contradistinction to the superficial external mammary, which is not constant. The superficial external mammary is a branch either of the third division of the axillary or of the first portion of the brachial, and reaches the gland by passing through the superficial fascia of the axilla.

Because of the close relation which this gland bears to the pectoralis major muscle, all movements of the arm affect the gland, more or less. This is not particularly noticeable, ordinarily, but it becomes unpleasantly evident in painful affections of the breast, as in mammary abscess.

Mammary abscess may be confined between the septa of the gland, may be diffused throughout the organ, or may occur in the submammary connective tissue; in this last event it will most likely point at the anterior fold of the axilla. Incisions into the breast should be made toward the nipple, so as not to sever the lactiferous ducts which converge toward this point. After opening an abscess of the mammary gland, the fibrous septa of the abscess should be broken down in order that perfect drainage may be obtained. After all operations upon the mammary gland, and in the treatment of inflammatory affections of the gland, the whole upper extremity should be bandaged to the chest as in fractured clavicle, so that movements of the arm and pectoralis major will not prevent rest of the part. Enlargement of the bursa under the breast would constitute a submammary cyst. In long-standing scirrhus (hard cancer) of this gland the nipple is retracted and the skin dimpled, because of traction by the fibrous septa and lactiferous ducts.

In detecting adhesions between the mammary gland and the pectoralis major, as in carcinoma of the breast, the gland should be moved in the direction of the fibers of that muscle; for if the gland is moved in a direction which is across that of the fibers of the muscle, the pectoralis major will move with the gland.

A suspected tumor in the mammary gland is most readily detected by placing the palm of the hand flat upon the organ and compressing the latter against the thorax. If the enlargement be inflammatory, the hand feels nothing but the lumpy and wormy sensation of the swollen ducts and acini: This is Spence's test.
PLATE XV.

DEEP FASCIA OR PECTORAL FASCIA AND AXILLARY FASCIA.
Diagram showing line of section.
Congenital variations and anomalies of the breast.—The nipple may fail to develop properly, and thus appear, in the adult, to be retracted. Absence of the nipple (athelia) is sometimes observed. When supernumerary nipples occur, the condition is spoken of as polythelia. Supernumerary mammæ are found at times in the axilla, anterior thoracic wall, or even in the groin, on the back or thigh. The condition is known as polymastia or polymazia.

Congenital absence of one or both breasts (amazia) is much more rarely encountered. The breasts may fail to develop properly, remaining rudimentary and small. Such condition is termed micromazia.

When the mammæ are unusually large in males, the condition is called gynecomastia. Not a few of these anomalies of the breast are associated with imperfections or malformations of the genitalia.

In infants, shortly after birth, the breasts sometimes become increased in size and secrete a turbid fluid. Occasionally it happens that in girls at the age of puberty the mammæ develop unequally, one becoming rather rapidly increased in size, while the other remains for a time retarded in growth. The gland may become slightly larger and somewhat painful in boys at the age of puberty.

Dissection.—The deep fascia is exposed by removal of the superficial fascia, which should be dissected off in the same manner as was the skin.

The deep fascia or pectoral fascia is continuous with that of the neck, shoulder, arm, back, and abdomen. It consists of two layers, the superficial and the deep. The superficial layer is attached to the anterior surface of the clavicle and sternum, and blends below with the deep fascia of the external oblique muscle. It forms the sheath of the pectoralis major muscle. The deep layer lies beneath the pectoralis major, and can not be studied until that muscle has been removed.

Dissection.—The superficial layer of the deep fascia should now be reflected, and in effecting its removal the scalpel should cut at right angles to the line of the muscle fibers. Its connection with the deep layer along the lower border of the pectoralis major should not be severed until the axillary fascia and the manner of its formation has been demonstrated, as this is the point where the two layers blend to form that fascia.

The pectoralis major muscle is large, thick, flat, and triangular, and covers the front of the chest and axilla. Its base rests upon the sternum and inner half of the clavicle, and its apex is between the biceps and deltoid muscles in the upper part of the arm. It is divided by a slight separation of its fibers into an upper, or clavicular, and a lower, or chondro-sternal, portion. The clavicular portion arises from the anterior surface of the sternal half of the clavicle and from the adjacent portion of the sterno-clavicular articulation; its outermost fibers are in contact with the anterior margin of the deltoid. The chondro-sternal portion arises from
the lateral half of the entire length of the sternum, except below the attachment of the seventh costal cartilage; from the cartilages of the true ribs, excepting frequently either the first or the seventh, or both; from the sternal end of the sixth rib; and from the aponeurosis of the adjacent portion of the external oblique. From this extensive origin the fibers converge upon the front of the arm, forming a flat tendon about two inches in length, which is inserted into the anterior bicipital ridge of the humerus. The lowermost fibers of origin of this portion have the highest insertion on the ridge, and the uppermost fibers have the lowest. Thus, the most inferior fibers are overlapped near their insertion by the middle fibers, and these in turn by the upper. The clavicular fibers pass downward and outward, the central fibers horizontally outward, and the lower fibers upward and outward. The anterior layer of the doubled tendon of insertion is thicker than the posterior, and receives the fibers of the clavicular and upper chondro-sternal portions, the posterior portion receiving the remaining fibers from the lower half of the muscle. The tendon of insertion is connected with that of the deltoid. It sends a prolongation upward over the bicipital groove to the greater tuberosity, thus binding down the long head of the biceps, another backward to line the groove, and still another to the deep fascia of the arm.

The chondro-sternal portion lies upon the sternum, ribs, and costal cartilages, the intercostal muscles, the pectoralis minor, part of the serratus magnus; and the deep layer of the deep fascia; the clavicular portion lies in front of the costocoracoid membrane and the structures piercing this membrane. The pectoralis major, pectoralis minor, and deep layer of the deep fascia form the anterior axillary wall. Between the clavicular portion of the pectoralis major and the anterior edge of the deltoid is the delto-pectoral sulcus, or cephalic groove, which accommodates the cephalic vein and the descending or humeral branch of the acromio-thoracic artery. Internally, in some muscular individuals the fibers of the pectoralis major decussate with those of its fellow of the opposite side. Occasionally, muscular fibers are found along the sternum, from the manubrium above to the sheath of the rectus below, and form the rectus sternalis muscle. The lower edge of the pectoralis major forms the anterior axillary margin and, with the latissimus dorsi, converges toward the outer part of the space.

The cellular interval between the chondro-sternal and clavicular portions of the muscle is represented by a depression on the chest when the arm is strongly abducted, and with the arm at a right angle to the body corresponds to a line drawn from the sterno-clavicular joint to the middle of the bend of the elbow. An incision through this interval exposes the first portion of the axillary artery.

The Actions of the pectoralis major are complex, though its general function is to draw the elbow across the chest in anterior adduction. It is also an inward
PLATE XVII.

Trapezius m.
Posterior belly of omo-hyoid m.
Sterno-mastoid m.
Anterior belly of omo-hyoid m.
Sterno-hyoid m.
Sterno-thyroid m.

Chondro-sternal head of pectoralis major m.
Clavicular head of pectoralis major m.
Latissimus dorsi m.
Deltoid m.

External oblique m.

PECTORALIS MAJOR MUSCLE AND PECTORALIS MINOR MUSCLE.
rotator of the humerus. The clavicular portion aids the anterior fibers of the deltoïd in elevating the arm and drawing it forward, while the lowermost fibers of the chondro-sternal portion draw the arm downward and forward. The pectoralis major is a hugging muscle. If the arm be fixed, its action is reversed. It then would help to elevate the body suspended by the arms, would elevate the body in dipping between parallel bars, and would be a powerful aid in difficult respiration when the arms are fixed. It reaches a remarkable development in winged animals, in which its size may be inferred from the thickness of their breasts. The pectoralis major is often the seat of carcinomatous deposits in cases of malignant disease of the breast; and, in such cases, the surgeon does not hesitate to remove a part or the whole of the muscle. In the most radical operation for mammary cancer the chondro-sternal portion of the muscle is always removed. After this operation hypertrophy of the clavicular portion of the pectoralis major and the anterior part of the deltoïd compensates for the loss of the chondro-sternal portion of the pectoralis major.

Nourishment is supplied to this muscle by branches of the axillary and internal mammary arteries, especially the acromio-thoracic and long thoracic branches of the axillary which ramify in the anterior pectoral region.

Its nerves are the external and internal anterior thoracic.

Dissection.—The next step in the dissection is to detach the clavicular portion of the pectoralis major from the clavicle and displace it downward and outward, when will be seen a triangular-shaped space, the floor of which is formed by the deep pectoral or clavi-pectoral fascia. This triangular-shaped space is the superficial infra-clavicular triangle—superficial in contradistinction to a still deeper one, the deep infra-clavicular triangle—seen after the removal of the clavi-pectoral fascia.

The superficial infra-clavicular triangle.—The base of the superficial infra-clavicular triangle is directed outward and is formed by the anterior border of the deltoid muscle; the apex is directed inward and lies at the junction of the clavicle with the sternum. It is bounded above by the inner half of the clavicle, and below by the upper edge of the sternal portion of the pectoralis major. Its roof is formed by the clavicular portion of the pectoralis major; its floor, by the clavi-pectoral fascia. The contents of the space are some fat and the structures which pierce its floor—the cephalic vein, the acromio-thoracic artery and vein, and the external anterior thoracic nerve.

The deep pectoral or clavi-pectoral fascia is attached above to the lips of the subclavian groove on the under surface of the clavicle. At its attachment to the clavicle it consists of two layers, which inclose the subclavius muscle and unite along the lower border of that muscle to form a single layer. Externally, it is
attached to the upper surface of the coracoid process; internally, it blends with the intercostal fascia covering the upper two intercostal spaces; below, it divides along the upper border of the pectoralis minor to invest this muscle. From the lower border of the pectoralis minor it descends as a single layer to join the superficial layer of the deep or pectoral fascia along the lower margin of the pectoralis major, forming the axillary fascia. As previously described, it forms the floor of the superficial infra-clavicular triangle. It is denser externally at its attachment to the coracoid process than internally, where it blends with the fascia covering the first two intercostal spaces. It also blends with the sheath of the axillary vessels. The clavi-pectoral fascia is sometimes spoken of as the suspensory ligament of the axilla, since by its connection with the fascial sheath of the pectoralis minor it suspends the axillary fascia (floor of axilla), thus forming the hollow of the arm-pit.

The costo-coracoid membrane is that portion of the clavi-pectoral fascia which fills the interval between the clavicle and upper border of the pectoralis minor muscle. It is denser than the lower part of the clavi-pectoral fascia, and is pierced by the cephalic vein, acromio-thoracic artery and vein, the external anterior thoracic nerve, and sometimes by a branch of the superior thoracic artery.

Considerable importance attaches to the arrangement of the deep or pectoral fascia because of possible purulent collections in this region. Such a collection situated behind the pectoralis major, or between it and the pectoralis minor, would point either at the anterior border of the axilla or under the clavicle in the upper end of the delto-pectoral sulcus. If, however, it were situated behind the pectoralis minor muscle and the deep layer of the deep fascia, it would either remain confined in the axillary space and point at the floor of the arm-pit or extend upward into the neck in the direction of least resistance and point above the clavicle.

Dissection.—Divide the anterior layer of the clavi-pectoral fascia along its attachment to the anterior lip of the subclavian groove of the clavicle and reflect it downward. This will expose the subclavius muscle.

The subclavius muscle is small and spindle-shaped. It lies under the clavicle, over the first rib. It arises by a short, thick tendon from the first costal cartilage in front of the costo-clavicular (rhomboid) ligament, whence its fibers pass outward and a little upward, to be inserted into the subclavian groove on the under surface of the middle third of the clavicle. It is enveloped by the costo-coracoid membrane and clavicle. It is at the upper boundary, therefore, of the two infra-clavicular triangles, held between the folds of that membrane which forms part of the floor of the one and the roof of the other. Above, it is in close relation with the clavicle; below, with the costo-coracoid membrane and the cephalic vein; in front, it is in relation with the clavicular origin of the pec-
PLATE XVIII.

External anterior thoracic n.
Acromio-thoracic a.
Clavicular branch of acromio-thoracic a.
Costo-coracoid membrane
Cephalic v.
Acromial branch of acromio-thoracic a.
Humeral branch of acromio-thoracic a.
Deltoid m.

SUPERFICIAL INFRACLAVICULAR TRIANGLE.
Axillary v.
Subclavius m.
Axillary a.
External anterior thoracic n.
Brachial plexus of nerves
Clavicular branch of acromio-thoracic a.
Serratus magnus m.
Thoracic branch of acromio-thoracic a.
Internal anterior thoracic n.
Acromial branch of acromio-thoracic a.
Subscapularis m.
Humeral branch of acromio-thoracic a.
Deltoid m.
Clavicular head of pectoralis major m.
Chondro-sternal head of pectoralis major m.
Internal anterior thoracic n.
Superior thoracic a.
Pectoralis minor m.
Acromio-thoracic a.
Cephalic v.
External intercostal m.
Internal intercostal m.

DEEP INFRACLAVICULAR TRIANGLE.
71
toralis major and deltoid muscles, the anterior lamella of the costo-coracoid membrane being between; and behind, with the posterior layer of the costo-coracoid membrane, the subclavian vessels, and brachial plexus of nerves.

Blood Supply.—From the clavicular branch of the acromio-thoracic artery.

Nerve Supply.—A filament from the cord formed by the fifth and sixth cervical nerves.

Action.—It depresses the shoulder by pulling the clavicle downward and forward. It also draws the clavicle inward, holding the inner extremity of the bone against the sternum.

Dissection.—Push the subclavius muscle upward and divide the posterior layer of the costo-coracoid membrane; then divide the costo-coracoid membrane at its attachments to the coracoid process and the upper two intercostal spaces, and dissect it from the structures which pierce it, leaving the latter intact. This will expose to view the deep infra-clavicular triangle.

The deep infra-clavicular triangle.—The base of the deep infra-clavicular triangle is directed inward, and is formed by the line of junction of the upper two ribs with their costal cartilages; the apex is directed outward, toward the coracoid process. It is bounded above by the inner half of the clavicle, and below by the upper border of the pectoralis minor. Its roof is formed by the costo-coracoid membrane and its floor by the upper two ribs and intercostal muscles, the serratus magnus, and the subscapularis muscle. It will be seen that the subclavius muscle, since it is ensheathed by the costo-coracoid membrane, must necessarily be found in the floor of the superficial and in the roof of the deep infra-clavicular triangle. The contents of the deep triangle are the third portion of the axillary vein, the first portion of the axillary artery, the superior thoracic and acromio-thoracic arteries and veins, the terminal portion of the cephalic vein, the external and internal anterior thoracic nerves, the cords of the axillary or brachial plexus, and the posterior or long thoracic nerve. These structures will be described under the dissection of the axilla, as they can be studied to better advantage at that time.

Dissection.—The remaining or chondro-sternal portion of the pectoralis major should now be severed in the middle and reflected, when will be exposed the pectoralis minor enveloped by the deep layer of the deep or pectoral fascia. The internal anterior thoracic nerve should be observed as it passes from the pectoralis minor to the pectoralis major. The fascia may then be removed from the pectoralis minor.

The pectoralis minor muscle is of an elongated triangular shape, and arises at its base from the anterior extremities of the third, fourth, and fifth ribs, and the intervening intercostal fascia. Its fibers pass upward and outward, to be inserted by a flat tendon into the anterior half of the inner surface of the coracoid process of the scapula and the upper part of the tendon of the coraco-brachialis
muscle. It lies behind, and in contact with, the pectoralis major, between the two lamellae of the deep layer of the pectoral fascia, and immediately in front of the axillary contents. Its upper and lower margins divide the axillary artery, over which it passes, into three parts, the first portion being above, the second behind, and the third below, the muscle. It is supplied by the superior or short thoracic and long thoracic arteries, which pass along its upper and lower borders respectively.

It receives its Nerve Supply from the internal anterior thoracic nerve, which pierces it to enter the under surface of the pectoralis major.

Action.—It draws the shoulder downward and forward, but does not draw it inward, as is so generally stated, because, though tending to do so, the clavicle prevents. If the shoulder were fixed well forward, it could act as a powerful inspiratory muscle.

Dissection.—This muscle should now be severed through its middle and reflected as far as its attachments, thus exposing the whole axilla to view. Upon the opposite side of the body the axillary contents should be dissected from below upward without disturbing the pectoral muscles, access to the axilla being gained through its base, which is the axillary fascia. It is by this latter route that the surgeon enters in nearly all axillary operations. The study of the axillary contents from these two different directions forms the best method of practically familiarizing the student with their intricate relations.

The axillary fascia.—The layer of fascia inclosing the pectoralis minor joins the layer covering the pectoralis major along the lower or axillary border of the latter muscle; by this union is formed the axillary fascia. It is a dense membrane which extends from the lower border of the pectoralis major backward to the latissimus dorsi muscle, and forms the floor of the axilla—outward to become continuous with the deep fascia of the arm, and inward to blend with the deep fascia of the chest. Where it meets the latissimus dorsi (posterior border of the axilla), it divides into two layers, which ensheath that muscle and become continuous with the deep fascia of the back.

The axilla, or arm-pit, is a pyramidal-shaped space or recess, situated between the upper part of the side of the chest and the upper part of the arm. It has a base, an apex, and four sides or walls. The base directed downward between the free borders of the pectoralis major muscle in front and the teres major and latissimus dorsi behind, is formed by the axillary fascia. These borders are known as the anterior and the posterior folds of the axilla. The apex, to the inner side of the coracoid process and directed upward, is bounded by the clavicle, the first rib, and the upper margin of the scapula. Through the apex, which is the point of communication between the neck and axilla, pass the axillary vessels, the brachial
PLATE XXI.

CONTENTS OF AXILLA SHOWN BY DISSECTION MADE FROM BELOW UPWARD.
plexus of nerves, and the posterior or long thoracic nerve (external respiratory nerve of Bell). The anterior wall of the axilla is formed by the pectoral and subclavius muscles and the clavi-pectoral fascia, and the posterior by the subscapular, the teres major, and the latissimus dorsi muscle. Externally the anterior and posterior walls converge. The inner wall is formed by the four or five upper ribs, the intervening intercostal muscles, and the corresponding digitations of the serratus magnus; the outer wall is formed by the humerus, the short head of the biceps, and the coraco-brachialis muscle. The axillary vessels and nerves are in intimate relation with the outer wall of the axilla, and this, therefore, is the most important part of the space.

The axilla varies in depth according to the relation of the arm to the side of the chest. It is deepest when the arm is raised at an incline of about forty-five degrees, and shallowest when the arm is strongly abducted. In the position of strong abduction of the arm its contents are brought nearer the surface, and this position, therefore, is the one preferred when operating upon the axilla. When palpating the axilla to determine the position of the head of the humerus, the presence or absence of enlarged glands, etc., the arm should be brought near the side, thus relaxing the axillary fascia and allowing it to be carried in advance of the finger, thereby facilitating the examination.

A collection of pus within the axilla, if not afforded an ample and thorough outlet, is more likely to point in the neck than at the base of the axilla, as it would meet with less resistance in traveling by way of the apex of the space than in ulcerating through the axillary fascia. Axillary abscess may be secondary to abscess of the neck, owing to the rather free communication between the neck and the axilla. (For the course taken by purulent collections beneath the pectoral muscles and not within the axilla proper, see description of the arrangement of the layers of the deep or pectoral fascia, p. 63.) When opening the axilla from below for the purpose of giving exit to a purulent or other collection, the incision should be made midway between the anterior and posterior folds, and from without inward, away from the large blood-vessels and nerves which lie along its outer wall. The incision must not be carried too far inward, for fear of wounding the posterior thoracic nerve, which lies along the inner wall of the axilla—an accident which would likely be followed, if the nerve were completely severed, by paralysis of the serratus magnus muscle. Again, by confining the incision to the center of the axilla, the long thoracic artery (deep external mammary) on the anterior wall, and the subscapular vessels and long subscapular nerve on the posterior wall, of the axilla will be avoided. The incision may divide the superficial external mammary artery which, when present, runs through the superficial fascia overlying the axillary fascia. This vessel, if divided, may give rise to enough
bleeding to alarm the operator and lead him to fear that he has wounded a large branch within the axilla.

The contents of the axilla are the axillary vein and its branches; the axillary artery and its branches; the axillary or brachial plexus of nerves, and most of its branches; the lateral cutaneous branches of the intercostal nerves, that of the second being known as the intercosto-humeral; the posterior or long thoracic nerve; three chains of axillary lymphatic glands, and a large quantity of areolar tissue and fat.

Dissection.—Upon the side of the body on which the anterior axillary wall has been reflected the areolar tissue and fat should be removed from the other structures in the axilla in the order in which they have been enumerated, while upon the opposite side the space should be dissected from below upward.

The axillary vessels are inclosed by a sheath derived from the prevertebral layer of the deep cervical fascia, the anterior wall of which is reinforced by the costo-coracoid membrane. The sheath should be removed in order that the vessels may be more clearly exposed.

The axillary vein, the vessel accompanying the axillary artery, is the continuation of the basilic vein. It commences at the lower border of the tendon of the teres major and passes upward along the outer wall of the axilla as far as the lower border of the first rib, where it becomes the subclavian vein. It lies to the inner or thoracic side of the axillary artery. The axillary vein receives the cephalic vein and branches corresponding to those of the axillary artery, with the exception of those of the circumflex arteries, which may enter either the subscapular vein or one of the vena comites of the brachial artery, or the cephalic vein. In the upper part of the axilla the relation between the axillary vein and the axillary artery is more intimate than it is in the lower part. (See Relations of the Axillary Artery, p. 82.) The axillary vein, like the artery, may be said to consist of three portions—namely, the first, the second, and the third. The first and third portions of the vein correspond to the third and first portions of the artery respectively.

The axillary vein is more likely to be wounded than the axillary artery, as it lies nearer the surface. When the vein is engorged with blood, it sometimes comes into sight sooner than we expect; and therefore it behooves the operator to be very careful. On account of the size of the axillary vein and its close proximity to the heart, in wounds of the vessel there is danger of air entering the circulation. The adherence of the costo-coracoid membrane to the sheath of the vessel, and of the sheath in turn to the wall of the vein, favors the maintenance of an uncollapsed condition of the vessel. Notwithstanding that experiments have been made to demonstrate that air can be injected into the circulation without producing any
deleterious effects, it is, nevertheless, better to err on the side of safety; consequently, when large venous trunks are divided, as in amputation, they, as well as the arteries, should be separately ligated. The danger in including the artery and the vein in the same ligature is the establishment of an ulcerative communication between the vessels, and a consequent arterio-venous aneurysm. Again, the divided vein, when not tied, offers an avenue for the introduction of septic matter into the circulation.

Pressure upon the axillary vein, as in forward dislocation of the humerus, from axillary tumors, a crutch, an axillary pad, or enlargement of the lymphatic glands, may cause edema of the arm and forearm. Edema of the arm associated with carcinoma of the breast is a grave symptom, because it indicates involvement of the deep lymphatics, which are in relation with the axillary vessels. Edema appearing shortly after removing the fat and lymphatics of the axilla in excision of the breast is due to a phlebitis, or loss of support previously given the vein by the fat, lymphatics, and pectoral muscles.

When opening the arm-pit for the purpose of excising a growth or removing enlarged glands, the incision I recommend is one made along the center of the arm-pit, extending far enough into the arm to expose the first portion of the axillary vein. The dissection should then be made from without inward or away from the axillary vein. By following this method there will be less risk of wounding the vein than when working from within outward or from below upward. The practice of removing enlarged glands with the finger, used as a hook, through a comparatively small opening in the base of the axilla is dangerous.

The axillary artery, the continuation of the subclavian, commences at the lower border of the first rib. It passes downward and outward through the apex, along the outer wall of the axilla, beneath the greater and lesser pectoral muscles, and along the inner border of the coraco-brachialis to the lower border of the tendon of the teres major, where it becomes the brachial. The course of the vessel through the axilla varies with the relation of the arm to the body. With the arm abducted to a right angle with the body the artery takes an almost straight course, indicated by a line drawn from a point a little to the inner side of the center of the clavicle to the inner side of the tendon of the biceps at the middle of the bend of the elbow; with the arm carried well upward the artery describes a curve the concavity of which is directed toward the shoulder; with the arm at the side the artery describes a curve the convexity of which is directed toward the shoulder.

Pressure upon the axillary artery, as in forward dislocation of the humerus, may cause absence of the radial pulse.
As the relations of the artery vary in passing through the axilla, it is, for convenience of description, divided into three portions—the first, second, and third.

The first portion extends from the lower border of the first rib to the upper border of the pectoralis minor; the second portion, the shortest, lies behind that muscle; the third portion, the longest, extends from the lower border of the pectoralis minor to the lower border of the tendon of the teres major. This last portion of the artery, as it is most accessible, is known as the point of election for ligation, and a ligature applied to this part of the vessel can be made to encircle it further away from the branches than in either the first or second portions, and thereby interfere less with the establishment of the collateral circulation. This portion of the vessel offers a favorable point for digital compression against the upper end of the humerus or with the finger inserted into the axilla, against the axillary or external margin of the scapula. A muscular slip, passing from the latissimus dorsi to join the pectoralis major, coraco-brachialis, or biceps muscle, and crossing the third portion of the axillary artery, is sometimes present. This should be borne in mind, and the slip should not be mistaken for the coraco-brachialis.

The First Portion.—In front of this portion are the external anterior thoracic nerve, the costo-coracoid membrane, the cephalic vein, the acromio-thoracic vessels, the axillary lymphatic trunk, and the clavicular head of the pectoralis major; to the inner side and overlapping it when the arm is at the side of the body is the axillary vein; when the arm is abducted to a right angle with the body, the vein lies entirely to the inner side of the artery; to the outer side is the brachial plexus; behind is the first intercostal muscle, the first digitation of the serratus magnus, and the posterior thoracic nerve. It is important to remember the relation between the vein and artery when ligating the first portion of the latter. Its ligation may be beset with difficulties additional to its depth and its varying relations to its companion vein. The causes of these are the occasional entrance of the cephalic into the subclavian vein, thereby crossing the artery at a higher point, the presence of the enveloping plexus, formed by the external and internal anterior thoracic nerves, the artery being crossed by one of the roots of the median nerve (Holden) or by the supra-scapular vein which joins the axillary instead of the external jugular. The branches of this portion are the superior thoracic and the acromio-thoracic.

The superior thoracic artery is the first branch of the axillary, arising so close to the lower margin of the first rib that it may almost as well be considered, as by some anatomists it is, the last branch of the subclavian. At times it is derived
Branch of Acromio-thoracic a.

Suprascapular a.

Branch of posterior circumflex a.

Subscapular a.

Suprascapular a.

Dorsalis scapulae a.

Posterior scapular a.
from the acromio-thoracic. It runs along the upper border of the pectoralis minor to supply both pectoral muscles, the serratus magnus, and the contents of the adjacent intercostal spaces. It anastomoses with the intercostal arteries.

The acromio-thoracic artery is a short trunk, or axis, springing from the axillary artery just above the upper margin of the pectoralis minor. It gives off three divergent branches—the thoracic, the acromial, and the descending or humeral—and a small twig (clavicular branch) to the subclavius muscle. The thoracic branches (two or three) go to the pectoral and serratus magnus muscles, and anastomose with the intercostal arteries and the intercostal branches of the internal mammary. The acromial branches pass outward over the coracoid process and under the deltoid to the top of the acromion, supplying the tissues of this region. They anastomose with the supra-scapular and anterior and posterior circumflex arteries, and form the acromial rete. The descending or humeral branch passes down the deltopectoral sulcus in relation with the cephalic vein to supply the deltoid and pectoralis major muscles. It anastomoses with the anterior and posterior circumflex arteries. The venae comites of these branches usually empty into the cephalic, but sometimes into the axillary vein.

The Second Portion.—In front of this portion are the pectoralis major and minor muscles; to the inner side are the inner cord of the axillary plexus and also the axillary vein, the latter lying a little anterior to the artery, but separated from it by the nerve cord; to the outer side is the outer cord of the plexus; behind is the posterior cord of the plexus and the subscapular muscle, from which both the artery and the nerve cord are separated by a quantity of areolar and fatty tissue. Its branches are the alar thoracic and the long thoracic.

The alar thoracic artery is a small branch distributed to the glands and the areolar tissue of the axilla. As a separate branch it is very often absent, in which event its place is taken by branches of one of the other thoracic arteries.

The inferior or long thoracic (deep external mammary) artery runs downward and inward along the lower border of the pectoralis minor to the side of the chest. It supplies the pectoral and serratus magnus muscles and the mammary gland, and anastomoses with the superior thoracic, intercostal, and internal mammary arteries.

The Third Portion.—In front of the upper part of this portion are the superficial and deep fascia and the pectoralis major, while the lower part is only covered by skin, superficial and deep fascia. In front of this part of the artery are the inner head of the median nerve and the internal cutaneous nerve; to the inner side are the ulnar nerve, the axillary vein, and the lesser internal cutaneous nerve, the latter being separated from the artery by the vein; to the outer side are the median and musculo-cutaneous nerves and the coraco-brachialis.
Surgical Anatomy.

While behind it are the musculo-spiral and circumflex nerves, the subscapularis muscle, and the tendons of the latissimus dorsi and teres major. Its branches are the subscapular, anterior circumflex, and posterior circumflex.

The subscapular artery, the largest branch of the axillary, arises opposite the outer or axillary border of the subscapular muscle. It runs inward and downward along this border to the inferior angle of the scapula, where it anastomoses with the posterior scapular, the larger of the two terminal branches of the transversalis colli. It also anastomoses with the long thoracic and the intercostal arteries. It is accompanied in the lower portion of its course by the long subscapular nerve. In its course it gives branches to the subscapularis, serratus magnus, latissimus dorsi, and teres major muscles, and to the glands and areolar tissue of the axilla. A short distance below its origin it gives off a large branch, the dorsalis scapulae, which winds around the axillary border of the scapula between the subscapularis and teres minor, passing through the triangular subdivision of that general triangular space, situated at the axillary border of the scapula, to the dorsum of this bone, where it anastomoses with the supra-scapular and posterior scapular arteries. The space through which it passes is bounded by the subscapularis and teres minor, the teres major, and the long head of the triceps. A small branch is given off from the dorsalis scapulae which enters the subscapular fossa beneath the subscapular muscle. The terminal part of the dorsalis scapulae will be seen when dissecting the infra-spinous region of the scapula. A line drawn along the axillary border of the scapula to its inferior angle will indicate the course of the subscapular artery.

The subscapular triangle, the general triangular space already mentioned, is bounded above by the subscapular and teres minor muscles, below by the teres major, and on the outer side by the surgical neck of the humerus. This space is subdivided, by the long head of the triceps, into the triangular space proper, through which pass the dorsalis scapulae vessels, and the quadrangular space, through which pass, as will be seen later, the posterior circumflex vessels and the circumflex nerve.

The posterior circumflex, much the larger of the two circumflex arteries, arises from the posterior aspect of the axillary artery, below the lower border of the subscapular muscle. Accompanied by its veins and the circumflex nerve, it passes backward through the quadrangular subdivision of the subscapular triangle. It winds around the surgical neck of the humerus to reach the under surface of the deltoid muscle, to which, together with the shoulder-joint, it is distributed. It anastomoses with the acromio-thoracic, the supra-scapular, the subscapular, the anterior circumflex, and the ascending branch of the superior profunda. The posterior circumflex, when not a branch of the axillary, may spring from the
N. to Levator anguTi Scapulae
Suprascapular n
Upper subscapular n
External anterior thoracic n
Internal anterior thoracic n
Musculo-spiral n.
Median n
Nerves to Scaleni and Longus colli
First thoracic n
First intercostal n
Posterior thoracic n
Lesser internal cutaneous n.
Middle subscapular n.
Internal cutaneous n.
Lower subscapular n.
Ulnar n.
Musculo-spiral n.

AXILLARY OR BRACHIAL PLEXUS OF NERVES.
87
SURFACE ANATOMY OF THE UPPER EXTREMITY.

brachial, or superior profunda, or it may arise from the axillar as a common
trunk with the subscapular.

The anterior circumflex artery arises from the outer aspect of the axillary,
runs outward over the tendon of the latissimus dorsi and beneath the coraco-
brachialis and the short head of the biceps, and over the surgical neck of the
humerus to the under surface of the deltoid, which it supplies. In excision of
the shoulder-joint this artery is often difficult to ligate, as it lies close to the
bone. A small branch, the bicipital, is given off from the anterior circumflex
where it crosses the bicipital groove. This branch passes up the groove with the
long tendon of the biceps and supplies the shoulder-joint and the head of
the humerus. The anterior circumflex anastomoses with the posterior circum-
flex and the acromio-thoracic.

The axillary or brachial plexus of nerves in the neck consists of three
trunks—an upper, a middle, and a lower; in the axilla, of three cords—an
outer, an inner, and a posterior. The plexus is formed by the anterior divisions
of the lower four cervical nerves and first dorsal nerve. The three trunks, seen
in the deep dissection of the side of the neck, are formed as follows: The
anterior primary divisions of the fifth and sixth cervical nerves form the upper
trunk, the anterior primary divisions of the eighth cervical and first dorsal nerve
form the lower trunk, and the anterior primary division of the seventh cervical
forms the middle trunk. These trunks lie in relation with the second and third
portions of the subclavian artery. The upper and middle trunks lie above the
artery, while the lower is partly behind it.

These three trunks enter the axilla by way of its apex, lying above and to the
outer (acromial) side of the first portion of the axillary artery. Each trunk divides
into an anterior and a posterior branch. The anterior branches form the outer
and inner cords of the plexus, while the posterior branches form the posterior
cord. The anterior branches of the upper and middle trunks unite to form the
outer cord, which lies on the outer side of the second portion of the axillary
artery; the anterior branch of the lower trunk constitutes the inner cord of the
plexus, which lies on the inner side of the artery; the posterior branches of all
three trunks unite to form the posterior cord of the plexus, which lies behind the
second portion of the axillary artery. Where, as occasionally happens, the poste-
rior cord is formed simply by the union of the posterior branches of the upper and
middle trunks, the posterior branch of the lower trunk, small in comparison with
the others, unites with the musculo-spiral branch of the posterior cord.

Pressure upon the brachial plexus may be produced by an axillary tumor,
an axillary aneurysm, an anterior luxation of the humerus, a fracture of the
clavicle, a crutch, or an axillary pad in the treatment of fracture of the humerus.
The pressure causes tingling, numbness, and pain in the upper extremity, and sometimes paralysis of some of the muscles of this part of the body.

The *branches* given off from the axillary plexus below the clavicle are the external and internal anterior thoracic, the three subscapular, the circumflex, the musculo-cutaneous or external cutaneous, the median, the ulnar, the internal cutaneous, the lesser internal cutaneous, and the musculo-spiral. Of these branches the external anterior thoracic, the outer head of the median, and the musculo-cutaneous arise from the outer cord; the subscapular, the circumflex, and the musculo-spiral from the posterior cord; and the inner head of the median, the ulnar, the internal cutaneous, the lesser internal cutaneous, and the internal anterior thoracic from the inner cord.

The *external or superficial anterior thoracic nerve* is derived from the beginning of the outer cord, just below the clavicle, passes inward across the axillary vessels, and pierces the costo-coracoid membrane to enter the under surface of the pectoralis major to supply it. It communicates with the internal anterior thoracic nerve.

The *internal or deeper anterior thoracic nerve*, smaller than the external, is derived from the inner cord, just below the clavicle, and passes forward between the axillary artery and vein, sometimes piercing the sheath of the latter. It enters the pectoralis minor, to which it gives branches, and then pierces it to enter the pectoralis major. It gives off a branch which forms, with a branch from the external anterior thoracic nerve, a loop around the inner side of the axillary artery, from which loop pass other branches to enter the pectoralis major.

The *three subscapular nerves*—the upper, the middle, and the lower—arise from the posterior cord. The upper or short subscapular supplies the upper part of the subscapular muscle; the middle or long subscapular accompanies the subscapular artery and supplies the latissimus dorsi muscle; the lower subscapular supplies the axillary border of the subscapular muscle and the teres major muscle.

The *circumflex nerve* arises from the posterior cord, passes downward and outward behind the third portion of the axillary artery, and over the subscapular muscle to the quadrangular subdivision of the subscapular triangle, by way of which, in company with the posterior circumflex artery, it leaves the axilla. Between the axillary border of the scapula and the teres minor it gives off an articular branch which pierces the capsular ligament to supply the shoulder-joint, after which it divides into a superior and an inferior branch. The *superior branch* accompanies the posterior circumflex artery around the back of the surgical neck of the humerus and under the deltoid to its anterior border, supplying this muscle and the skin over its lower part. The *inferior branch* sends twigs to the back part of the deltoid, and one, with a gangliform enlargement, to the teres
minor, after which it passes under the deltoid and around the lower part of its posterior border to supply the skin over the long head of the triceps and the lower two-thirds of the posterior part of the deltoid. A bicipital branch arises from the end of the circumflex nerve and passes up the bicipital groove to supply the tendon of the long head of the biceps, the upper end of the humerus, and the shoulder-joint.

The musculo-cutaneous or external cutaneous nerve is the continuation of the outer cord. It begins opposite the lower border of the pectoralis minor, lying close to the outer side of the axillary artery. It then passes outward and downward to the coraco-brachialis muscle, which it pierces and supplies, undergoing subdivision in its substance.

The median nerve is formed at the outer side, or in front, of the third portion of the axillary artery by the \(\mathbf{Y} \)-shaped union of its two heads, the external and internal. The external head arises, with the musculo-cutaneous, from the outer cord; the internal head, with the ulnar, from the inner cord. The internal head crosses in front of the third portion of the axillary artery.

The ulnar nerve is the continuation of the inner cord. It lies upon the inner side of the third portion of the axillary artery, between it and the axillary vein, and then passes down the inner side of the arm upon the inner surface of the triceps.

The internal cutaneous nerve arises from the inner cord and passes downward on the inner side of the axillary artery, between this vessel and the ulnar nerve.

The lesser internal cutaneous nerve (nerve of Wrisberg), the smallest branch of the plexus, arises from the inner cord, passes behind the axillary vein and then along its inner side, where it is joined by the intercosto-humeral, which is the lateral cutaneous branch of the second intercostal nerve. The axillary vein separates the lesser internal cutaneous nerve from the ulnar nerve and the third portion of the axillary artery.

The musculo-spiral, the largest branch of the plexus, is one of the two terminal branches of the posterior cord, the other terminal branch being the circumflex nerve. It lies behind the third portion of the axillary artery and in front of the subscapular latissimus dorsi and teres major muscles.

The intercosto-humeral nerve, the lateral cutaneous branch of the second intercostal nerve, passes outward across the axilla from the inner wall to the inner side of the arm. It joins the lesser internal cutaneous nerve, pierces the deep fascia (floor of the base of the axilla), and terminates in filaments which are distributed to the skin of the inner and back part of the arm. This branch differs from the other lateral cutaneous branches of the intercostal nerves in being larger and in not dividing into an anterior and a posterior branch. It is
not uncommon to meet with two intercosto-humeral nerves, in which event the second is formed by the posterior branch of the lateral cutaneous branch of the third intercostal. The second intercosto-humeral nerve accompanies the first in its distribution. All of the lateral cutaneous branches of the intercostal nerves emerge from the intercostal spaces midway between the vertebrae and the sternum, and, with the exception of the second, divide into an anterior and a posterior branch. The first intercostal nerve does not, as a rule, give off a lateral cutaneous branch. Three intercosto-humeral nerves are not infrequently seen, the third one coming from the fourth intercostal nerve.

The **posterior or long thoracic nerve** (external respiratory nerve of Bell) is a branch of the brachial plexus given off above the clavicle, and lies along the inner wall of the axilla. It arises by three roots—the upper two from the fifth and sixth, and the lower from the seventh cervical nerve. The upper two roots pierce the scalenus medius muscle, while the lower root passes in front of it. Usually, the portion of the nerve formed by the union of the upper two roots and that formed by the lower root pass into the axilla separately behind the axillary plexus and vessels, where they join to form the common trunk which supplies the serratus magnus. It lies upon the outer surface of that muscle.

The **axillary lymphatic glands**, ten to twelve in number, most of which have been removed when clearing away the areolar and fatty tissue in exposing the contents of the arm-pit, consist of three chains—an anterior, a middle, and a posterior. The **anterior chain** lies on the serratus magnus, along the lower border of the pectoralis minor, and in relation with the long thoracic vessels. It receives most of the lymphatics of the mammary gland, particularly those from its outer portion, the lymphatics of the front of the chest, as well as the superficial lymphatics of the abdominal wall as low as the umbilicus. The glands comprising this chain are usually the first to become enlarged in certain affections of the mammary gland, especially carcinoma. The **middle chain**, comprising the greater number of glands, lies along the inner side of the axillary vein and extends into the neck, by way of the apex of the arm-pit, to become continuous with the chain along the subclavian vessels. This chain receives most of the lymphatics of the upper extremity and the efferent vessels of the anterior and posterior chains. In cases of advanced disease involving the glands of either the anterior or the posterior chain the glands of the middle chain also become enlarged, owing to their receiving most of the efferent vessels from both of these chains. The **posterior chain** lies along the lower margin of the posterior wall of the axilla, in relation with the subscapular vessels; it receives the lymphatics of the back. To the operation for the removal of enlarged axillary glands we have already alluded. In this connection attention
Line of incision for exposure of musculo-spiral n.
THE FRONT OF THE ARM.

may again be called to the importance of the relation that the middle chain holds to the axillary vein; for when these glands are diseased, they are apt to be adherent to this vessel and its sheath, under which circumstances the vein may be wounded and necessitate excision of a portion of the vessel. Enlarged axillary glands may press upon the axillary vein and thus produce edema of the arm. Edema of the arm following removal of the glands and areolar tissue of the axilla may be due to the loss of support afforded the axillary vein by these structures.

The areolar and adipose tissue which occupy the axilla are considerable in amount, and fill up the intervals between the other and more important structures. This tissue will appear more red in color and more granular and watery in character than adipose tissue elsewhere.

Dissection.—Upon the opposite side of the body the axilla should be dissected from below upward. Remove the skin and superficial fascia in the manner already described, when will be seen both the deep, or pectoral, and the axillary fascia.

The axillary fascia may be removed in one flap or divided longitudinally and reflected laterally, the dissection being carried far enough beyond the lower borders of the folds of the axilla to expose them thoroughly. In removing the axillary fascia care should be taken to disturb as little as possible the areolar tissue of this space, which is closely connected to the upper surface of the fascia. The areolar tissue is now to be removed, exposing, first, the intercosto-humeral nerve. The other structures seen in this dissection and along the outer wall are the axillary vein and artery, the middle chain of lymphatic glands, and the axillary plexus of nerves; along the posterior wall, the long subscapular nerve, accompanying the subscapular artery and vein, the middle and short subscapular nerves, and the posterior chain of lymphatic glands; along the inner wall, the long thoracic nerve; and along the anterior wall, the long thoracic artery and vein and the anterior chain of lymphatic glands.

To open a deeply-seated axillary abscess great care should be exercised. The skin and fascia should be incised, after which a grooved director is pushed forward until the outflow of pus along the groove denotes the finding of the cavity. A dressing forceps is to be introduced and forcibly withdrawn after having been partly opened. This is Hilton's method, and was suggested by him more especially for the opening of deep abscesses of the neck, so as to avoid injury to the important structures there located. The more rational method is to open the abscess by careful dissection.
THE FRONT OF THE ARM.

Dissection.—Continue the incision already made upon the outer side of the arm to a point on the outer side of the forearm, about three inches below the external condyle. From the lower end of this incision make another transversely across the front of the forearm. Reflect the skin inward as one large flap, when the superficial fascia, with its ramifying nerves and vessels, will be exposed.

The Superficial Fascia.—This fascia is composed of two layers—a superficial, consisting mainly of adipose tissue; and a deep layer, fibrous in structure and in direct contact with the deep fascia. Between the two layers are the superficial nerves, vessels, and lymphatics. In the fascia upon the outer side of the arm are found the cutaneous branches of the circumflex nerve near the deltoid insertion, and below these the external cutaneous branches of the musculo-spiral nerve, while immediately above the elbow the musculo-cutaneous nerve becomes subcutaneous on the outer side of the tendon of the biceps. In addition to these nerves, the cephalic vein is seen on the outer side of the arm. In the fascia on the inner side of the arm are found the intercosto-humeral nerve, the internal cutaneous branch of the musculo-spiral nerve, the internal cutaneous and lesser internal cutaneous nerves, and the basilic vein. In order to trace these nerves and vessels the superficial fascia is to be removed as the skin was, being careful not to sever the structures which enter it from beneath. As each nerve or vessel is exposed, trace it through the superficial fascia.

The cutaneous branches of the superior division of the circumflex nerve pierce the deltoid near its insertion and are distributed to the skin over the lower part of this muscle; the end of the inferior division of the circumflex nerve emerges from beneath the posterior edge of the deltoid, whence it ascends subcutaneously to supply the skin over the long head of the triceps and the lower two-thirds of the back of the deltoid.

The superior and inferior external cutaneous branches of the musculo-spiral nerve emerge through the deep fascia at about the middle of the outer side of the arm. The superior branch accompanies the cephalic vein to the front of the elbow and supplies the skin of the lower half of the front of the arm. The inferior branch pierces the deep fascia below the deltoid insertion, whence it passes downward to supply the skin on the outer side of the lower half of the arm, the elbow, and the outer side of the forearm, communicating near the wrist with the posterior branch of the external or musculo-cutaneous nerve.

The internal cutaneous nerve, in company with the basilic vein, pierces the deep fascia of the inner side of the arm at the junction of the middle with the lower one-third, and divides into an anterior and a posterior branch. It also gives
PLATE XXV.

CUTANEOUS NERVES OF ARM AND FOREARM.

Supra acromial n.
Cutaneous branch of circumflex n.
Intercostohumeral n.
Branch of internal cutaneous n.
Lesser internal cutaneous n.
Internal cutaneous n.
External cutaneous branch of musculo-spiral n.
Musculo-cutaneous n.
Palmar cutaneous branch of ulnar n.
Palmar cutaneous branch of radial n.
Palmar cutaneous branch of median n.
Digital n.

Branch of circumflex n.
Internal cutaneous branch of musculo-spiral n.
Intercostohumeral n.
Branch of circumflex n.
Lesser internal cutaneous n.
Branch of internal cutaneous n.
External cutaneous branch of musculo-spiral n.
Branch of musculo-cutaneous n.
Radial n.
Dorsal cutaneous branch of ulnar n.
off a cutaneous branch which arises high up, pierces the deep fascia at the lower border of the posterior fold of the axilla, and goes to the skin of the inner side and front of the arm. The anterior branch passes downward over the elbow, either in front of or behind the median basilic vein, to supply the skin of the front and inner side of the forearm. At the wrist it communicates with a cutaneous branch of the ulnar nerve. The posterior branch communicates with the lesser internal cutaneous nerve above the elbow, and then passes downward behind the internal condyle to supply the skin over the posterior and inner aspect of the forearm, and communicates with the dorsal branch of the ulnar nerve above the wrist-joint.

The lesser internal cutaneous nerve (nerve of Wrisberg) pierces the deep fascia at the middle of the arm, supplies the skin over the lower one-third of the back of the arm as well as that over the internal condyle and olecranon, and communicates with the posterior branch of the internal cutaneous nerve.

The internal cutaneous branch of the musculo-spiral nerve is small. It arises in the axilla, and pierces the deep fascia in the upper part of the arm to supply the skin of the inner side and back of the arm almost as far as the olecranon.

Superficial Arteries.—The arteries which ramify in the superficial fascia of the arm are derived from above downward—from the acromio-thoracic, the anterior and posterior circumflex, the superior and inferior profunda, the muscular, and the anastomotica magna.

Superficial Veins.—The veins found in the superficial fascia of the arm are of special interest because of their symmetric arrangement and surgical importance, those in front of the elbow being especially important in venesection or blood-letting. Like veins generally, they are subject to frequent variations; but nevertheless adhere, as a rule, to the following plan:

The cephalic vein is formed by the junction of the radial and median cephalic veins in the groove between the supinator longus and the lower, tapering end of the biceps muscle. It passes upward over the outer edge of the biceps muscle; and, after piercing the deep fascia, dips into the delto-pectoral sulcus, where it is accompanied by the descending branch of the acromio-thoracic artery. Just below the middle of the clavicle it pierces the costo-coracoid membrane and empties into the third portion of the axillary vein.

The median cephalic vein is a short, venous trunk, from one and one-half to two and one-half inches in length, connecting the lower end of the cephalic vein with the upper end of the median vein of the forearm, from which it arises, in common with the median basilic, about opposite the lower end of the tendon of the biceps. It crosses the external or musculo-cutaneous nerve.

The median basilic vein, generally shorter but of larger caliber than the
median cephalic, extends inward in front of the bicipital fascia, observing a more nearly transverse course than the latter vein. It joins the common ulnar vein shortly after the formation of the latter by the junction of the anterior and posterior ulnar veins. It generally follows the course of the sulcus between the inner edge of the lower end of the biceps and the outer edge of the pronator radii teres. It crosses the brachial artery, from which it is separated by the bicipital fascia. Branches of the internal cutaneous nerve pass in front of and behind it. This is the vein most commonly selected for intra-venous saline infusion.

In venesection, or blood-letting, this is the vessel usually selected for that purpose, because it is the larger of the two, and therefore affords a freer flow of blood. From an anatomic standpoint, however, the median cephalic is the safer of the two vessels from which to bleed, on account of the more intimate relation of the median basilic vein to the brachial artery. When the practice of bleeding was so common, the thumb lancet was used in making the section of the vein. As the blade of this instrument was at a right angle to the handle and was driven by a spring, it can be readily understood why the artery was endangered if the lancet was not held at the proper height. To obviate the risk of injuring the brachial artery, the vein should be exposed by dissection and cut obliquely in preference to transversely to preclude the danger of completely dividing the vessel. The opening in the skin should be larger than that in the vein, so that blood will not escape into the cellular tissue and form a thrombus. If the blood does not flow freely when the vein is opened, the patient should move his fingers while grasping something in his hand; this favors compression of the deep veins and causes the blood to flow into the superficial veins through the mediana profunda and the remaining veins that connect the superficial and deep veins.

The basilic vein, which is much larger than the cephalic, is formed by the junction of the common ulnar and median basilic veins, and passes upward in front of the inner margin of the biceps to pierce the deep fascia at the junction of the lower with the middle one-third of the arm. It passes upward along the inner side of the brachial artery to become the axillary vein at the lower border of the tendon of the teres major.

Lymphatics.—Lymphatic glands are generally found at the elbow, sometimes two or three in front and one or two near the lower end of the basilic vein and internal condyle. Special interest centers in them because they become swollen and inflamed in poisoned wounds of the hand.

The gland in front of and above the internal condyle, known as the epitrochlear, is often found enlarged in early syphilis. It is usually single, but sometimes two, or even three, glands are found in this location.

The superficial lymphatics, beginning below the elbow and formed by the
SUPERFICIAL LYMPHATIC VESSELS AND GLANDS OF FRONT OF UPPER EXTREMITY.

105
junction of the lymphatics from the outer and inner side of the front of the forearm, pass along the inner side of the arm with the basilic vein to enter the axillary glands. A few of those on the outer side of the forearm pass up the outer side of the arm with the cephalic vein and, crossing the biceps in its upper part, join the axillary glands, though one or two lymphatic vessels usually continue with the cephalic vein through the deltopectoral sulcus to enter the subclavian glands. The deep lymphatics follow the course of the arteries. One or more lymph-glands are occasionally found in the deltopectoral sulcus.

Reflect the superficial fascia in the same manner in which the skin was reflected. In removing this fascia the superficial veins and nerves are to be traced. It is more convenient to follow these structures through the under surface of the fascia.

Deep fascia.—The removal of the superficial fascia exposes the deep fascia, which is fibrous in structure. It is continuous with its adjacent counterparts of the shoulder, back, chest, and forearm. It is attached above to the anterior edge of the clavicle and to the outer and inferior edges of the acromion process and spine of the scapula. Passing downward, it envelops the muscles and other deep structures of the arm and is attached, below the tendon of the triceps muscle, to the bony prominences of the elbow-joint, the olecranon and condyles, whence it continues downward as the general investiture of the forearm. In addition to enveloping the muscles by means of processes constituting sheaths, it forms partitions between them. Two of these, one on either side of the arm, are known as the internal and external intermuscular septa. It varies in thickness, being thickest over the triceps and the condyles of the humerus, thinnest in front of the biceps, and intermediate in thickness upon the inner side of the arm, where it serves to cover and protect the main vessels and nerves. Internally, it is reinforced by accessory fibers from the tendons of the pectoralis major and latissimus dorsi, and externally by fibers from the tendon of the deltoid.

The intermuscular septa.—The internal intermuscular septum is attached to the internal condyloid ridge, and extends from the insertion of the coraco-brachialis to the internal condyle of the humerus. It blends with the tendon of the coraco-brachialis, and gives attachment to the triceps behind and the brachialis anticus and pronator radii teres in front. In the middle of the arm it is perforated by the ulnar nerve and inferior profunda artery, and below by the anastomotica magna artery. The external intermuscular septum is attached to the external condyloid ridge, and extends from the insertion of the deltid to the external condyle of the humerus. It blends with the tendon of the deltid and gives attachment to the triceps behind, and to the brachialis anticus, supinator longus, and extensor carpi radialis longior in front. It is per-
forated below the middle of the arm by the musculo-spiral nerve and the superior profunda artery.

These intermuscular septa, with the bone, divide the lower half of the arm into two osteo-fascial compartments—an anterior and a posterior. In the anterior compartment are found the biceps, the brachialis anticus, and the origins of the supinator longus and extensor carpi radialis longior, the brachial vessels, the basilic vein, the anastomotica magna, the inferior profunda and the termination of the superior profunda, the radial recurrent and anterior ulnar recurrent arteries, the median, ulnar, internal cutaneous, and musculo-cutaneous nerves, and the lower part of the musculo-spiral nerve. In the posterior compartment are the triceps muscle, the musculo-spiral nerve, the superior profunda artery, the ulnar nerve, the inferior profunda artery, and the anastomotica magna artery.

Dissection.—Divide the deep fascia in the median line of the front of the arm and reflect it laterally, exposing to view those structures which lie in the anterior part of the arm. In reflecting the fascia from the inner side of the arm it is best to sever the internal intermuscular septum, taking care, however, not to injure the structures that pierce it. This will expose, in front, the biceps; on the inner side, the coraco-brachialis, the brachialis anticus, and the triceps; on the outer side, the deltoid, brachialis anticus, and the origins of the supinator longus and extensor carpi radialis longior. The sulcus upon the inner side of the arm, between the biceps in front and the triceps and brachialis anticus behind, is occupied by the principal vessels and nerves. Before proceeding further with the dissection the student should carefully examine the relation of the brachial vessels to the coraco-brachialis and biceps muscles, and the median nerve which accompanies the vessels, as the relations of these structures are somewhat altered by cleaning.

The brachial artery, the continuation of the axillary, begins opposite the lower border of the tendon of the teres major. It passes down the inner side of the arm, overlapped for fully two-thirds of its course by the inner border of the coraco-brachialis and biceps muscles. It then curves inward in front of the elbow-joint, along the inner border of the tendon of the biceps, opposite the insertion of which, one-half to one inch below the elbow-joint, it divides into the radial and ulnar arteries. Its course is quite accurately indicated by a line drawn from the junction of the anterior and middle third of the outer wall of the axilla, to the middle of the front of the elbow-joint. It should be remembered that the brachial artery quite frequently bifurcates some distance above the usual point, the two vessels then running side by side.

Relations of the Brachial Artery.—From above downward, upon its outer side, are the coraco-brachialis and the biceps, which slightly overlap the artery.
PLATE XXX.

Anterior circumflex a.

Subscapular a.

Dorsalis scapulae a.

Posterior circumflex a.

Superior profunda a.

Inferior profunda a.

Muscular branch.

Brachial a.

Nutrient a.

Anastomotica magna a.

Anterior ulnar recurrent a.

Posterior ulnar recurrent a.

Radial recurrent a.

Posterior interosseous recurrent a.

Radial a.

Ulnar a.

BRACHIAL ARTERY AND BRANCHES.
When the biceps arises by three heads, the artery, at its upper portion, lies beneath the innermost head. The median nerve, for about one inch, also lies on its outer side in the groove between the artery and the coraco-brachialis. In front of the artery are the skin and fasciae, the inner borders of the coraco-brachialis and biceps in the upper two-thirds of its course, the median nerve in the middle third, and the bicipital fascia and median basilic vein below; on the inner side are the ulnar nerve in the upper half of its course, the internal cutaneous nerve and basilic vein in the upper two-thirds of its course, and the median nerve in the lower third; behind are the musculo-spiral nerve and superior profunda artery, the long and inner heads of the triceps in the upper part of the arm, the insertions of the coraco-brachialis in the middle, and the brachialis anticus in the lower part of the arm. Throughout its course it is flanked by two closely adjacent accompanying veins (venae comites), connected with each other by occasional transverse veins.

The artery is comparatively superficial throughout its entire extent, being covered by skin and superficial and deep fascia, except in the middle of its course, where the median nerve lies in front, and at its lower end, where the bicipital fascia and median basilic vein are in front of it. It is most readily compressed in the middle of the arm, where it rests upon the insertion of the coraco-brachialis. The pressure should be directed outward and backward. This is the most suitable point for compressing the artery with the pad of the tourniquet in amputation of the forearm or lower arm.

The branches of the brachial artery are the superior and the inferior profunda, nutrient, anastomotica magna, muscular, and occasionally vasa aberrantia.

The superior profunda artery, the largest branch, arises from the inner and back part of the upper end of the brachial, and, turning backward, it enters the musculo-spiral groove with the musculo-spiral nerve. In the groove it passes behind the humerus, between the inner and outer heads of the triceps, to the outer side of the arm, pierces the external intermuscular septum, and continues downward between the brachialis anticus and supinator longus muscles to the elbow, where it anastomoses with the radial recurrent. In its course it sends branches to supply the deltoid, coraco-brachialis, and triceps muscles, and a branch to anastomose with the circumflex arteries. It gives off a large posterior articular branch (really the continuation of the artery) which passes straight down the humerus from the musculo-spiral groove to the back of the elbow-joint, accompanied by the branch of the musculo-spiral nerve supplying the anconeus muscle, and anastomoses with the interosseous recurrent and the anastomotica magna.

The inferior profunda artery arises from the brachial near the insertion of the coraco-brachialis, is small, and passes downward and inward on the surface
of the inner head of the triceps. It pierces the internal intermuscular septum and accompanies the ulnar nerve between the internal condyle and olecranon, where it anastomoses with the posterior ulnar recurrent and the anastomotica magna. It also sends downward in front of the internal condyle a small branch which anastomoses with the anterior ulnar recurrent and the anastomotica magna. At times it arises with the superior profunda by a common trunk.

The nutrient artery leaves the brachial in the middle of the arm, and, passing downward, pierces the tendon of the coraco-brachialis to enter the nutrient canal of the humerus below the insertion of that muscle. Sometimes it arises from the superior profunda. Entering the bone with it is a filament of the musculo-cutaneous nerve.

The anastomotica magna artery is given off a short distance above the elbow, whence it passes inward over the brachialis anticus muscle and pierces the internal intermuscular septum. It then winds around the humerus between the triceps and the bone, and anastomoses above the olecranon with the posterior articular branch of the superior profunda and the interosseous recurrent. While crossing the brachialis anticus it gives off an anastomotic branch which also pierces the internal intermuscular septum to join the posterior ulnar recurrent, between the olecranon and the internal condyle. Ascending and descending branches are also given off to join the inferior profunda above, and the anterior ulnar recurrent in front of the internal condyle.

Muscular branches arise from the outer side of the brachial artery and supply the coraco-brachialis, biceps, and brachialis anticus muscles.

Vasa aberrantia are long, narrow arteries which are occasionally found connecting the brachial or axillary artery with some of the main arteries of the forearm, usually the radial.

The vasa aberrantia, together with the liberal anastomosis around the elbow-joint, are very important, as they offer channels for collateral circulation of the blood when its flow through the radial, ulnar, or lower part of the brachial arteries is prevented by compression, ligation, or trauma.

The Muscles in Front of the Arm are the biceps, the coraco-brachialis, and the brachialis anticus.

The biceps is the largest and most prominent muscle of this group. It arises by two heads—the long and the short. The long head arises by a tendon from the upper border of the glenoid cavity of the scapula, being continuous with the glenoid ligament, by means of which it is united with the long head of the triceps, which in turn arises from the lower border of the same cavity. The tendon of the long head passes through a sheath derived from the synovial sac of the shoulder-joint, in which it arches over the head of the humerus. It
Coraco-acromial ligament
Deltoid m. (cut)
Long head of biceps m.
Tendon of pectoralis major m. (cut)
Brachialis anticus m.
Musculo-cutaneous n.
Supinator longus m.
Biceps tendon

Coraco-brachialis m.
Musculo-cutaneous n.
Short head of biceps m.
Median n.
Brachial a.
Basilic v.
Long head of triceps m.
Inner head of triceps m.
Ulnar n.
Inferior profunda a.
Brachialis anticus m.
Anastomotica magna a
Musculo-cutaneous n.

Biceps tendon
Bicipital fascia
PLATE XXXII.

Coraco-acromial ligament
Pectoralis minor tendon

Deltoid m.
Short head of biceps m.

Long head of biceps m.
Anterior circumflex a.

Pectoralis major tendon
Coraco-brachialis m.

Brachialis anticus m.
Brachial a.

Supinator longus m.
Musculo-cutaneous n.

Biceps tendon
Basilic v.

VIEW OF ARM,—BICEPS REMOVED.

118
emerges from the capsule, where the latter unites with the humerus. It passes down the bicipital groove, in which it is retained by an aponeurosis derived from the tendon of the pectoralis major. Its synovial sheath covers it in the upper two inches of the groove. This head becomes muscular shortly after leaving the groove. The short head takes its origin from the tip of the coracoid process of the scapula by a flattened tendon in common with the coraco-brachialis, whence it passes downward and a little outward to join the long head opposite the middle of the humerus. The biceps ends below in a flattened tendon, which, after giving off an aponeurotic expansion (bicipital aponeurosis) from its inner side, becomes twisted upon itself, and is inserted into the posterior edge of the tuberosity of the radius. A synovial sac intervenes between the tendon and the anterior part of the tuberosity. The bicipital aponeurosis passes inward over the brachial artery and beneath the median basilic vein and blends with the deep fascia of the forearm.

Interest attaches to the relation of the brachial artery to the bicipital aponeurosis and the median basilic vein, because, inexplicable as such an accident may seem, it has happened that the artery, as well as the vein, has been opened in venesection, an arterio-venous aneurysm resulting. The two bellies of this muscle are united by connective tissue almost as far as the tendon, near which their fibers interdigitate before attachment to the front of this structure. The biceps, in its upper part, rests upon the musculo-cutaneous nerve, which passes obliquely behind it, and against the humerus; in its lower half it lies upon the brachialis anticus. Its tendon occupies the triangular space in front of the elbow, the brachial artery being on its inner side. On the inner side of the muscle are the coraco-brachialis muscle, the brachial vessels, and the median nerve. Its upper end is covered by the tendon of the pectoralis major and the anterior edge of the deltoid. For the remainder of its course it is subcutaneous and readily discernible.

Occasionally, between the coraco-brachialis and brachialis anticus, there arises from the inner side of the humerus an accessory head, which, in its course toward the bicipital fascia for insertion, assumes varying relations with the brachial artery, either crossing in front of or behind the artery, or dividing to permit this vessel to pass through it. In ligating the brachial artery an accessory muscular head, when present, may be severed without hesitation.

Action.—Its function is to flex the forearm on the arm, to supinate the forearm, and to slightly adduct the arm. It is also well to bear in mind that in no part of its course is the biceps muscle normally attached to any part of the humerus, though bearing the most intimate relation to this bone anatomically and functionally.

Blood Supply.—From the muscular branches of the brachial artery.

Nerve Supply.—From the musculo-cutaneous nerve.
The coraco-brachialis muscle, arising conjointly with the short head of the biceps, extends from the tip of the coracoid process to the middle of the inner side of the humerus, where it is inserted into a rough impression between the attachment of the inner head of the triceps and the brachialis anticus, and opposite the insertion of the deltoid. It is perforated obliquely, from within outward, by the musculo-cutaneous nerve, from which it derives its nerve supply. Above, it is hidden by the pectoralis major and deltoid; it then becomes superficial as far as its insertion, where it is crossed by the brachial vessels and median nerve. Behind, this muscle is in contact with the tendons of the subscapularis, teres major, and latissimus dorsi, and the short head of the triceps muscle, the humerus, and the anterior circumflex vessels. Internally, it is in relation with the pectoralis minor, the third part of the axillary artery, the brachial vessels, and the median and musculo-cutaneous nerves. Externally, it lies in contact with the short head of the biceps. It derives its nutriment chiefly from the brachial artery.

Action.—Its function is to draw the arm forward and inward.

The brachialis anticus muscle arises from the humerus by two fleshy digitations on either side of the insertion of the deltoid, and from the front and inner side of the shaft of the bone below this point, as well as from the external and internal intermuscular septa. It is a broad, flat muscle, which covers the lower half of the front of the humerus and the anterior ligament of the elbow-joint, to which it is closely attached. It ends in a short tendon, which is inserted into the front of the base of the coronoid process of the ulna, where it bears the same relation to the two digitations of the flexor profundus digitorum that the insertion of the deltoid does to it above. This muscle is covered by the deep fascia on the outer side and by the biceps, and is crossed by the brachial vessels, the median, the musculo-cutaneous, and musculo-spiral nerves. Externally, it is related with the musculo-spiral nerve, the superior profunda and radial recurrent arteries, the long radio-carpal extensor and long supinator muscles; while internally it is in contact with the triceps, ulnar nerve, and pronator radii teres.

Blood Supply.—From the brachial artery.

Nerve Supply.—From the musculo-cutaneous and the musculo-spiral nerves.

Action.—To flex the forearm on the arm.

The Nerves of the Arm proceed from the axillary or brachial plexus. They are the musculo-cutaneous, from the outer cord; the median, from the inner and outer cords; the ulnar, internal cutaneous, and lesser internal cutaneous, from the inner cord; and the circumflex and musculo-spiral, from the posterior cord. The ramifications of these in the superficial fascia have been fully described, while the course of the main trunks has been casually mentioned. Of the larger nerves, the median and ulnar pass down the inner side of the arm; the circumflex and
LINES OF ARTERIES OF UPPER EXTREMITY AND OF MEDIAN AND ULNAR NERVES.
musculo-spiral curve behind the humerus to the outer side of the arm; the musculo-cutaneous crosses the front of the arm to the outer side of the forearm. Of these, the circumflex is the only one which has ascending branches.

The musculo-cutaneous nerve, arising from the outer cord of the axillary or brachial plexus, opposite the lower margin of the pectoralis minor, at once enters the coraco-brachial muscle, through which it passes downward and outward, thence between the biceps and brachialis anticus to the outer side of the arm a little above the elbow, where it pierces the deep fascia. It supplies the coraco-brachialis, biceps, and brachialis anticus muscles, the humerus, and the elbow-joint. At the elbow it passes beneath the median cephalic vein and divides into an anterior and a posterior branch. The anterior branch communicates with the radial nerve and ends in the skin over the thenar eminence; the posterior branch supplies the skin as far as the wrist. Loss of the power of elbow flexion, associated with numbness or anesthesia of the outer side of the forearm, would indicate an affection of this nerve.

The median nerve is formed by two fasciculi, or nerve strands, one from the outer and the other from the inner cord of the axillary plexus; they unite like the arms of the letter Y and are known as the outer and the inner heads, the stem formed by their union being the median nerve. The two heads lie on opposite sides of the lower or third portion of the axillary artery and unite either in front of it or on its outer side. In its course along the inner side of the arm it hugs the brachial artery, being generally upon the outer side of this vessel in its upper part, then gradually moving inward to rest in front of it in the middle of the arm, and continuing inward so that it lies upon the inner side of this vessel in the lower third of the arm. At the lower end of the arm it is covered by the bicipital aponeurosis or fascia, and is crossed by the median basilic vein. It gives off muscular branches and the anterior interosseous nerve, and continues downward to the palm. In the middle of the arm the median nerve is occasionally found behind the brachial artery, instead of in front.

The ulnar nerve arises, in common with the inner head of the median nerve, from the inner cord of the axillary plexus. It passes downward along the inner side of the axillary and brachial arteries, diverging inward from the latter at the middle of the arm opposite the insertion of the coraco-brachialis muscle. It then crosses the inner head of the triceps and, in company with the inferior profunda artery, pierces the internal intermuscular septum to enter the groove between the olecranon and internal condyle. Special interest attaches to the position of the ulnar nerve in the sulcus between the internal condyle and the olecranon, on account of its liability to injury there. Trauma of the nerve in this position is frequent. It is followed by a tingling sensation, felt at its distribution to the little
and ring fingers, whence is derived the name "crazy bone" or "funny bone." The ulnar nerve holds so close a relation to the posterior surface of the internal condyle that, in fracture of the condyle, a fragment or callus may press upon the nerve and produce tingling or numbness of the ulnar side of the forearm and hand, little finger, and ulnar side of the ring finger, and spasm or paralysis of the muscles supplied by this nerve. These muscles are the flexor carpi ulnaris, ulnar side of the flexor profundus digitorum, palmaris brevis, muscles of the hypothenar eminence, interossei, two ulnar lumbricales, adductor pollicis, and inner head of the flexor brevis pollicis.

The **internal cutaneous nerve** arises from the inner cord of the axillary plexus, passes downward along the inner side of the axillary and brachial arteries, between the latter and the ulnar nerve, and divides a little below the middle of the arm into an anterior and a posterior branch. The anterior branch enters the forearm either in front of, or behind, the median basilic vein; the posterior branch descends along the inner side of the basilic vein to enter the forearm behind the internal condyle. Before it divides, it gives off a cutaneous branch, which pierces the deep fascia and supplies the skin of the anterior and inner side of the arm almost as far as the elbow.

The **lesser internal cutaneous nerve** (nerve of Wrisberg) arises from the inner cord of the axillary plexus above the origin of the internal cutaneous nerve, from which point it passes behind the axillary vein, and then on the inner side of the vein, where it communicates with the lateral cutaneous branch of the second intercostal nerve (the intercosto-humeral). It then passes downward to the middle of the arm, where it pierces the deep fascia, and is distributed to the skin over the lower part of the back of the arm, the inner condyle, and the olecranon.

The **circumflex nerve** arises, with the musculo-spiral, from the posterior cord of the axillary plexus. It descends in front of the subscapularis muscle behind the axillary artery, and turns backward at the lower margin of the muscle, giving off an articular branch which enters the shoulder-joint below the subscapularis. It divides into an upper and a lower branch. The upper branch, in company with the posterior circumflex vessels, curves behind the surgical neck of the humerus and under the deltoid to its anterior border, giving off filaments in its course to supply the muscle and the skin covering it. The lower branch sends to the teres minor muscle a filament, usually containing a gangliform enlargement, and one or more branches to the back part of the deltoid; it then pierces the deep fascia to supply the skin over the long head of the triceps and the lower two-thirds of the back part of the deltoid. Injury to this nerve would cause tingling or partial anesthesia, and muscular twitching or paralysis of the deltoid and teres minor.

The **musculo-spiral nerve** is the continuation of the posterior cord, and
is the largest branch of the axillary plexus. It passes downward behind the axillary vessels and in front of the tendons of the latissimus dorsi and teres major. Accompanied by the superior profunda artery, it then passes downward and outward between the outer and inner heads of the triceps around the back of the humerus in the musculo-spiral groove to the outer side of the lower part of the arm, where it pierces the external intermuscular septum. Thence it continues downward between the brachialis anticus, internally, and the supinator longus, externally, to the front of the outer condyle, where it divides into the radial and posterior interosseous nerves. On the inner side of the arm it gives off internal muscular branches to the outer and inner heads of the triceps; in the musculo-spiral groove it sends branches to the outer head of the triceps and the anconeus; on the outer side of the arm it gives off external branches to the supinator longus, extensor carpi radialis longior, and brachialis anticus. A small internal cutaneous branch arises in the axilla, and passes to the skin of the inner side and back of the arm almost as far as the olecranon. A superior external cutaneous branch perforates the external head of the triceps close to the humerus, then pierces the deep fascia and accompanies the cephalic vein to the front of the elbow, supplying the skin of the lower half of the front of the arm. An inferior external cutaneous branch also goes through the outer head of the triceps with the preceding branch, then pierces the deep fascia near the insertion of the deltoid, and passes downward to be distributed to the skin on the outer side of the lower half of the arm, the elbow, and the outer back part of the forearm, communicating near its termination with the posterior branch of the musculo-cutaneous or external cutaneous nerve.

As the musculo-spiral nerve lies in contact with the back of the shaft of the humerus, paralysis of this nerve is a complication of fracture of that bone. Paralysis of this nerve either from fracture of the humerus, pressure of a crutch, lead poisoning, or over-stretching of the nerve, as from lifting a child by the arm, results in "wrist drop" and pronation of the forearm.
will be exposed. The skin is thin, can be raised in folds, and allows the superficial veins to be seen beneath it.

In the superficial fascia are found the radial, anterior ulnar, and median veins, and the musculo-cutaneous or external cutaneous nerve, the internal cutaneous nerve, cutaneous branches of the ulnar and median nerves, branches of the radial and ulnar arteries, and the superficial lymphatics.

The radial vein appears upon the front of the radial side of the forearm above its lower third, where it winds from behind forward and upward on the radial side of the forearm (generally superficial to the external cutaneous nerve) to form the cephalic vein at the elbow by junction with the median cephalic. It arises from the radial side of the dorsal venous arch of the hand, receives radicles from the back of the thumb and index finger, and communicates with the median vein.

The anterior ulnar vein passes upward along the ulnar side of the forearm to within a short distance of the elbow, where it joins the posterior ulnar to form the common ulnar, which in turn almost immediately unites with the median basilic to form the basilic vein. It is formed by radicles at the wrist, and communicates with the median and posterior ulnar veins.

The median vein begins at, or a little above, the wrist and runs up the middle of the forearm. It collects blood from the palm of the hand and the front of the forearm, and communicates freely with the radial and anterior ulnar veins. Upon reaching the bend of the elbow, it communicates with the venæ comites of the radial artery by means of the deep median vein and at once divides into two branches—the median cephalic and median basilic.

The musculo-cutaneous or external cutaneous nerve becomes superficial a short distance above the elbow on the outer side of the tendon of the biceps, and passes downward upon the outer side of the front of the forearm, ending upon the ball of the thumb (thenar eminence). It gives off, just below the elbow, a posterior branch which supplies the outer side of the back of the forearm. The anterior branch—the continuation of the musculo-cutaneous—lies in front of the radial artery in the lower part of the forearm and communicates with a branch of the radial nerve. It terminates in filaments to the skin over the ball of the thumb.

The anterior branch of the internal cutaneous nerve enters the forearm at the inner side of the front of the elbow, either in front of, or behind, the median basilic vein; thence it continues downward upon the ulnar side of the front of the forearm, supplying the skin on its way to the wrist, where it communicates with a branch of the ulnar nerve.

A cutaneous branch of the ulnar nerve is found coming through the deep fascia about a hand's breadth above the wrist near the tendon of the flexor carpi ulnaris.
BICIPITAL FASCIA AND VESSELS AND NERVES AT ELBOW.

128
A cutaneous branch of the median nerve pierces the deep fascia about two inches above the middle of the wrist and passes to the palm.

The superficial arteries of the forearm are small cutaneous branches from the radial and ulnar arteries.

The superficial lymphatics accompany the superficial veins, and are more numerous upon the ulnar than upon the radial side of the forearm. They commence at the ends of the fingers—two on the palmar and two on the dorsal surface. Those on the palmar surface of the fingers join an arch in the palm of the hand, from which arise the vessels which accompany the anterior ulnar, the median, and radial veins; those on the dorsal aspect of the fingers form a plexus on the back of the hand, from which vessels pass up the back of the forearm and around either side to empty into those on the anterior surface of the forearm. The greater number of these vessels pass upward on the inner side of the arm with the basilic vein. A few accompany the cephalic vein.

Dissection.—Trace the superficial veins in the superficial layer of the superficial fascia and remove this fascia in one flap like that of the skin. Follow the nerves through the under surface of the fascia. The deep fascia is now exposed.

The deep fascia of the forearm is continuous with that of the arm, and composed of circular and oblique white fibers bound together by a few longitudinal fibers. It is attached to the bony prominences of the forearm, and sends prolongations between the muscles, separating them and affording additional surfaces for their origin. It is most dense at the back of the forearm, least so in front of the upper part of the forearm, and intermediate in thickness above and at the wrist. In the last-named location it forms the posterior annular ligament and is continuous with the anterior annular ligament. It is reinforced by tendinous accessions from the biceps (bicipital aponeurosis), brachialis anticus, and triceps. Its numerous intermuscular septa at the elbow, beginning at the limited area of the surface of the internal condyle and expanding, form cone-shaped aponeurotic cavities for the origins of many muscles. A transverse intermuscular septum divides the muscles of the forearm into a superficial and a deep group. Besides smaller apertures for the passage of cutaneous vessels and nerves, it contains an aperture of considerable size below the elbow for the passage of the deep median vein, which connects the venae comites of the radial artery with the superficial veins.

Dissection.—Remove the deep fascia by incisions corresponding to those used in reflecting the skin and superficial fascia. The removal of the deep fascia at the upper and inner part of the forearm can not be accomplished so satisfactorily as in most other regions, owing to its blending with the underlying superficial group of flexor muscles, to which it gives partial origin. It can be removed to
better advantage by reflecting it from below upward. A similar difficulty is encountered at the buttock in the removal of the deep fascia from the great gluteal muscle, the main difference between the two fasciae being that, in the gluteal region the deep fascia sends septa into the muscle itself, while in the forearm the septa pass between the muscles.

The triangle at the bend of the elbow.—Upon the removal of the deep fascia, a triangle is exposed at the bend of the elbow. This triangle is bounded above by an imaginary line which is drawn between the condyles of the humerus and forms the base; externally, by the supinator longus; and internally, by the pronator radii teres. The apex of the triangle is at the point where the supinator longus crosses the pronator radii teres. The floor is formed by the brachialis anticus and supinator brevis muscles, and the deep fascia forms its roof. Within this triangle, when its lateral boundaries are displaced,—the supinator longus outward and pronator radii teres inward,—the following structures are seen from within outward: The anterior ulnar recurrent artery, the median nerve, the brachial artery, its venæ comites, the two terminal branches of the brachial or the radial and ulnar arteries, their venæ comites, the deep median vein, the common interosseous artery, the tendon of the biceps, the radial recurrent artery, and the musculo-spiral nerve. In rupture of the biceps muscle the tendon can be distinctly felt loose and free and can be manipulated in this space. The effusion of blood renders approximation impracticable without operative interference.

The Muscles of the forearm may be divided into groups: an inner or anterior, and an outer or posterior; the former including the pronators and flexors; the latter, the supinators and extensors. The inner group chiefly arises by a common tendon from the internal condyle and internal condyloid ridge, and the outer, from the external condyle and the external condyloid ridge.

The pronator radii teres, the shortest muscle of this group, arises by two heads—a large or superficial, and a small or deep. The large or superficial head springs from the anterior surface of the humerus above the internal condyle, an intermuscular septum separating it from the flexor carpi radialis and the deep fascia of the forearm; the small or deep head arises as a narrow bundle of fibers from the inner aspect of the coronoid process of the ulna. The two heads unite at an acute angle, and between them passes the median nerve to the deeper part of the forearm. The muscle then extends obliquely downward and outward, and is attached by a flat tendon to the middle of the outer surface of the shaft of the radius. The tendon is overlapped by the supinator longus. The muscle is subcutaneous; except near and at its insertion, where it is covered by the supinator longus and crossed by the radial vessels and nerve. The radial border of the muscle forms the inner boundary of the triangle at the bend of the elbow, while
PLATE XXXV.

TRIANGLE OF ELBOW AND SUPERFICIAL MUSCLES OF FOREARM.
the ulnar border is in relation with the flexor carpi radialis. Its under surface is in contact with the brachialis anticus and flexor sublimis digitorum muscles, the median nerve, and ulnar vessels. The inner head of the muscle separates the median nerve in front from the ulnar vessels behind.

Blood Supply.—Its nutriment is derived from the radial, ulnar, and anastomotica magna arteries.

Nerve Supply.—From the median nerve.

Action.—Pronates and flexes the forearm.

The flexor carpi radialis arises by the common tendon from the internal condyle, also from the deep fascia and contiguous surfaces of the adjacent intermuscular septa. It passes down the forearm to the radial side of the front of the wrist, where it traverses a canal in the anterior annular ligament and a groove upon the trapezium, and is ultimately attached to the anterior surface of the base of the metacarpal bone of the index finger. A small slip passes to the base of the metacarpal bone of the middle finger. The groove in the trapezium is converted into a canal by a fibrous sheath, the canal being lined by a synovial membrane. This muscle is tendinous in its lower three-fifths; its belly is full and fusiform. It is superficial, with the exception of the small portion of the tendon which enters the annular ligament; it lies upon the flexor sublimis digitorum, the flexor longus pollicis, and the wrist-joint. Externally, it is in contact with the pronator radii teres, and in its lower half is very near the radial vessels; internally, it lies against the palmaris longus muscle, above. Above the wrist the median nerve is on the inner side of its tendon.

Blood Supply.—Its nutriment is derived from the radial artery and ulnar recurrent artery.

Nerve Supply.—Derived from the median nerve.

Action.—Its main function is to flex the wrist; it also aids in flexion of the elbow, and with the hand supinated it aids in pronation.

The palmaris longus, often absent, is slender and spindle-shaped. It arises by the common tendon from the inner condyle, also from the deep fascia and the adjacent intermuscular septa. Its slender tendon passes over the anterior annular ligament to terminate in an expanded prolongation, which is continuous with the central portion of the palmar fascia, the deep fascia over the thenar eminence, and the anterior annular ligament at the base of that eminence. It is subcutaneous, except at its origin, where it is partly overlapped by the flexor carpi radialis. It lies upon the flexor sublimis digitorum, the median nerve, and the anterior ligament, and is in relation with the flexor carpi ulnaris internally, and with the flexor carpi radialis externally.

Blood Supply.—From the ulnar artery.
Nerve Supply.—From the median nerve.

Action.—It makes tense the palmar fascia, flexes the wrist, and aids slightly in elbow flexion.

The **flexor carpi ulnaris**, a long and flat muscle, embraces the outer side of the upper part of the shaft of the ulna. It arises by two heads—one by the common tendon from the internal condyle, the other from the inner aspect of the olecranon process—and partly by an aponeurosis continued down from the upper portion of the posterior border of the ulna. Fibers also arise from the overlying deep fascia and the intermuscular septum between this muscle and the flexor sublimis digitorum. The interval between the condyloid and olecranon heads is spanned by a tendinous arch, under which pass the ulnar nerve and the posterior ulnar recurrent artery. The muscle terminates in a tendon which runs along its anterior margin, the lower fibers passing to the tendon obliquely downward and forward. It is inserted into the pisiform bone, with more or less fibrous connection with the anterior annular ligament, the unciform bone, and the base of the metacarpal bone of the little finger. It is the only muscle of the forearm attached to carpal bones. Its anterior and inner surfaces are subcutaneous, and intimately attached to the deep fascia over much of their extent, especially near the posterior border of the ulna. It lies upon the flexor sublimis digitorum and flexor profundus digitorum muscles, and the ulnar vessels and nerve. Its tendon is the guide for ligation of the ulnar artery, which it overlaps. Externally, it is in contact with the belly of the palmaris longus muscle and the ulnar vessels and nerve.

Blood Supply.—From the ulnar artery.

Nerve Supply.—From the ulnar nerve.

Action.—It flexes and adducts the hand, and slightly flexes the forearm on the arm.

Owing to its extensive connection with the ulna, this muscle can not retract so much as the other muscles of this group in amputation of the forearm.

The **flexor sublimis digitorum** (perforatus) lies under the previously described muscles and arises by three heads—one from the humerus, ulna, and radius, respectively. The humeral head arises from the inner condyle by the common tendon of the flexor muscles, from the internal lateral ligament of the elbow-joint, and the adjacent intermuscular septa; the ulnar head arises from the inner side of the coronoid process of the ulna, just above the origin of the lesser head of the pronator radii teres; the radial head arises from the oblique line of the radius and the anterior surface of that bone to a point below the insertion of the pronator radii teres. The fibers pass directly downward from the three origins as a broad, thick, and fleshy mass, converging at about the middle of the forearm into four tendons,
PLATE XXXVI.

Musculo-spiral n.
Brachialis anticus m.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
Radial a.
Extensor carpi radialis longior m.
Supinator longus m.
Extensor carpi radialis brevior m.

Median n.
Bicipital fascia (cut)
Biceps tendon
Brachial a.
Brachialis anticus m.
Loop between anastomotic magna a. and anterior ulnar recurrent a.
Posterior interosseous n.
Radial n.
Radial recurrent a.
Supinator brevis m.
which pass beneath the anterior annular ligament, where they are arranged in two pairs, one behind the other. The anterior pair go to the middle and ring fingers, and the posterior pair to the index and little fingers. The tendons are inserted into the middle of the sides of the second phalanges of the four fingers. Each tendon splits to permit the passage of the tendon of the flexor profundus digitorum muscle between its segments, which will be seen in the dissection of the hand.

This muscle is covered by the pronator radii teres, the flexor carpi radialis, the palmaris longus, and the flexor carpi ulnaris, also by the radial vessels and nerve and the deep fascia. It rests upon the flexor profundus digitorum, and the flexor longus pollicis, the ulnar vessels and nerve, and the median nerve. Its inner edge is against the flexor carpi ulnaris. Externally, it is overlapped by the lower end of the pronator radii teres.

Blood Supply.—From the radial and ulnar arteries.

Nerve Supply.—From the median nerve.

Action.—It flexes the proximal interphalangeal, the metacarpo-phalangeal, and wrist joints, and assists slightly in flexion of the elbow.

Dissection.—Displace the supinator longus outward in order to expose the radial artery and nerve in the upper part of the forearm. Separate the flexor carpi ulnaris from the flexor sublimis digitorum and study the relations of the ulnar vessels and nerve. Then sever the pronator radii teres, flexor carpi radialis, palmaris longus, and flexor sublimis digitorum, about one and one-half or two inches below the internal condyle, without cutting the median nerve, ulnar artery, or ulnar nerve. Reflect these muscles in order to obtain a view of the structures beneath—namely, the flexor profundus digitorum, flexor longus pollicis, pronator quadratus, median nerve, ulnar vessels, and anterior interosseous vessels and nerve.

The **flexor profundus digitorum** arises from the upper two-thirds of the front and inner side of the shaft of the ulna, and at its upper end interdigitates with the brachialis anticus in the same manner as that muscle at its origin does with the deltoid. It also arises from the inner side of the coronoid process of the ulna, and by the aponeurosis from the upper two-thirds of the posterior border of the ulna, in common with the ulnar origin of the flexor carpi ulnaris, and from the ulnar half of the interosseous membrane. It divides into four tendons, which pass down the forearm and continue, side by side, under the anterior annular ligament, behind the tendon of the flexor sublimis digitorum to the bases of the terminal phalanges, passing between the segments of the tendons of the flexor sublimis digitorum. A lumbricalis muscle is attached to each one of these tendons in the palm. The flexor profundus digitorum muscle lies beneath the flexor sublimis digitorum and flexor carpi radialis muscles, the ulnar vessels and nerve, and the median nerve. It rests upon the ulna, the interosseous membrane, and the pronator quadratus.
muscle. Internally, it is in contact with the flexor carpi ulnaris; and externally, with the anterior interosseous artery and nerve, and the flexor longus pollicis.

Blood Supply.—Derived from the ulnar and anterior interosseous arteries.

Nerve Supply.—From the ulnar nerve, and the anterior interosseous branch of the median nerve.

Action.—It flexes the terminal phalanges, and also the interphalangeal, metacarpo-phalangeal, and wrist joints.

The flexor longus pollicis arises from the front of the shaft of the radius, between the tuberosity and oblique ridge above and the insertion of the pronator quadratus below, and from the adjacent interosseous membrane; at times also by a small slip from the internal condyle of the humerus or from the inner side of the coronoid process of the ulna, adjoining the insertion of the brachialis anticus. It passes down the radial side of the forearm to about its middle, where it terminates in a flattened tendon, which passes under the anterior annular ligament and between the two heads of the flexor brevis pollicis, to be attached to the base of the last phalanx of the thumb. It lies beneath the flexor sublimis digitorum, the supinator longus, the tendon of the flexor carpi radialis, and the radial vessels and nerve, and rests upon the radius, the interosseous membrane, and the pronator quadratus. Upon its ulnar side lie the flexor profundus digitorum, the anterior interosseous artery and nerve; and upon the radial side are the supinator brevis, the insertion of the pronator radii teres, the radial origin of the flexor sublimis digitorum, and the tendons of the supinator longus and extensores carpi radialis longior and brevior.

Blood Supply.—From the radial and anterior interosseous arteries.

Nerve Supply.—From the anterior interosseous nerve.

Action.—It flexes the terminal phalanx of the thumb, and, to a slight extent, the first phalanx.

The pronator quadratus is a flat, square muscle, which lies in front of the lower ends of the radius, ulna, and interosseous membrane. It arises from the oblique ridge on the anterior surface of the lower fourth of the ulna, and from the aponeurosis covering the inner one-third of the muscle; thence its fibers cross the forearm transversely and somewhat obliquely for insertion into the outer border, anterior and internal surfaces of the lower fourth of the radius. It rests upon the radius, ulna, interosseous membrane, and the anterior interosseous vessels and nerve, and is covered by the tendons of the flexor profundus digitorum, flexor longus pollicis, flexor carpi radialis, and the radial and ulnar vessels and ulnar nerve.

Blood Supply.—Derived from the anterior interosseous artery.

Nerve Supply.—From the anterior interosseous nerve.
PLATE XXXVII.

DEEP FLEXOR MUSCLES, RADIAL ARTERY AND NERVE, ULNAR ARTERY AND NERVE, AND MEDIAN NERVE.
THE FRONT OF THE FOREARM.

Action.—It pronates the forearm.

The interosseous membrane extends between the interosseous margins of the radius and ulna, firmly connecting the shafts of those bones and forming a dividing wall between the front and the back of the forearm. It extends upward to within an inch of the tuberosity of the radius, and downward to the inferior radio-ulnar articulation. Its fibers pass downward and inward from the edge of the radius to the radial margin of the ulna. It affords attachment to the deep muscles of the front and back of the forearm, supports the anterior interosseous artery and its venae comites, and the anterior interosseous nerve. The anterior interosseous artery pierces the membrane about one and one-half inches above its lower end. It is relaxed in pronation of the forearm. The posterior interosseous vessels pass backward above its upper margin.

The oblique ligament is a round, fibrous cord, connected above to the tubercle of the ulna located at the base of its coronoid process, whence it extends downward and outward to the radius to a point a little below the bicipital tuberosity. It is connected by a thin membrane to the upper border of the interosseous membrane. Its direction forms a right angle with that of the fibers of the interosseous membrane. Sometimes it is absent.

The radial artery begins at the bifurcation of the brachial, about one-half of an inch below the elbow-joint. Its course is more nearly in a direct line with the parent trunk than is that of the ulnar artery, and is represented by a line drawn from a point one-half of an inch below the middle of the bend of the elbow to the inner side of the base of the styloid process of the radius. It passes down the radial side of the forearm along the ulnar margin of the supinator longus, which is the muscle of reference for its ligation, and is overlapped thereby in the upper one-third or one-fourth of its course. At the wrist or base of the thumb it turns backward over the external lateral ligament of the wrist-joint beneath the extensors of the thumb, and then passes between the two heads of the first dorsal interosseous muscle (abductor indicis) into the palm of the hand, where it assists in forming the deep palmar arch. It is superficial in the forearm, except at its upper part, where it is covered by the supinator longus. From above downward it rests upon the tendon of the biceps, the supinator brevis, the pronator radii teres, the radial head of the flexor sublimis digitorum, the flexor longus pollicis, the pronator quadratus, the radius, and the external lateral ligament of the wrist-joint. In its upper one-third it lies between the supinator longus and the pronator radii teres; while in its lower two-thirds it passes between the tendons of the supinator longus and flexor carpi radialis. It is accompanied by its venae comites, and at its middle one-third has the radial nerve upon its outer side. Filaments of the musculo-cutaneous nerve are
closely related to its lower part as it courses around the wrist. Its branches in the forearm are the radial recurrent, muscular, superficialis volæ, and the anterior carpal; at the wrist, the posterior carpal, the metacarpal, the dorsalis pollicis, and the dorsalis indicis; and in the hand, the princeps pollicis, radialis indicis, perforating, palmar interosseous, and recurrent carpal. We will, at this time, consider only those branches given off in the forearm.

The **radial recurrent** arises from the outer side of the radial artery, passes downward between the supinator brevis and supinator longus muscles and between the radial and posterior interosseous nerves; thence upward, in company with the musculo-spiral nerve, between the brachialis anticus and supinator longus, both of which it in part supplies. It anastomoses with the terminal branches of the superior profunda in front of the external condyle and between the two last-named muscles. From its arch it sends muscular branches to the supinator and the extensor muscles, some passing beneath the latter to anastomose with the interosseous recurrent branch of the posterior interosseous. It also supplies the elbow-joint.

The **muscular branches** arise from the radial in its downward course and supply the muscles upon the radial side of the forearm.

The **superficialis volæ** arises from the radial artery near the wrist, and passes over the ball of the thumb. Sometimes it runs beneath the abductor pollicis muscle. It supplies the muscles of the ball of the thumb and often anastomoses with the ulnar artery to assist in the formation of the superficial palmar arch. When the superficialis volæ arises higher than usual and runs beside the radial, it would give the palpating finger the sensation of a double pulse.

The **anterior carpal** arises from the radial artery near the lower margin of the pronator quadratus, whence it passes inward to anastomose with the anterior carpal branch of the ulnar artery, thus forming a pre-carpal loop,—the anterior carpal arch,—from which branches descend to nourish the wrist-joint. The posterior carpal, metacarpal, dorsalis pollicis, and dorsalis indicis will be described with the back of the wrist and hand.

The **ulnar artery**, larger than the radial, is the other terminal branch of the brachial artery. It at once turns toward the ulnar side of the forearm, and reaches it one-third of the way down, after which it skirts the ulnar border of the forearm to the wrist. A line drawn from a point one-half of an inch below the middle of the bend of the elbow to the junction of the upper with the middle one-third of the ulnar border of the forearm will represent the course of the upper or deep portion of this vessel. A line drawn from a point midway between the internal condyle and the middle of the bend of the elbow to the radial side of the pisiform bone will represent the course of the artery in the lower two-thirds of the forearm. It
crosses the anterior annular ligament on the radial side of the pisiform bone, and runs across the palm, forming the superficial palmar arch, which is usually completed by anastomosis with the superficialis vole. The ulnar artery is deep in its upper half, being covered by all of the superficial flexors except the flexor carpi ulnaris; in its lower half it is more superficial, being overlapped by the tendon of the flexor carpi ulnaris, while immediately above the wrist it is subcutaneous, and lies between the tendon of the flexor carpi ulnaris and the innermost tendon of the flexor sublimis digitorum. It lies, from above downward, upon the brachialis anticus, flexor profundus digitorum, and the anterior annular ligament. It has two venae comites. At its upper part the median nerve crosses in front of it, while the ulnar nerve is upon the inner side of its lower two-thirds. In the upper third of the course of the artery the ulnar nerve lies some distance to its ulnar side. When the ulnar artery has a high origin from the brachial, it usually lies upon the superficial flexor muscles, instead of beneath them, and is thus more liable to injury. Its branches in the forearm are the anterior ulnar recurrent, posterior ulnar recurrent, common interosseous, and muscular; at the wrist, the anterior and posterior carpal; in the hand, the deep or communicating branch; it continues as the superficial palmar arch. As in the case of the radial artery, we will now consider only the branches given off in the forearm.

The **anterior ulnar recurrent artery** arises from the ulnar, immediately below its origin, and passes inward and upward upon the brachialis anticus, and, behind the pronator radii teres, to the front of the inner condyle of the humerus, where it anastomoses with the anastomotica magna and the inferior profunda arteries.

The **posterior ulnar recurrent artery**, larger than the anterior ulnar recurrent, arises below that vessel and passes inward and backward under the flexor sublimis digitorum. It then courses between the two heads of the flexor carpi ulnaris, in relation with the ulnar nerve, to the back of the inner condyle. It supplies the elbow-joint, ulnar nerve, and adjacent muscles, and anastomoses with the inferior profunda, anastomotica magna, and interosseous recurrent arteries.

The **common interosseous artery** is the largest and shortest branch of the ulnar. It is given off opposite the tuberosity of the radius, whence it passes downward and outward to the upper margin of the interosseous membrane and divides into the anterior and posterior interosseous arteries.

The **anterior interosseous artery**, accompanied by venae comites and the anterior interosseous nerve, descends along the middle of the front of the interosseous membrane, between the flexor longus pollicis and the flexor profundus digitorum, and supplies nutrient branches to both muscles and to the radius and ulna. It eventually perforates the interosseous membrane, beneath
the upper border of the pronator quadratus, to reach the back of the forearm. Under the upper border of the pronator quadratus it gives off a branch which supplies this muscle and anastomoses with the anterior carpal branches of the radial and ulnar and the recurrent carpal branches of the deep palmar arch. In the upper part of the forearm it also gives off a long slender branch which accompanies the median nerve and is called the *comes nervi mediani*, or *median artery*. This is sometimes quite large, and then assists in the formation of the superficial palmar arch. The posterior interosseous will be described with the back of the forearm.

The *muscular branches*, variable in number, supply the adjacent muscles.

The *anterior carpal artery* is a small branch given off immediately above the anterior annular ligament. It passes outward, beneath the tendons of the flexor profundus digitorum, and anastomoses with the anterior carpal branch of the radial, with derivatives of the anterior interosseous, and the recurrent carpal branches of the deep palmar arch. It forms, with the corresponding branch of the radial, the pre-carpal arch. The posterior carpal branch will be described with the back of the wrist and hand.

The *median nerve* enters the forearm upon the inner side of the brachial artery, passes between the two heads of the pronator radii teres, the deep head of which separates it from the ulnar artery, and continues straight down the forearm to the wrist, upon the flexor profundus digitorum, covered by the flexor sublimis digitorum. Near the wrist it lies between the outer tendon of the flexor sublimis digitorum and the tendon of the flexor carpi radialis; it then passes under the anterior annular ligament, resting upon the flexor tendons. It is accompanied and supplied by the median artery. In the forearm it gives off articular, muscular, anterior interosseous, and palmar cutaneous branches.

The *articular branches*, two in number, supply the elbow-joint.

The *muscular branches* supply the pronator radii teres, the flexor carpi radialis, the palmaris longus, and the flexor sublimis digitorum.

The *anterior interosseous*, the longest branch of the median, arises beneath the upper part of the flexor sublimis digitorum, and accompanies the anterior interosseous artery between the flexor longus pollicis and flexor profundus digitorum. It supplies the flexor longus pollicis, the radial side of the flexor profundus digitorum, and the pronator quadratus.

The *palmar cutaneous branch* arises in the lower one-third of the forearm, pierces the deep fascia near the anterior annular ligament, and divides into two branches, an external and an internal, which pass in front of the ligament. The external branch supplies the skin of the ball of the thumb and communicates with the musculo-cutaneous and radial nerves; the internal branch supplies the
skin of the palm, except on the ulnar side, and communicates with the ulnar palmar cutaneous branch.

The radial nerve is one of the terminal branches of the musculo-spiral. It passes along the front of the outer side of the forearm, accompanying the radial artery along the outer side of its middle one-third. In the upper part of its course it is overlapped by the belly of the supinator longus, and about three inches above the wrist curves backward under the tendon of that muscle and pierces the deep fascia, at the outer border of the forearm, to divide into an external and an internal branch. These supply the skin of the back of the hand and fingers.

The ulnar nerve, emerging from between the olecranon and the internal condyle of the humerus in the upper part of the forearm, passes down the anterior and inner side of the forearm upon the flexor profundus digitorum and beneath the belly of the flexor carpi ulnaris, while in the lower part of its course it lies to the radial side of the flexor carpi ulnaris muscle and its tendon. It has upon its radial side, as far down as the pisiform bone, the lower two-thirds of the ulnar artery. While in the forearm the ulnar nerve gives off articular, muscular, cutaneous, and dorsal cutaneous branches, and not infrequently it communicates with the median nerve.

The articular branches are given off, behind the internal condyle, to supply the elbow-joint, and, just above the carpus, to supply the wrist-joint.

Of the muscular branches, the one to the flexor carpi ulnaris arises in the upper part of the forearm; the other arises lower down, and passes to the inner part of the flexor profundus digitorum.

The cutaneous branches are two small nerves arising, by a common trunk, in the middle of the forearm. The shorter, and more superficial, descends to the skin of the ulnar side of the wrist, pierces the deep fascia, and joins a branch of the internal cutaneous, while the other, a deeper branch, accompanies the ulnar artery lying upon its anterior surface, to supply the skin of the ulnar side of the palm of the hand. This branch communicates with twigs from the median, and is called the palmar cutaneous branch.

The dorsal cutaneous branch arises about three inches above the wrist and passes backward, under the flexor carpi ulnaris, to the posterior surface of the wrist, where it pierces the deep fascia and divides into a communicating and two digital branches, which supply the skin and fascia of the ulnar side of the hand, both sides of the little finger, and the adjacent side of the ring finger. The communicating branch inosculates with the posterior branch of the internal cutaneous and the digital branches with the adjacent ones from the radial nerve.
THE FRONT OF THE HAND.

Dissection.—The skin has been incised across the front of the wrist. From the inner end of this incision make another along the ulnar border of the palm as far as the junction of the latter with the little finger. From the outer end of the transverse incision make a third along the radial border of the thenar eminence to the base of the first phalanx of the thumb, then around the palmar surface of the thumb, and along the radial border of the palm to its junction with the index finger. The flap of integument thus marked out is reflected downward, exposing the superficial fascia. In dissecting the thumb and fingers the skin is incised in the median line and reflected laterally. The skin of the palm is sensitive and well supplied with sweat glands, sebaceous glands being absent.

Superficial fascia.—The superficial fascia of the palm is dense and thin, and closely connects the skin with the deep fascia, resembling in this respect that of the scalp and sole of the foot. That covering the thenar and hypothenar eminences is more delicate. The fat in the palm of the hand presents a somewhat lobulated appearance, and when an incision is made through the skin, small masses of adipose tissue protrude through the opening. It contains the palmaris brevis muscle, the ulnar vessels and nerve, the palmar cutaneous branches of the ulnar and median nerves, and the superficial transverse ligament.

The palmaris brevis muscle is embedded in the granular superficial fascia on the ulnar side of the palm. It consists of a series of slightly divergent fasciculi, which arise from the central palmar fascia and the anterior annular ligament, pass over the hypothenar eminence, and are inserted into the skin of the ulnar border of the palm.

Nerve Supply.—From the ulnar nerve.

The ulnar vessels and nerve occupy the superficial fascia on the radial side of the pisiform bone, where their deep branches are given off.

Palmar cutaneous nerves.—Trace the palmar cutaneous branches of the median, radial, and ulnar nerves to their termination. That of the median passes between the tendons of the flexor carpi radialis and palmaris longus and over the anterior annular ligament. It supplies the hollow of the palm and the adjacent border of the thenar eminence. The palmar cutaneous branch of the ulnar nerve passes into the hand in front of and accompanying the ulnar artery, and supplies the ulnar side of the hollow of the palm. The radial palmar cutaneous supplies the outer margin of the thenar eminence.

The superficial transverse ligament is a band of fibers which crosses the roots and webs of the fingers and connects the slips of the central portion of the palmar fascia.
DEEP PALMAR FASCIA AND PALMARIS BREVIS MUSCLE.

156
THE FRONT OF THE HAND.

Dissection.—In removing the superficial palmar fascia begin at the wrist and work toward the digital clefts and dissect it free from the underlying deep palmar fascia. This exposes the anterior annular ligament of the wrist, a thickened band of the deep fascia of the forearm, which extends from the pisiform and the hook of the unciform bone, upon the ulnar side of the wrist, to the tuberosity of the scaphoid and the ridge of the trapezium upon the radial side of the wrist. It is firm, dense, and unyielding, gives origin to most of the muscles of the thenar and hypothenar eminences, and converts the hollow of the front of the wrist into a tunnel for the passage of some of the structures of the forearm which are destined for the front of the hand. It is crossed by the following structures, enumerated in their order, from the ulnar to the radial side: The tendon of the flexor carpi ulnaris, part of which it receives for insertion; the ulnar nerve, situated at the radial side of that tendon; the ulnar artery and its venæ comites; the palmar cutaneous branches of ulnar and median nerves; the palmaris longus, part of which it receives for insertion; and the tendon of the flexor carpi radialis, which passes over its upper margin and then pierces it. The tunnel beneath the ligament gives passage to the following structures: The tendons of the flexor sublimis digitorum and flexor profundus digitorum, the tendon of the flexor longus pollicis, and the median nerve.

The great carpal or palmar bursa.—In this tunnel there are two synovial sacs, separated by the median nerve; the outer invests the tendon of the flexor longus pollicis and extends upon the first phalanx of the thumb; the inner invests the tendons of the flexor sublimis digitorum and flexor profundus digitorum and extends to the middle of the palm. Upon the proximal two phalanges of the fingers the flexor tendons are also invested by a synovial sheath which lines their fibrous sheaths. The synovial sheath on the little finger is usually described as being continuous with the inner sac of the great carpal bursa, while the synovial sheaths on the tendons of the index, middle, and ring fingers cease at the heads of the metacarpal bones and do not communicate with the great carpal bursa. The arrangement of these sheaths probably differs somewhat in individuals. Schüller states that only exceptionally does the sheath for the little finger communicate with the main or inner synovial sac. These sacs form what is called the great carpal bursa, which extends about an inch into the forearm. The great carpal bursa, when distended, is constricted in the middle by the anterior annular ligament, which gives it an hour-glass shape. Inflammation of the sheath of the flexor tendon, over the proximal phalanx of the thumb, may, by extension, involve the outer sac of the great carpal bursa, while inflammation of the sheath of the flexor tendons of the little finger may implicate the inner sac. When the two sacs communicate in front of the median
nerve, which they occasionally do, inflammation of one is readily communicated to the other. Purulent collections in the great carpal bursa require early and free incision, with, in some cases, division of the anterior annular ligament. Purulent collections in the sheaths of the flexor tendons of the index, middle, and ring fingers, by reason of the anatomic condition, would not extend into the palm further than the heads of the metacarpal bones.

The deep palmar fascia is intimately united to the skin in the middle of the palm, and less so at the sides. It is divided for description into a central and two lateral portions. The central portion is dense and strong, and protects the underlying vessels, nerves, and tendons from injury. Its strength is greatest in those who are accustomed to handling heavy implements. It is triangular in shape and narrow at its origin from the lower border of the anterior annular ligament, where it is strengthened by the broadened tendon of the palmaris longus. It expands in its passage through the palm to divide into four digital slips, one going to the base of each finger; not uncommonly an additional slip passes to the thumb. Each slip divides to permit the passage of the digital flexor tendons, the divisions being then inserted into the sides of the bases of the first phalanges and the deep transverse ligament which connects the heads of the metacarpal bones of the fingers. Each slip is also continuous with the fibrous sheath of the flexor tendons. At the point of division into its four digital processes, the fascia is strengthened by transverse fibers. Through the spaces between the primary divisions of the fascia pass the digital vessels and nerves and the lumbricales tendons. This central portion of the palmar fascia is closely united to the skin of the palm by many small, short, fibrous bands, which prevent the integumentary covering from being thrown into folds and from gliding to and fro during the various movements of the hand. From either side of the central portion a process of fascia dips into the palm to join the deep transverse layer of fascia which covers the interossei muscles, the deep palmar arch, and the metacarpal bones, thus separating the muscles of the thenar and hypothenar eminences from the center of the palm. This central fascial compartment contains the superficial palmar arch and its branches, the digital branches of the median nerve, the outer digital branch of the ulnar nerve, the superficial and deep flexor tendons, and the lumbrical muscles. This fascial compartment may be compared to a box the ends of which are open and correspond to the tunnel under the anterior annular ligament, above, and to the intervals between the primary and secondary divisions of the central palmar fascia, below. It is of surgical significance. A collection of pus in this compartment would point in the forearm above the anterior annular ligament, at the clefts of the fingers, or upon the dorsum of the hand over the interosseous spaces, rather than upon the palm, because of the density of the central palmar fascia. The deep transverse layer of the palmar
Superficial palmar arch and digital nerves.
fascia offers some resistance to the passage of pus toward the dorsum of the hand. Contraction of the digital slip, passing to the ring or little finger, flexes the finger upon the palm at the metacarpo-phalangeal joint and produces the deformity known as Dupuytren's contraction of the finger. In these cases the fibrous band becomes prominent under the overlying skin, which often presents transverse folds over the contracted fascia. This condition can only be relieved by subcutaneous or open section of the offending slip.

The lateral portions of the palmar fascia are thin, and continuous with the central palmar fascia and the fascia of the dorsum of the hand; they cover the muscles of the thenar and hypothenar eminences.

Dissection.—Divide the expansion of the palmaris longus and reflect the central palmar fascia toward the fingers, noting its deep processes located upon either side. The structures of the palm now exposed are: The superficial palmar arch and its branches, the median nerve and its divisions, the superficial and deep flexor tendons, and the lumbrical muscles. Upon either side of the palm are the muscles composing the thenar and hypothenar eminences.

The superficial palmar arch is formed by the terminal part of the ulnar artery, and is completed by the superficialis volae, or a branch from the radialis indicis or princeps pollicis, and sometimes, though rarely, by a large median artery. It commences at the lower border of the pisiform bone, where the ulnar artery gives off the deep or communicating branch which passes backward between the abductor minimi digiti and flexor brevis minimi digiti muscles to complete the deep palmar arch. It curves across the palm to the thenar eminence, where it is joined by the branch or branches which complete it. The convexity of the arch is directed toward the fingers, its lowest point corresponding to a line drawn transversely across the hand from the lower border of the strongly abducted thumb. The superficial palmar arch lies upon the short muscles of the little finger, the flexor tendons, and the digital branches of the median nerve, and is covered by the palmaris brevis, the palmar cutaneous branches of the median and ulnar nerves, and the central palmar fascia. Its branches are the four digital arteries.

The digital branches arise from the convexity of the arch; they supply the ulnar side of the little finger, and the adjacent sides of the little, ring, middle, and index fingers. The first digital artery is joined by a branch from the deep palmar arch and passes over the hypothenar eminence, to which it sends branches, and under the inner digital branch of the ulnar nerve. It supplies the ulnar side of the little finger. The second, third, and fourth digital arteries pass to the intervals between the fingers, where they are joined by the interosseous branches of the deep palmar arch and anterior perforating branches of the dorsal interosseous arteries and divide beneath the superficial transverse ligament, about one-quarter of
an inch above the clefts of the fingers, into two collateral digital branches for the supply of the adjacent sides of the fingers. At their commencement they lie over the superficial flexor tendons; but as they approach the clefts of the fingers, they course between them in company with the digital nerves, and also between the primary slips of the central palmar fascia with the nerves superficial to the arteries. As the digital arteries lie over the interosseous spaces, palmar abscesses should be opened in the line of the metacarpal bones. Upon the side of the finger the collateral digital artery is behind the nerve. The collateral digital arteries of each finger unite to form an arch across the front of the finger a little beyond the terminal joint, and from this arises an arterial plexus which supplies the pulp of the end of the finger and the matrix of the nail. Small twigs go to the interphalangeal joints, the integument and sheaths of the tendons, and form arterial plexuses, one being in front of each joint.

The ulnar nerve crosses the wrist in front of the anterior annular ligament upon the ulnar side of the ulnar artery, between the artery and the pisiform and unciform bones, where it rests in a groove between these bones protected thereby from pressure. It divides into a superficial and a deep branch. The superficial branch passes along the ulnar side of the palm, supplying the skin of this region and the palmaris brevis which covers it. It divides into a communicating and two digital branches. The inner digital branch supplies the inner side of the little finger; the outer divides into collateral digital branches to supply the adjacent sides of the little and ring fingers. The communicating branch joins the innermost digital branch of the median nerve. The deep branch of the ulnar nerve accompanies the profunda branch of the ulnar artery, and passes backward between the abductor and flexor brevis minimi digiti muscles, through the opponens minimi digiti, and upon the distal side of the deep palmar arch.

It supplies the short muscles of the little finger, all of the interossei, the two ulnar lumbricales, the adductor pollicis, and the inner or deep head of the flexor brevis pollicis.

The median nerve enters the hand beneath the anterior annular ligament enveloped by the synovial sheaths of the flexor tendons of the hand; it rests upon the tendons, spreads out slightly, and bifurcates into an external and an internal division as it emerges from under the ligament.

The external division gives off muscular branches to the abductor and opponens pollicis, and outer head of the flexor brevis pollicis, after which it divides into two digital branches; the outermost supplies a collateral branch to either side of the thumb, while the innermost goes to the radial side of the index finger and sends a small twig to the first lumbrical muscle.

The internal division, larger than the external, divides into an outer and
PLATE XLIV.

ARTERIES AND NERVES OF FRONT OF FOREARM.
Fibrous and synovial sheaths of flexor tendons.
an inner digital branch. The outer digital sends a branch to the second lumbrical muscle and divides into two collateral branches, which supply the adjacent sides of the index and middle fingers as well as the dorsum of these fingers. The inner digital, in addition to communicating with the ulnar nerve, divides into two collateral branches, which supply the adjacent sides of the middle and ring fingers, and also, occasionally, the third lumbrical muscle. Each collateral branch sends branches to the dorsum of the fingers, and that of the middle finger is almost entirely supplied by these nerves.

At first the digital nerves are beneath the superficial palmar arch and the digital branches arising therefrom, but they gradually become more superficial, and, along the sides of the fingers, lie in front of the collateral digital arteries. At the tips of the fingers they give off anterior twigs to supply the pulp of the finger, and on the posterior aspect, twigs which supply the matrix of the nail. Very careful dissection discovers, upon the finer ramifications of the collateral branches of the digital nerves, minute seed-like enlargements known as the Pacinian bodies—a form of nerve terminus.

The flexor tendons cross the wrist in a large compartment beneath the anterior annular ligament, the outermost being that for the flexor longus pollicis, which passes outward along the thumb. The four tendons of the flexor sublimis digitorum lie in the tunnel beneath the anterior annular ligament, arranged in two pairs, one being anterior to the other. The anterior pair go to the middle and ring fingers; the posterior, to the index and little fingers. Of the tendons of the flexor profundus digitorum, the outermost (for the index finger) is separated from the others; the remaining three are in close contact until after they enter the palm. Each flexor sublimis tendon is accompanied to the root of its respective finger by the corresponding deep flexor tendon which lies under it. The tendons of the deep flexor give origin to the lumbrical muscles. The flexor tendons are confined to the phalanges by fibrous sheaths, which must be laid open in order to expose the tendon.

The fibrous sheaths of the flexor tendons are subcutaneous. Upon either side of these sheaths are the collateral digital vessels and nerves. The sheaths are attached to the sharp lateral margins of the anterior surface of the phalanges, and thus form an osteo-fibrous canal, which is composed of bone behind and fibrous tissue in front. The sheaths are thin at the joints and thick opposite the body of the phalanges, and especially so opposite the middle of the proximal phalanges, at which point they are called the vaginal ligament. Throughout its entire length, each fibrous sheath is lined by a synovial membrane, which is reflected over the tendons, thus forming a tubular sac, or theca. The thecae, or synovial sacs, of the index, middle, and ring fingers extend from the
heads of the metacarpal bones to the middle of the distal phalanges, and
do not communicate with the carpal bursae, while those of the thumb and
little finger do.

Upon the under surface of the flexor tendons, as they pass along the fingers,
synovial reflections are found connecting them with the adjacent bone. These
are triangular near the insertion of the tendon, and are called *ligamenta brevia*:
longer and slender reflections, called *ligamenta longa*, make similar connections,
but further from the insertion of the tendon, both being known collectively as
the *vincula accessoria*. These vincula carry blood-vessels to the flexor tendons.
Inflammation of the theca is known as thecitis. If the inflammation results
in a purulent collection within the theca, it constitutes a superficial felon;
while if the pus forms beneath the periosteal covering of the phalanx, a deep felon
results. Superficial felons should be incised in the median line of the finger,
so as to avoid the collateral digital arteries; while deep felons are preferably
opened by an incision made along the side of the tendon.

The *insertions* of the flexor tendons are as follows: Each tendon of the flexor
sublimis digitorum rests upon the corresponding tendon of the flexor profundus
digitorum; opposite the metacarpo-phalangeal joints the tendons of the flexor sub¬
limis broaden and, opposite the middle of the proximal phalanges, split into two
segments, between which pass the tendons of the flexor profundus; they reunite
and again divide, to be inserted into the middle of both sides of the second pha¬
langes; the tendon of the flexor profundus, after perforating the tendons of the
flexor sublimis, passes on for insertion into the front of the base of the last
phalanx; the tendon of the flexor longus pollicis passes between the two heads
of the flexor brevis pollicis for insertion into the front of the base of the last
phalanx of the thumb.

The *lumbricales* are four slender, fleshy muscles which are accessory to the
deep flexor tendons and connect these with the tendons of the extensor communis
digitorum. They arise from the radial side of the deep flexor tendons of the index
and middle fingers, and from the adjacent sides of the tendons of the middle, ring,
and little fingers. Each muscle terminates in a delicate tendon, which passes
around the radial side of the base of the proximal phalanx of the corresponding
finger and is inserted into the tendon of the extensor communis digitorum upon
the back of the proximal phalanx.

Blood Supply.—From the digital branches of the superficial palmar arch and
the interosseous branches of the deep palmar arch.

Nerve Supply.—The outer two lumbrical muscles are supplied by branches
of the median nerve, and the inner two by the ulnar nerve.

Action.—These muscles aid the flexor tendons in flexing the metacarpo-
PLATE XLVI.

INSERTION OF LUMBRICAL AND INTEROSSEOUS MUSCLES.

169
phalangeal joints and the extensor tendons in extending the two interphalangeal joints.

Dissection.—Remove the lateral portions of the deep palmar fascia and separate the muscles of the thenar and hypothenar eminences.

The thenar eminence, or ball of the thumb, is composed of four muscles, called the abductor pollicis, opponens pollicis, flexor brevis pollicis, and adductor pollicis.

The abductor pollicis, the most superficial muscle of the ball of the thumb, is a thin, flat muscle which arises from the front of the anterior annular ligament and the trapezium. It is inserted into the radial side of the base of the first phalanx of the thumb and the tendon of the extensor secundi internodii pollicis over the first phalanx. It rests upon the opponens pollicis and the superficial or outer head of the flexor brevis pollicis.

Blood Supply.—From the superficialis volae artery.
Nerve Supply.—From the median nerve.
Action.—It abducts the thumb and assists in extension of the last phalanx.
Dissection.—Cut the muscle transversely at its middle, and reflect.

The opponens pollicis is small and triangular, and is subcutaneous in its outer part, while its inner portion is covered by the abductor pollicis. It arises, beneath the abductor, from the front of the anterior annular ligament and the trapezium, whence its fibers diverge for insertion into the radial side of the entire length of the metacarpal bone of the thumb. It is covered by the abductor pollicis and the deep fascia. It lies upon the joint between the trapezium and the metacarpal bone of the thumb and on the radial side of the superficial or outer head of the flexor brevis pollicis.

Blood Supply.—From the radial and superficial volar arteries.
Nerve Supply.—From the median nerve.
Action.—It draws the head of the metacarpal bone of the thumb toward the head of the metacarpal bone of the little finger, after which contraction of the long and short flexors brings the end of the thumb in contact with the base of the little finger.

The flexor brevis pollicis arises by a superficial and a deep head, between which passes the tendon of the flexor longus pollicis. The superficial head arises from the outer part of the anterior annular ligament and the trapezium; the deep head (by some described as a separate muscle, and called the oblique adductor of the thumb) arises from the bases of the first, second, and third metacarpal bones, from the trapezoid and os magnum, and the sheath of the tendon of the flexor carpi radialis. The fibers from these origins unite and then separate for insertion into both the outer and inner side of the base of the first phalanx of the thumb.
Each tendon of insertion contains a sesamoid bone where it passes over the metacarpo-phalangeal joint; the tendon of the superficial or outer head is joined by the tendon of the abductor pollicis, and that of the deep or inner head by the tendon of the adductor pollicis. The superficial or outer head lies in contact with the ulnar border of the opponens pollicis, and is covered by the abductor pollicis and the deep fascia. It rests upon the opponens pollicis, the tendon of the flexor longus pollicis, and the inner or deep head. The superficial or outer head is covered by the deep fascia; the deep or inner head by the flexor tendons of the index and middle fingers and the outer two lumbricales. It rests upon the deep palmar arch, the muscles of the first two interosseous spaces, the tendon of the flexor carpi radialis, and the radialis indicis artery.

Blood Supply.—From the radial artery.

Nerve Supply.—From the median nerve, and the deep branch of the ulnar nerve. The median nerve supplies the superficial or outer head, the deep branch of the ulnar nerve the deep or inner head.

Action.—It flexes the carpo-metacarpal and metacarpo-phalangeal joints of the thumb. The deep or inner head is also an oblique adductor, aiding the contiguous adductor pollicis in drawing the head of the metacarpal bone of the thumb toward the pisiform bone.

The *adductor pollicis* is the deepest muscle of this group, and is triangular in shape. It arises by its base from the front of the metacarpal bone of the middle finger, whence its fibers converge for insertion into the ulnar side of the base of the first phalanx of the thumb, in common with the inner tendon of the flexor brevis pollicis. It is covered by the ulnar border of the deep or inner head of the flexor brevis pollicis, the outer two tendons of the flexor sublimis and flexor profundus digitorum muscles, and the two outer lumbricales. It lies upon the radialis indicis artery, the abductor indicis muscle, and the interosseous muscles of the second interosseous space.

Blood Supply.—From branches from both palmar arches.

Nerve Supply.—From the deep branch of the ulnar nerve.

Action.—It adducts the thumb, approximating it to the index finger.

The *hypothenar eminence* is the fleshy prominence upon the inner side of the palm of the hand. It is composed of the palmaris brevis, the abductor minimi digiti, the flexor brevis minimi digiti, and the opponens minimi digiti; the last three are the short muscles of the little finger. The palmaris brevis has already been described.

The *abductor minimi digiti* lies upon the ulnar side of the hypothenar eminence, and arises from the pisiform bone and an expansion of the tendon of the flexor carpi ulnaris. It is inserted by a flattened tendon into the ulnar side of the
Deep palmar arch and interosseous muscles.
Anterior interosseous a.
Ulnar a.
Anterior carpal a.
Posterior carpal a.
Anterior branch of anterior interosseous a.
Anterior carpal a.
Superficialis volae a.
Radial a.
Deep branch of ulnar a.
Perforating a.
Palmar interosseous a.
Dorsal interosseous a.
Perforating a.
Collateral digital a.
Posterior carpal a.
Dorsalis pollicis a.
Recurrent carpal a.
Deep palmar arch
Dorsalis indicis a.
Princeps pollicis a.
Superficial palmar arch
Radialis indicis a.
Digital a.
Digital a.
base of the first phalanx of the little finger and into the same side of the tendon of the extensor minimi digiti. It is subcutaneous, except at its base, where it is covered by the palmaris brevis. It rests upon the opponens minimi digiti on the ulnar side of the flexor brevis minimi digiti.

Blood Supply.—From the ulnar artery.

Nerve Supply.—From the deep branch of the ulnar nerve.

Action.—It abducts the little finger, flexes the metacarpo-phalangeal articulation, and extends the interphalangeal joints of that finger.

The *flexor brevis minimi digiti* lies upon the radial side of the preceding muscle and arises from the anterior annular ligament and the hook of the unciform bone. It is inserted, with the preceding muscle, into the ulnar side of the base of the proximal phalanx of the little finger. It is subcutaneous, except where it is covered by the palmaris brevis. It rests upon the opponens minimi digiti.

Blood Supply.—From the ulnar artery.

Nerve Supply.—From the deep branch of the ulnar nerve.

Action.—It flexes the metacarpo-phalangeal joint of the little finger.

The *opponens minimi digiti* (also called flexor ossis metacarpi minimi digiti), is triangular in form and corresponds to the opponens pollicis. It arises at its apex from the anterior annular ligament and the hook of the unciform bone, whence its fibers diverge for insertion into the entire length of the ulnar margin of the metacarpal bone of the little finger. It is covered by the two preceding muscles, and rests upon the interosseous muscles of the fourth interspace, the metacarpal bone, and the deep branches of the ulnar artery and nerve.

Blood Supply.—From the ulnar artery.

Nerve Supply.—From the deep branch of the ulnar nerve.

Action.—It draws the head of the metacarpal bone of the little finger forward and toward the radial side of the hand, aiding in hollowing the palm and in approximating the little finger to the thumb.

Dissection.—Divide the anterior annular ligament and the flexor tendons; reflect the latter, with the lumbrical muscles, downward, when the deep transverse layer of fascia which covers the deep palmar arch, the deep branch of the ulnar nerve, the interossei muscles, and the metacarpal bones will be exposed. Remove the deep transverse layer of fascia and trace the vessels and nerve beneath it. Next, sever the adductor pollicis and inner or deep head of the flexor brevis pollicis at their origins, and reflect them in order to expose the remainder of the deep palmar arch and the origins of the princeps pollicis and radialis indicis arteries.

The *deep palmar arch* is the terminal portion of the radial artery. It begins
at the entrance of the radial artery into the palm, between the two heads of the first dorsal interosseous (abductor indicis) muscle. It then passes between the adductor pollicis and the inner head of the flexor brevis pollicis, whence it arches, convexity downward, over the bases of the metacarpal bones and the palmar interosseous muscles to the base of the metacarpal bone of the little finger, where it is completed by joining the deep branch of the ulnar artery. It is less curved than the superficial arch and is situated one-half of an inch nearer the wrist. It is accompanied by the deep branch of the ulnar nerve.

The branches of the deep palmar arch are, from its convexity, the princeps pollicis, the radialis indicis, the palmar interosseous, and the superior perforating, and, from the concavity of the arch, the recurrent carpal arteries.

The princeps pollicis artery arises separately or by a common trunk with the radialis indicis from the arch, close to the interval between the two heads of the first dorsal interosseous muscle. It first passes between the first dorsal interosseous muscle and the flexor brevis pollicis, then between the two heads of the latter along the metacarpal bone of the thumb, under cover of the tendon of the flexor longus pollicis, to the base of the first phalanx, where it divides into two collateral branches which descend upon the sides of the thumb, with the tendon of the flexor longus pollicis between them. They terminate in an arch similar to that formed by the collateral arteries of the fingers.

The radialis indicis artery is given off near the preceding artery. It passes between the first dorsal interosseous muscle (abductor indicis) and the adductor pollicis along the palmar aspect of the radial border of the index finger.

The palmar interosseous arteries, three in number, pass downward over the interosseous muscles in the second, third, and fourth interosseous spaces, to join the corresponding digital branches of the superficial palmar arch just before they divide into the collateral digital arteries.

The superior perforating arteries, three in number, pierce the upper ends of the inner three interosseous spaces, and pass between the heads of the dorsal interosseous muscles to join the dorsal interosseous arteries.

The recurrent carpal arteries, two or three in number, pass upward, in front of the wrist, to join branches of the anterior carpal arch and the anterior branch of the anterior interosseous artery.

When one of the palmar arches is wounded, control the hemorrhage by making pressure upon the radial and ulnar arteries, and cleanse the wound. The artery should be completely severed, for a partially divided artery presents a gaping wound; contraction and retraction of the cut ends are thus prevented. If it be possible without making a large wound, tie both bleeding ends in the wound. A large scar in the palm is a source of danger, because constant
PLATE L.

CUTANEOUS NERVES OF ARM AND FOREARM.
PLATE LI.

Teres major m.
Long head of triceps m.
Musculo-spiral n.
Superior profunda a.
Inner head of triceps m.

Spine of scapula
Supraspinatus m.
Infraspinatus m.
Teres minor m.
Circumflex n.
Posterior circumflex a.
Outer head of triceps m.

Musculo-spiral n.
Deltoid m.
Superior profunda a.
Brachialis anticus m.

Teres major m.
Long head of triceps m.
Musculo-spiral n.
Superior profunda a.
Inner head of triceps m.

Triceps tendon
Anconeus m.

Extensor carpi radialis longior m.
Extensor carpi radialis brevior m.
Extensor communis digitorum m.

MUSCULO-SPIRAL NERVE AND SUPERIOR PROFUNDA ARTERY.
184
MUSCLES OF THE BACK OF THE SCAPULA AND ARM.

185
irritation may develop an epithelioma. If ligature of the bleeding ends be not possible, use a graduated compress. This may be made by placing a small piece of dry antiseptic gauze or lint upon the bleeding points in the bottom of the wound and then adding successively larger sections of dry gauze or lint. The metacarpal bones supply the requisite counterpressure. The compress is covered with aseptic cotton and a bandage applied. The amount of pressure required is very small. The dressing is removed after twelve hours. If this method does not succeed, forcipressure may be used—hemostatic forceps are allowed to remain attached to the bleeding arteries. Flexion of the elbow and wrist should also be practised in conjunction with the compress and forcipressure. If these means fail, the brachial should be tied above the bend of the elbow. If the radial and ulnar are ligatured, hemorrhage from a wounded superficial palmar arch may still occur through a large median artery; and, from a wounded deep palmar arch, through a large anterior interosseous artery. Both of these possibilities are eliminated by ligature of the brachial artery.

The palmar interossei are three slender muscles, the first of which arises from the ulnar side of the metacarpal bone of the index finger and is inserted into the base of the first phalanx and the extensor tendon of the same finger; the second from the radial side of the metacarpal bone of the ring finger, and is inserted into the base of the first phalanx and the extensor tendon upon the same side of this finger; the third has a similar origin, and insertion upon the radial side of the little finger.

Blood Supply.—These muscles are nourished by the deep palmar arch.
Nerve Supply.—From the deep branch of the ulnar nerve.

Action.—They adduct the fingers to which they are attached, flex the respective metacarpo-phalangeal joints, and extend the last two phalanges. By adduction of the fingers is meant drawing them toward the median line of the middle finger, while abduction is drawing the fingers away from that line.

The muscles of the upper extremity which are seen in dissecting the back are described under the dissection of the back of the neck, shoulder, and back. These muscles are the trapezius, rhomboidei, latissimus dorsi, supra-spinatus, infra-spinatus, teres major, teres minor, subscapularis, and serratus magnus.
THE BACK OF THE ARM.

Dissection.—With the body lying face downward, abduct the arm to a right angle with the trunk. If the body lie upon its back, flex the forearm upon the arm and adduct the arm across the upper part of the chest so that the elbow will be opposite the neck. Fix the arm in this position by means of hooks. Continue the transverse incision, made on the upper part of the front of the forearm, around the back of the forearm, and reflect the skin toward the shoulder. In removing the superficial fascia, which is best done from without inward, trace the superficial nerves when reflecting the fascia. The nerves which supply the skin and superficial fascia of the back of the arm are, from without inward, the inferior external cutaneous branch of the musculo-spiral, the terminal portion of the lower branch of the circumflex, the intercosto-humeral, the lesser internal cutaneous, and the internal cutaneous of the musculo-spiral.

Before dissecting out the superficial nerves, note the bursa found over the olecranon. It is generally of considerable size, and may be very prominent if distended, constituting what is known as “miner’s elbow.” Other bursae may sometimes be found over the internal and external condyles of the humerus, and, lower down, upon the ulna and over its styloid process.

The inferior external cutaneous branch of the musculo-spiral nerve becomes superficial upon the outer side of the arm below the insertion of the deltoid, and then passes backward and downward behind the outer humeral condyle to the forearm. The terminal portion of the lower branch of the circumflex nerve pierces the deep fascia, and supplies the skin over the lower part of the posterior surface of the deltoid muscle and the long head of the triceps.

The internal cutaneous branch of the musculo-spiral nerve emerges from the axilla at the outer end of the posterior fold, and passes downward along the inner and back part of the arm toward the elbow.

The intercosto-humeral nerve passes down the arm, upon the inner side of the internal cutaneous branch of the musculo-spiral nerve, to supply the skin of the inner and back part of the arm.

The lesser internal cutaneous nerve turns toward the back of the arm, above the internal condyle, descending to the inner side of the olecranon.

Deep fascia.—Next remove the deep fascia in the same manner as the superficial fascia. The deep fascia on the back of the arm is the continuation of that covering the front of the arm. It is closely attached to the tendon of the triceps and the bony prominences of the elbow.

The Triceps is the only muscle on the back of the arm. It arises from the scapula and the back of the shaft of the humerus. The origin from the latter
Deep fascia

Radial v.

Posterior ulnar v.

Communication with deep veins
bone is divided into two portions, by the musculo-spiral groove which passes obliquely downward and from within outward. The portion of the muscle which arises from the scapula is called the long head, and that from above and external to the musculo-spiral groove of the humerus, the external head; while that below and internal to the groove, the internal head.

The long, middle, or scapular head arises by a flat tendon from a triangular depression on the axillary border of the scapula, immediately below the glenoid cavity; it blends with the glenoid and capsular ligaments, the long head of the biceps being similarly attached at the upper margin of the same cavity.

The external head arises from the posterior surface of the shaft of the humerus, above and external to the musculo-spiral groove, and from the external intermuscular septum to the point where it is pierced by the musculo-spiral nerve. The surface of origin extends as high as the insertion of the teres minor.

The inner or short head arises from the back of the shaft of the humerus below and internal to the musculo-spiral groove, the internal intermuscular septum and the external intermuscular septum below the point where it is pierced by the musculo-spiral nerve. The surface of origin extends upward as far as the insertion of the teres major into the posterior bicipital ridge and downward to within one-half of an inch of the upper edge of the olecranon fossa.

Tendon of insertion.—The long head becomes tendinous in the lower third of the arm where it is joined on the outer side by the external head. The greater part of the internal head is attached to the under surface and either side of this tendon. The deeper fibers of the internal head are inserted directly into the olecranon and posterior ligament of the elbow-joint. The common tendon, which is inserted into the summit and sides of the olecranon, is continuous with the deep fascia of the forearm upon either side.

The long head of the triceps, in its descent from the scapula, passes between the teres minor behind and the teres major in front, and assists in forming a quadrangle which is bounded by the humerus externally, the teres minor above, the long head of the triceps internally, and the teres major below; a triangle is found just below, bounded above by the teres minor and subscapularis, below by the teres major, and externally by the long head of the triceps. The quadrangle transmits the posterior circumflex vessels and the circumflex nerve, and the triangle the dorsalis scapulae vessels.

The posterior surface of the triceps is subcutaneous, except at its upper end, where it is covered by the deltoid. The anterior surface is in relation with the humerus, the musculo-spiral nerve, the superior profunda vessels, and the elbow-joint. The long head lies in front of the deltoid and teres minor, and behind the subscapularis, latissimus dorsi, and teres major muscles.
Blood Supply.—The nutriment of the triceps is derived from the superior and inferior profunda, the anastomotica magna, and muscular branches of the brachial artery.

Nerve Supply.—From the musculo-spiral nerve.

Action.—It extends the forearm and adducts the humerus. The long head, by preventing downward luxation of the head of the humerus, forms a protection to the shoulder-joint.

The subanconeus is a very small muscle bearing the same relation to the triceps muscle and the elbow-joint that the subcrureus does to the crureus muscle and the knee-joint. It consists of those fibers of the internal head of the triceps which are inserted into the posterior ligament of the elbow-joint.

Nerve Supply.—The same as that of the triceps.

Action.—It draws the posterior ligament upward during the relaxation accompanying extension of the elbow and prevents pinching of the synovial membrane.

The musculo-spiral nerve is best observed on the back of the arm, after division of the long and external heads of the triceps muscle over the musculo-spiral groove, when the branches given off to the triceps can be traced. From the branch to the internal head a small nerve, accompanied by the posterior articular branch from the superior profunda artery, may be seen passing downward under cover of the outer edge of the tendon, from beneath which it emerges between the olecranon and external condyle of the humerus to enter and supply the anconeus muscle. Owing to its proximity to the bone, the musculo-spiral nerve may be injured in fractures, or become involved in the resulting callus.

The superior profunda artery, lying in the groove with the musculo-spiral nerve, is exposed by the same dissection. As it emerges from under the outer edge of the triceps it sends off a large superficial branch (posterior articular) to the elbow, after which it divides into two branches, one passing between the triceps and the bone to anastomose with the interosseous recurrent and anastomotica magna arteries, the other extending downward, between the supinator longus and the brachialis anticus, to join the radial recurrent artery.
Superficial Muscles of Back of Forearm
THE BACK OF THE FOREARM.

Dissection.—Reflect the skin from the back of the forearm and hand as far as the roots of the fingers, and sever it at this point. Next incise the skin of the fingers in the median line and reflect it laterally. By reflecting the skin of the dorsum of the hand and fingers at the same time, a better opportunity is given for studying the superficial structures. The superficial fascia is now exposed. It contains the superficial veins, lymphatics, and nerves.

The veins of the back of the hand and forearm should be dissected out before removing the superficial fascia. These veins are the radial and the anterior and the posterior ulnar. The radial and anterior ulnar pass to the front of the forearm just above the wrist, while the posterior ulnar continues on the back of the forearm almost as far as the elbow. These veins commence on the back of the hand in a plexus which receives the veins of the fingers. The radial vein arises from the outer side of the plexus, while the anterior and posterior ulnar arise from the inner side of the plexus. The veins of the fingers commence in a plexus situated around the matrix of the nail.

The lymphatics on the back of the fingers terminate in a plexus on the back of the hand, from which vessels pass up the back of the forearm and around the radial and ulnar borders to join those on the anterior surface.

Dissection.—Reflect the superficial fascia and trace the nerves. The superficial nerves seen upon the back of the forearm and hand are the musculo-cutaneous, the inferior external cutaneous branch of the musculo-spiral, the lesser internal cutaneous, the internal cutaneous, radial, and ulnar nerves.

The posterior branch of the musculo-cutaneous nerve passes to the back of the forearm over the prominence formed by the supinator longus and extensor carpi radialis longior and brevior muscles; it supplies the skin on the lower two-thirds of the back and outer part of the forearm, as far as the wrist, and communicates with a branch of the radial and the external cutaneous branch of the musculo-spiral.

The inferior external cutaneous branch of the musculo-spiral nerve enters the forearm in front of the outer condyle of the humerus, supplies the skin on the outer posterior part of the forearm, and terminates on the back of the hand. It communicates with the musculo-cutaneous or external cutaneous about the middle of the forearm.

The lesser internal cutaneous nerve terminates in the skin upon the inner side of the olecranon, and communicates with the internal cutaneous nerve.

The posterior branch of the internal cutaneous nerve enters the back of the forearm below the inner condyle of the humerus, and supplies the skin over the
inner posterior part of the forearm from the elbow to the wrist. It communicates with the dorsal branch of the ulnar nerve.

The radial nerve reaches the back of the forearm about three inches above the wrist, by passing under the tendon of the supinator longus muscle. Near the lower end of the radius it gives off a palmar cutaneous branch which supplies the radial margin of the hand and thumb, and then divides into four branches. Of these, one supplies the ulnar side of the thumb, another passes to the radial side of the index finger, a third divides into two branches to supply the adjacent sides of the index and middle fingers, and a fourth communicates with a branch from the dorsal branch of the ulnar to supply the contiguous margins of the middle and ring fingers.

The dorsal cutaneous branch of the ulnar nerve.—About three inches above the wrist the ulnar nerve gives off the dorsal cutaneous branch, which passes backward under the flexor carpi ulnaris and over the tendon of the extensor carpi ulnaris to the back of the wrist, where it divides into a communicating and two digital branches. The inner digital branch passes to the inner side of the little finger, while the outer digital branch passes to the middle of the fourth interosseous space, where it divides into two branches for the supply of the adjacent sides of the little and ring fingers. The communicating branch joins a filament from the radial nerve, and aids in the supply of the contiguous sides of the ring and middle fingers.

The deep fascia of the back of the forearm is stronger than that of the front. It is attached, above, to the external and internal condyles of the humerus and the olecranon, and here receives expansions from the bicipital fascia and the tendon of the triceps; it is also attached to the posterior border of the ulna, outer border of the lower end of the radius, and the pisiform and cuneiform bones. At the wrist the deep fascia is very dense, contains many transverse fibers, and forms the posterior annular ligament. Beyond the posterior annular ligament the deep fascia is continued upon the back of the hand as a delicate membrane.

Dissection.—Incise the deep fascia transversely, above the posterior annular ligament, and reflect it from below upward, as it is very firmly attached to the muscles in the upper part of the forearm. The posterior annular ligament is left in place in order to permit study of the relations of the structures which pass beneath.

The posterior annular ligament is that thickened portion of the deep fascia of the forearm which extends obliquely inward from the outer border of the lower end of the radius to the pisiform and cuneiform bones, and is continuous with the deep fascia of the hypothenar eminence. From the under surface vertical processes are given off which are attached to ridges on the posterior surface of the
lower end of the radius. By means of these processes six compartments are formed for the passage of the extensor tendons. They contain, from within outward, the tendons of the following muscles: The extensor carpi ulnaris, the extensor of the little finger (extensor minimi digiti), the extensor communis digitorum and extensor indicis, the extensor secundi internodii pollicis, the extensor carpi radialis longior and brevior, the extensor primii internodii pollicis, and extensor ossis metacarpi pollicis. Each of these compartments has a synovial lining which extends above and below the limits of the ligament. The sheaths of the extensor tendons, particularly those of the thumb, are not infrequently the site of inflammation (teno-synovitis), and in such cases there is a longitudinal swelling over the position of the tendon, due to increase in the amount of secretion in the synovial sheath. There is, also, a grating or crepitating sensation communicated to the surgeon’s finger when the patient contracts the various muscles (tenalgia crepitans). Tubercular teno-synovitis may also occur here. Connected with the tendon sheaths, or, more commonly, with the periarticular structures of the wrist, we often meet with small, firm, oval, or round swellings which are rendered more prominent by flexion of the wrist, and are known as ganglia. They are more common in young girls.

The extensor sheaths of the tendons of the back of the hand are practically prolongations of the walls of the different compartments of the posterior annular ligament. They hold the same relations as the compartments, and inclose the same tendons which have been described as occupying the compartments of the posterior annular ligament.

The muscles exposed are the extensors of the hand and fingers. They consist of three sets—the radial, superficial, and deep extensors.

Radial extensors.—Supinator longus, extensor carpi radialis longior, and extensor carpi radialis brevior.

The **supinator longus**, **supinator radii longus** or **brachio-radialis**, arises from the upper two-thirds of the external condyloid ridge of the humerus, as high up as the musculo-spiral groove, and from the external intermuscular septum. It is a long fleshy muscle, the belly of which, with the other two muscles of this group, forms the prominence of the outer side of the forearm. Its flattened tendon is inserted into the base of the styloid process of the radius. It is wholly subcutaneous except at the lower part of its tendon, where it is crossed obliquely by the extensores ossis metacarpi and primi internodii pollicis. It rests upon the musculo-spiral nerve, the radial recurrent artery, the radial vessels and nerve, the humerus, the supinator brevis muscle, the extensores carpi radialis longior and brevior muscles, and the insertion of the pronator radii teres. On its inner side above the elbow are the brachialis anticus muscle, musculo-spiral nerve, and radial
recurrent artery; and below the elbow, the tendon of the biceps and the pronator radii teres.

Blood Supply.—From the radial and radial recurrent arteries.

Nerve Supply.—From the musculo-spiral nerve.

Action.—It slightly supinates the forearm, especially after full pronation, flexes the forearm, and in full supination is a slight pronator.

The **extensor carpi radialis longior** arises from the lower third of the external condyloid ridge of the humerus, the external intermuscular septum, and from the external condyle of the humerus by the common extensor tendon; the fibers terminate about the middle of the forearm in a flattened tendon, which passes down the outer side of the forearm to the wrist, and through a groove upon the back of the base of the radius just behind the styloid process, accompanied by the extensor carpi radialis brevior, to be inserted upon the radial side of the base of the metacarpal bone of the index finger. The muscle is overlapped on its outer anterior border by the supinator longus, and crossed at its lower end by the three extensors of the thumb. It lies upon the elbow-joint, extensor carpi radialis brevior, and dorsum of the wrist.

Blood Supply.—From the radial and radial recurrent arteries.

Nerve Supply.—From the musculo-spiral nerve.

Action.—It extends and abducts the wrist and flexes the elbow.

The **extensor carpi radialis brevior** arises from the external condyle of the humerus, the adjacent intermuscular septum, the external lateral ligament of the elbow-joint, and the deep fascia. In the middle of the forearm it ends in a flattened tendon which lies close to and accompanies that of the extensor carpi radialis longior down the forearm. It passes through the groove upon the base of the radius and is inserted into the radial side of the base of the metacarpal bone of the middle finger. It and the tendon of the extensor carpi radialis longior occupy the same sheath and pass through the same compartment of the posterior annular ligament. Above it is covered by the extensor carpi radialis longior, and below by the extensors of the thumb. It rests upon the supinator brevis, the insertion of the pronator radii teres, the radius, and carpus; and upon its ulnar side is in contact with the extensor communis digitorum.

Blood Supply.—From the radial and radial recurrent arteries.

Nerve Supply.—From the posterior interosseous nerve.

Action.—It extends the wrist and, feebly, the elbow.

Superficial Extensors.—The extensor communis digitorum, the extensor minimi digitii, the extensor carpi ulnaris, and the anconeus.

The **extensor communis digitorum muscle** arises, by the common extensor tendon, from the external condyle of the humerus, the deep fascia, and adjacent
PLATE LV.

DEEP MUSCLES OF BACK OF FOREARM, POSTERIOR INTEROSSEOUS ARTERY AND NERVE.

200
intermuscular septa. Just below the middle of the forearm it divides into three
tendons which pass, with the extensor indicis, through a common compartment in
the posterior annular ligament, whence they diverge for insertion into the bases of
the second and third phalanges of the four fingers. The muscle is subcutaneous,
except where its tendons pass beneath the posterior annular ligament, and lies
upon the supinator brevis, extensors of the thumb and index finger, the posterior
interosseous nerve and vessels, the carpus and the dorsal interossei muscles. On
its ulnar side are the extensor minimi digiti and extensor carpi ulnaris.

Blood Supply.—From the posterior interosseous artery.

Nerve Supply.—From the posterior interosseous nerve.

Action.—Its chief function is to extend the phalanges; continuing its action
it extends the wrist-joint and, to a slight extent, the elbow.

The **extensor minimi digiti muscle** lies upon the ulnar side of the extensor
communis digitorum muscle, and is generally connected therewith. It arises from
the external condyle of the humerus by the common extensor tendon, from the
deep fascia, and the adjacent intermuscular septa. It becomes tendinous in the
lower part of the forearm, and passes behind the radio-ulnar joint through a
separate compartment of the posterior annular ligament of the wrist. It passes
to the back of the little finger after uniting with the tendon of the extensor
communis digitorum. It is covered above by the extensor communis digitorum
and extensor carpi ulnaris, but is superficial below, except where it lies beneath the
posterior annular ligament. It rests upon the supinator brevis, the extensor ossis
metacarpi pollicis, the extensor secundi internodii pollicis, and the extensor indicis.

Blood Supply.—From the posterior interosseous artery.

Nerve Supply.—From the posterior interosseous nerve.

Action.—It extends the wrist-joint, the metacarpo-phalangeal and the inter-
phalangeal joints of the little finger.

The **extensor carpi ulnaris muscle** arises, by the common extensor tendon,
from the external condyle of the humerus, from the middle third of the posterior
border of the ulna in common with the flexor carpi ulnaris and flexor profundus
digitorum, and from the deep fascia. It lies, superficially, upon the ulnar side of
the forearm, and ends in a tendon which goes through a groove, back of the
styloid process of the ulna and beneath the posterior annular ligament, to be
inserted into the base of the metacarpal bone of the little finger. It is subcuta-
neous, except where it lies beneath the posterior annular ligament, and rests upon
the supinator brevis, extensor ossis metacarpi pollicis, and extensores primi and
secundi internodii pollicis, extensor indicis, the ulna, and the carpus. Its ulnar
border is in relation with the anconeus and the posterior border of the ulna; its
radial border with the extensor minimi digiti.
Blood Supply.—From the posterior interosseous artery.

Nerve Supply.—From the posterior interosseous nerve.

Action.—It extends the elbow-joint and adducts and extends the wrist-joint.

The anconeus is a small and triangular-shaped muscle, situated upon the outer side of the olecranon. It arises from the back of the external condyle of the humerus and the posterior ligament of the elbow-joint. From this origin its fibers diverge for insertion into the outer side of the olecranon and upper one-fourth of the shaft of the ulna. It is superficial and lies against the elbow-joint, the orbicular ligament, the ulna, and a part of the supinator brevis. Its upper edge is in contact with and parallel to the lowermost fibers of the outer head of the triceps; its lower and outer margin adjoins the extensor carpi ulnaris.

Blood Supply.—From the interosseous recurrent artery.

Nerve Supply.—From the musculo-spiral nerve.

Action.—It extends the elbow-joint.

Dissection.—The extensor communis digitorum, extensor minimi digiti, and extensor carpi ulnaris should now be severed in the middle of the forearm, and reflected upward and downward so that greater facility for the study of the following muscles may be afforded.

Deep Extensors: Supinator brevis, extensor ossis metacarpi pollicis, extensor primi internodii pollicis, extensor secundi internodii pollicis, and extensor indicis.

The supinator radii brevis or supinator brevis is a broad, flat muscle, irregular in outline, and wrapped about the upper end of the radius. It arises from the external condyle of the humerus, the external lateral ligament of the elbow-joint, the orbicular ligament of the radius, the depression below the lesser sigmoid cavity of the ulna, and the fascia enveloping the muscle. Its upper fibers, arranged as a loop, surround the neck of the radius, and are inserted into the back of its inner surface, while the remainder of the muscle is attached to the anterior and outer surface of the radius, from the oblique line and bicipital tuberosity to the insertion of the pronator radii teres. It is covered in front and externally by the biceps, pronator radii teres, supinator longus, extensorcs carpi radialis longior and brevior, and the radial vessels and nerve; behind by the anconeus, extensor communis digitorum, extensor minimi digiti, extensor carpi ulnaris, and the interosseous recurrent artery. It rests upon the elbow-joint, the superior radioulnar joint, and the radius. It is pierced by the posterior interosseous nerve.

Blood Supply.—From the radial and interosseous recurrent arteries.

Nerve Supply.—From the posterior interosseous nerve.

Action.—It is the most powerful supinator of the forearm, and helps to keep the head of the radius in position.
TENDONS AND ARTERIES OF BACK OF HAND.
The extensor ossis metacarpi pollicis muscle arises from the back of the shaft of the radius and ulna from a surface about two inches long and just below the inferior margins of the supinator brevis and anconeus muscles, and the intervening interosseous membrane. It passes obliquely downward and outward, its tendon going through a groove upon the radius, external to the styloid process and in common with that of the extensor primi internodii pollicis, to be inserted into the radial side of the base of the metacarpal bone of the thumb. It is covered by the extensores communis digitorum, carpi ulnaris, and minimi digiti, and the posterior annular ligament, and is crossed by the posterior interosseous nerve and vessels. It lies upon the ulna, interosseous membrane, radius, extensores primi internodii pollicis and secundi internodii pollicis, tendons of the extensores carpi radialis longior and brevior, the radial vessels, and the wrist-joint. Above it are the supinator brevis and anconeus, and below it the extensores primi and secundi internodii pollicis.

Blood Supply.—From the posterior interosseous artery.
Nerve Supply.—From the posterior interosseous nerve.
Action.—It abducts and extends the metacarpal bone of the thumb, abducts the wrist-joint, and supinates the forearm.

The extensor primi internodii pollicis, or extensor brevis pollicis muscle, the smallest of the extensors of the thumb, arises from the back of the shaft of the radius and the interosseous membrane just below the extensor ossis metacarpi pollicis muscle, and takes a course parallel with that muscle and external to the styloid process of the radius. It passes through the same groove as the extensor ossis metacarpi pollicis to be inserted into the base of the first phalanx of the thumb. It lies upon the radius and interosseous membrane, the tendons of the extensores carpi radialis longior and brevior, the radial vessels, the wrist-joint, the metacarpal bone of the thumb, and the metacarpophalangeal joint of the thumb. Its upper border is in relation with the preceding muscle. It is covered by the extensor ossis metacarpi pollicis, extensor communis digitorum, extensor minimi digiti, and the posterior annular ligament.

Blood Supply.—From the posterior interosseous artery.
Nerve Supply.—From the posterior interosseous nerve.
Action.—It extends the first joint of the thumb, abducts and extends the metacarpal bone of the thumb, and abducts the hand.

The extensor secundi internodii pollicis, or extensor longus pollicis muscle, larger than the preceding muscle, arises from the back of the shaft of the ulna and the interosseous membrane, below the attachment of the extensor ossis metacarpi pollicis, and ends in a tendon which passes through a separate groove upon the back of the radius, and, obliquely, across the wrist and tendons of the extensores
carpi radialis longior and brevior, for insertion into the back of the base of the last phalanx of the thumb. At the wrist, in the triangular interval between the extensor secundi internodii pollicis and the other two thumb extensor tendons, the radial artery will be found. The muscle and tendon are covered by the extensor ossis metacarpi pollicis, extensor communis digitorum, extensor minimi digitii, extensor carpi ulnaris, the posterior interosseous artery and posterior annular ligament. It rests upon the interosseous membrane, the tendons of the extensores carpi radialis longior and brevior, the radius, the wrist-joint, the radial vessels, the metacarpal bone of the thumb and its proximal phalanx.

Blood Supply.—From the posterior interosseous artery.

Nerve Supply.—From the posterior interosseous nerve.

Action.—It extends all of the thumb-joints, adducts the metacarpal bone of the thumb, abducts the hand, and supinates the forearm.

The *extensor indicis muscle*, narrow and elongated, arises from the back of the ulna and the interosseous membrane, below the attachment of the extensor secundi internodii pollicis muscle, whence it passes, with the outer tendon of the extensor communis digitorum, through the same compartment, beneath the posterior annular ligament, to be inserted into the inner side of that tendon. It is covered by the extensor communis digitorum, extensor minimi digitii, extensor secundi internodii pollicis, and the posterior annular ligament. It lies upon the interosseous membrane, the wrist, and the dorsal interosseous muscle of the second interosseous space.

Blood Supply.—From the posterior interosseous artery.

Nerve Supply.—From the posterior interosseous nerve.

Action.—It extends the wrist-joint, the metacarpo-phalangeal and the interphalangeal joints of the index-finger.

The *posterior interosseous artery* is the branch of the common interosseous which passes backward between the bones of the forearm and the upper border of the interosseous membrane and oblique ligament. It emerges behind, between the supinator brevis muscle above and the extensor ossis metacarpi pollicis muscle below, where it gives off an ascending branch—the *interosseous recurrent*. In addition to the interosseous recurrent artery it gives off muscular and articular branches. It continues downward over the ulnar origin of the extensor ossis metacarpi pollicis, extensor primi internodii pollicis, extensor secundi internodii pollicis, and the extensor indicis, and anastomoses with the termination of the anterior interosseous after that artery has passed through the interosseous membrane, and then with the posterior carpal branches of the radial and ulnar arteries. The *interosseous recurrent artery* is quite a large branch, which ascends between the supinator brevis and anconeus muscles to the sulcus between the external condyle of the humerus.
and olecranon process of the ulna; it anastomoses with the superior profunda, anastomotica magna, radial recurrent, and posterior ulnar recurrent arteries. The muscular branches of the posterior interosseous artery supply the muscles between which it lies. The articular branches supply the wrist-joint.

The terminal portion of the anterior interosseous artery is seen lying on the posterior surface of the lower part of the interosseous membrane, where it is joined by a branch of the posterior interosseous artery. It runs downward over the wrist, beneath the extensor tendons, and anastomoses with the posterior arch.

The posterior interosseous nerve winds around the outer side of the upper end of the radius, through the substance of the supinator brevis muscle, to the back of the forearm, whence it passes downward, in company with the posterior interosseous artery, between the superficial and deep extensor muscles, to the upper border of the extensor secundi internodii pollicis. In the forearm it supplies muscular branches to the extensor carpi radialis brevior, supinator brevis, extensor communis digitorum, extensor minimi digitii, extensor carpi ulnaris, extensor ossis metacarpi pollicis, extensores primi and secundi internodii pollicis, and extensor indicis. At the upper border of the extensor secundi internodii pollicis muscle the posterior interosseous nerve leaves the posterior interosseous artery and runs beneath the extensor secundi internodii pollicis and extensor indicis, upon the interosseous membrane, and accompanies the terminal part of the anterior interosseous artery to the back of the wrist. Here it ends in a gangliform enlargement which gives off articular filaments to the wrist and intercarpal joints.

After blows upon the front of the external condyle or outer side of the upper one-fifth of the radius, the condition of the posterior interosseous nerve may cause spasm or paralysis of the supinator brevis and the extensors of the wrist and fingers, excepting the radial extensors which are supplied by branches of the musculo-spiral before it bifurcates.

THE BACK OF THE HAND.

The superficial veins, nerves, and deep fascia of the back of the hand having been described when the posterior surface of the forearm was considered, it remains to reflect the deep fascia from above downward in order to expose the extensor tendons and remaining deep structures of the back of the hand.

The extensor tendons emerge from beneath the posterior annular ligament and diverge for insertion into the backs of their respective digits. Those of the
extensor communis digitorum become narrow and thickened opposite the meta-
carpo-phalangeal joints, at which point they give off fasciculi which are attached to
the lateral ligaments of these articulations. They then form a broad aponeurosis
which covers the entire back of the first phalanges, where they are joined by the
tendons of the interossei and lumbricales muscles. Opposite the first interphalan-
geal joint each tendon divides into a middle slip which is inserted into the base of
the second phalanx, and two lateral slips which unite over the middle phalanx,
for insertion into the back of the base of the terminal phalanx. These tendons
constitute the posterior ligaments of the metacarpo-phalangeal and interphalangeal
joints. On the proximal side of the metacarpo-phalangeal articulations the tendon
of the ring finger sends off two lateral divergent slips, which are attached to the
adjacent tendons of the little and middle fingers. This is important because it
restricts the independent extension of the ring finger, a defect especially troublesome
in pianists and violinists, who, sometimes, by reason of this interference with the
required movement, have these restricting bands divided. The tendon of the
middle finger is also connected to the extensor communis tendon of the index finger
by a band of transverse fibers. The tendon of the extensor indicis joins that of
the common extensor over the first phalanx of the index finger. The tendon of
the extensor minimi digiti divides, one part joining the common extensor tendon
of the little finger, the other, ending in the dorsal expansion common to this
tendon and that of the tendon of the extensor communis digitorum.

Dissection.—Remove the fascia overlying the dorsal interossei muscles and
the vessels of the back of the wrist and hand. The vessels on the back of the
wrist and hand are the radial artery and its branches, which will be described
below, the posterior carpal branch of the ulnar artery, and the terminal portion
of the anterior interosseous artery.

The radial artery, as it leaves the front of the forearm, first lies upon the
external lateral ligament of the wrist, then upon the scaphoid, trapezium, and base
of the metacarpal bone of the thumb, and under the tendons of the extensores
ossis metacarpi, primi internodii, and secundi internodii pollicis, whence it continues
to the apex of the interval situated between the metacarpal bones of the thumb
and index-finger, where it passes, between the two heads of the first dorsal interos-
seous muscle, into the palm. On the back of the wrist it gives off the posterior carpal,
metacarpal or first dorsal interosseous, dorsalis pollicis, and dorsalis indicis arteries.

The posterior carpal artery arises on the outer side of the wrist, and passes
across the carpal bones beneath the extensor tendons. It joins a corresponding
branch from the ulnar artery and forms beneath the tendons the posterior carpal
arch. From this arch arise the second and third interosseous arteries, which
pass downward over the third and fourth interosseous intervals, and divide into
dorsal digital branches which supply the contiguous sides of the middle, ring, and little fingers. At the carpal ends of the interosseous spaces they are joined by the perforating branches of the deep palmar arch. At the distal ends of the interosseous spaces they give off anterior perforating branches which join the digital arteries of the corresponding intervals. The posterior carpal arch is joined by the terminal portion of the anterior interosseous artery. The posterior carpal branch of the ulnar artery arises from the latter vessel a short distance above the pisiform bone, and winds around the ulna beneath the flexor carpi ulnaris to the back of the wrist, where it lies beneath the extensor tendons and anastomoses with the posterior carpal branch of the radial artery to form the posterior carpal arch which has been described above. The terminal portion of the anterior interosseous artery has been described with the back of the forearm.

The metacarpal or first dorsal interosseous artery generally arises from the radial, although, at times, it comes from the posterior carpal arch. It passes downward over the second interosseous space and divides into dorsal digital branches which supply the adjacent sides of the index and middle fingers. Like the second and third interosseous arteries it is joined by a perforating branch from the deep palmar arch, and gives off an anterior perforating branch to join the corresponding digital artery.

The dorsal digital arteries terminate at the first interphalangeal joints, where they anastomose with the posterior branches of the collateral digital arteries.

The dorsales pollicis arteries, two branches, arise from the radial near the base of the first metacarpal bone, and pass downward on either side of the thumb.

The dorsalis indicis artery arises from the radial immediately before it passes into the palm, and runs over the abductor indicis muscle, on the radial side of the metacarpal bone and first phalanx of the index finger, to anastomose opposite the first interphalangeal joint with a posterior branch of the radialis indicis artery.

The dorsal interossei are four bipenniform muscles which arise from the adjacent sides of the proximal one-half or two-thirds of the shafts of the metacarpal bones; the origin is more extensive from the metacarpal bones of the fingers into which they are inserted. They are numbered in order from the radial side and are inserted into the bases of the first phalanges and extensor tendons of the index, middle, and ring fingers. The first and largest dorsal interosseous or abductor indicis is inserted into the radial side of the base of the first phalanx and the extensor tendon of the index finger; the second is inserted into the radial side of the base of the first phalanx and the extensor tendon of the middle finger; the third into the ulnar side of the base of the first phalanx and the extensor tendon of the middle finger; and the fourth into the ulnar side of the base of the first
phalanx and the extensor tendon of the ring finger. The intervals between the bases of the metacarpal bones and the converging fibers of the proximal ends of the muscles permit the passage of the perforating branches from the deep palmar arch. The interval between the origins of the first dorsal interosseous muscle gives passage to the radial artery.

Blood Supply.—These muscles are supplied by the deep palmar and posterior carpal arches.

Nerve Supply.—From the deep branch of the ulnar nerve.

Action.—They are abductors of the fingers, flex the metacarpo-phalangeal joints, and extend the last two phalanges. The action of the first dorsal interosseous (abductor indicis) is clearly demonstrated by abducting the index finger, flexing its metacarpo-phalangeal joint, and keeping the last two phalanges extended, thus contracting the muscle, which can be plainly felt and seen on the back of the hand in the first interosseous space.

JOINTS.

A **joint** is composed of the adjacent portions of two or more bones, articular cartilage, ligaments, and one or two synovial membranes.

The **articular ends of the bones** are chiefly composed of cancellous tissue, which gives strength, elasticity, a large surface for articulation, and a minimum weight. At the articular surface the cancellous tissue is covered by a thin crust of dense, compact bone which contains no Haversian canals. The articular ends of the long bones are supplied by the articular arteries, and thus have a blood supply independent of that furnished to the shaft by the nutrient artery. This portion of the bone is occasionally affected by inflammation, which is frequently tubercular in character. If the diseased tissue is not removed and drainage instituted, the thin crust of compact bone upon the articular surface offers but slight obstruction to the inflammatory process, and the articular cartilage and joint may soon become involved.

The **articular cartilage** covers the smooth articular ends of the bones. It is of the hyaline variety, and contains no blood-vessels. It receives its nourishment through lymph channels which pass between the cartilage cells. The lymph is derived from the vessels in the ends of the bones and in the synovial membrane of the joint; therefore, if the cartilage be partially detached from the bone by external violence, the detached area loses more or less of its blood supply, and necrosis may result. In rheumatoid arthritis this cartilage disappears and the articular surfaces of the bones become hard and eburnated.
JOINTS OF THE UPPER EXTREMITY.

A synovial membrane is found in all true joints. In joints like the temporomaxillary, which have an interarticular cartilage subdividing the joint, there are two synovial sacs. This membrane lines the ligaments of the joint and fades away at the margin of the articular cartilage, where it is continuous with the surface of the cartilage. The synovial membranes resemble serous membranes, and, like them, are composed of flat endothelial cells. They secrete the synovial fluid which lubricates the joints. Inflammation of joints begins in this membrane more frequently than in other parts of the joint. Because of the close relation between the membrane and the ligaments, the latter are likely to be involved. In tubercular arthritis the softening of the ligaments permits increased lateral motion of the joint, whereas the infiltration and contraction of the ligaments and bands of adhesions in rheumatic arthritis cause stiffness and false ankylosis of the joint.

For practical purposes all joints may be divided into three classes: Those which derive their strength chiefly from the conformation of the bones, those whose strength depends upon their ligaments, and those which largely depend upon surrounding muscles for support. The hip-joint is the best example of the first class. External violence applied to such a joint is more likely to produce a contusion than a sprain or dislocation. In joints of the second class, such as the radio-ulnar, a sprain is more common than a contusion or a dislocation. In joints of the third class, the best example of which is the shoulder, dislocation is more common than contusion or sprain.

In the diagnosis of fractures, dislocations, and diseases of joints of the extremities it is always advisable to compare the affected with the non-affected member.

JOINTS OF THE UPPER EXTREMITY.

The joints of the upper extremity include the sterno-clavicular, the scapulo-clavicular, the shoulder or scapulo-humeral, the elbow, the superior and inferior radio-ulnar, the radio-carpal or wrist, the intercarpal or medio-carpal, the carpo-metacarpal, the metacarlo-phalangeal, and the interphalangeal.

THE STERNO-CLAVICULAR JOINT.

The sterno-clavicular, an arthrodial joint, is formed by the upper outer part of the manubrium sterni and the inner end of the clavicle, which is larger than the bed or articulating surface of the manubrium in which it rests. The first costal cartilage gives attachment to one of the ligaments of the joint. These parts
are bound together by five ligaments: The anterior sterno-clavicular, the posterior sterno-clavicular, the interclavicular, the costo-clavicular or rhomboid, and the interarticular fibro-cartilage.

The anterior sterno-clavicular ligament, which covers the front of the joint, is a fibrous membrane extending from the superior and anterior surface of the inner end of the clavicle to the superior and anterior surface of the manubrium sterni. It is covered by the skin, the fasciae, and the sternal origin of the sterno-clidomastoideus, and it is in relation posteriorly with the interarticular fibro-cartilage and the two synovial sacs.

The posterior sterno-clavicular ligament is attached to the back of the inner end of the clavicle and to the manubrium sterni in a manner similar to that of the anterior ligament. Anterior to the ligament are the interarticular fibro-cartilage and the two synovial sacs; posterior to it are the sterno-hyoid and sterno-thyroid muscles.

The interclavicular ligament is a strong fibrous band which varies considerably in size, and extends from the superior surface of the sternal end of one clavicle to the same part of the other. It is attached to the superior surface of the manubrium sterni between the ends of the clavicles, and is covered in front by the skin and fasciae, while behind it is in relation with the sterno-thyroid muscles.

The costo-clavicular (rhomboid) ligament, short, flat, and quadrangular in shape, is attached below to the upper surface of the inner end of the cartilage of the first rib, and above to the rhomboid depression on the under surface of the sternal end of the clavicle. It lies behind the tendon of origin of the subclavius muscle and in front of the subclavian vein. In order to expose the interarticular fibro-cartilage sever the costo-clavicular and the anterior sterno-clavicular ligament.

The interarticular cartilage, a flat disc nearly corresponding in size and outline to the sternal end of the clavicle, is situated between the end of the clavicle and the clavicular notch of the sternum, where it acts as a buffer and prevents the clavicle from being pushed inward over the sternum. Below it is attached to the first chondro-sternal junction, and above to the upper and back part of the inner end of the clavicle, where it blends with the interclavicular ligament and the anterior and posterior ligaments. It is thinnest in the center, and thickest at its upper posterior part. The joint is divided by this fibro-cartilaginous disc into two compartments, each one of which has a separate synovial sac. These sacs, the inner of which is the larger, sometimes communicate by means of an opening present in the cartilage.

Blood Supply.—Derived from the internal mammary, superior thoracic, and supra-scapular arteries.
SCAPULO-CLAVICULAR, ACROMIO-CLAVICULAR, AND SCAPULO-HUMERAL JOINTS—ANTERIOR VIEW.
JOINTS OF THE UPPER EXTREMITY.

NERVE SUPPLY.—The nerve supply of the joint is derived from the branch of the brachial plexus which supplies the subclavius muscle.

MOVEMENTS.—This joint is the center of motion for the shoulder, and admits of circumduction and of limited movement upward, downward, forward, and backward. Dislocation of the clavicle at this articulation does not often occur, for the combined strength of the ligaments is considerable, and compensates for the lack of adaptation of the articular surfaces of the bones. The adjacent muscles assist in preventing luxation.

THE SCAPULO-CLAVICULAR JOINT.

The scapulo-clavicular, an arthrodial joint, is formed by the acromial end of the clavicle and the acromion process of the scapula. The bones are held in place by the ligaments proper, which are the superior acromio-clavicular, the inferior acromio-clavicular, and the interarticular fibro-cartilage. The coraco-clavicular is an accessory ligament.

The superior acromio-clavicular ligament covers the upper surface of the joint and is attached to the contiguous margins of the two bones. It is quadrilateral in shape, and composed of parallel transverse fibers which interlace with the tendinous fibers of the trapezius and deltoid muscles. It is covered by skin and fasciae.

The inferior acromio-clavicular ligament is the counterpart of the preceding, covers the under surface of the joint, and is similarly attached. Below it is in relation with the tendon of the supra-spinatus muscle. These two ligaments are continuous around the joint and constitute its capsule.

An interarticular fibro-cartilage sometimes exists in this joint. When present it is rarely a complete disc, and occupies the upper part of the joint. There is but one synovial membrane. The cartilage when present can be exposed by dividing the superior acromio-clavicular ligament.

The coraco-clavicular ligament—composed of two parts, the trapezoid and conoid—connects the clavicle and the coracoid process of the scapula. The trapezoid ligament, the anterior of the two, is quadrilateral in shape, and is attached to the upper surface of the coracoid process and to the oblique ridge on the under surface of the clavicle. Behind it is continuous with the conoid ligament, while in front and externally it has a free margin. The conoid ligament, triangular in shape, is attached by its apex to a rough impression upon the base of the coracoid process on the inner side of the trapezoid ligament; by its base to the conoid tubercle, and for half an inch to a ridge on the under surface of the clavicle. In front and externally the conoid ligament is continuous with the trapezoid.
This ligament is in relation with the subclavius and deltoid muscles in front, and with areolar tissue, fat, and the insertion of the trapezius behind.

 Movements.—This joint permits a slight gliding, rotatory, or forward and backward movement, limited by the two portions of the coraco-clavicular ligament.

 Upward dislocation of the outer end of the clavicle is not uncommon; it is characterized by an undue prominence of the outer end of the bone.

 Blood Supply.—The nourishment of the joint is derived from the supra-scapular, acromio-thoracic, and posterior circumflex arteries.

 Nerve Supply.—The supra-scapular and circumflex nerves supply the articulation.

 The ligaments proper of the scapula are the coraco-acromial and the transverse ligaments.

 The coraco-acromial ligament, triangular in shape, is attached by its base to the entire outer border of the coracoid process; by its apex to the tip of the acromion process. It completes the coraco-acromial arch, which is above the head of the humerus. It is covered by the clavicle and deltoid muscle and separated from the capsular ligament of the shoulder-joint by a bursa.

 The transverse or supra-scapular ligament bridges over the supra-scapular notch, converting it into a foramen which gives passage to the supra-scapular nerve. The supra-scapular vessels pass over it.

 In dislocation of the scapula the inferior angle of the bone slips from under the upper portion of the latissimus dorsi muscle, and the condition which results is "winged scapula." The causes are general weakness of the muscles, as in pulmonary tuberculosis and paralysis of the serratus magnus muscle. The inferior angle is normally held against the chest by the latissimus dorsi and serratus magnus, consequently any condition which weakens these muscles allows this angle to project. In the treatment of this condition the scapula should be held against the chest by a broad belt, so that the extent of movement of the arm will not be much restricted. The condition of the muscles may be improved by massage, electricity, and hypodermic injection of strychnin.

 THE SHOULDER-JOINT.

 The shoulder, an enarthrodial or ball-and-socket joint, is formed by the glenoid fossa of the scapula and the head of the humerus, which are united by the capsular and coraco-humeral ligaments. The glenoid fossa is deepened by the glenoid ligament which is attached to its margin. The deepened glenoid fossa is much smaller than the head of the humerus, to allow of greater freedom of motion.
The **capsular ligament** is attached to the margin of the glenoid cavity of the scapula and to the anatomic neck of the humerus. The capsule is very loose, or sacciform, to permit free movement; it is thickest above. The capsular ligament is perforated at three points: Above, where the bursae beneath the tendons of the infra-spinatus and subscapularis communicate with the shoulder-joint, and on the outer side, where the long tendon of the biceps pierces it between the tuberosities of the humerus. The three *gleno-humeral bands* or ligaments are merely thickened portions of the capsule on its inner and anterior aspect.

The **coraco-humeral or accessory ligament** is a thickening of the part of the capsule extending from the outer border of the coracoid process to the greater tuberosity of the humerus, some of the fibers being raised from the capsule and thus becoming dignified into a separate ligament.

The **glenoid ligament** is a dense fibro-cartilaginous rim situated upon the edge of the glenoid cavity and possessing a wide attachment and thin border; it is continuous above with the long head of the biceps, and below with the long head of the triceps. It deepens the glenoid cavity and protects both the edge of the cavity and the head of the humerus from the effects of sudden impacts and severe pressure.

The **synovial membrane** lines the ligamentous walls of the joint, is reflected upon the neck of the humerus and is continuous with the margin of the articular cartilage which covers the head of the humerus and the glenoid cavity of the scapula. It sends a reflection around the long tendon of the biceps where it lies within the capsule of the joint and above the head of the humerus, and has communication with a bursal sac situated between the capsule and the tendon of the subscapularis muscle, and occasionally, with another bursal sac placed between the capsule and the tendon of the infra-spinatus. A large bursa, which, however, does not communicate with the shoulder-joint, lies between the deltoid muscle and the capsular ligament. Through the communications which exist between the joint cavity and these synovial bursae pus may find its way to the surface, and ultimately form sinuses.

In **acute synovitis** of the shoulder-joint the synovial sac becomes distended with fluid, and as the synovial sac in relation with the long head of the biceps is a process of the synovial membrane of the joint, a fluctuating swelling may be detected upon each side of that tendon. The arm is lengthened by the pressure of the fluid; it may be lifted into its normal position, but it immediately lengthens after the support is removed. Acute synovitis of the shoulder may be mistaken for inflammation of the subacromial bursa, as either condition may be caused by a twist of the arm. In the former condition there is pain on moving the arm in any direction, whereas in inflammation of the acromial bursa the pain is much more
marked in abduction of the arm, as this movement causes compression of the bursa.

The muscles protecting the joint are, in front, the subscapularis; above, the supra-spinatus and long tendon of the biceps; behind, the infra-spinatus and teres minor; below, the long head of the triceps. The deltoid covers the joint above and behind, and, while protecting it from direct injury, aids in the retention of the head of the humerus within its socket. The joint is also protected above by the acromio-clavicular arch and the coraco-acromial ligament. The long tendon of origin of the biceps, lying between the tuberosities of the humerus in an osteofibrous canal, strengthens the joint and steadies the head of the humerus in its various movements.

Movement in all directions, affording gliding, anteduction, retroduction, adduction, abduction, and circumduction, is possible at the shoulder-joint. The most limited movements are backward and upward. Persistence in the former movement causes the scapula to recede toward the median line of the body, and, in the latter, the inferior scapular angle to rotate forward and outward. In cases of ankylosis of the shoulder-joint the movement of the scapula compensates, to a certain extent, for the loss of motion in the scapulo-humeral articulation. Free movement in the shoulder-joint is permitted by the small glenoid cavity and large rounded articulating surface of the head of the humerus and the laxity of the capsular ligament. Although the capsule is loose, pinching of the ligament or synovial membrane rarely occurs, being prevented by the partial insertion of the subscapularis, supra-spinatus, and infra-spinatus muscles into the capsular ligament.

Blood Supply.—Derived from the subscapular, anterior and posterior circumflex, and suprascapular arteries.

Nerve Supply.—The shoulder-joint is supplied by the circumflex and suprascapular nerves.

THE ELBOW-JOINT.

The elbow is a ginglymus or hinge-joint, and is formed by the contiguous articular surfaces of the humerus, ulna, and radius, together with their connecting ligaments. The lower end of the humerus is divided into two articular surfaces—an inner, larger, and an outer, smaller; the former, the trochlear surface, articulates with the greater sigmoid cavity of the ulna, while the latter, the capitellum, with the head of the radius. The upper end of the ulna, by its greater sigmoid cavity, grasps the trochlear surface of the humerus as a monkey-wrench does a screw-nut; this is seen after a vertical section through the joint involving and dividing the olecranon and coronoid processes. The radio-humeral junction is
ELBOW JOINT, — EXTERNAL VIEW.

ELBOW JOINT, — INTERNAL VIEW.
JOINTS OF THE UPPER EXTREMITY.

secondary to the preceding. While the head of the radius, through its concavity, glides forward and backward during movements of the ulna, the principal function of this articulation is to allow rotation of the head of the radius in pronation and supination of the forearm.

The condyles of the humerus, which give attachment to powerful muscles of the forearm, project beyond the joint upon each side. Behind the joint is the prominence of the olecranon, into which is inserted the extensor tendon of the triceps. In front of the joint at the bottom of the antecubital fossa is found the coronoid process of the ulna, into the base of which is inserted the brachialis anticus. In the outer part of the fossa, deeply placed, is the tuberosity of the radius, into which the tendon of the biceps is inserted.

The bones are held in position by ligaments and muscles—the latter having been fully described. The ligaments consist of the external lateral, the internal lateral, an anterior, and a posterior. These are all, really, but portions of one capsular ligament which embraces the superior radio-ulnar in addition to the elbow-joint.

The **external lateral ligament** is short, and at its attachment to the external condyle, is narrow. It expands as it descends, and is attached to the orbicular ligament which surrounds the head of the radius, to the neck of the radius and to the ulna, posterior to its lesser sigmoid cavity. Its fibers are fused with the origin of the supinator brevis.

The **internal lateral ligament**, fan-shaped, is attached above by its apex to the internal condyle. Passing downward it expands and may be divided into an anterior and a posterior portion; the **anterior portion** is attached to the inner side of the coronoid process; and the **posterior** to the inner side of the olecranon. Both portions are attached to the ridge between the coronoid and olecranon processes of the ulna. It is in contact with the triceps and flexor carpi ulnaris muscles and the ulnar nerve.

The lateral ligaments are strong and tense and prevent any lateral movement. If lateral movement be possible, the joint is disorganized by disease, usually tubercular; or a dislocation exists.

The **anterior ligament** extends across the front of the joint. It is attached to the anterior surface of the humerus above the coronoid fossa, the anterior edge of the coronoid process, the anterior surface of the orbicular ligament, and the neck of the radius. It is continuous with the internal and external lateral ligaments, and is covered by the brachialis anticus muscle.

The **posterior ligament** extends from the upper margin of the olecranon fossa to the superior and external margins of the olecranon process and to the orbicular ligament. It is covered by the triceps and the anconeus; the deepest
portion of the former muscle, the subanconeus, supports and draws up the thin posterior ligament during extension of the joint and prevents pinching of the synovial membrane.

The **synovial membrane** lines the joint surface of the ligaments, and is reflected upon the margins of the articulating surfaces of the bones which enter into the formation of the joint. It is continuous with the synovial sac of the superior radio-ulnar joint. There is more or less adipose tissue between the capsule of the joint and the synovial membrane where the latter is reflected from the ligaments to and upon the margins of the articulating surfaces, especially at the radial, coronoid, and olecranon fossae.

Bursæ near the elbow-joint.—There is a small bursa over the head of the radius between the common extensor tendon of origin and the capsule; one between the tendon of the triceps and part of the upper surface of the olecranon process; one between the tendon of the biceps and the anterior portion of the tuberosity of the radius, and one in the subcutaneous tissue over the olecranon. None of these bursæ communicates with the joint.

In **acute synovitis** of the elbow-joint the synovial sac is distended with fluid, and instead of a depression on either side of the olecranon and tendon of the triceps there is a swelling with an intermediate depression which in position corresponds to the above-mentioned tendon and olecranon process.

Movements.—The movements of the elbow-joint consist only of flexion and extension; flexion is checked by the contact of the soft parts of the forearm and arm; extension by the tightening of the ligamentous and muscular structures on the anterior aspect of the joint. It must not be forgotten that the movements of the upper radio-ulnar articulation are entirely independent of those of the elbow-joint. The motion of the elbow-joint is purely a hinge movement, while that of the superior radio-ulnar joint is rotatory. In flexion and extension of the forearm the head of the radius simply glides forward and backward upon the capitellum; in supination and pronation the head of the radius has a rotatory motion within its orbicular ligament and the lesser sigmoid cavity of the ulna.

Blood Supply.—Nourishment is supplied to the joint by the inosculating twigs of the superior and inferior profundæ, the anastomotica magna, the anterior and posterior ulnar recurrent, the interosseous recurrent, and the radial recurrent artery.

Nerve Supply.—Derived from the ulnar nerve as it lies between the internal condyle and the olecranon, from the musculo-spiral, musculo-cutaneous, and median nerves.
PLATE LXII.

INFERIOR RADIO-ULNAR JOINT, — ANTERIOR VIEW.

230
INFERIOR RADIO-ULNAR, RADIO-CARPAL, INTERCARPAL, AND CARPO-METACARPAL JOINTS, — POSTERIOR VIEW.
JOINTS OF THE UPPER EXTREMITY.

RADIO-ULNAR ARTICULATIONS.

The movements of both pronation and supination of the forearm are possible through the articulations between the radius and the ulna. These bones may be said to form two joints, a superior and an inferior; and to be connected in three places, at the superior and inferior articulations and throughout the length of their shafts.

The Superior Radio-ulnar Articulation, a pivot-joint, is formed by the reception of the head of the radius into the lesser sigmoid cavity of the ulna. But one ligament, the orbicular, is found at this joint. It encircles the head of the radius in the form of a complete ring, as it passes from the anterior to the posterior border of the lesser sigmoid cavity. It also suspends the head of the radius, as its lower circumference is less than its upper, and it is therefore funnel-shaped. It is intimately blended with the anterior, posterior, and external lateral ligaments of the elbow-joint. The supinator brevis muscle is afforded a partial origin from this ligament.

The synovial membrane of this articulation is continuous with that of the elbow-joint.

Blood and Nerve Supply.—Derived from the same sources as those of the elbow-joint.

The Inferior Radio-ulnar Articulation, a lateral hinge-joint, is formed by the reception of the head (lower end) of the ulna into the sigmoid cavity situated on the inner side of the base of the radius. A thin layer of cartilage covers the articular surfaces of the bones. The ligaments of the joint are the anterior and posterior radio-ulnar and the triangular fibro-cartilage.

The anterior radio-ulnar ligament is narrow, and passes from the anterior border of the sigmoid cavity of the radius to the front of the head of the ulna.

The posterior radio-ulnar ligament is similarly attached to the back of the joint.

The triangular fibro-cartilage separates the head of the ulna from the cuneiform bone and the sigmoid cavity of the radius. It is attached, by its apex, to the depression at the base of the styloid process of the ulna, and by its base to the lower end of the radius, along the lower margin of the sigmoid cavity. It is united by its margin to the carpal ligaments. Its apex is thick and its base thin; it is concave above, being thicker at its edges than at its center. At times the center is perforated, in which event the synovial sac of this joint is continuous with that of the wrist-joint. When, from traumatism or disease, this cartilage becomes detached from the radius, the resulting deformity
is an abnormal projection of the head of the ulna, a condition frequently encountered as a complication and sequel of Colles' fracture.

The synovial membrane of this joint is so loose that it has been aptly called the sacciform membrane; this laxity is necessary to permit the rotation of the base of the radius about the head of the ulna during pronation and supination. The triangular fibro-cartilage follows the base of the radius in its movements around the head of the ulna.

Blood Supply.—The nourishment of the joint is derived from the anterior interosseous artery and the anterior carpal arch.

Nerve Supply.—From the anterior and posterior interosseous nerves.

The shafts of the radius and ulna are also connected by the oblique ligament and the interosseous membrane.

The oblique ligament, often absent, is a round slip which passes from the outer part of the coronoid process of the ulna to the radius below the tuberosity. Its direction is downward and outward. It lies above the upper border of the interosseous membrane, its fibers running in a direction at a right angle to those of the membrane.

The interosseous membrane is attached to the interosseous borders of the radius and ulna, and stretches across the interval existing between these bones. It is deficient above. The anterior interosseous vessels pass through an opening located near the lower end of this membrane to reach the back of the forearm. The posterior interosseous artery passes between the upper border of the interosseous membrane and the oblique ligament to the back of the forearm. The interosseous membrane helps hold the bones together, and in front gives a greater surface for the origin of the flexor profundus digitorum and the flexor longus pollicis muscle, and behind for the origin of the three extensors of the thumb and the extensor indicis.

THE RADIO-CARPAL ARTICULATION.

The radio-carpal, or wrist, a double ginglymus or hinge-joint, is formed above by the lower end of the radius and the under surface of the triangular fibro-cartilage, and below by the scaphoid, semilunar, and cuneiform bones of the carpus. The ulna does not enter into the formation of the joint, as it is separated from it by the triangular fibro-cartilage. The lower end of the radius, with the triangular fibro-cartilage, forms a concave surface into which the three bones of the carpus which form a smooth, convex surface are received. The surfaces of the bones entering into the formation of the wrist-joint are covered with cartilage and firmly held in apposition by four ligaments, which together form a capsule. These four ligaments are the external lateral, internal lateral, anterior, and posterior.
JOINTS OF THE UPPER EXTREMITY.

The **external lateral ligament** (external radio-carpal) extends from the tip of the styloid process of the radius to the outer side of the scaphoid. A few of its fibers radiate slightly to the tubercle of the scaphoid and the ridge of the trapezium, while others pass to the dorsal surface of the scaphoid. The external lateral ligament is in relation with the radial artery and the tendons of the extensores ossis metacarpi pollicis and primi internodii pollicis; the artery lies between the tendons and the ligament.

The **internal lateral ligament** (ulno-carpal) extends from the extremity of the styloid process of the ulna to the inner surface of the cuneiform bone, the pisiform bone, and the anterior annular ligament. It is fan-shaped, its fibers radiating to a more marked degree than do those of the external lateral ligament. The lower part of the ligament can readily be divided into two fasciculi, one of which passes to the inner side of the cuneiform bone, the other to the pisiform bone and anterior annular ligament.

The tendon of the extensor carpi ulnaris passes over the posterior part of the ligament.

The **anterior ligament** (anterior radio-carpal) is a broad, thick membrane which is attached above to the lower end of the radius, its styloid process, the triangular fibro-cartilage, and ulna; and below to the palmar surface of the scaphoid, semilunar, and cuneiform bones. A few of the fibers are continued downward to the os magnum and unciform bones. In relation with the anterior surface of the ligament are the tendons of the flexor profundus digitorum and flexor longus pollicis, while in contact with the posterior surface is the synovial membrane of the joint. Numerous small vessels pierce the ligament.

The **posterior ligament** (posterior radio-carpal), not so strong as the anterior, extends from the posterior surface of the lower end of the radius and triangular fibro-cartilage to the posterior surface of the scaphoid, semilunar, and cuneiform bones. It is strengthened by fibers from the back of the fibro-cartilage, and also by the fibrous sheaths of the extensor secundi internodii pollicis and radial extensors. The other extensor tendons, which are in relation with the posterior surface of the ligament, also add to its strength. The anterior surface is in relation with the synovial membrane.

The **synovial membrane** lines the ligaments of the joint from which it is reflected to the margins of the articular surfaces entering into the formation of the joint. It is very lax on account of the free movement of the joint. It does not communicate with the inferior radio-ulnar joint, except when the triangular fibro-cartilage is perforated. It is not in communication with the carpal joints owing to the intervention of the interosseous ligaments.

In **acute synovitis** of the wrist-joint there is pain, and as the joint is super-
ficial, heat and redness are also present. Swelling is most pronounced on the dorsal surface as the subcutaneous tissue is more loosely arranged in that location, and there may be bulging between the extensor tendons. Acute synovitis is differentiated from teno-synovitis, or inflammation of the sheaths of the tendons, by the fact that when the wrist-joint is fixed the fingers can, in the former condition, be moved without producing pain, and if a teno-synovitis exists, movement of the fingers causes pain.

In front of the wrist-joint are the flexor tendons of the hand, and behind are the extensors. The numerous tendons which pass over the wrist-joint, and the fibrous extensions from their sheaths, serve to strengthen an otherwise ill protected articulation.

** Movements.**—The movements of the wrist-joint are very similar to those of a ball-and-socket joint, the main difference being that the wrist does not possess rotation. This loss of rotation is overcome by the pronation and supination of the forearm, which is effected by means of the radio-ulnar articulations.

** Blood Supply.**—Derived from the anterior and posterior carpal arches, the anterior and posterior interosseous, and the recurrent carpal branches of the deep palmar arch.

** Nerve Supply.**—Derived from the ulnar and the posterior interosseous nerves.

** Dissection.**—To expose the articular surfaces of the joint, cut the anterior and lateral ligaments transversely and strongly extend the hand.

THE CARPAL JOINTS.

The articulations of the bones of the carpus are divided into three sets—viz., those between the bones of the first row, those between the bones of the second row, and the articulation between the two rows. The ligaments of the first row of carpal bones are two dorsal, two palmar, two interosseous fibro-cartilages, and the capsular ligament connecting the pisiform and cuneiform bones.

The **two dorsal ligaments** connect the dorsal surfaces of the bones—the scaphoid with the semilunar and the semilunar with the cuneiform.

The **two palmar ligaments** connect the anterior surfaces of the bones—the scaphoid with the semilunar and the semilunar with the cuneiform. The palmar ligaments are stronger than the dorsal.

The **two interosseous fibro-cartilages** are two strips of cartilage which connect the adjacent surfaces of the scaphoid and semilunar, and the semilunar and cuneiform. They fill in the interstices between the bones and help form the smooth convex surface for articulation with the radius and triangular fibro-cartilage. The pisiform bone is attached to the cuneiform by a **capsular ligament.**
SECTION OF JOINTS OF WRIST AND HAND.
239
This articulation has a separate synovial membrane. The pisiform is also attached to the unciniform by a strong palmar band,—the *piso-uncinate ligament,*—and to the base of the fifth metacarpal bone by another strong palmar band—the *piso-metacarpal ligament.* These palmar bands might be regarded as prolongations from the tendon of the flexor carpi ulnaris; and the pisiform as a sesamoid bone in that tendon.

The *synovial membrane* is an extension of that lining the joint between the first and second rows of carpal bones.

The ligaments of the second row of carpal bones are three dorsal, three palmar, and two interosseous.

The *three dorsal ligaments* connect the dorsal surfaces of the bones of the second row—the trapezium with the trapezoid, the trapezoid with the os magnum, and the os magnum with the unciniform.

The *three palmar ligaments* connect the palmar surfaces of the bones of the second row in the same manner as do the dorsal ligaments. The palmar ligaments are stronger than the dorsal.

The *two interosseous ligaments* connect the unciniform with the os magnum, and the os magnum with the trapezoid. At times there is a third interosseous ligament found between the trapezium and the trapezoid.

The *synovial membrane* is an extension of that lining the joint between the first and second rows or the medio-carpal joint.

The *Medio-carpal Articulation* is formed by the union of the two rows of carpal bones. The line of articulation is composed of three distinct parts—on the outer side the scaphoid of the first row articulates with the trapezium and the trapezoid of the second row; in the middle the scaphoid and the semilunar of the first row form a cup-shaped cavity into which the head of the os magnum and the superior margin of the unciniform of the second row are received; on the inner side the cuneiform of the first row articulates with the unciniform of the second. The two rows of the carpus are held in place by four ligaments—the anterior medio-carpal, the posterior medio-carpal, the internal lateral, and the external lateral.

The *anterior medio-carpal ligament* connects the palmar surfaces of the bones of the first row with those of the second. Most of the fibers extend from the first row to the os magnum, others connect the scaphoid to the trapezium and the trapezoid, while the remaining ones pass from the cuneiform to the unciniform.

The *posterior medio-carpal ligament* consists of fibers which pass obliquely from the first to the second row. It is not uniform throughout, being stronger on the ulnar side.
The external lateral ligament connects the scaphoid with the trapezium. The internal lateral ligament connects the cuneiform with the unciform. The synovial membrane of the carpus lines the medio-carpal joint, and sends two prolongations upward between the scaphoid and semilunar and the semilunar and cuneiform bones. It sends downward three extensions which line the joints of the second row, the carpo-metacarpal joints of the four inner metacarpal bones, and the joints between the bases of these metacarpal bones.

Movements of the carpal joints are limited, to a great extent, to the motions of flexion and extension. There is allowed a gliding motion which is antero-posterior, and a very slight degree of rotation between the articulation of the os magnum with the scaphoid and the semilunar.

Blood Supply.—The carpal articulations are nourished by the anterior and posterior carpal branches of the radial and ulnar arteries, by the anterior interosseous, and the recurrent carpal branches of the deep palmar arch.

Nerve Supply.—Derived from the ulnar, the median, and the posterior interosseous nerve.

Dissection.—To expose the articulating surfaces of the medio-carpal joint and the interosseous ligaments divide the dorsal and lateral ligaments and strongly flex the hand.

CARPO-METACARPAL ARTICULATIONS.

The articulations between the carpal and metacarpal bones may be divided into two sets—the junction of the four inner metacarpal bones with the unciform, os magnum, and trapezoid; and the articulation of the metacarpal bone of the thumb with the trapezium.

In the First Set the metacarpal bone of the index finger articulates with the trapezoid, that of the middle finger with the os magnum, and the ring and little fingers with the unciform. The ligaments connecting the bones are dorsal, palmar, and interosseous.

The dorsal ligaments are stronger and more distinct than the palmar. They connect the dorsal surface of the respective carpal bones with the dorsal surface of the metacarpal bones. The metacarpal bone of the index finger has two fasciculi—one from the trapezium, the other from the trapezoid; that of the middle finger has two—one from the trapezoid and one from the os magnum; that of the ring finger has two—one from the os magnum and one from the unciform; that of the little finger has but one—from the unciform.

The palmar ligaments are somewhat similar to the dorsal. The metacarpal bone of the index finger has one fasciculus—from the trapezium, under cover of the flexor carpi radialis; that of the middle finger has three—one from the os
METACARPO-PHALANGEAL AND INTERPHALANGEAL LIGAMENTS (MIDDLE FINGER).

244
JOINTS OF THE UPPER EXTREMITY.

magnum, one from the trapezium, and a third from the unciform and the base of the fifth metacarpal; the ring and little fingers have one each—from the unciform.

The **interosseous ligament** is found only in one part of the joint. It connects the adjacent angles of the unciform and os magnum with the metacarpal bones of the middle and ring fingers.

The **synovial membrane** is a continuation of that lining the medio-carpal joint. At times there is a separate synovial lining for the articulation of the unciform with the fourth and fifth metacarpal bones.

Blood Supply.—The carpo-metacarpal joint of the index finger is nourished by the radial, the metacarpal, the dorsalis indicis, and the radialis indicis artery; of the middle and ring fingers, by the anterior and posterior carpal arches and the deep palmar arch; of the little finger, by the ulnar artery and its deep branch and, also, the posterior carpal arch.

Nerve Supply.—From the deep palmar branch of the ulnar, from the median and posterior interosseous nerves.

The Second Set consists of the articulation between the metacarpal bone of the thumb and the trapezium. But one ligament, the capsular, connects these bones.

The **ligament** is a loose capsule which extends from the margin of the articular surface of the trapezium to that of the metacarpal bone. It is stronger on its dorsal aspect.

The **synovial membrane** is separate from that of the carpal and the other carpo-metacarpal joints.

Movements of the carpo-metacarpal joint of the four inner metacarpal bones are slight; that of the little finger is most free, followed by that of the ring finger. The articulations of the index and middle fingers are almost immovable. The carpo-metacarpal joint of the thumb is allowed the greatest freedom of motion by the shape of the articulating surfaces of the bones.

Blood Supply.—This joint is nourished by the radial, dorsalis pollicis, and princeps pollicis arteries.

Nerve Supply.—From the median nerve.

THE INTERMETACARPAL ARTICULATIONS.

The metacarpal bones of the four fingers are held together at each end by ligaments. The lateral articular surfaces, at their carpal extremities, are held in apposition by dorsal, palmar, and interosseous ligaments.

The **dorsal and palmar ligaments** are attached to the respective surfaces of the bones.
The interosseous ligaments pass between the lower margins of the adjacent articulating surfaces.

The synovial membranes of these joints are extensions of the common carpal synovial membrane.

Blood Supply.—From twigs of the palmar and dorsal interosseous arteries.

Nerve Supply.—From the ulnar and posterior interosseous nerves.

The distal extremities or heads of the four inner metacarpal bones are held in place by the transverse ligament, which is situated on the anterior or palmar surface. It is a fibrous band consisting of three fasciculi, which connect the second and third, the third and fourth, and the fourth and fifth bones. It blends with the glenoid ligament of the metacarpo-phalangeal articulations. The interosseous muscles pass behind it to reach their points of insertion, while the digital arteries and nerves and flexor tendons and lumbrical muscles pass in front of it.

The Metacarpo-phalangeal Articulations.—The head of each metacarpal bone is received into a cup-shaped cavity on the proximal end or base of the corresponding phalanx. They are held in place by an anterior (glenoid) and two lateral ligaments.

The anterior (glenoid) ligament is a dense, fibrous plate which is firmly attached to the base of the first phalanx and loosely attached, by areolar tissue, to the head of the metacarpal bone. It deepens the articular surface of the base of the phalanx. Its margins are continuous with the lateral ligament, the transverse metacarpal ligament, and the fibrous sheath of the flexor tendon.

The lateral ligaments are strong short bands, situated on either side of the joint, that connect the tubercle and depression on the side of the head of the metacarpal bone to the base of the phalanx. Anteriorly they are continuous with the anterior ligament and, posteriorly, with the expansion of the extensor tendon.

The synovial membrane is very loose.

The posterior surface of the joint is covered by an expansion of the extensor tendon, which serves the purpose of a dorsal ligament.

Movements of these joints include flexion, extension, adduction, and abduction.

Blood Supply.—Derived from the digital and palmar interosseous arteries.

Nerve Supply.—Derived from the digital nerves.

The articulation between the head of the metacarpal bone of the thumb and the base of the phalanx is different from those of the fingers, on account of the shape of the articulating surfaces. The head of the metacarpal bone of the thumb is wider than the heads of the metacarpal bones of the fingers, and instead of being rounded, has an irregularly raised palmar edge, upon which are two facets
DISLOCATIONS.

The ligaments of the interphalangeal articulations consist of an anterior (glenoid) and two lateral.

The anterior (glenoid), like that of the metacarpo-phalangeal joint, is loosely attached to the proximal bone, but very firmly to the distal. It blends with the lateral ligaments. The flexor tendons pass over the anterior ligament.

The two lateral ligaments are strong bands which connect the sides of the proximal phalanx with the lateral aspect of the distal phalanx.

Posteriorly, the extensor tendon covers the joint and takes the place of a posterior ligament. The tendon blends with the lateral ligaments to complete the capsule around the joint.

The synovial membranes of these joints are lax.

Movements of the interphalangeal joints are limited to extension and flexion; flexion being much more free than extension. Lateral movement is prevented by tenseness of the lateral ligaments.

Blood Supply.—Derived from the collateral digital arteries.

Nerve Supply.—From the collateral digital nerves.

DISLOCATIONS.

It has been shown, in the description of the ligaments of the various joints, that the bones forming the articulations are so firmly held in place that it is almost impossible to have a luxation, or dislocation, without tearing one or more of the ligaments. At times the tissues surrounding the joint may become so lax and so stretched that without rupture of any of the ligaments they will allow a displacement of the bones composing the joint. The muscles play a very important part.
in the reduction of luxations. By manipulating the dislocated member so that the muscles will have an opportunity to return to their normal condition from the overstretched state caused by the luxation, the displaced member can, more easily, be reduced.

Dislocations should be reduced as soon after the injury as possible, because after swelling and inflammation have developed reduction is more difficult, and early reduction lessens the probability of subsequent disability.

The clavicle may be dislocated at either end. Luxations at the sternal end may be forward, forward and upward, forward and downward, or upward. A backward displacement is rarely, if ever, seen. In complete luxation of the sterno-clavicular joint it is probable that the anterior and posterior sterno-clavicular and the interclavicular ligament will be ruptured. The costo-clavicular ligament will also suffer to a greater or less extent. The interarticular fibro-cartilage may remain attached to either of the bones.

Dislocation of the clavicle at the acromial end is much more frequent than at the sternal end. In most cases there is but a partial dislocation. The capsular ligament formed by the superior and inferior acromio-clavicular ligaments is torn, while the conoid and trapezoid ligaments remain intact but are stretched. In complete luxation the conoid and trapezoid ligaments are more or less torn. The trapezius muscle then tends to pull the distal end of the clavicle upward, section of the fibers of the trapezius often being required to allow reduction to be maintained.

Dislocations of the humerus are very frequent, owing to the great freedom of motion at the shoulder, the exposed position of the joint, and because the joint depends for its strength chiefly upon the elasticity and tonic contraction of the surrounding muscles; consequently, when the muscles are relaxed and force is suddenly applied to the joint directly by a blow upon the shoulder, or indirectly by a fall upon the hand or elbow, the head of the humerus slips out of the glenoid cavity. Four varieties are usually described: Three anterior—subcoracoid, sub-glenoid, and subclavicular; and one posterior—the subspinous.

In the subglenoid luxation the head of the humerus makes its escape from the glenoid cavity by tearing through the lower part of the capsular ligament. The head of the humerus is then found in the axilla, resting upon the triangular part of the axillary border of the scapula, immediately below and a little in front of the glenoid cavity and between the tendon of the subscapularis and that of the long head of the triceps muscle. The superior part of the capsule is tightly stretched across the glenoid cavity. In many cases the tendon of the long head of the biceps will be torn. The muscles attached to the tuberosities of the humerus are put on the stretch or are lacerated. Thus the supra-spinatus muscle is
PLATE LXVII.

DISLOCATED SHOULDER AND NORMAL SHOULDER.

249
stretched or lacerated; the infraspinatus, subscapularis, and coraco-brachialis are generally put on the stretch; the deltoid muscle is in extreme tension and draws the elbow away from the body; the teres major and the teres minor are relaxed. The rotundity of the shoulder is lost, and a flatness is present owing to the displacement of the greater tuberosity, which allows an undue prominence of the acromion process to exist and causes the formation of a transverse depression below it. The circumflex nerve, which curves over the lower margin of the subscapularis muscle and around the surgical neck of the humerus is liable to injury, producing paralysis of the deltoid. Atrophy of the deltoid is caused by disuse, as in ankylosis of the shoulder-joint; more frequently by diseases of the spinal cord, as acute anterior polio-myelitis; by ascending neuritis of the circumflex nerve usually due to disease of the shoulder-joint and causing paralysis of the muscles; and by injury of the circumflex nerve by a blow or fracture of the upper part of the humerus. On account of the relation of the contents of the axilla to the head of the dislocated humerus there may be injury to the nerves and vessels of this space; the axillary artery or vein may be ruptured; the brachial plexus of nerves has been stretched so much that a partial paralysis followed the dislocation. This dislocation and fracture of the anatomic neck of the scapula are the only injuries about the shoulder in which the arm is lengthened.

In the subcoracoid, the most frequent luxation, the head of the bone escapes through a tear in the anterior part of the capsule, and rests below the coracoid process upon the anterior surface of the neck of the scapula. There is, generally, injury to the coraco-brachialis and the short head of the biceps, the conjoined tendon of origin of which muscles will be found to rest on the anterior surface of the head of the bone.

In the subclavicular luxation the head of the bone escapes through a tear in the anterior portion of the capsule, and rests below the clavicle against the chest, beneath the pectoralis major and minor muscles. In both the subcoracoid and subclavicular luxations the deltoid is greatly stretched, and the subscapularis is carried upward, with occasional rupture of its attachment to the lesser tuberosity of the humerus. The infra-spinatus and supra-spinatus muscles are stretched and, at times, lacerated. The vessels and nerves of the axilla are carried forward with the head of the humerus; the stretching of the nerves causes extreme pain. The long head of the biceps has been torn. The circumflex nerve, which curves over the lower margin of the subscapularis muscle, may be severely injured by pressure, contusion, or laceration.

In the subspinous luxation the head of the bone is forced through a rent in the posterior and lower part of the capsule, and rests upon the posterior surface.
of the capsule, below the spine of the scapula and beneath the infra-spinatus muscle. The infra-spinatus will be relaxed, but the supra-spinatus and sub-scapularis stretched or torn. The tendon of the long head of the biceps and the anterior fibers of the deltoid will be stretched, but not ruptured.

In all the luxations of the head of the humerus the rotundity of the shoulder will be lost, and flattening present, owing to the displacement of the greater tuberosity; a depression will be seen where the greater tuberosity is normally found. The head of the bone will be found as a swelling in the location to which it has been displaced. Flattening of the shoulder in dislocation of the shoulder-joint must not be mistaken for atrophy of the deltoid muscle. In the latter condition the mobility and position of the head of the humerus and position of the tuberosities are normal.

In all the forward or anterior luxations the elbow is carried away from the body by the resultant tension of the deltoid. In the subspinous luxation (posterior) the elbow is carried forward and to the side of the body by the pectoralis major and coraco-brachialis muscles. In the reduction of shoulder-joint dislocations the axillary vein or artery may be injured, as may also the nerves in this locality; therefore, great care must be observed to avoid such an accident, especially if the lesion has existed for any time prior to treatment. The condition of the axillary artery should be determined. If the artery is atheromatous or included in dense connective tissue, formed during the associated inflammation, it may be ruptured in the attempt at reduction. The vessel which is more commonly ruptured, however, is the axillary vein. Fixation of the scapula is an important adjuvant in the reduction of dislocations of the humerus.

Dislocations at the elbow-joint may involve both the radius and ulna, or either bone separately; dislocations of both bones may be backward, forward, inward, or outward.

In the diagnosis of dislocations at the elbow the relation of the olecranon to the condyles of the humerus, and the head of the radius to the external condyle, should be determined. When the forearm is extended, the tip of the olecranon is slightly above a line drawn between the condyles; when the forearm is flexed to a right angle, it is below the intercondyloid line; and in extreme flexion the olecranon is in a plane anterior to that line. The olecranon is nearer to the internal than to the external condyle; and the distance between the inner margin of the olecranon and the internal condyle is merely sufficient to accommodate the ulnar nerve. The head of the radius during pronation and supination is felt rotating just below the external condyle of the humerus.

In the backward luxation of both bones, the most common dislocation at the elbow, their proximal extremities are carried so far backward that the coronoid
process of the ulna rests in the olecranon fossa of the humerus, and the head of the radius lies behind the external humeral condyle. The bones are pulled upward by the triceps muscle. The articulating surface of the humerus can be plainly felt in front of the elbow. The posterior and orbicular ligaments do not suffer injury, while the anterior and the two lateral ligaments will be ruptured. The tendon of the biceps is pulled backward over the articulating surface of the humerus, and, while tense, is seldom ruptured. The brachialis anticus will be forcibly stretched. The ulnar nerve may be painfully stretched, on account of its being carried backward with the ulna. The median nerve, together with the ulnar and interossseous vessels, suffers from the pressure of the projecting humerus.

Simple forward dislocation of the radius and ulna has been said by many surgeons to be impossible. They contend that it is necessary to have a fracture of the olecranon process of the ulna in order to allow the bones to slip forward. This variety of luxation is rare. The forearm is elongated on account of the added length of the olecranon process, which slips forward and rests in front of the trochlear surface of the humerus. There will be a depression in front, corresponding to the greater sigmoid cavity of the ulna. The trochlear surface of the humerus will be plainly felt posteriorly, with the tendon of the triceps tightly stretched over it, unless this structure has been ruptured. The humeral condyles will be very prominent. The posterior ligament will be ruptured and the lateral ligaments will be in extreme tension. When the dislocation is more complete, the olecranon process of the ulna rests in front of the internal condyle of the humerus, and the head of the radius in the coronoid depression of the humerus.

In both the backward and forward luxations of the radius and ulna the olecranon process and the external and internal condyles are not in line.

The elbow-joint is most readily dislocated backward when the joint is in incomplete extension, for in this position the coronoid process offers less resistance to backward movement of the upper end of the ulna, and the olecranon is not engaged in the olecranon fossa. Forward luxation is most likely to occur when the joint is incompletely flexed, as in this position the olecranon process of the ulna less firmly grasps the humerus, and the coronoid process is not engaged in the coronoid depression of the humerus.

Dislocations forward or backward are more common than lateral luxations. This is explained by the short antero-posterior and long transverse diameter of the joint and by the weakness of the anterior and posterior ligaments and the greater strength of the lateral ligaments.

Inward luxation (lateral) is always incomplete. That it is incomplete is probably due to the fact that the inner side of the trochlear surface of the humerus
is somewhat elevated, thus making it necessary for the ulna to ascend an inclined plane. This also accounts for the infrequent occurrence of this luxation. The median ridge of the greater sigmoid cavity of the ulna is forced over the inclined plane of the trochlea. The outer part of the sigmoid cavity rests on the inner margin of the trochlea or below the internal condyle. The head of the radius is forced inward and rests against the trochlear space which is normally occupied by the sigmoid cavity of the ulna. The ulnar nerve is forcibly stretched; this may be the cause of intense suffering. The internal lateral ligament is almost always ruptured, while the external lateral, the orbicular, the anterior, and the posterior ligament are put on the stretch.

Outward luxation of both bones is more frequent than inward luxation, on account of the inclined plane formed by the elevated inner side of the trochlear surface of the humerus. The dislocation is generally incomplete, although there are on record cases of complete outward luxation of both bones. In partial outward dislocation the inner part of the sigmoid cavity will rest on the external condyle of the humerus, or the crest of the sigmoid cavity will occupy the depression between the trochlear surface and the radial head of the humerus. In complete outward dislocation the coronoid process, the olecranon process, and the greater sigmoid cavity of the ulna will be plainly felt lying to the radial side of the humerus. The internal condyle of the humerus will be very prominent. The head of the radius will remain in its normal relation to the ulna, if the orbicular ligament remains intact, or it may be carried forward or backward, if that ligament be ruptured. All of the ligaments of the elbow-joint will be stretched, and some probably torn. The fibers of the brachialis anticus and anconeus muscles may be lacerated. The tendons of the biceps and triceps will not be injured, but will hold a more oblique position.

The head of the radius may be dislocated forward, forward and outward, and backward. The last-named dislocation is very rare.

In the forward luxation, the most common, the head of the radius is generally found upon the front of the humerus. The anterior and external lateral ligaments are more or less torn, and the orbicular ligament is either lacerated or so stretched that it will allow complete luxation.

The head of the radius may be dislocated forward by roughly jerking a child's hand, or by lifting the child by the hand. In this manner the bones of the forearm may be fractured, the deltoid muscle torn, the shoulder dislocated, or the clavicle fractured.

In the backward luxation the orbicular ligament and the capsular ligament of the elbow are both torn. The oblique ligament will either be ruptured or stretched. The head of the radius is found rotating behind the external condyle.
Dislocation of the upper end of the ulna alone is very rare. It is almost always associated with dislocation of the radius, or with fracture of some of the neighboring bony prominences. The anatomy is similar to that found in luxation of both bones, with the exception that the orbicular ligament is always torn, but the head of the radius holds its normal relation to the capitellum of the humerus.

Dislocations of the radio-carpal joint are very rare. When they do occur, they are, generally, complicated by fracture of the radius or the styloid process of the ulna. Cases of simple luxation of the joint, either backward or forward, do occur.

In the backward luxation the posterior and lateral ligaments are torn; the anterior ligament may remain intact, although it is often lacerated. The extensor muscles will probably be found to be torn from the bones in the lower part of the forearm, and also displaced. The nerves and arteries, in relation with the joint, are usually displaced or ruptured. The radius and ulna will present anteriorly, while the first row of carpal bones will lie behind the bones of the forearm and beneath the extensor tendons. If the luxation be compound, as it frequently is, there will be laceration of the tendons which cross the joint.

If the carpus be displaced forward, the reverse position of the various bones will be held, and the flexor tendons lacerated and displaced. The anterior ligament will be ruptured. In both luxations the forearm is shortened. In the backward luxation the hand is flexed, while in the forward it is extended.

In the diagnosis of dislocation of the wrist-joint the relation of the metacarpal bone of the thumb to the styloid process of the radius should be observed. If this relation be normal, no dislocation of this joint can be present.

The lower end of the ulna may be dislocated either backward or forward; this accident, uncomplicated, is rather rare. The posterior radio-ulnar and the internal lateral ligament of the wrist-joint are torn in the backward luxation, and the triangular fibrocartilage is detached from the ulna. The head of the ulna is forced out of its socket and lies across the lower end of the radius. In the forward dislocation of the ulna the anterior radio-ulnar and the internal lateral ligament are torn, and the triangular fibro-cartilage is detached from the ulna. The head of the ulna presents on the anterior surface of the radius.

The separate carpal bones are rarely, if ever, dislocated, on account of the strong surrounding tendons and firm ligaments. When any one bone of the carpus is luxated, the ligaments holding it in place will be more or less stretched, according to the extent of the displacement, and the overlying or underlying tendons will be somewhat displaced.

Luxations of the metacarpal bones of the fingers and thumb are also very rare, and many surgeons are doubtful as to their ever occurring except
as a complication. The fact that they are so firmly held in place by the anterior annular ligament and their own ligaments, as well as by the flexor and extensor tendons, will show why this accident is so rare.

Dislocations of the phalanges are frequent occurrences, and often lead to permanent deformity.

Dislocation of the proximal phalanx of the thumb is an accident often seen, and is, at times, one of the most difficult to reduce. It may occur either as a backward or a forward luxation, the former being the more frequent.

In the backward luxation the proximal end of the phalanx will present on the dorsum of the metacarpal bone of the thumb, and the head of the latter bone will form a distinct projection on the palmar surface of the thumb. The anterior ligament is torn and lies in front of or upon the head of the metacarpal bone; the lateral ligaments may or may not be lacerated; the tendon of the flexor longus pollicis is displaced to the ulnar side of the head of the metacarpal bone. Many reasons have been advanced to explain the frequent difficulty in reduction of this dislocation; some of these reasons are that the neck of the metacarpal bone is held between the two tendons of the flexor brevis pollicis; that the muscles of the thumb are so strong that it is almost impossible to overcome them; and that the neck of the metacarpal bone is held between the lateral ligaments. Interposition of the anterior ligament and other parts of the capsule between the articular ends of the bones is regarded by many surgeons as offering the chief obstacle to reduction of this dislocation.

Forward luxation of the proximal phalanx of the thumb is not very common. The base of the phalanx will present anteriorly, with the head of the metacarpal bone resting upon its dorsum. The lateral and anterior ligaments will either sustain severe stretching or be torn. This luxation is more readily reduced than the backward variety.

In dislocation of the various phalanges of the fingers the lateral ligaments will always be stretched and possibly torn; the anterior ligament may be lacerated, and the tendons passing to and over the bones displaced.

Before considering excisions and fractures we will consider the anatomy of the long bones without unnecessarily trespassing upon the domains of histology and osteology.

The long bones, such as the humerus, consist of a shaft and two extremities. The shaft is composed of an outer layer of hard, compact bone which covers a
SKIAGRAPH OF FETAL SKELETON. BY M. I. WILBERT.
layer of cancellous bone tissue. The central portion of the shaft, throughout the greater part of its length, is occupied by the marrow which fills the medullary canal. When a bone is fractured, some of the fat globules of the marrow may enter torn veins, held open by their adherence to the walls of the bony channels, and cause fat embolism. In the extremities of the bones the whole thickness of the bone internal to the compact bone is occupied by cancellous tissue. The shaft receives its nourishment from the periosteum and from the nutrient artery which passes into the marrow; the extremities are nourished by the periosteum and the articular arteries. When, in an amputation, a bone is divided above the point of entrance of the nutrient artery, the stump of the bone is supplied with nutrition through the periosteum and articular arteries.

The *periosteum* is a fibrous membrane which invests the bones at all parts, except those portions which are covered by articular cartilage and give attachment to large tendons. It carries the blood-vessels which nourish the external portion of the bone. The cells next to the bone (osteoblasts) are capable of forming new bone, therefore the deeper portion is called the *osseogenetic layer* of the membrane. The outer layer is composed of fibrous and elastic tissue, arranged chiefly in a longitudinal direction. In raising flaps of periosteum it is well, on account of the longitudinal direction of the fibers, to make both longitudinal and transverse incisions into that membrane, so that it will not split and be stripped from the bone for some distance.

It has been demonstrated that the *growth of a bone* occurs in three ways: (1) By means of the osteo-genetic layer of the periosteum; (2) through the epiphyseal cartilage; and (3) through interstitial deposit or deposit by the osteoblasts in the Haversian systems. By means of the periosteum and interstitial deposit the bone grows in thickness; through the epiphyseal cartilage and interstitial deposit, in length.

A *bone increases in thickness* chiefly through the osteo-genetic layer of the periosteum and partly by interstitial deposit, and *in length* chiefly through the ossification of successively developed layers of cells of the epiphyseal cartilage which connects the shaft with the extremities, and to some extent by interstitial deposit. Therefore, in amputations through bones in young persons the periosteum should not be stripped back by pulling upon the flaps when the bone is divided, and the epiphyseal cartilage should be left intact in excisions of joints. As a result of disease or injury of the epiphyseal cartilage the epiphysis sometimes unites with the shaft, and the corresponding bone of the other side gradually becomes the longer of the two. In excisions in young persons under eighteen years of age it is, therefore, important to avoid the epiphyseal cartilage, so that the limb may grow to its full length. Occasionally, after a slight traumatism the osteo-genetic layer
of the periosteum becomes locally active, and an exostosis develops. In acute suppurative periostitis an early incision down to the bone is required to allow the pus to escape, for if drainage is not provided, the periosteum is floated from the shaft of the bone from one epiphyseal line to the other, and the whole shaft dies or undergoes necrosis. The termination of the periosteum at the line of attachment of the ligaments, and the free and separate supply of blood to the epiphyses through the articular arteries, minimize the danger that the process will extend into the joints. This is fortunate, as involvement of the joints would probably necessitate amputation.

EXCISIONS.

Excisions may be divided into excisions of bones and excisions of joints. Bones are usually excised for ununited fracture and malignant growth, and joints for disease and injury and for the results of disease and injury. Excision of a bone implies either removal of a portion or of the whole bone. The injuries in which excision of a joint may be demanded are fractures extending into joints, especially if compound; gunshot wounds of the joint or of the articular ends of the bones entering into the joint; and compound dislocations. The disease requiring excision is usually tubercular in character. The operation is performed to shorten the length of time necessary for recovery, thereby shortening the convalescence of the patient to a few weeks instead of allowing the disease to exist for months or years with an uncertain result. Where the patient is becoming weaker as a result of pain and persistence of the disease, the operation is performed to save life. One of the results of disease or injury to relieve which excision is performed is ankylosis of the joint in a bad position. All of the diseased tissue should be removed so that a good result will be assured. In the upper extremity the best result is obtained by preserving mobility through the formation of a false joint. In the lower extremity ankylosis is more desirable than a false joint, as the latter would not give certain support to the superimposed weight.

Conditions for which excisions are done in early life require amputation later in life, especially if the disease involves a large joint.

In excision of the clavicle an incision is carried along the whole length of the bone, from its sternal to its acromial end. The incision should be carried down to the bone, and will sever skin, superficial fascia, twigs from the acromio-thoracic and supra-scapular arteries, jugulo-cephalic vein when present, descending branches of the cervical plexus, and the platysma myoides muscle. The periosteum should be divided the whole length of the bone, and stripped from it, first
EXCISIONS OF THE UPPER EXTREMITY.

261

below and then above. In stripping off the periosteum sever the attachments of the sterno-mastoid, pectoralis major, trapezius, and deltoid muscles, and the attachment of the anterior layer of the costo-coracoid membrane. Next cut through the ligaments of the acromio-clavicular articulation, superior and inferior acromio-clavicular ligaments, and the interarticular fibro-cartilage, when the acromial end of the bone should be raised and the structures attached to its under surface divided—namely, the coraco-clavicular ligament, the subclavius muscle with the posterior layer of the costo-coracoid membrane, and the costo-clavicular (rhomboid) ligament. Next detach the bone from the opposite clavicle and sternum by dividing the interclavicular ligament, the anterior and posterior sterno-clavicular ligaments, and the interarticular fibro-cartilage. In separating the clavicle from the underlying structures care must be taken to avoid injuring the subclavian vessels and brachial plexus.

In sarcomatous tumors of the clavicle there will be found many additional vessels, which make the excision more difficult. If the subclavius muscle remain intact, it may be taken as a guide to the subclavian vessels which lie beneath it.

Excision of the shoulder-joint is required for disease of the joint, caries of the head of the humerus, and disease of the cartilage. As the glenoid cavity quickly recovers after the head of the bone is excised, the glenoid fossa need not be removed. Excision may also be necessary in the treatment of injuries such as compound fracture and gunshot wounds; and sometimes the results of injury or disease require excision of the head of the humerus. Ankylosis of this joint seldom demands excision, because the weight of the arm causes fixation in the best position,—with the arm at the side,—and the mobility of the scapula largely compensates for fixation in the shoulder-joint, and the utility of the limb after excision may not be any greater than after the occurrence of ankylosis.

Excision of the shoulder.—In excision of the head of the humerus an incision is carried from the acromion process for about five inches down the arm in the line of the humerus. The incision should be made down to the bone, dividing in its course the skin, superficial fascia, twigs from the acromio-thoracic, anterior and posterior circumflex vessels, acromial branches of the cervical plexus of nerves, the deep fascia, the fibers of the deltoid muscle, and the trunk of the anterior circumflex artery and vein. The capsular ligament is opened and the supra-spinatus, infraspinatus, and teres minor muscles severed from their attachment to the greater tuberosity, and the subscapularis from the lesser tuberosity. These muscles should be detached close to their insertions into the tuberosities. The long head of the biceps must be dissected from its groove and pushed to one side. The coraco-humeral and capsular ligaments are then divided and the head of the humerus
protruded from the glenoid cavity by carrying the arm in front of the body and pushing it upward. The diseased portion of the bone can then be removed without injury to the posterior circumflex vessels and circumflex nerve and the structures in the axilla. At times it may be necessary to detach the head of the bone from the shaft while it remains in the glenoid cavity. In such cases a broad strip of metal or horn should be passed between the neck of the bone and the axillary structures, in order to prevent injury to the latter.

Excision in the continuity of the humerus.—In excising a portion of the shaft of the humerus the incision should be made on the outer aspect of the arm, in the sulcus between the biceps in front and the triceps behind. The skin, superficial fascia, twigs of the upper and lower cutaneous branches of the circumflex nerve, twigs from the anterior and posterior circumflex and superior profunda vessels, the deep fascia, and the periosteum will be severed. The cephalic vein is avoided. The incision should be made as long as necessary, but in carrying it downward, care should be taken to keep close to the outer border of the biceps. In the lower part of the arm it is necessary to avoid the musculo-spiral nerve, which lies between the brachialis anticus and supinator longus muscles. The periosteum should be separated from the bone, and as much as necessary of the humerus removed. There will be but little bleeding.

Excision of the elbow-joint is performed for disease of that joint, as tubercular arthritis; injury, as compound dislocation, compound and comminuted fractures; and the results of disease, as ankylosis in a bad position. Ankylosis of this joint causes considerable disability; therefore, in treating disease of the joint it is most important to preserve its mobility.

Excision of the elbow.—With the forearm pronated and slightly flexed, a longitudinal incision about four inches in length is carried over the joint, the middle of the incision being directly over the olecranon process of the ulna. The incision severs the skin, superficial fascia, twigs of the inferior external cutaneous branch of the musculo-spiral nerve, twigs of the lesser internal cutaneous nerve, branches of the inferior profunda, anastomotica magna, interosseous and posterior ulnar recurrent vessels, and the deep fascia. This exposes the tendon of the triceps, which should be split longitudinally down to the bone. The outer half of the triceps, its aponeurotic expansion, and the anconeus muscle should then be carefully pushed to one side. The internal part of the triceps should next be lifted. In doing this care must be taken not to injure the ulnar nerve, which lies in the groove between the internal condyle of the humerus and the olecranon. The nerve is here covered by a dense membrane, which should be incised, when the nerve can be pulled to one side. Now remove the olecranon with the bone forceps. The internal and external lateral ligaments can then be severed, and the ends of
the bones protruded through the wound by sharply flexing the forearm and separating the periosteum from the bones with the soft parts attached. A spatula may now be passed between the anterior surfaces of the bones and the structures in front of the elbow-joint, and as much bone removed as is necessary. If possible, it is advisable to remove only the articulating surface of the humerus, the olecranon process as low as the coronoid process, and the head and neck of the radius above the tubercle. This will allow the brachialis anticus and biceps muscles to remain intact.

After this operation for disease ankylosis is likely to occur, consequently the amount of bone removed must not be too small, and passive motion should be practised after ten days. After excision for injury a flail-like joint is a result more likely than ankylosis, and the part must be kept steady by a splint, which should have a hinge at the elbow so that passive motion may be practised without laterally moving the joint. Passive motion should at first consist merely of a change in the position of the forearm, which should be flexed during the day and extended at night. Later, the movements may be more frequently and freely performed, and supination and pronation may be practised.

Excision of the bones of the forearm.—In excising the ulna, or a portion thereof, the incision should be carried along the posterior or subcutaneous border of the bone, between the extensor carpi ulnaris and flexor carpi ulnaris. The skin, superficial fascia, a few small vessels and nerves, and generally the posterior branch of the internal cutaneous nerve will be severed. After incising the deep fascia, the periosteum is divided and separated from the bone as far as necessary, carrying with it the soft parts. The interosseous membrane is incised along the radial side of the bone. The bone can then be divided with bone forceps or with a metacarpal or chain saw, and removed.

In excision of the radius, or a part of it, the incision should be made along the outer side of the bone, between the supinator longus and the extensor carpi radialis longior, taking advantage of the position of the radial nerve in locating the interval between the tendons of the respective muscles. The skin, the superficial fascia, a few small vessels and nerves, the deep fascia, and the periosteum will be severed. The periosteum is separated from the radius as far as necessary; the insertion of the supinator longus at the lower end of the bone and that of the pronator radii teres at the middle of the bone being detached with the periosteum. The interosseous membrane, and at times the orbicular ligament, must be detached from the ulnar side of the bone, which can then be removed either with a powerful pair of bone forceps or the chain saw.

Excision of the radio-carpal joint.—Excision of the wrist-joint is usually performed for disease, such as caries, and rarely for injury, as compound fracture,
compound dislocation, or gunshot wounds. If an excision is performed for disease, it is usually necessary to remove the ends of the radius and ulna, the carpus, and the bases of the metacarpal bones, so as to include all diseased bone. Total excision of this joint, including the carpal bones and the bases of the metacarpal bones, is seldom necessary. By placing the part at rest and improving the general health the disease may usually be arrested without operation and a useful hand preserved. Passive motion of the fingers must be practised early to obtain the best possible result. In excising the wrist-joint two incisions should be made: one along the radius, extending from a point about two inches above the styloid process of the radius to the middle of the metacarpal bone of the thumb; and another along the ulna, from a point about two inches above the styloid process of the ulna to the middle of the metacarpal bone of the little finger. The radial incision severs the skin and superficial fascia, twigs of the musculo-cutaneous and radial nerves, small branches of the radial artery, some superficial veins, and the deep fascia. Great care must be taken not to injure the radial artery, which lies in front of the lower end of the radius and upon the external lateral ligament of the wrist-joint. The radial incision passes between the tendons of the extensor ossis metacarpi pollicis and extensor primi internodii pollicis. The ulnar incision divides the skin and superficial fascia, twigs of the internal cutaneous nerve, small cutaneous branches of the ulnar artery, some superficial veins, and the deep fascia. The tendons and soft parts are to be carefully dissected from the posterior surface of the carpus, radius, and ulna. The radial artery is now displaced, and held aside with a retractor. A sharp-pointed bistoury is entered on each side in front of the radius and ulna, and the soft parts separated from both bones by carrying the knife downward. As the knife passes over the carpus it will come in contact with the pisiform bone, which lies on the ulnar side of the forearm; this bone should be removed with a pair of bone forceps. The lateral ligaments are next divided, the ulna and radius drawn out on their respective sides, and the articulating surfaces removed. A blunt-pointed bistoury is used to divide the dorsal ligaments between the two rows of carpal bones, and the upper row is removed with the sequestrum forceps. If necessary, all the bones of the carpus may be removed in this manner. As the carpo-metacarpal articulations are reached, great care must be observed not to injure the deep palmar arch. In this operation there is but little danger of wounding the radial and ulnar arteries, if the proper amount of care be exercised.

In excising a metacarpal bone the incision should be made over the dorsal aspect of the bone. The skin and superficial fascia will be severed, together with branches of the radial and ulnar arteries and superficial veins, branches of the dorsal cutaneous branch of the ulnar nerve over the metacarpal bone of the little and the ring finger, and branches of the radial nerve over the metacarpal bone
EXCISIONS OF THE UPPER EXTREMIT.

of the middle and the index finger. The deep fascia is cut, and care must be
taken to avoid injuring the extensor tendons; these must be pushed to one side,
and the periosteum divided. If the head of the bone is to be removed, the meta-
carpo-phalangeal joint must be opened by cutting through one of the lateral expan¬
sions of the extensor tendon, raising the tendon, and dividing the lateral ligaments
and the transverse metacarpal ligament; the bone is then elevated. The interosseous
muscles must be separated from the bone with the periosteum, and the bone freed
from all surrounding structures. As much of the metacarpal bone as is diseased
can then be removed with the forceps. Care must be taken not to injure the deep
palmar arch when removing the structures from the palmar surface of the bone.
If the entire bone be removed, the carpo-metacarpal ligaments must be severed.

In excision of the metacarpal bone of the thumb the incision should be
made on the line between the dorsal and palmar surfaces. Skin, fasciae, branches
of the radial artery, superficial veins, and branches of the radial nerve will be
severed, yet with care the branch of the radial nerve supplying the outer side of
the thumb need not be divided. The incision reaches the bone by passing along
the palmar side of the tendon of the extensor primi internodii pollicis. The
soft structures with the periosteum are separated from the bone on the palmar
and dorsal surfaces, and the ligaments of the carpo-metacarpal and metacarpo-
phalangeal joints severed.

In excising the articulating surfaces of the phalanges the incision should
be made over the dorsal aspect of the respective joints at the side of the extensor
tendon, and should extend from the proximal side of the joint to the middle of the
phalanx to be removed. The incision is made parallel with the extensor tendon,
which is pushed to one side as soon as it has been exposed. The extensor tendon
is raised, the lateral ligaments are severed, the ends of the bones are elevated, and
as much bone as necessary removed with the bone forceps.

In excising the last phalanx the incision may be made along the palmar
surface of the finger, or around the end of the finger. In the former case the
soft parts are stripped from the sides of the bone, and in the latter from the dorsal
and palmar aspects. The bone is then grasped with the bone forceps and twisted
on its long axis so as to facilitate the division of the two lateral ligaments and
of the flexor and extensor tendons. It is better to leave the soft parts in place
than to remove part of them with the bone. If the base of the phalanx is not
much diseased, it is better not to remove it, on account of the attachment of the
tendons.
Development of the Bones of the Upper Extremity.—The time of union of the various centers of ossification in the bones of the body plays an important part in the diagnosis and treatment of the various fractures which occur. This is especially so when the fracture is located near one of the epiphyseal ends of the bone.

The clavicle has two centers of ossification—one for the shaft, and one for the sternal end. Ossification in the shaft begins about the sixth week of fetal life. The clavicle is the first bone in the body to show signs of ossification. About the nineteenth year an epiphysis appears at the sternal end, and subsequently unites with the remainder of the bone.

The scapula has seven centers of ossification—one for the body, two for the coracoid process, two for the acromion, one for the posterior border, and one for the inferior angle. At birth the body of the scapula is the only part which is ossified. The center for the middle of the coracoid process appears in the first year. The other centers appear in the fifteenth or sixteenth year, when the coracoid process joins the body of the bone. These epiphyses join and unite with the body of the bone between the twenty-second and twenty-fifth years.

An ununited epiphysis of the acromion may be mistaken for an ununited fracture. The former condition is recognized by the presence of an ununited epiphysis upon the uninjured side also, whereas ununited fracture of the acromion is almost invariably unilateral.

The humerus has seven centers of ossification—one for the shaft, one for the head, one for the greater tuberosity, one for the capitellum, one for the internal condyle, one for the trochea, and one for the external condyle, and, generally, one for the lesser tuberosity. These centers appear at different periods, and unite, as a rule, in the reverse order of their appearance. About the fifth year the centers for the head and tuberosities coalesce; the union of this epiphysis to the shaft does not take place, however, until about the twentieth year. The centers for the external condyle, capitellum, and trochea coalesce and unite with the shaft in the seventeenth year. The center for the internal condyle forms a separate epiphysis, which joins the shaft during the eighteenth year. From this it can be seen that there may be separation of the upper epiphyses as late as the twentieth year, and of the lower ones as late as the sixteenth to the eighteenth year. In all epiphyseal fractures in young children it is to be remembered that considerable shortening may follow, as the bone may fail to increase in length owing to injury to the epiphysis.

The radius has three centers of ossification—one for the shaft and one for each end. The upper end unites during the seventeenth year, the lower during the nineteenth.
PLATE LXIX.

Displacement in Fracture of the middle of the Clavicle.
Sterno-cleido-mastoid.

Subclavius, Trapezius and Rhomboidei.
Pectorales maj.-min.
Latissimus dorsi.
Weight of Arm and Shoulder.

Fracture of Anatomical Neck of Scapula.

Weight of upper Extremity.
The ulna has three centers—one for the shaft and coronoid process, one for the olecranon, and one for the lower end. The lower end unites to the shaft about the eighteenth year, and the olecranon center, although it does not begin ossification before the eighth, unites to the shaft about the sixteenth year.

The carpal bones each have but a single center of ossification, and these appear after birth, at different periods.

The metacarpal bones have two centers—the metacarpal bones of the fingers have a center for the shaft and proximal end, and another for the distal end; the metacarpal bone of the thumb has a center for the shaft and distal end, and another for the proximal end. These centers are united about the twentieth year.

Each phalanx has two centers—one for the shaft and distal end, the other for the proximal end. They unite about the twentieth year.

FRACTURES.

The treatment of fractures aims: (1) To return the parts to their normal relations; (2) to continuously keep the fragments and their ends steady, this requiring a splint, or other stiff dressing, which extends throughout the length of the fragments and beyond joints moved by muscles attached to the fragments; (3) to retain the function of joints or tendons in close proximity by passive movement practised as soon as union is sufficiently firm.

Fracture of the clavicle is very frequent because it holds an exposed position and is the only bony connection between the upper extremity and the trunk. As about one-half of these fractures occur in children under five years of age, greenstick fracture of this bone is common. In this form of fracture there may be little displacement, and the true condition may not be detected until callus forms and a swelling is produced. If a child has fallen and cries constantly, the clavicle should be carefully examined.

In comminuted fracture of the clavicle there is danger that the subclavian vein, subclavian artery, or brachial plexus may be injured. These structures are protected by the intervening subclavius muscle and prevertebral fascia, and therefore this complication is rare. If the vein or the artery be torn, the blood gravitates to the axilla through its apex, and the resulting condition is a traumatic aneurysm. If the brachial plexus be injured, there will be motor and sensory disturbances in the upper extremity. Of these three structures the vein is most likely to be injured because of its closer relation to the bone and the thinness of its walls. A traumatic aneurysm of the axilla has been mistaken for an abscess.
Fractures of the clavicle generally occur near the outer end of the middle third. The reasons for the greater frequency of fractures in this position are that the bone at this situation is smaller and consequently weaker, and begins to bend forward and derives less support from the muscles and ligaments. The deformity in fracture of the middle third of the clavicle is displacement of the inner fragment upward, and of the outer fragment downward and inward. The inner fragment is drawn upward by the sterno-cleido-mastoid. The outer fragment is drawn downward by the weight of the arm and shoulder; downward and inward by the pectoralis major, the pectoralis minor, and the latissimus dorsi; inward by the subclavius, trapezius, and rhomboidei muscles.

In displacement of the inner fragment upward the action of the sterno-cleido-mastoid is antagonized by the rhomboid ligament, the clavicular portion of the pectoralis major, and the inner fibers of the subclavius muscle.

The clavicular fibers of the trapezius antagonize the downward displacement of the outer fragment, and the serratus magnus its inward displacement.

Fractures of the scapula are uncommon, only one per cent. of all fractures occurring in this bone. This is due to the free mobility of the bone and to its protection by overlying muscles. Fractures may involve any portion of the bone. They are usually produced by direct violence, but may be caused by muscular action or by indirect violence, as a fall upon the arm. Fractures of the body of the scapula not involving the spine of the bone are detected with difficulty, because of the thickness of the overlying muscles; whereas those of the spine and acromion are readily detected because of their superficial position. Fracture of the anatomic neck of the scapula, which is external to the coracoid process, is so rare that but one case has been recorded. This condition simulates subglenoid dislocation, in that the arm is lengthened as the arm and glenoid cavity drop downward. It is readily differentiated from subglenoid dislocation by raising the arm, when crepitus may perhaps be elicited. As soon as support of the arm is withdrawn, the arm again lengthens. In fracture of the anatomic neck of the scapula, injury of or pressure upon the axillary vessels and brachial plexus is almost certain to occur. In fracture of the surgical neck of the scapula the glenoid cavity and arm are prevented from dropping downward by the attachment of the coracoid process to the clavicle by the coraco-acromial ligament, unless the latter is torn. Fractures of the spine and acromion are detected by tracing these subcutaneous processes with the finger. Most of the recorded fractures of the acromion are supposed to have been ununited epiphyses. Fracture of the coracoid process is produced by indirect violence applied to the arm, thereby forcing the scapula upward and driving the coracoid process against the clavicle.

Fractures of the humerus comprise about eight per cent. of all fractures.
FRACTURE THROUGH SURGICAL NECK.

FRACTURE ABOVE INSERTION OF DELTOID M.
They may occur through any of the various divisions of the bone, as the anatomic neck, the tuberosities, the surgical neck, the middle third of the shaft, the external or internal condyle, the shaft immediately above the condyles and between the condyles. Separation of the epiphysis may occur at either extremity of the bone.

In fracture of the anatomic neck there is often little, if any, deformity and displacement, owing to the fact that the break is largely within the capsule of the joint. As such fractures are usually due to indirect violence, the head of the bone may be forced into the cancellous tissue of the lower fragment and an impacted fracture result.

In fracture through the greater tuberosity the antero-posterior diameter of the shoulder-joint is increased, and a sulcus exists between the front of the joint and the fragment. The rotundity of the shoulder is altered but not lost. The fragment is drawn upward and backward by the action of the supra-spinatus, infra-spinatus, and teres minor muscles, which are inserted into the greater tuberosity.

In fracture of the surgical neck the line of the break is below the tuberosities, and above the insertion of the teres major and latissimus dorsi. The upper fragment is rotated outward and slightly abducted by the action of the muscles attached to the greater tuberosity. The lower fragment is drawn upward toward the axilla by the biceps, triceps, coraco-brachialis, and deltoid; and inward by the pectoralis major, teres major, and latissimus dorsi muscles. Marked displacement of the lower fragment is prevented by the long head of the biceps in front and the long head of the triceps behind.

In persons under twenty years of age epiphyseal fracture is more likely to occur than fracture of the surgical neck of the humerus, and as the length of the bone is chiefly derived through growth of this upper epiphyseal cartilage, considerable shortening is likely to occur.

In fractures of the shaft of the humerus the displacement will depend upon the location of the fracture. If it be above the insertion of the deltoid and below the insertion of the pectoralis major, the upper fragment will be drawn inward by this latter muscle as well as by the teres major and latissimus dorsi. The lower fragment will be drawn directly upward and external to the upper fragment by the action of the deltoid, and, indirectly, by the biceps and triceps and the coraco-brachialis muscles. If the fracture be immediately below the insertion of the deltoid, the position of the upper fragment is little altered by muscular action, as the deltoid is antagonized by the pectoralis major, latissimus dorsi, teres major, and coraco-brachialis. On account of the usual downward and outward direction of the line of fracture, the lower fragment is found on the inner side of the upper, as it is drawn upward by the biceps and triceps muscles.
When the lower part of the shaft of the humerus is broken, there is but little displacement, because of the broad attachment of the brachialis anticus in front and the counterbalancing influence of the triceps behind.

In *supra-condyl oid* fracture the displacement is similar to that of a backward dislocation of both bones of the forearm. The upper fragment overrides the lower, and the latter is displaced backward by the action of the brachialis anticus and biceps, and upward by the biceps and the triceps. The brachialis anticus and biceps, by flexing the elbow-joint, tilt the lower fragment backward.

Fractures of the *condyles* are not very frequent. They may or may not be associated with an intercondyl oid fracture. The main deformity is a widening of the elbow-joint, with downward displacement of the condyle.

In *intercondyl oid* fracture the deformity is widening of the joint and inward displacement of the olecranon.

After fracture of the condyles there is not infrequently seen an inward deflection of the bones of the forearm at the elbow. In the normal condition, with the forearm extended and supinated, the radius and ulna form an obtuse angle with the humerus, so that when the arm lies at the side of the body, the hand projects away from the median line of the body. By an upward displacement of the inner condyle, or a downward of the outer, this angle may be lost, and the so-called “gun-stock deformity,” described by Allis, is then produced.

In fractures of the upper end of the humerus—*i. e.*, of the surgical or anatomical neck—the circumflex nerve may be injured, in fracture of the shaft the musculo-spiral nerve, and in fracture of the internal condyle the ulnar nerve. When the symptoms of nerve injury appear shortly after or at the time of the occurrence of the fracture, they are caused by laceration or pressure by a fragment; but if they develop late, they are the result of pressure by callus. The character of the symptoms presented depends upon the amount of pressure exerted. Moderate pressure irritates the nerve, and causes tingling and pain in the area of distribution of its sensory branches, and spasm of the muscles supplied by its motor branches. Greater pressure causes anesthesia and trophic disturbance in the area supplied by its sensory fibers, and paralysis and atrophy of the muscles supplied by its motor branches. In fracture the circumflex nerve is rarely injured; injury to the musculo-spiral and ulnar nerves occasionally occurs. When the circumflex nerve is involved, there is pain or partial or complete anesthesia over the deltoid and upper part of the triceps, and spasm or paralysis of the deltoid and teres minor. If the musculo-spiral nerve be affected, there is pain or more or less anesthesia in the back and outer part of the arm and forearm, and spasm or paralysis of the muscles which the nerve supplies. These muscles are the triceps, anconeus, supinator longus, extensor carpi radialis longior, extensor carpi radialis
Latissimus dorsi.
Teres maj.
Pectoralis maj.
antagonizing
Deltoid.

Coraco-brachialis

Biceps. - Triceps:

Deltoid.

Flex. carpi rad.
Flex. longus pollicis.
Supinator longus.
Ex. carpi rad. longior.
" " brevior.
Extensors of thumb.

FRACTURE BELOW INSERTION OF DELTOID M.

COLLES' FRACTURE.
brevior, extensor communis digitorum, extensor minimi digiti, extensor carpi ulnaris, supinator brevis, extensor ossis metacarpi pollicis, extensor longus pollicis, extensor brevis pollicis, and extensor indicis. Paralysis of the triceps is unlikely because of the high origin of the branches to that muscle. The condition which results from paralysis of the musculo-spiral nerve is known as "wrist-drop." The hand is pronated and the wrist and fingers flexed. Loss of opposition from the extensors, which steady the fingers during flexion, causes loss of power in grasping objects.

When the ulnar nerve is affected, there is pain or anesthesia in the ulnar side of the forearm and hand, in the little finger and ulnar half of the ring finger, and there is spasm or paralysis of the flexor carpi ulnaris, ulnar side of the flexor profundus digitorum, the palmaris brevis, short muscles of the little finger, two ulnar lumbricales, interossei, adductor pollicis, and inner head of the flexor brevis pollicis. Paralysis of the interossei unbalances the state of equilibrium existing between the flexors and extensors, and as a result the first phalanges are extended and the distal phalanges partially flexed. This produces a "clawed hand," or "mais en griffe." Power of flexion of the little and ring fingers is lost, and power of movement of the thumb is much diminished.

Fracture of the radius.—The radius usually sustains fracture about the lower one-third, where it occurs much more frequently than in the middle or upper one-third.

In fracture of the head or neck of the radius the lower fragment is carried upward and forward by the biceps, which is inserted into the tuberosity. Many surgeons and anatomists claim that it is impossible to have a fracture of the neck of the radius, unless it be complicated by some other fracture or a dislocation. The author has proved by X-ray photography and subsequent operation that simple fracture of the neck of the radius does occur.

Fracture of the radius may occur between the insertion of the biceps and that of the pronator radii teres, although such a fracture is very rare. The upper fragment would be strongly supinated by the action of the biceps and the supinator brevis, and the lower would be pronated and approximated toward the ulna by the pronator radii teres and the pronator quadratus. As the two strong supinators, the biceps and supinator brevis, would have no influence over the lower fragment, the supinator longus could not counterbalance the action of the pronator radii teres and pronator quadratus.

Fracture of the lower end of the radius (Colles' fracture) is the most frequent of this bone. The deformity is chiefly caused by the breaking force, which pushes the lower fragment backward and upward, making it override the upper fragment, which is forced downward and forward. The alteration of contour thus effected is
known as the "silver-fork deformity." The displacement of the fragments is partly due to the extensors of the wrist and fingers. The hand is carried to the radial side by the supinator longus, the extensores carpi radialis longior and brevior, and the extensors of the thumb, they being rendered tense by the displacement of the lower fragment.

The ulna may be fractured at any point. As a rule, fracture of the ulna is caused by direct violence, and for this reason there is no uniform displacement of the fragments, as this must vary with the angle of impact at which the breaking force operates. If there be any usual direction for displacement of the fragments, it is probable that the lower fragment would be drawn toward the radius by the action of the pronator quadratus. The upper fragment can only be displaced to any extent backward or forward, because of its connection with the humerus at the elbow-joint.

Fracture of the coronoid process is exceedingly rare. If it should occur, the process will probably be drawn upward by the brachialis anticus, which is attached to its base. As the coronoid process forms the anterior wall of the greater sigmoid cavity of the ulna, this fracture is usually associated with a backward dislocation of either this bone alone or of both the radius and ulna.

In fracture of the olecranon process the displacement of the upper fragment is always upward, and is determined by the action of the triceps. The extent of the displacement depends upon the degree of the breaking force and upon the extent of the rupture of the ligaments which surround the elbow-joint. If the forearm be markedly flexed at the time the fracture occurs, it is probable that the ulna will be dislocated forward by the action of the biceps and the brachialis anticus.

Fracture of both bones of the forearm most commonly occurs below the middle, where they are least protected by muscles. When the fracture is complete, the deformity is usually very slight. In incomplete, or "green-stick," fracture the deformity depends upon the amount of bending of the bones. Occasionally there is sufficient displacement to produce an angular deformity.

Simple fractures of the carpus are rare. When they occur, there is but little, if any, displacement of the fragments, owing to the firm ligamentous connections existing between the bones.

In fractures of the metacarpal bones there is but little displacement, on account of the attachments of the ligaments, and the position of the flexor and extensor tendons and interossei muscles; all of which tend to hold the fragments in place. If there be any displacement, the proximal end of the distal fragment will project on the back of the hand, resulting in shortening produced by the fracturing force and by the action of the flexors and extensors.
The displacement in fractures of the phalanges is never very great. When present it is usually transverse and due to the direction of the breaking force. If the line of fracture be oblique, there may be some overlapping.

AMPUTATIONS.

In amputations the following considerations should be borne in mind:
(1) Save the patient's life. (2) Obtain a useful stump. (3) Secure a sufficient and healthy cutaneous covering for the end of the stump, with little redundant muscular tissue therein. All tendons are cut even with the end of the bone or bones and not drawn out, as it is desirable that they adhere to the cicatricial tissue and add to the mobility of the stump. Large nerves should be gently drawn out and severed on a level with the end of the bone, so that they will retract within their sheaths and the bulbs, or false neuromata, which form upon their cut ends will not be included in the cicatrix and cause a painful stump.
(4) The flaps should usually be made by dissection, and be of sufficient length to avoid the formation of a conic stump and allow free mobility of the stump.
(5) The resulting scar should not be in the middle of the end of the stump, because pressure upon the scar causes pain, and usefulness of the member will be thereby lessened. In the thigh and leg it should be situated posteriorly; this result is secured by making a long anterior and a short posterior flap. In this location the greater contraction of the muscles divided upon the dorsal aspect tends to retract the scar still further posteriorly. At the wrist or ankle or in the foot a palmar or plantar flap is desirable, as it is best adapted for bearing pressure.
(6) It is well to save as much of the limb as can be retained with safety and future utility, as the danger of the operation increases with the length of the limb removed. (7) A deformed and ugly living appendage is likely to be of greater utility than the best artificial one. After the operation is completed, the vessels are ligatured, the wound is cleansed, drainage is established, and the flaps are held in apposition by sutures.

In amputation of the phalanges: (1) Save as much as possible, especially of the thumb, in order that it may be apposed to the remaining digits. (2) Do not interfere with the palm, large scars of which may be painful and develop epithelioma. (3) Do not remove the heads of the metacarpal bones or divide the transverse metacarpal ligament, as the hand would thus be weakened. (4) The full breadth of the hand should be preserved.

Amputations are performed at one of two points—through the continuity of the bones of the limbs or between their contiguous extremities.
Of the various methods of amputation which have been adopted, only those which have proven most satisfactory to the author will be described.

The methods of amputation adopted by the author include the following: The circular, the modified circular, the flap, Teale’s, Spence’s, Lister’s, and the oval.

The method adapted to any operation depends upon the position, conformation, and anatomy of the part to be amputated and upon the condition of the tissues in that locality. No one method is expedient in all locations; for while in one place the circular method gives good results, better results are obtained in other situations by one of the flap methods.

The circular method.—In the original circular method the bone and all other tissues were divided at the same level. At present in this method three incisions are made. The first incision divides skin and superficial fascia and separates the superficial from the deep fasciae; in this manner a cuff of skin and superficial fascia equal in length to one-half of the diameter of the limb is dissected up and everted and rolled up as high as possible. The second incision divides the deep fascia and underlying tissues at the level of the attachment of the cuff of skin and superficial fascia; and the third divides the bone as high as possible while the soft tissues are retracted. The resulting wound is in the form of a pit with the sawed end of bone at the bottom; in this way the danger of a resulting conic stump is eliminated. The advantages of the circular method are that in a fleshy limb it avoids a redundance of useless muscular tissue in the stump. All the vessels are divided transversely, contract and retract well, while unnecessary hemorrhage is avoided. The surface of the wound is smaller than in other methods; for this reason union occurs more promptly and the resulting cicatrix is smaller. The disadvantages are that the cicatrix extends across the middle of the end of the stump and is adherent to the bone. This is likely to cause a tender stump, and in the lower extremity will be a great disadvantage, as the patient can not bear any weight upon the stump. As the corners of the stump wound are always puckered, the edges of skin do not lie in apposition and union does not, therefore, occur quickly.

The modified circular method.—In this method two semilunar incisions are made through skin and superficial fascia, dissecting up two short flaps equal in length to one-quarter of the diameter of the limb. These flaps are then everted and a short cuff of skin and superficial fascia rolled up as in the circular method. Then the muscles and deep fascia are divided at the level of the retracted skin on the anterior surface of the limb, and on the posterior surface of the limb at a distance from the retracted skin equal to one-fourth of the diameter of the limb. The soft parts are retracted from the bone, which is sawed at the highest possible
level. This method differs from the circular method only in having two small flaps of skin and superficial fascia and a short sleeve of skin and superficial fascia instead of a long sleeve of skin and superficial fascia to cover the stump. The circular method is well adapted to amputations of the arm, where the part does not taper from above downward. Where the part tapers, as in a muscular forearm or calf of the leg, the modified circular is best. Both the circular and modified circular methods are well adapted to amputation of the arm and forearm where a scar across the middle of the end of the stump is not of serious disadvantage. These two methods give the longest possible stump.

The flap method.—The flaps are made by cutting from without inward (dissection), or from within outward (transfixion). The flap furthest from the main vessel is usually made first. The advantages of this method are the following: It is more easily and readily performed than the circular method; it gives a thicker cushion for the stump, as the muscular tissue of the flaps disappears while some fibrous tissue of the muscles remains. The disadvantages are the following: Many of the blood-vessels of the part are divided obliquely and do not contract and retract well, and in ligaturing them it is necessary to exercise more care in order that the vessels may be tied entirely above where they have been severed; on account of the irregular contraction of the various muscles divided, the stump may be irregular; the surface of the wound is larger than in the circular method, and very thick muscular flaps are in themselves a disadvantage. The transfixion method of making flaps is more rapid than the method by dissection, but the skin is divided in an uneven line and the flaps are likely to be too thick.

The first objection can be avoided by dividing the skin and superficial fascia by dissection and then dividing the muscles, deep fascia, vessels, and nerves by transfixion.

The dissection method of making flaps requires more time, but the skin is divided in the manner desired and the flaps may be made of proper thickness. When there are ulcers, sinuses, or malignant growths the flap may be shaped as circumstances demand.

Teale's method consists of the formation of a long and a short rectangular flap. The breadth of each flap is equal to one-half of the circumference of the limb. The length of the anterior flap is equal to one-half of the circumference of the limb, and that of the short flap to one-fourth of the length of the long flap. As the long flap covers the end of the bone it should not contain the large vessels, and for this reason it is taken from the front of the leg in amputations through the tibia and fibula, in the forearm from the dorsal surface, and just above the knee the long flap should be taken from the antero-external surface. This method is used above the ankle, immediately above the knee, and sometimes in the forearm.
The advantages of this method are the following: The bone is well covered, the wound is in a position to allow free drainage, the cicatrix is not upon the end of the stump and hence is not likely to cause pain from pressure produced by an artificial limb. The chief disadvantages are as follows: The great length of one of the flaps necessitates a very high amputation; the operation requires much time, as the flaps must be accurately outlined; the doubling of the long flap by pressure upon the vessels may impair its nutrition; in malignant disease recurrence often takes place in one of the flaps on account of its length, which makes it more difficult to avoid including involved tissue; in injury of the soft parts an unnecessarily high amputation is required to secure good flaps; if the flaps fail to unite by first intention, the sagging of the long flap prolongs recovery by increasing the space to be filled by granulation tissue; the area of the wound is extensive, and too much bone is sacrificed.

In Spence's method a long anterior and a short posterior flap are made. The long flap is not so long, and the short flap is longer than in Teale's method, and the tissues are cut obliquely from without inward to the bone. The soft parts are retracted from the bone, which is sawed two inches above the bases of the flaps. This method is best adapted to the lower third of the thigh and to a very muscular limb. The advantages are: That the long flap is not doubled upon itself; that if union by first intention does not occur, there is not much tendency to separation of the flaps and the wound is more manageable; that a good covering is afforded for the stump, and that the cicatrix is not upon the center of the end of the stump.

In Lister's method a long anterior flap, equal in length to two-thirds of the diameter of the limb, and a short posterior flap, equal in length to one-half of that of the anterior flap, are made. The flaps are procured by dissection, and are chiefly composed of skin and superficial fascia—although some deep fascia and muscular tissue may be included in the base of the anterior flap so that its blood supply may be as plentiful as possible. The flaps are raised and the remainder of the soft tissues divided at the level of the bases of the flaps. The soft tissues are forcibly retracted for a distance equal to one-fourth of the diameter of the limb, and the bone divided as high as possible. If retraction of the soft parts be impossible, it will be necessary to carry a lateral incision upward from the points of junction of the two flaps, so that the bone may be divided at a sufficiently high level. In the thigh it is necessary to retract the soft parts a distance equal to one-half the diameter of the limb before sawing the bone. In the lower part of the forearm and leg the anterior flap must be equal in length to the diameter of the limb, and the posterior flap in length equal to one-half the diameter of the limb. Such modifications are required in these locations because the bones occupy a large part of the diameter of the limb.
The **oval method** is similar to the circular, except that it has a longitudinal incision at one side. When this cut is very long, the incision is said to be racket-shaped. This method is best adapted to amputation of the fingers and toes.

Amputation of the phalanges.—Phalanges are usually amputated because of injury, or the results of whitlow or felon. The base of the phalanx may not be affected by necrosis, as the periosteum is protected by the insertions of the flexor and extensor tendons. In removing a portion of the finger through the continuity of the phalanx, two oval flaps—one anterior and one posterior—are made. The palmar flap is the longer, in order to preserve as much as possible acute tactile sense for the end of the stump. The structures divided will depend upon the distance of the incision from the metacarpal bone and the finger amputated. In these amputations the skin and superficial fascia, with the collateral digital arteries, which receive blood from both the radial and ulnar arteries, will be divided. The nerves severed in the amputations are, in the case of the little finger, branches of the ulnar nerve; of the ring finger, branches of the ulnar, median, and radial nerves; of the middle and index fingers and thumb, branches of the median and radial nerves.

In amputation through the last phalanx no tendons will be divided. In amputations of the distal phalanges of the fingers, the tendons of the extensor communis digitorum and flexor profundus digitorum are divided. When amputating the second phalanx of the fingers, the tendons of the flexor sublimis and flexor profundus digitorum and extensor communis digitorum are severed. In amputations of the first phalanx of the thumb, the tendons of the extensor primi internodii pollicis, extensor secundii internodii pollicis, flexor longus pollicis, and of the short muscles of the thumb are divided. In amputating the second phalanx of the thumb, the tendons of the flexor longus pollicis and extensor secundii internodii pollicis are severed; in amputating the proximal phalanx of the fingers, the tendons of the superficial and deep flexors, the common extensor, the interosseous and lumbrical tendons are divided.

The line of the interphalangeal joints is opposite the transverse furrows on the palmar surface of the fingers, and immediately to the proximal side of the ridge on the base of the respective phalanges.

In disarticulating the metacarpo-phalangeal joints the preferable incision is one commencing over the distal end of the dorsal surface of the metacarpal bone, carried around both sides of the finger and through the crease of the palmar surface of the proximal phalanx. The structures divided are the tendons of the common extensor, flexor sublimis digitorum, flexor profundus digitorum, interosseous and lumbrical tendons, the lateral and anterior metacarpo-phalangeal ligaments, and the collateral digital vessels and nerves.
Disarticulation of the four metacarpal bones of the fingers.—In disarticulating these bones from the carpus by transfixion the point of the knife is inserted at the junction of the metacarpal bone of the little finger with the carpus, pushed through the soft parts of the palm of the hand close to the bones, and brought out in the fleshy tissue between the thumb and index finger. The knife is then carried downward and forward (away from the bones), cutting through the flexor brevis minimi digiti, opponens minimi digiti, abductor minimi digiti, adductor pollicis, palmaris brevis and lumbricales muscles, the tendons of the flexor sublimis digitorum and flexor profundus digitorum, the profunda branch of the ulnar artery and nerve, the deep palmar arch, the digital arteries and nerves, the deep and superficial palmar fasciae, and the skin. The hand is then pronated, and a semicircular incision, with the convexity downward, carried across the dorsal surface joining the two ends of the palmar incision. The dorsal incision divides the skin and superficial fascia, some of the radicles of the radial, anterior and posterior ulnar veins, branches of the radial and ulnar nerves, the deep fascia, the tendons of the extensor carpi ulnaris, extensor minimi digiti, extensor communis digitorum, extensor indicis, the synovial sheaths of the tendons, the dorsal interosseous arteries, and the dorsalis indicis. These two flaps are then dissected upward until the articulation is reached. The metacarpal bones should be disarticulated, beginning on the palmar surface. The capsular, palmar, dorsal, and interosseous ligaments are severed and the hand removed. The sheaths of the flexor and extensor tendons should be sutured, there being less liability of infection traveling along them than if they were allowed to remain open.

Amputation of the thumb at the carpo-metacarpal articulation.—In amputating the thumb at the carpo-metacarpal articulation the incision should be made along the junction of the dorsal and palmar integument and around the base of the proximal phalanx. The proximal extremity of the incision commences over the articulation of the metacarpal bone with the carpus, about one inch from the styloid process of the radius. In this amputation care must be exercised to avoid injuring the radial artery, which is closely related to the base of the metacarpal bone of the thumb. The following structures are divided: The skin, superficial and deep fasciae, branches of the radial and median nerves, the dorsales pollicis and princeps pollicis arteries, the tendon of the flexor longus pollicis, the short muscles of the thumb, the abductor indicis (first dorsal interosseous), and the capsular ligament. A lateral, rather than a dorsal, incision may also be made in removing the metacarpal bone of the little finger.

Disarticulation of the radio-carpal or wrist-joint.—That the movements of pronation and supination of the stump may be retained, the wrist, rather than a higher position on the arm, is selected for the amputation. This operation is
usually performed after injuries, and not when the wrist or carpal joints are diseased, because then the inferior radio-ulnar joint is affected and these movements would necessarily be lost. This amputation is performed by making anterior and posterior semilunar flaps, with their convexity downward. The anterior incision extends from one styloid process to the other, and passes through the skin; superficial fascia with its small nerves, arteries, and veins; the deep fascia; and the following structures in the order named from the ulnar to the radial side: The tendon of the flexor carpi ulnaris, the ulnar nerve, ulnar artery and its venæ comites, the four tendons of the flexor sublimis digitorum, the four tendons of the flexor profundus digitorum, the palmaris longus, the median nerve and artery, the flexor longus pollicis, the tendon of the flexor carpi radialis, and the superficialis volæ artery.

The posterior incision divides the following structures: Skin, superficial fascia, branches of the radial and ulnar vessels and nerves, the radial, anterior, and posterior ulnar veins, the posterior carpal branch of the ulnar artery, the tendons of the extensor carpi ulnaris, extensor minimi digiti, extensor communis digitorum, extensor indicis, extensores carpi radialis brevior and longior, extensor secundi internodii pollicis, extensor primi internodii pollicis, extensor ossis metacarpi pollicis, the radial artery and its venæ comites, the anterior interosseous artery, the posterior interosseous artery and nerve, the anterior, posterior, external lateral, and internal lateral ligaments.

The principal arteries to be ligated are the radial and ulnar. The radial will be found on the radial side of the forearm, on the external lateral ligament of the wrist-joint just below the styloid process of the radius. The ulnar artery will be found on the anterior aspect of the forearm, just internal to the tendon of the flexor carpi ulnaris, and external to the tendons of the flexor sublimis digitorum.

Amputation at the middle of the forearm.—This operation is generally performed by the antero-posterior flap method. The anterior incision is semilunar, with its convexity downward, passes from one border of the forearm to the other, and divides skin, superficial fascia, the radial, median, and anterior ulnar veins, the anterior branch of the musculo-cutaneous nerve, the anterior branch of the internal cutaneous nerve, cutaneous branches of the radial and ulnar arteries, the deep fascia, the flexor carpi ulnaris, the ulnar vessels and nerve, the flexor sublimis digitorum, the palmaris longus, the flexor carpi radialis, the median nerve and artery, the flexor profundus digitorum, flexor longus pollicis, the radial vessels and nerve, and the supinator longus.

The posterior incision divides the skin, the superficial fascia, the posterior ulnar vein, the posterior branch of the internal cutaneous nerve, the inferior
external cutaneous branch of the musculo-spiral nerve, the posterior branch of the musculo-cutaneous nerve, cutaneous branches of the radial and ulnar arteries, the deep fascia, the extensor carpi ulnaris, extensor minimi digiti, extensor communis digitorum, extensores carpi radialis longior and brevior, extensores primi and secundi internodii pollicis, extensor ossis metacarpi pollicis, and the posterior interosseous vessels and nerve. The interosseous membrane and the anterior interosseous vessels and nerve are divided. The bones should then be sawed, and the main vessels ligated. These will be the radial artery, which will be found between the pronator radii teres and supinator longus muscles; the ulnar artery, between the flexor carpi ulnaris, the flexores sublimis and profundus digitorum; the anterior interosseous artery, on the anterior surface of the interosseous membrane; and the posterior interosseous artery, between the superficial and deep extensors.

Amputation of the elbow-joint.—The most satisfactory method for performing this operation is by transfixion. The knife should be introduced about three-quarters of an inch below the internal condyle of the humerus, with the forearm supinated and slightly flexed. The object in flexing the forearm is to relax the anterior ligament so that it can be transfixxed when the knife passes over the joint. The point of the knife should emerge from the radial side of the forearm the same distance below the external condyle. The knife should then be carried down the forearm for about four inches and brought abruptly to the surface. The structures severed will be the anterior ligament of the joint, the brachialis anticus, the supinator brevis, the posterior interosseous nerve, the tendon of the biceps, the extensor carpi radialis longior, the supinator longus, the flexor profundus digitorum, flexor longus pollicis, the common interosseous or anterior and posterior interosseous vessels, the anterior interosseous nerve, the median artery and nerve, the radial vessels and nerve, the ulnar vessels and nerve, the posterior ulnar recurrent artery, the superficial flexors, the deep fascia, the superficial fascia, the radial, anterior and posterior ulnar and median veins, the anterior and posterior branches of the musculo-cutaneous nerve, the anterior branch of the internal cutaneous nerve, and skin. A posterior incision should then be made directly across the back of the forearm, over the base of the olecranon, so as to connect the two ends of the anterior incision when a flap of skin and superficial fascia is raised as high as the tip of the olecranon. This incision divides the skin, superficial fascia, the inferior external cutaneous branch of the musculo-spiral and the posterior branch of the internal cutaneous nerve. The knife should then be passed between the head of the radius and the humerus, and then across the front of the joint between the coronoid process of the ulna and the humerus, severing the internal and external lateral ligaments and part
PLATE LXXIII.

TRANSVERSE SECTION OF ARM BELOW INSERTION OF Deltoid M.

Cephalic V.

Brachialis Anticus M.

External Intermuscular Septum.

Outer Head of Triceps M.

Musculo-spiral N.

Superior Profunda A.

Long Head of Triceps M.

Biceps m.

Musculo-cutaneous N.

Supercificial fascia

Deep fascia

Median N.

Vena comites.

Brachial A.

Internal Cutaneous N.

Basilic V.

Ulnar N.

Inferior Profunda A.

Internal Intermuscular Septum.

Long Head of Triceps M.
TRANSVERSE SECTION OF ARM ABOVE CONDYLES OF HUMERUS.
Amputations of the Upper Extremity.

293

of the posterior ligament. Next saw through the base of the olecranon, and remove the forearm by cutting the supinator brevis, interosseous recurrent artery, anconeus, extensor carpi radialis brevior, extensor communis digitorum, extensor carpi ulnaris, flexor carpi ulnaris, and deep fascia.

The principal vessels to be ligated are the radial, ulnar, common interosseous or anterior, and posterior interosseous, posterior ulnar recurrent, and the interosseous recurrent artery. The radial artery will be found on the radial side of the flap, just beneath the ulnar margin of the supinator longus muscle. The ulnar artery will be found between the flexor sublimis digitorum and the flexor carpi ulnaris. The common interosseous or anterior and posterior interosseous arteries will be severed near their origin.

Amputation through the middle of the arm.—The circular or the anteroposterior flap method may be used in this amputation. In either the following structures will be severed on the front and inner side of the arm: Skin, superficial fascia, intercosto-humeral nerve, the internal cutaneous and external cutaneous branches of the musculo-spiral nerve, a cutaneous branch of the circumflex nerve, the lesser internal cutaneous nerve (nerve of Wrisberg), internal cutaneous nerve, branches of the superior and inferior profunda arteries, the cephalic vein, the deep fascia, the biceps and brachialis anticus muscles, the musculo-cutaneous nerve, the median nerve, the brachial artery and its venæ comites, the basilic vein, and the ulnar nerve; on the posterior aspect of the arm, the triceps muscle, the musculo-spiral nerve, the superior profunda artery,—the musculo-spiral nerve and the superior profunda artery will be seen immediately behind the bone, in close relation to that structure, and the brachial artery beneath the inner border of the biceps muscle.

Amputation at the shoulder-joint.—This amputation is performed for injury, tumors,—malignant or benign,—and disease of the joint. But one of the numerous methods of amputation at the shoulder-joint is described below, because practically the same structures are divided in all methods. The most important requisite is the surgeon’s knowledge of the anatomy of the parts rather than of the different operations. The author prefers Spence’s operation,—a modification of the oval method. It is especially adapted to those cases of injury where there has been much comminution of the humerus. The posterior circumflex artery is not severed, the head of the bone can be disarticulated very readily, and the resulting stump is generally full and round. The incision extends from a point just external to the coracoid process, downward, in a line with the humerus, to a point just below the attachment of the pectoralis major muscle. The following structures are divided: Skin, superficial fascia, supra-acromial branches of the cervical plexus of nerves, branches of the anterior and posterior circumflex vessels, the
deep fascia, the cephalic vein, the humeral branch of the acromio-thoracic artery, the deltoid, the pectoralis major, and the anterior circumflex vessels. The incision is then carried backward, in a gentle curve, to the posterior border of the axilla. The skin and superficial fascia, with twigs of the posterior circumflex artery and circumflex nerve, the cephalic vein, the deep fascia, and the deltoid muscle will be severed.

The posterior flap can now be readily stripped from the bone and joint. The flap will carry with it the terminal part of the circumflex nerve and posterior circumflex vessels which enter its deep surface. The muscles attached to the greater tuberosity are then to be severed. They are the supra-spinatus, infra-spinatus, and teres minor. The subscapularis is next detached from the lesser tuberosity, the long head of the biceps divided, and the joint opened by dividing the capsular ligament. The arm is carried well inward, thus causing the head of the humerus to pass from the glenoid cavity. Before proceeding further a slight dissection of the axilla may be made to expose the axillary vessels, when they may be ligated before the remaining soft parts are severed; or the knife may be carried downward close to the bone on its internal aspect, the insertion of the teres major and latissimus dorsi muscles severed, and the anterior flap made by cutting from within outward. Care must be taken to have an assistant follow the knife downward with his fingers in contact with the vessels, and the outward cut should not be made until the surgeon is sure that the vessels are controlled by the assistant. The last incision severs the triceps muscle; the brachial vessels; basilic vein; the anterior circumflex artery; the ulnar, median, musculo-spiral, internal cutaneous, lesser internal cutaneous, internal cutaneous branch of the musculo-spiral, and the intercosto-humeral nerve; the deep fascia; superficial fascia, and skin.

LIGATIONS OF THE ARTERIES.

Arteries are ligatured in the treatment of aneurysms; to arrest hemorrhage; check malignant growths; and previous to some operations, as amputation at the shoulder and removal of the tongue.

Aneurysms are treated by medical and surgical means. The medical treatment consists of rest in bed in the recumbent position. Whenever possible, the part affected should be placed in such a position as to impede the flow of the blood current through the aneurysm, but not interfere with the return circulation. The diet should be non-stimulating, easily digested, in small quantity, and contain little liquid. All excitement must be avoided. Depletion may be practised to
PLATE LXXV.

I. ANEURYSMAL VARIX.

II. VARICOSE ANEURYSM.

III. METHOD OF ANTYLLUS.

IV. HUNTER'S METHOD.

V. BRASDOR'S METHOD.

VI. WARDROP'S METHOD.
LIGATIONS OF THE ARTERIES.

lower vascular pressure and allow the blood to begin to clot in the aneurysm. Drugs which lower vascular tension, such as veratrum viride and aconite, should be given; and iodid of potassium administered to break up the white corpuscles and liberate the fibrin ferment.

Various other methods of treating aneurysms have been practised. Among these are pressure, ligature, manipulation of the aneurysm, injection of coagulating materials, introduction of foreign bodies, and galvano-puncture.

Pressure applied to the artery to the proximal side of the sac has given good results, and acts by checking the passage of blood through the sac and allowing it to clot. Digital pressure may be applied by relays of trained assistants. Its feasibility, however, is limited to aneurysms of the arteries of the extremities, as the brachial, superficial femoral, and popliteal. The pressure may be applied more conveniently by means of tourniquets which do not interfere with the return circulation.

Ligatures have been used according to various methods. In the method of Antyllus, or the "old operation," the artery was tied on both sides of the aneurysmal sac. The sac was freely exposed, opened, the clot turned out, and the artery tied upon either side of the sac. This is not a good operation because there is copious bleeding, the artery is tied where its coats are diseased, and consecutive or secondary hemorrhage is likely to occur. This method is the one commonly practised in the treatment of traumatic false aneurysms. In these aneurysms there is not the same objection to tying the artery close to the aneurysm, since the walls of the vessel are not necessarily diseased at that point.

In the method of Ariel the sac is exposed and the artery tied immediately above the sac. In this method, as in that of Antyllus, the artery is tied where its coats are diseased.

In Brasdor's method the main trunk of the artery is ligated some distance to the distal side of the aneurysmal sac. In Wardrop's method one or more of the main branches of the artery beyond the sac are tied. These two methods are applicable in aneurysms at the root of the neck, as of the innominate, common carotid, or subclavian.

In Hunter's method the artery is tied to the proximal side of the sac, and where the coats of the artery are sound, as in Brasdor's and Wardrop's methods; the ligature greatly reduces the force of the blood current and allows the blood to form a laminated clot in the sac. Nature, then, has an opportunity to form a clot and connective tissue within the sac, and obliterate that portion of the artery. The circulation is reestablished by enlargement of the arteries which arise above the ligature and anastomose with those which arise below the aneurysm. This operation is performed where pressure applied to the artery on the proximal side
of the sac is not feasible. Pressure upon the carotids would be very painful, and therefore Hunter's method is used in preference to pressure in treating aneurysm of the external or internal carotid or upper part of the common carotid.

Manipulation of the aneurysmal sac to loosen parts of the fibrinous clot from its wall so that they will occlude the artery to the distal side of the aneurysm is a dangerous procedure, because embolism or rupture of the sac may result. Embolism from manipulation of the carotids may cause hemiplegia.

The **injection of coagulating material**, such as neutral ferric chlorid or fibrin ferment, may be practised if the artery is compressed on both sides of the sac for an hour or more during the injection. There is much danger from embolism, inflammation, and abscess.

The **introduction of foreign bodies**, such as fine aseptic wire, favors the formation of a clot. This method has been used in aortic and subclavian aneurysms, as these are unfavorable cases for ligature or pressure.

Galvano-puncture is not a favorable method of treating aneurysms; the clot is soft and therefore uncertain, inflammation of the sac and its contents may follow, and the eschar at the point of introduction of the needle may be the site of secondary hemorrhage.

Anatomy of an Artery.—The wall of an artery is composed of three coats—an internal, a middle, and an external.

The internal coat, or tunica intima, is composed of a layer of flat endothelial cells which lines the vessel wall, and an elastic layer which is chiefly composed of yellow elastic fibers arranged in a mesh-work, the majority of the fibers of which are in a longitudinal direction. This layer is united to a layer of endothelial cells by delicate areolar tissue. When an artery is ligatured, the internal coat curls inward and retracts, thus partially occluding the lumen of the artery and giving support to the clot of blood which undergoes organization. When an artery is completely divided, this coat curls inward, retracts, and contracts in the same manner as when it is ruptured in ligature of a vessel.

The middle coat, tunica media, is composed chiefly of circular muscular and some elastic fibers. The muscular fibers predominate in the smaller vessels, and the elastic tissue in the larger vessels. When an artery is completely divided, it is chiefly through this coat that it contracts, while retraction is produced by both the internal and the middle coat.

The external coat, or tunica adventitia, is composed chiefly of white fibrous tissue, and some longitudinal elastic fibers; this is the only coat of an artery which is not ruptured in ligature of a vessel.

With the exception of the intra-cranial arteries and the ascending portion of the arch of the aorta, all arteries are covered by a **sheath** of connective tissue;
PLATE LXXVI.

LINES OF ARTERIES OF UPPER EXTREMITY AND OF MEDIAN AND ULNAR NERVES.

300
Lines of incisions for ligation of arteries and stretching of nerves.
and some arteries, such as the common carotid and common femoral, have an additional sheath formed by the deep fascia. The sheath is loosely attached to the outer coat of the vessel and the surrounding structures, and gives support to the vessel wall.

When ligating an artery, it is customary to open the sheath and separate it from the vessel for a short distance before passing the aneurysm needle. By this procedure unnecessary pressure upon the vasa vasorum and increased risk of sloughing of the vessel are avoided. Where an artery has two sheaths, the internal as well as the external sheath must be opened.

In the **Ligation of Arteries** familiarity with the following rules is necessary:
The ligature must not be placed too near the aneurysm because there the coats of the artery are diseased. If too great a distance intervene between the aneurysm and the point of ligation, the collateral circulation is too quickly established and blood passes through the sac, displaces the clot, and prevents organization. The ligature must not be too near a large branch, as the current of blood would then prevent clot formation and organization and increase the risk of secondary hemorrhage when the ligature is absorbed. The operator must be well acquainted with the course and anatomic relations of the vessel, with its anomalous forms and relations, and its superficial and deep landmarks. The incision through the skin and tissues over the sheath of the vessel should be sufficiently large to give ample room for the application of the ligature. As soon as the skin and fasciae are divided, locate the anatomic guides to the artery and then search for the vessel, the pulsation of which will assist in finding it. All of the small superficial vessels and nerves are divided, while large ones are avoided and displaced. Each layer of tissue over the vessel is carefully divided so that the anatomic landmarks may not be lost. The cut edges of the different layers are separated, but separation of these layers is avoided as much as possible. After the sheath of the vessel is exposed it is carefully cleaned for a short distance and a small portion of it is pinched up and divided with the knife held flat and its cutting edge away from the vessel. The opening in the sheath should be very small. After the sheath is opened a small portion of it is sufficiently separated from the artery to allow the aneurysm needle to be passed. The separation of the sheath from the coat of the vessel is most important, and should be done with the back of the knife directed toward the artery, and all of the tissue removed until the white external coat is seen. The sheath should be separated from the artery only far enough to allow the passage of the needle, because too extensive a separation of the sheath from the vessel increases the danger of secondary hemorrhage by division of the vasa vasorum which supply that part of the vessel.

During or after the passage of the needle the vessel should not be lifted from
its position; for if the vasa vasorum be torn, the danger of secondary hemorrhage is increased by preventing nutrition.

The vasa vasorum should not be ruptured more than is necessary; this can be prevented if the operator will not unnecessarily separate the sheath from the artery, nor lift the vessel from its original position, nor depress the handle of the needle, thereby unnecessarily elevating the artery. The needle is always passed away from the structure which would be most endangered. If one vein accompanies the artery, the needle is passed away from the vein; if the artery has two vena comites and one accompanying nerve, the needle is passed away from the nerve. The needle may be passed either armed or unarmed. Before the needle is withdrawn always compress the artery between the curve of the needle and the finger and notice if the pulsation in the artery or its branches beyond the site of the operation is checked, and if any other structures are included in the ligature. The ligature should always be tied at a right angle to the course of the artery; because if the ligature be placed obliquely, it is apt to become loose. The ligature is tied with a reef-knot, or a surgical knot, firmly enough to rupture the middle and internal coats of the artery.

The undesirable sequelae of ligature of an artery are consecutive hemorrhage from loosening of the ligature or diseased coats of the vessel, secondary hemorrhage from the breaking down of these diseased coats, sloughing around the ligature or imperfect organization of the clot, and rupture of the vessel. Gangrene of the limb upon the distal side of the ligature may occur because of the slow and insufficient establishment of the collateral circulation. Sloughing of the sac may result. The pulsation in the sac may continue or return after having been absent: because the ligature was placed obliquely and became loosened, or was placed too far above the sac; the collateral circulation is too rapidly established through free anastomosis of branches above and below the ligature, or because of the presence of a vas aberrans.

The axillary artery begins at the lower border of the first rib, and extends as far as the lower margin of the tendon of the teres major muscle. With the arm abducted to a right angle with the body, the course of the artery is represented by a line drawn from just to the inner side of the middle of the clavicle to the middle of the bend of the elbow. The artery is divided into three parts by the pectoralis minor muscle. The first part lies between the lower border of the first rib and the upper border of the muscle; the second under the muscle, and the third between the lower border of the muscle and the lower border of the tendon of the teres major. As a rule, the axillary artery is ligated only in its third portion. If a higher ligation be necessary, it is generally safer to ligate the third portion of the subclavian artery, as the first portion of the axillary artery is deeply seated,
LIGATIONS OF THE ARTERIES OF THE UPPER EXTREMITY.

and the accompanying vein is large, prominent, and closely connected with the costo-coracoid membrane. The third portion of the axillary artery is quite accessible, being covered for a short distance by the pectoralis major muscle, beyond which it lies just beneath the skin, superficial fascia and deep fascia when the arm is abducted. In front of the third portion of the artery, when the arm is abducted, are the pectoralis major muscle, axillary fascia, inner head of the median nerve, and the internal cutaneous nerve. Behind it are the musculo-spiral and circumflex nerves, the subscapularis muscle, and the tendons of the latissimus dorsi and teres major muscles. On the inner side are the ulnar nerve, the axillary vein, and the lesser internal cutaneous nerve (nerve of Wrisberg)—the latter being separated from the artery by the vein. On the outer side are the median and musculo-cutaneous (external cutaneous) nerves, the outer of the vena comites of the brachial artery, and the coraco-brachialis muscle. The branches of this portion of the artery are the subscapular, anterior circumflex, and posterior circumflex. In ligating this portion of the axillary artery the arm should be carried outward to a right angle with the body. An incision is made in the line of the vessel, beginning at the middle of the floor of the axilla. It is then carried downward about three inches along the inner border of the coraco-brachialis muscle, which can be easily felt. The skin and superficial fascia, with small branches of the intercostohumeral, internal cutaneous, and lesser internal cutaneous nerves, and branches of the long thoracic artery, are divided. The deep fascia is then incised, and the inner margin of the coraco-brachialis muscle exposed. The coraco-brachialis is drawn outward, and the position of the artery determined by its pulsation. The median nerve will then be exposed, and should be drawn outward, while the internal cutaneous nerve is drawn inward. The outer of the vena comites of the brachial artery and the axillary vein being well exposed, the ligature can be passed around the artery from within outward.

The unusual forms and relations of the axillary artery are the following: The third portion of the artery may be covered by a muscular slip from the latissimus dorsi. In ten per cent. of cases there are two large arterial trunks instead of one; one of them may be a common trunk of origin for the long thoracic, subscapular, posterior circumflex, and superior profunda arteries, while the other is the continuation of the axillary, and continues to form the brachial; or one of the trunks may be a radial or ulnar artery with an unusually high origin. When several of the branches of the axillary arise from a common trunk, as already stated, the main branches of the axillary plexus may surround this trunk and therefore be useless as landmarks for locating the main trunk of the axillary artery.
The collateral circulation after ligature of the third part of the axillary artery above the origin of the subscapular is established by the anastomosis of—

- The supra-scapular and acromio-thoracic arteries with the anterior and posterior circumflex arteries.
- The supra-scapular, posterior scapular and long thoracic arteries with the dorsalis scapulae and subscapular arteries.
- The intercostal branches of the aorta and internal mammary artery with the subscapular artery.

When the artery is tied between the origin of the subscapular and circumflex arteries, the collateral circulation is established by the anastomosis of—

- The supra-scapular and acromio-thoracic arteries with the anterior and posterior circumflex arteries,
- The subscapular artery with the posterior circumflex artery.

The subscapular artery.—The arm is abducted to a right angle with the body, and the artery is exposed by an incision made through the floor of the axilla along the anterior border of the posterior fold of the axilla. The skin, superficial fascia, superficial vessels, posterior branches of the lateral cutaneous nerves, and the axillary fascia, are divided. The artery is found to the inner side of the anterior border of the latissimus dorsi, lying in the areolar tissue in front of the subscapularis muscle. The incision should avoid the axillary vessels which are upon the outer wall of the axilla. The long subscapular nerve lies to the inner side of the upper one-third of the artery and in intimate relation with the middle one-third. The subscapular vein lies in front of the artery at its origin, and holds a varying relation to the remainder of the artery. The dorsalis scapulae artery arises from the subscapular artery about one inch from the origin of the latter. The lower subscapular nerve passes toward the teres major muscle just above or below the position of the dorsalis scapulae artery.

The posterior circumflex artery and the circumflex nerve are most readily found upon the dorsal surface of the shoulder as they emerge from the quadrangular space to supply the deltoid. The arm is abducted to a right angle with the body, and the incision is made along the posterior border of the deltoid. The center of the incision should be at the angle formed by this border of the deltoid and the axillary border of the scapula. The skin and fasciae are divided and the deltoid is drawn forward. The long head of the triceps and the lower margin of the teres minor are seen, and the finger may be introduced into the wound to detect the pulsation of the artery as it winds around the surgical neck of the humerus. The nerve lies upon the upper side of the artery. The quadrangular
space is bounded upon the outer side by the humerus, upon the inner side by the long head of the triceps, above by the teres minor, and below by the teres major. As the nerve passes through the space it supplies a branch to the teres minor, branches to the deltoid, and gives off cutaneous branches to the skin over the deltoid.

The brachial artery is the continuation of the axillary artery, and begins at the lower edge of the tendon of the teres major muscle. Its course is on the same line as the axillary artery—namely, from just to the inner side of the middle of the clavicle to the middle of the bend of the elbow, with the arm at a right angle to the body; or from the junction of the anterior one-third with the middle one-third of the outer part of the floor of the axilla to the middle of the bend of the elbow. The artery is practically subcutaneous throughout its entire extent; except in the middle of its course where the median nerve lies in front of it; and at its lower end where the bicipital fascia and median basilic vein are in front.

In front of the artery are the skin, superficial and deep fasciae, inner border of the coraco-brachialis and biceps muscles, the median nerve at the middle of the arm, the median basilic vein, internal cutaneous nerve, and bicipital fascia at the bend of the elbow. Behind it, from above downward, are the long head of the triceps, the musculo-spiral nerve, the superior profunda artery, the inner head of the triceps, the insertion of the coraco-brachialis, and the brachialis anticus muscle. To its inner side are the ulnar nerve in the upper half of the arm, the internal cutaneous nerve and the basilic vein in the upper two-thirds of the arm, and the median nerve at the bend of the elbow. To its outer side are the coraco-brachialis and biceps muscles, as well as the median nerve in the upper part of the arm, and the tendon of the biceps at the elbow. Two veins accompany the artery, one lying on each side of it.

The artery may be ligated at the bend of the elbow, or at the middle of the arm. In ligating it at the bend of the elbow the arm should be slightly flexed in order to make prominent the tendon of the biceps. The median, median basilic, median cephalic, and deep median veins usually join on a level with the point where the tendon ceases to be felt distinctly. Having located these points, the forearm should be extended and the arm abducted and allowed to rest on the olecranon. An incision, about two inches long, is made along the inner edge of the tendon of the biceps; the upper end of the incision being about on a level with the tip of the internal condyle. The skin, superficial fascia, the anterior branch of the internal cutaneous and branches of the external cutaneous nerve, twigs from the inferior profunda and anastomotica magna arteries, with their veins, are severed. The median basilic vein will be found lying on the inner side of, and parallel with, the incision, and should be drawn to one side as soon as
exposed. The deep fascia and bicipital fascia are divided in the line of the original incision, and the artery with its venae comites and the median nerve, which lies to its inner side, exposed. The veins should be separated from the artery, its sheath opened, and the ligature passed around the artery from within outward.

Ligature of the brachial artery or stretching of the median nerve at the bend of the elbow is not an advisable operation, because, if possible, scars should not be made at flexures of joints.

In ligating the brachial artery in the middle of the arm the incision should be made along the inner edge of the biceps muscle. The skin, superficial fascia, twigs of the internal cutaneous nerve, and small branches of the superior profunda and anterior circumflex arteries will be divided. The deep fascia is then incised and the inner edge of the biceps muscle clearly demonstrated. The muscle is displaced outward, and the position of the artery determined by its pulsations. The median nerve is then exposed, generally lying over the artery in this part of its course. It should be drawn inward and the sheath of the vessel opened. The venae comites are then separated from the artery, and the ligature passed from within outward away from the basilic vein.

After ligature of the brachial artery above the origin of the superior profunda artery the collateral circulation is established by the anastomosis between the posterior circumflex and superior profunda arteries.

In ligating the brachial artery it is to be remembered that in about twenty per cent. of all cases there are two large arteries in the arm instead of one. This is due to the high origin of either the radial or ulnar artery, or to the presence of a vas aberrans. A third head of origin of the biceps sometimes crosses in front of the brachial artery near the middle of the arm. The median nerve is frequently under instead of over the middle portion of the artery. The brachial artery and the median nerve rarely pass toward the posterior surface of the internal condyle; they pass around the supra-condyloid process and then in front of the elbow. This artery is most readily compressed at the middle of the arm where it lies upon the coraco-brachialis muscle; it is usually ligated in this location.

The brachial artery is sometimes ligatured for an arterio-venous aneurysm. This is usually caused by a wound which involves both the artery and the adjacent median basilic vein or venae comites, but may occasionally result from disease. Arterio-venous aneurysms are of two varieties—aneurysmal varix and varicose aneurysm. In an aneurysmal varix the wounds of the artery and vein have adhered and become closely united by inflammatory exudate; there is formed a direct connection between the artery and the vein, and the arterial blood passes directly into the vein, each pulsation dilating it and causing regurgitation through
its valves. There ensues distention and a varicose condition of the adjacent superficial and deep veins. These veins become elongated, tortuous, thickened, and may pulsate; but a characteristic aneurysm is not formed. In a varicose aneurysm the inflammatory exudate which binds together the wounds in the artery and vein has yielded and a sac is formed by distention of the channel which connects the two vessels. The blood passes from the artery through the connecting channel and its sac and into the vein. The most common cause of varicose aneurysm in connection with the brachial artery is venesection practised upon the median basilic vein, which crosses the brachial artery. As the vein is now opened with a bistoury, aneurysmal varix as the result of venesection is rare.

Punctured or gunshot wounds, however, may cause a varicose aneurysm. In both varieties of arterio-venous aneurysm there is pulsatile dilatation of the veins, a thrill, and a continuous murmur. The murmur is heard along the course of the veins toward the heart. In the varicose form a murmur may be detected at the position of the sac, and there is always a thrill synchronous with the beat of the pulse.

These aneurysms are treated by ligating the artery to either side of the sac, injecting coagulating fluids, compression, galvano-puncture, expectant method, and amputation. Most cases should be treated by ligature of the artery above and below the sac; the chief dangers to be feared are hemorrhage from the artery above the sac and gangrene of the limb below the ligature.

After ligature of the brachial artery at the middle of the arm the circulation is reestablished by the anastomosis of the—

Superior profunda artery with the anastomotica magna, radial recurrent, and interosseous recurrent arteries,

The inferior profunda artery with the anastomotica magna, anterior ulnar recurrent, and posterior ulnar recurrent arteries.

After ligature of the brachial artery at the bend of the elbow the circulation is reestablished by the anastomosis of—

The superior profunda and anastomotica magna arteries with the radial recurrent and interosseous recurrent arteries,

The inferior profunda and anastomotica magna arteries with the anterior ulnar recurrent and posterior ulnar recurrent arteries.

The course of the radial artery in the forearm is represented by a line drawn from the middle of the bend of the elbow to the radial pulse, just to the inner
end of the base of the styloid process of the radius. In the upper half of its
course it is covered by skin and fasciae and the supinator longus muscle; but
in the lower half by the skin and fasciae only. Behind the vessel, from above
downward, are the biceps tendon, the supinator brevis, the insertion of the
pronator radii teres, the radial origin of the flexor sublimis digitorum, the flexor
longus pollicis, the pronator quadratus, and the lower end of the radius. It is
flanked on either side by veins comites, which communicate in numerous places
by transverse branches. In the middle of the forearm the radial nerve lies in
relation with the outer side of the artery.

When ligating the artery in the lower one-third of the forearm, the incision is
made along the line of the artery, between and parallel with the tendons of the
supinator longus and flexor carpi radialis muscles. In order to avoid the origin of
the superficial radial vein the incision should not extend lower than the level of
the tuberosity of the scaphoid. The skin, superficial fascia, twigs of the musculo-
cutaneous and radial nerves, and small branches of the radial artery will be
divided. The deep fascia is then incised, and the space between the tendons
plainly seen. After the veins comites have been separated, if possible, the artery
is exposed and the ligature passed in either direction. When they can not be
separated, they should be included with the artery in the ligature.

When ligating the radial artery in the middle of the forearm, the incision is
made over the line of the vessel. The skin and superficial fascia will be divided,
together with twigs of the musculo-cutaneous nerve and small branches of the
radial artery. The deep fascia is then incised and the supinator longus muscle
exposed. This muscle is drawn outward and the vessel located by its pulsations.
It will be found lying upon the insertion of the pronator radii teres muscle. The
veins comites are to be separated from the artery, and the ligature passed around
the latter from without inward.

In ligating the radial artery in the upper one-third the incision is made over
the course of the vessel. The skin and superficial fascia are divided, with branches
of the musculo-cutaneous nerve and of the radial artery. At times some of the
large superficial veins of the forearm which are divided may cause considerable
hemorrhage. The deep fascia is incised, and the space between the supinator
longus and the pronator radii teres muscles opened up. The radial artery will
be found under the supinator longus muscle. The ligature may be passed from
either side.

To ligate the radial artery in the "anatomic snuff box" carry an incision in
the long axis of this triangular interval, midway between the extensores primi
and secundi internodii pollicis tendons. Divide the skin and superficial fascia,
avoiding injury to the radial vein and the branch of the radial nerve supplying
STRETCHING OF THE NERVES OF THE UPPER EXTREMITY.

311

the thumb. Next divide the deep fascia, when the artery with its venæ comites will be exposed.

The radial artery may arise from the brachial artery in the arm or from the axillary artery, and is at times quite superficial, overlying the supinator longus muscle.

The **ulnar artery** may be ligated in the middle or lower one-third of the forearm; but is seldom done in the upper one-third because of the deep position of the artery there. The upper portion of the ulnar artery describes a curve inward, to the ulnar side of the forearm. Its lower two-thirds correspond to a line drawn from a point midway between the internal condyle of the humerus and the middle of the bend of the elbow to the radial side of the pisiform bone. The forearm should be supinated, and an incision made over the line of the vessel, just to the radial side of the tendon of the flexor carpi ulnaris. The incision divides skin, superficial fascia, twigs of the cutaneous branches of the ulnar nerve, the anterior branch of the internal cutaneous nerve, and small branches of the ulnar artery. The deep fascia is exposed and incised and the tendon of the flexor carpi ulnaris brought into view. The tendon is drawn inward, and the ulnar vessels exposed. The sheath of the vessels is generally bound to the flexor profundus muscle by a layer of fascia, which must be divided. The ulnar nerve will be found near the artery, on its inner side, and its palmar cutaneous branch in front of the vessel. Displace the ulnar nerve and its palmar cutaneous branch inward. Separate the venæ comites from the artery and pass the ligature from within outward.

The ulnar artery occasionally arises from the brachial artery high in the arm, or from the axillary artery. When it has a high origin, it usually passes over the muscles which spring from the internal condyle, and is, therefore, in much danger of being wounded. Under the circumstances the recurrent and common interosseous branches arise from the continuation of the brachial artery.

After ligature of the radial or ulnar artery the **collateral circulation** is chiefly established through the palmar and carpal arches, and partially through the anastomosis of the muscular branches of the two vessels.

STRETCHING OF THE NERVES.

In stretching the **main branches of the brachial plexus** of nerves in the axilla the arm should be abducted to a right angle with the body, and an incision made in the line of these nerves. With the arm abducted as above mentioned, this line is drawn from just the inner side of the middle of the clavicle to the
middle of the bend of the elbow. They will be found along the inner edge of the
coraco-brachialis muscle, in company with the third portion of the axillary artery.
The incision extends from the middle of the floor of the axilla, along the inner
edge of the coraco-brachialis muscle for about three inches. The parts divided
will include the skin, superficial fascia, small branches of the intercosto-humeral,
internal cutaneous and lesser internal cutaneous nerves, cutaneous branches of
the long thoracic artery, and of the superficial external mammary artery when
present. The deep fascia is then incised, and the inner edge of the coraco-brachialis
muscle exposed. The first portion of the axillary vein and the third portion of
the axillary artery will next be located. The vein lies in front of the artery with
the arm in this position. The median and musculo-cutaneous nerves will be
found on the outer side, the ulnar nerve on the inner side of the artery, and the
musculo-spiral and circumflex nerves behind the vessel. The musculo-spiral and
circumflex nerves can be readily reached by drawing the coraco-brachialis muscle
and the brachial artery outward. These nerves are generally stretched in the arm
separately.

The course of the ulnar nerve in the lower part of the arm corresponds to a
line drawn from a point on the inner side of the insertion of the coraco-brachialis
to a point midway between the internal condyle of the humerus and the olecranon.
To expose the nerve an incision should be made along its course, beginning about
three inches above the internal condyle and extending to about one-half of an inch
above. The skin and superficial fascia are to be divided, with branches of the
internal and lesser cutaneous nerves, and small branches of the inferior profunda
and anastomotica magna arteries. Next, the deep fascia should be incised, thereby
exposing the internal intermuscular septum covering the inner head of the triceps
muscle. Now incise the intermuscular septum, when will be seen the inferior
profunda artery, which is readily located by its pulsations, and the ulnar nerve
lying to the inner side of the vessel.

The median nerve may be stretched at any part of its course in the arm.
At the bend of the elbow an incision should be made along the inner edge of the
biceps muscle, beginning about on a level with the tip of the internal condyle
of the humerus and extending downward for about two inches. The skin and
superficial fascia, branches of the internal cutaneous nerve, and small branches
from the anastomotica magna and anterior ulnar recurrent arteries will be divided.
The median basilic vein will be found lying on the inner side of, and parallel with,
the incision, and should be drawn to one side as soon as exposed. The deep fascia
and bicipital fascia should be divided in the line of the original incision and the
brachial artery exposed. The median nerve will be found on the inner side of the
artery.
The point of election for exposing the musculo-spiral nerve is immediately above the external condyle of the humerus. The incision is made parallel with the inner margin of the supinator longus muscle. Skin and superficial fascia will be divided, with cutaneous twigs of the musculo-spiral nerve and superior profunda artery. The deep fascia is incised in the line of the original incision, and the inner border of the supinator longus muscle exposed. At the bottom of the interval between this muscle and the brachialis anticus the nerve is found. The terminal portions of the superior profunda and radial recurrent arteries are in relation with the nerve in the interval.

To expose the radial nerve just above the middle of the forearm, an incision should be made in the line of the radial artery—namely, from the middle of the bend of the elbow to the radial pulse. At this point the nerve will be found on the outer side of the artery; but a short distance lower down, the nerve will be seen to leave the artery and pass to the posterior aspect of the forearm by going beneath the tendon of the supinator longus muscle. The incision divides the skin, superficial fascia, twigs of the anterior branch of the musculo-cutaneous nerve and of the anterior branch of the internal cutaneous nerve, and small branches of the radial artery. The deep fascia is then incised and the supinator longus muscle exposed. The muscle is drawn outward, and the radial artery located by its pulsations. The radial nerve will be found lying along the outer side of the artery.

The ulnar nerve is best exposed in the forearm by an incision made immediately above the wrist, to the outer side of, and parallel with, the tendon of the flexor carpi ulnaris. The skin, superficial fascia, twigs of the anterior branch of the internal cutaneous nerve, and a few small cutaneous arteries and veins will be divided. The deep fascia is incised and the tendon of the flexor carpi ulnaris exposed. This tendon should be drawn inward, and the ulnar artery located by its pulsations. The ulnar nerve will be found to the ulnar side of the artery.

The point selected in stretching the median nerve in the forearm is immediately above the wrist. The incision should be made parallel with the ulnar border of the tendon of the flexor carpi radialis; or, if the palmaris longus be present, between the tendons of these muscles. The skin, superficial fascia, twigs from the anterior branch of the internal cutaneous nerve, and a few small cutaneous arteries and veins will be divided. The deep fascia is incised and the tendon of the flexor carpi radialis exposed. This tendon should be drawn outward, when the nerve will be seen between the superficial and deep set of flexor tendons, to the radial side of the outermost tendon of the flexor sublimis digitorum. The median artery accompanies the nerve. At times this vessel is of considerable size, and assists in forming the superficial palmar arch in place of the ulnar artery.
The **brachial plexus of nerves and its large branches** are stretched for the relief of epileptiform convulsions following injury of the plexus or one of its branches; in epilepsy with a definite aura beginning in the upper extremity; in paralysis agitans following a nerve injury; for the relief of pain and anesthesia in anesthetic leprosy; and for the relief of pain and spasm of the muscles resulting from a contusion or a lacerated wound which has involved a nerve. Stretching of the involved nerve or nerves is not certain to afford permanent relief in any case, but the operation is more satisfactory in cases of irritation or sclerosis of the nerve from contusion or involvement of a lacerated wound in scar tissue.

Irritation of the **circumflex nerve** causes spasm of the deltoid and teres minor muscles, and pain over the deltoid and upper part of the triceps muscle. Irritation of the **musculo-spiral nerve** produces spasm of the triceps muscle, radial extensors, superficial extensors, and deep extensors, and pain in the back of the arm, outer side of the arm and forearm, radial side of the back of the hand, and in the dorsal surface of the thumb, of the index finger, of the middle finger, and of the radial side of the ring finger. Irritation of the **median nerve** causes spasm of the pronator radii teres, flexor carpi radialis, palmaris longus, flexor sublimis digitorum, flexor longus pollicis, radial side of flexor profundus digitorum, pronator quadratus, abductor pollicis, opponens pollicis, outer head of flexor brevis pollicis, and the two radial lumbricales muscles, and pain in the front of the wrist, palm of the hand, and anterior surface of the thumb, of the index finger, of the middle finger, of the radial side of the ring finger, and in the back of the middle finger over the two distal phalanges. Irritation of the **ulnar nerve** causes spasm of the flexor carpi ulnaris, ulnar side of flexor profundus digitorum, palmaris brevis, muscles of the hypotenar eminence, the two ulnar lumbricales, interossei muscles, adductor pollicis, and the inner head of the flexor brevis pollicis muscle, and pain in the ulnar side of the wrist, palm, and back of the hand, and in the palmar and dorsal aspects of the little finger and ulnar side of the ring finger.

Operation upon the **nerves of the upper extremity** in tetanus, tetany, and athetosis has not been mentioned, for it is generally conceded that little or nothing is gained by this procedure. Primary or secondary suture of any of the large nerves of the upper extremity may be required after solution of the continuity of the nerve.
OPERATIONS FOR EXPOSURE OF THIRD PART, AXILLARY ARTERY AND LARGE BRANCHES OF BRACHIAL, BRACHIAL ARTERY AND MEDIAN NERVE AT MIDDLE OF ARM, AND ULNAR NERVE IN LOWER ONE-HALF OF ARM.
THIRD PORTION.—AXILLARY ARTERY AND LARGE BRANCHES OF BRACHIAL PLEXUS.
BRACHIAL ARTERY AND MEDIAN NERVE AT MIDDLE OF ARM.
Internal intermuscular septum
Deep fascia
Superficial fascia
Skin
Inferior profunda a.
Ulnar n.
Triceps m.

Ulnar Nerve in Lower Half of Arm.
PLATE LXXXII.

DIAGRAM OF COLLATERAL CIRCULATION.

324
PLATE LXXXIII.

DIAGRAM OF COLLATERAL CIRCULATION.

Brachial a.
Ulnar a.
Radial recurrent a.
Anterior ulnar recurrent a.
Posterior ulnar recurrent a.
Radial a.
Common interosseous a.
Posterior interosseous recurrent a.
Anterior interosseous a.
Posterior interosseous a.
Muscular branches

Anterior radial carpal a.
Superficialis volae a
Dorsalis pollicis a.
Posterior radial carpal a.
Deep branch of ulnar a.
Princeps pollicis a.
Dorsalis indicis a.
Radialis indicis a.
Deep palmar arch

Superficial palmar arch

325
PLATE LXXXIV.

Deep fascia
Bicipital fascia
Biceps tendon
Superficial fascia — Deep fascia —
Supinator longus m.
Radial n.
Radial a.

Superficial fascia
Deep fascia
Supinator longus m.
Radial a.
Radial n.

Superficial fascia
Deep fascia
Radial a.
Radial n.

Superficial fascia
Deep fascia
Radial a.
Radial n.
Supinator longus tendon
Venae comites

Inner tendon of flexor sublimis digitorum

Superficial fascia
Brachial a.
Median n.
Venae comites

Venae comites
Pronator radii teres m.
Flexor carpi radialis m.

Flexor carpi radialis tendon
Superficial fascia
Deep fascia
Flexor carpi ulnaris tendon
Ulnar a.
Posterior carpal a.
Ulnar n.
Venae comites

BRACHIAL ARTERY AND MEDIAN NERVE AT ELBOW, RADIAL ARTERY AND RADIAL NERVE AT MIDDLE OF FOREARM, RADIAL ARTERY IN LOWER THIRD OF FOREARM, AND ULNAR ARTERY AND NERVE ABOVE WRIST.
BRACHIAL ARTERY AND MEDIAN NERVE AT ELBOW.
RADIAL ARTERY AND NERVE AT MIDDLE OF FOREARM.
PLATE LXXXVII.

Skin
Superficial fascia
Deep fascia
Radial a.
Radial venae comites
Flexor carpi radialis tendon
Supinator longus tendon
Extensor carpi radialis longior tendon

RADIAL ARTERY ABOVE WRIST.
PLATE LXXXVIII.

Skin
Superficial fascia
Deep fascia
Ulnar a.
Ulnar venae comites
Flexor carpi ulnaris tendon
Inner tendon of flexor sublimis digitorum m.
Ulnar n.

ULNAR ARTERY AND ULNAR NERVE ABOVE WRIST.
335
Line of incision for radial a.
Extensor ossis metacarpi pollicis tendon

Extensor primi internodii pollicis tendon
Extensor secundii internodii pollicis tendon
Radial a.

Extensor secundi internodii pollicis tendon
Branch of radial n.
Deep fascia

Superficial fascia
Extensor primi internodii pollicis tendon
Extensor ossis metacarpi pollicis tendon

RADIAL ARTERY IN "SNUFF-BOX."
339
PLATE XCII.

Subscapularis m.
Subscapular a.
Subscapular v.
Lower subscapular n.
Dorsalis scapulae a.
Teres major m.
Latissimus dorsi m.
Middle or long subscapular n.

Deep fascia
Superficial fascia

SUBSCAPULAR ARTERY, MIDDLE AND LOWER SUBSCAPULAR NERVES.
343
PLATE XCIII.

MUSCULO-SPIRAL NERVE ABOVE EXTERNAL CONDYLE OF HUMERUS.

345
MUSCULO-SPIRAL NERVE ABOVE EXTERNAL CONDYLE OF HUMERUS.

347
Superficial fascia

Median a.

Flexor carpi radialis tendon

Palmar cutan. br. of median n.

Deep fascia

Skin

Palmaris longus tendon

Flexor sublimis digitorum m.

Median n.
THE BACK OF THE NECK, SHOULDER, AND TRUNK.

Surface anatomy.—In the middle line, extending from the external occipital protuberance to the sacrum, is a longitudinal furrow, especially well pronounced in muscular subjects in the dorsal and lumbar regions. At the back of the neck it is called the nuchal, and below that point the spinal, furrow. It is produced by the presence of large muscular masses upon each side of the median line, and by the close adherence of the fasciae to the ligamentum nuchae and the supra-spinous ligaments. In the neck and dorsal region this groove lies between the trapezius muscles, and in the lumbar locality between the erector spinae muscles. The spinal furrow is deepest in the lower dorsal and the upper lumbar region and, as it descends toward the sacrum, where the erector spinae muscles are more tendinous, gradually fades away. A little above and external to the last spinous process of the sacrum (third sacral spine) is a depression which marks the position of the posterior superior spine of the ilium. At the bottom of the nuchal furrow the bifid spine of the axis, and less distinctly the spines of the third, fourth, and fifth cervical vertebrae, may be felt. The spines of the sixth and seventh cervical vertebrae stand out prominently. At the bottom of the spinal furrow the spinous processes of the dorsal, lumbar, and sacral vertebrae may be readily distinguished; they become more pronounced when the body is bent forward.

The scapula can be outlined at the back of the shoulder with facility in thin persons and with difficulty in obese persons. The vertebral border of the bone is felt at the side of the spinal furrow, and with the arm at the side of the body is parallel with the spinous processes of the vertebrae. During abduction of the arm, the inferior angle of the scapula glides forward and the vertebral border makes an increasing angle with the spinous processes of the vertebrae. The axillary border is indistinctly felt, and the superior border can not be palpated through the overlying muscles. When the arms are hanging by the side, the superior angle of the scapula is opposite the upper margin of the second rib, and the inferior angle overlies the seventh intercostal space. The inferior angle is a guide in the operations of aspiration or drainage of the pleural sac, which are performed in the fifth or sixth intercostal space at the side of the thorax. The spinous and acromion processes of the scapulae are subcutaneous and readily palpated, so that fractures of these processes are detected more easily than fractures of other portions of the scapula. The vertebral extremity of the spinous process is opposite the spinous process of the third thoracic vertebra, and the outer extremity joins the acromion process. The acromial angle is at the junction of the lower margin of the spinous process with the outer margin of the acromion process. From this angle the length of the upper extremity may be measured, the lower points selected being
the external condyle of the humerus and the styloid process of the radius, or the internal condyle of the humerus and the styloid process of the ulna.

Over the inner end of the spine of the scapula is a depression which marks the position of the flat, triangular tendon, into which the lower fibers of the trapezius muscle are inserted. Above the spine of this bone, extending to the sloping surface of the shoulder, is a rounded elevation, produced by the trapezius resting upon the levator anguli scapulae and supra-spinatus muscles.

When the patient is sitting and his arms hang between his thighs so as to depress the scapulae, the spines of those bones are almost opposite the fissures between the upper and lower lobes of the lungs. The location of these fissures is of importance in the diagnosis of lobar pneumonia.

The lower ribs can be felt at the back of the trunk, external to the erector spinae muscle. As the twelfth rib does not always extend beyond the outer margin of the erector spinae muscle, the ribs should be counted from above downward. Just below the last rib and external to the erector spinae muscle the kidney can be palpated and subjected to pressure.

In percussion or auscultation at the back of the chest, the patient should cross his arms and lean forward so that the scapulae will be carried forward, and uncover as much of the posterior surface of the chest as possible. Because of the presence of thick masses of muscular tissue in the vertebral grooves, there is at all levels dullness on percussion close to the spinous processes of the vertebrae.

The spines of the vertebrae lie in a straight line, and the spinal column presents no lateral curves. The back, like the spinal column, contains four antero-posterior curves—the cervical, thoracic, lumbar, and pelvic. The cervical curve of the spinal column is convex forward, the thoracic curve concave forward, the lumbar curve convex forward, and the pelvic curve, which is formed by the sacrum and coccyx, concave forward. As seen in viewing the surface of the back, the cervical curve is concave backward, the thoracic convex backward, the lumbar concave backward, and the pelvic convex backward.

Disease, overwork, or senility may alter the curves of the spinal column.

Kyphosis, or forward curvature of the spine, is seen in rickety children, in old persons, and in laborers who do heavy work. In rickets the bones, containing less earthy matter than in health, become so abnormally flexible that the weight of the head bends the spinal column forward. In old persons and in laborers the forward curvature is caused by thinning or compression of the intervertebral discs.

In lordosis the lumbar curve is exaggerated, and the depression in the lumbar region of the back is increased. This condition is seen in persons who, to retain their equilibrium, are compelled to throw the shoulders backward. It is observed in persons whose acetabula and hip-joints are situated unusually far
backward; in persons who, from spinal caries, have angular forward curvature of
the upper part of the thoracic region of the spine and are compelled to increase
the curve of the lumbar spine on account of the advanced position of the head and
shoulders; in pregnant women, and in obese persons.

Lateral curvature of the spinal column in children is caused by sitting in
one position for a long time; by an unequal length of the lower extremities, which
causes lateral inclination of the pelvis, and by empyema. Lateral curvature of
the spinal column from malposition is most common in girls who have less
exercise than boys and who are, therefore, more easily tired. If such a child sit
for a long time upon a seat not well designed for comfort, or at a desk which
is not of the proper height, the muscles of the back become tired, and the child
curves the back so that the weight will be supported by the spinal column
without much assistance from the muscles. By taking the child from school and
giving her plenty of muscular exercise, massage, and gymnastics, and avoiding
uncomfortable positions, the condition is corrected. If the lateral curvature be
produced by a short leg, a thick sole on the shoe of that leg will correct the
deformity of the spinal column. The most common condition which causes
shortening of one leg is hip disease. Nature tilts the pelvis to compensate for
the shortness of the affected limb, and laterally curves the spinal column so
that equilibrium may be maintained. When one lung is permanently collapsed
as a result of empyema, the pulmonary space of that side is diminished, the
ribs fall together, and the thoracic portion of the spinal column is curved.
Curvature of the thoracic portion necessitates compensatory curvature of the
lumbar portion of the spinal column. The concavity of the thoracic and the
convexity of the lumbar curvature are directed toward the affected side. In the
most common form of lateral curvature the thoracic region of the spinal column is
deflected to the right and the lumbar region to the left. A line drawn along the
tips of the spines of the vertebrae would be curved more than a line passing
through the centers of the bodies of the vertebrae; this difference is due to
rotation of the vertebrae so that the tips of the spines extend still farther in the
direction of the convexity of the curve. When the lateral curve of the thoracic
region of the spinal column is convex to the right, the right shoulder is elevated
and the left shoulder depressed; and if the thoracic region be deflected toward the
left side, the left shoulder is elevated and the right shoulder depressed.

Angular curvature of the spinal column is produced by caries of the
vertebrae. In this disease the bodies of some of the adjacent vertebrae are more
or less disintegrated by tubercular ulceration. Removal or softening of the
bodies of the vertebrae allows the superimposed weight to compress the bodies;
and as the vertebral arches are not compressible, the affected portion of the spinal
column is sharply curved forward and the spinous processes of the involved vertebrae project backward.

When caries of the vertebrae is rapidly progressing, abscess formation occurs. These pus collections are called cold abscesses because they are not associated with heat and redness.

In disease of the cervical vertebrae the pus accumulates behind the prevertebral fascia and the pharynx, forming a retro-pharyngeal abscess, which causes bulging in the posterior pharyngeal wall, and difficulty in respiration and deglutition. It may rupture into the pharynx, gravitate to the posterior mediastinum, or burrow outward to the posterior triangle of the neck, and even enter the axilla.

In caries of the dorsal vertebrae the pus usually gravitates to the diaphragm, passes under the internal arcuate ligament and the psoas fascia, and becomes a psoas abscess; or it burrows under the external arcuate ligament and the anterior lamella of the lumbar fascia, and forms a lumbar abscess. The pus may, however, ulcerate backward between the ribs, and cause a swelling in the back; or it may follow the ribs and intercostal muscles forward, and produce a swelling at the side or front of the chest. Rarely, one of these abscesses may rupture into the esophagus, pleura, lung, or pericardium.

In caries of the lumbar vertebrae the pus usually enters the sheath of the psoas muscle, and forms a psoas abscess. It gravitates downward under the psoas division of the iliac fascia. After passing under Poupart's ligament it produces a swelling at the outer side of the femoral sheath, where the psoas and the iliacus muscles approach the surface, from a common tendon, and occupy a common fascial compartment. These abscesses may, however, ulcerate through the iliac fascia and open into the peritoneal cavity, the ascending or descending colon or other portions of the bowel, the ureter, or the bladder. The pus sometimes passes under the anterior lamella of the lumbar fascia into the sheath of the quadratus lumborum muscle, and forms a lumbar abscess. This abscess may ulcerate through the middle and posterior lamellae of the lumbar fascia and into the triangle of Petit, and produce a swelling near the middle of the crest of the ilium. From this description it may be understood how caries of the upper regions of the spinal column may produce a lumbar or a psoas abscess.

The spines of the vertebrae may be used as landmarks in locating various structures. It should be remembered, however, that the tips of the spinous processes in the thoracic region, with the exception of the eleventh and twelfth, are not opposite the bodies of the corresponding vertebrae.

The sixth cervical spine is situated opposite the cricoid cartilage and the commencement of the esophagus.
PLATE XCVII.

Early Lumbar caries
Normal Curve Effaced

Normal Curve

Advanced dorsi-Lumbar
Caries Angular Curvature.
The seventh cervical spine corresponds to the highest level of the apices of the lungs.

The third thoracic spine lies opposite the point where the aorta approaches the spinal column, the highest level of the lower lobes of the lungs, and the bifurcation of the trachea.

The fourth thoracic spine is located opposite the point of termination of the arch of the aorta and the highest level of the heart.

The eighth thoracic spine marks the lowest level of the heart and the level of the central tendon of the diaphragm.

The ninth thoracic spine marks the level of the cardiac orifice of the stomach and the upper limit of the spleen.

The tenth thoracic spine locates the lowest level of the bases of the lungs and the level at which the liver reaches the abdominal walls posteriorly.

The eleventh thoracic spine locates the lower limit of the spleen, the position of the supra-renal capsule, and the upper border of the right kidney.

The twelfth thoracic spine is on a level with the lowest part of the pleurae, the aortic opening of the diaphragm, and the pylorus.

The spine of the first lumbar vertebra is situated opposite the renal vessels, the pelvis of the ureter, and the pancreas.

The second lumbar spine lies opposite the end of the spinal cord, the third portion of the duodenum, and the receptaculum chyli.

The third lumbar spine is found just above the level of the umbilicus and below that of the lower border of the right kidney.

The fourth lumbar spine is located opposite the bifurcation of the aorta and the highest part of the crests of the ilia.

The fifth lumbar spine marks the origin of the inferior vena cava.

The third sacral spine lies opposite the termination of the sigmoid flexure and the lowest level of the spinal membranes.

The tip of the coccyx marks the junction of the first and second portions of the rectum.

The origins of the spinal nerves will not be found opposite their correspondingly numbered vertebrae, but as follows: The eight cervical nerves arise above the sixth cervical spine, the upper six thoracic nerves between the sixth cervical and fourth thoracic spines, the lower six thoracic nerves between the fourth and eleventh thoracic spines, the five lumbar nerves between the eleventh and twelfth thoracic spines, and the five sacral nerves between the last thoracic and first lumbar spines.

The positions of the primary bronchi are indicated by lines extending from the third thoracic spine, or a point a little below it, to the dimple in the skin
over the root of the spine of the scapula. Sounds are heard more clearly in the right bronchus because it lies nearer the back of the chest.

The kidneys are situated opposite the lower two ribs, with their inferior ends projecting below the twelfth rib; to ascertain if any tenderness exist in the diseased organ, pressure may be made upon it just under the last rib, external to the erector spine muscle. This, too, is the site selected when operating for removal of, and in exploratory operations upon, the kidney through the back. The right kidney is lower than the left, more than half of it projecting below the last rib.

The iliac crest at its highest point is located about opposite the fourth lumbar spine.

The external surface of the spleen is directed outward and backward. This organ lies beneath the ninth, tenth, and eleventh ribs, from which it is separated by the peritoneum, diaphragm, the lower portion of the left lung, and the two layers of the left pleura. It holds an oblique position; its long axis almost corresponding to the line of the tenth rib.

To either side of the spinal furrow in the upper part of the back are the scapulae, or shoulder blades, covered by the trapezius, deltoid, supra-spinatus, infra-spinatus, and latissimus dorsi muscles. The scapula cover the ribs from the second to the seventh inclusive. The parts of the scapula most readily felt are the spine and the acromion process, both of which are subcutaneous. The position of the acromion is marked by a depression when the arm is elevated, and in muscular subjects with the arm hanging loosely.

At the junction of the outer border of the acromion with the lower border of the spine is found the acromial angle, from which point measurements are taken to determine the comparative lengths of the upper extremities. At the inner end of the spine of the scapula is a depression which corresponds to the triangular tendon into which the lower fibers of the trapezius muscle are inserted.

The sloping superior surface of the shoulder is formed by the trapezius which covers the supra-spinatus and levator anguli scapulae muscles.

The inferior angle of the scapula lies opposite the seventh intercostal space, and therefore constitutes a landmark in locating the seventh rib. This angle is covered by the latissimus dorsi muscle, which assists in holding the bone against the chest wall. Projection of this angle and of the vertebral border of the bone results from atrophy of the muscle covering it and of the serratus magnus, as in emaciated individuals. This deformity is known as "winged scapula," and is produced by paralysis or weakness of the serratus magnus and latissimus dorsi muscles. One of the functions of these muscles is to retain the vertebral border of the scapula in contact with the chest, and hence when it—either or both—is paralyzed this abnormality follows. The vertebral border of the scapula can be traced upward
RELATION OF VISCERA OF THORAX AND ABDOMEN TO BONY PROMINENCES OF BACK.

363
INCISIONS FOR DISSECTION.

365
from the inferior angle, and with the arm hanging by the side of the body is nearly parallel to the spinal furrow. At the upper extremity of this border the superior angle of the scapula can be distinguished. With the arm at the side of the body the superior angle of the scapula is opposite the upper border of the second rib and on a level with the interval between the spines of the first and second thoracic vertebrae. The superior border of the scapula can but seldom be felt, on account of the thickness of the overlying muscle. The axillary border of the scapula can be indistinctly felt through its thick muscular covering.

The movements of the scapula are those of gliding upward and downward, as in shrugging the shoulders; backward and forward, as in moving the shoulders in those directions; and a gliding rotatory motion, as when the arm is fully abducted. These movements are best studied in the living subject. On account of the great mobility of the scapula ankylosis of the shoulder-joint does not occasion so much disability as might be expected. In physical examination of the chest posteriorly the patient should fold the arms across the chest, in order to bring the scapulae forward and uncover as much of the chest wall as possible.

The ribs should always be counted from above downward, as the twelfth rib may not project beyond the outer margin of the erector spinae muscle and therefore will not be felt distinctly.

Dissection.—Place the body, face downward, upon the table, with a block under the chest and one under the pelvis so as to curve the back and permit the head to hang low enough to make the structures of the back tense. The arms should be allowed to hang over the sides of the table to make the structures between the shoulders tense. Carry an incision from the external occipital protuberance down the median line of the back to the sacrum. From the upper end of this incision make another outward over the superior curved line of the occipital bone. Make a third incision from the acromion over the spine of the scapula to the first incision; and, lastly, one from the lower end of the longitudinal cut along the sacro-iliac junction and over the crest of the ilium. Reflect the segments of skin outward; the superficial fascia will then be exposed, with its vessels and nerves, all of which are small.

In the back of the neck and upper part of the back the arteries and nerves appear at the side of the vertebral spines near the middle of the back and extend, mainly, outward. The arterial blood of the back of the neck is derived from the occipital, the princeps cervicis, the posterior scapular, and the superficial cervical arteries; of the back of the shoulder and upper part of the back from the posterior scapular, supra-scapular, dorsalis scapulae, and intercostal arteries; and of the middle and lower part of the back from the posterior, or dorsal, branches of the
intercostal and lumbar arteries. Branches of the posterior primary divisions of
the spinal nerves furnish the nerve supply.

The posterior primary branches of the spinal nerves, with the exception of
the first cervical nerve (suboccipital), the fourth and fifth sacral, and the coccy-
egal nerves, divide into external and internal branches; each primary branch
supplies sensory fibers to the skin in each region of the back. Both the external
and internal branches supply nerves to the muscles of the back.

The external branches in the cervical region supply the muscles, while the
internal branches of the second, third, fourth, and fifth nerves supply the skin,
fasciae, and muscles. The internal branch of the posterior division of the second
cervical nerve, the great occipital, pierces the complexus and trapezius muscles
and ramifies, with the occipital artery, in the superficial fascia of the back of
the scalp. The internal branches of the third, fourth, and fifth cervical nerves,
after supplying the adjacent muscles, pierce the trapezius muscle near the liga-
mentum nuchae and pass outward to supply the skin and fasciae over that muscle.
The internal branch of the third cervical nerve is directed toward the scalp,
and is called the smallest or third occipital nerve. The branches of the sixth,
seventh, and eighth cervical nerves supply the adjacent muscles.

In the thoracic region the external branches of the posterior divisions of the
upper six thoracic nerves supply the muscles, while the same branches of the
lower six, after supplying the muscles, pierce the latissimus dorsi near the angles
of the ribs to furnish nerves to the skin. The internal branches of the posterior
divisions of the upper six thoracic nerves supply the muscles of the back, and
pierce the trapezius near the spinous processes to supply the skin. The internal
branches of the lower six thoracic nerves supply the muscles, and send small twigs
to the skin.

The external branches of the posterior divisions of the first three lumbar
nerves supply the adjacent muscles, become subcutaneous at the outer border of
the erector spinae, and pass over the crest of the ilium to supply the skin of the
gluteal region; the corresponding branches of the fourth and fifth lumbar nerves
supply the erector spinae muscle. The internal branches of the posterior division
of the lumbar nerves are small; they supply the multifidus spinae muscle.

The posterior primary divisions of the upper four sacral nerves emerge at the
posterior sacral foramina, while the posterior division of the fifth emerges between
the sacrum and coccyx.

The posterior divisions of the upper three sacral nerves divide into external
and internal branches, while the lower two sacral and the coccygeal nerves do not
divide. The external branches of the posterior divisions of the upper three
sacral nerves form loops upon the back of the sacrum between themselves and the
PLATE CI.

CUTANEOUS NERVES OF BACK

369
THE BACK OF THE NECK, SHOULDER, AND TRUNK.

external branch of the last lumbar nerve, and upon the posterior surface of the
great sacro-sciatic ligament form a second series of loops. From these loops are
derived two or three nerves which pierce the gluteus maximus to supply the
integument. The internal branches of the posterior divisions of the upper three
sacral nerves supply the multifidus spinæ muscle. The posterior divisions of
the lower two sacral nerves form loops with the coccygeal nerve and the
posterior branch of the third sacral. Branches from these loops supply the
skin over the coccyx.

Cutaneous nerves.—The skin of the back is supplied, in the *cervical region,*
by the internal branches of the posterior divisions of the second, third, fourth, and
fifth cervical nerves; in the *thoracic region* by the internal branches of the posterior
divisions of the upper six thoracic nerves, and the internal and external branches
of the posterior divisions of the lower six thoracic nerves; in the *lumbar region,*
by the external branches of the posterior divisions of the upper three lumbar
nerves; over the *sacrum* and *coccyx,* by the external branches of the posterior
divisions of the last lumbar nerve, upper three sacral nerves, the posterior divisions
of the lower two sacral nerves, and by the coccygeal nerve.

The cutaneous nerves are accompanied by the cutaneous branches of the
dorsal branches of the intercostal and lumbar arteries.

Dissection.—The superficial fascia is to be reflected after making incisions
similar to those made in the removal of the skin.

The **deep fascia,** dense and fibrous, invests the superficial muscles of the back
(trapezius and latissimus dorsi). It is continuous with all the adjacent deep fasciae,
and is attached to the following bony prominences of the back: The spines of
the vertebrae with the intervening supra-spinous ligaments, the sacrum, the iliac
crests, spines of the scapulae, and the superior curved ridges of the occipital bone.
In the lumbar region the deep fascia blends with the glistening triangular
aponeurosis of the latissimus dorsi muscle, which aponeurosis extends from the
iliac crest and sacrum as high as the spine of the seventh thoracic vertebra.
This aponeurosis should be preserved, as it constitutes the superficial, or posterior,
layer of the lumbar fascia. The aponeurosis of the latissimus dorsi muscle is
pierced at the outer border of the erector spinæ muscle by cutaneous branches
of the posterior divisions of the lumbar nerves.

Dissection.—The superficial layer of the deep fascia is to be reflected after
making incisions similar to those made in removing the skin and superficial fascia.
This exposes, in the neck, the trapezius muscle, with the occipital triangle, and the
sterno-clëido-mastoid muscle on its outer side; at the level of the shoulders the
trapezius muscle, spine of the scapula, deltoid and teres major muscles, the infra-
spinous fascia which covers the infra-spinatus and teres minor muscles; below the
level of the shoulders, the lower part of the trapezius muscle, the latissimus dorsi and its aponeurosis, and the posterior fibers of the external and internal oblique muscles.

The **trapezius** is a broad, flat muscle, triangular in outline, with the base of the triangle directed toward the spines of the vertebrae and the apex toward the summit of the shoulder. It is one of the most extensive muscles of the body. It arises from the inner one-third of the superior curved line of the occipital bone, the external occipital protuberance, the ligamentum nuchae, the spinous process of the seventh cervical vertebra (vertebra prominens), the spinous processes of all the thoracic or dorsal vertebrae, and from the intervening supra-spinous ligaments. From this extensive origin its fibers converge outward to the top of the shoulder. It is inserted into the contiguous margins of the clavicle, acromion process, and spine of the scapula, being attached to the outer one-third of the posterior border and upper surface of the clavicle, to the inner border of the upper surface of the acromion process, and to the entire length of the upper margin of the spine of the scapula. The lowermost fibers form a triangular aponeurosis at the base of the spine of the scapula, over which it glides to be inserted into a tubercle at the inner extremity of the spine. Between the base of the spine of the scapula and the tendon is a small synovial bursa, which facilitates the movements of the tendon. The muscle is tendinous at its attachments, and is lusterless and adherent to the skin in the occipital region, while between the sixth cervical and third thoracic spines the aponeurosis of origin is semi-elliptic, forming a complete ellipse with its fellow of the opposite side. The two trapezii form a diamond-shaped quadrangle,—a trapezium (hence the name),—with the lateral angles at the shoulders and the vertical angles at the occiput and twelfth dorsal spine.

The trapezius muscle is subcutaneous throughout its entire extent; in the neck it rests upon the complexus, splenius capitis et colli, levator anguli scapulae, and rhomboideus minor muscles; and in the back upon the rhomboideus major, supra-spinatus, infra-spinatus, part of the serratus posticus superior, latissimus dorsi muscles, and the vertebral aponeurosis. Its anterior cervical border forms the posterior boundary of the posterior common triangle of the neck, and is nearly parallel with the posterior fibers of the sterno-cleido-mastoid muscle.

Blood Supply.—From the princeps cervicis, superficial cervical, and posterior scapular arteries.

Nerve Supply.—From the spinal accessory nerve and deep branches of the cervical plexus which enter the muscle beneath its anterior margin near the clavicle.

Action.—The upper fibers elevate the outer end of the clavicle and the point of the shoulder; acting from their insertion they rotate the head, draw it to the
same side, and extend the neck. The middle fibers draw the scapula toward the spines of the vertebrae, and rotate it so as to raise the point of the shoulder. The lower fibers draw the shoulder blade inward and downward, and rotate it so as to elevate the point of the shoulder. Acting as a whole, the two muscles draw the scapulae nearer together; elevate the point of the shoulder, and extend the neck, as in opisthotonos.

The ligamentum nuchae is a fibro-elastic band extending from the external occipital protuberance to the spine of the seventh cervical vertebra, where it is continuous with the supra-spinous ligaments of the back. Fibrous extensions from it to the underlying spines of the cervical vertebrae form a septum between the muscles of the two sides of the back of the neck. It is almost rudimentary in man, but in the living body can be identified through the skin by dropping the head forward and allowing it to hang by its own weight, when the ligament can be demonstrated. In the lower animals, such as the horse, the ligamentum nuchae holds the head up without any effort; in fact, muscular force is required to carry the head to the ground and hold it there, as in grazing.

The latissimus dorsi is a broad, flat, triangular muscle, with an elongated and twisted apex. It lies upon the lower portion of the back and outer side of the chest, covering a part of the side of the latter structure and all of the back from the level of the sixth thoracic vertebra to the crest of the ilium.

This muscle arises by an aponeurosis from the spinous processes of the lower six thoracic, the lumbar, and the sacral vertebrae, the intervening supra-spinous ligaments, the back of the sacrum, and the posterior one-third of the outer lip of the crest of the ilium, and from the lower three or four ribs by fleshy finger-like bands which interdigitate with similar processes of the external oblique muscle. Its sacral origin is in common with that of the erector spinae muscle, and its aponeurosis is the posterior layer of the lumbar fascia. Its fibers converge to the common tendon. The upper fibers pass horizontally outward over the inferior angle of the scapula; the middle, obliquely upward and outward; and the lower, almost vertically upward. At the side of the chest they form a long, thick, fleshy mass, which sometimes receives an additional slip from the inferior angle of the scapula and passes along the axillary border of that bone in contact with the teres major muscle, around which the latissimus dorsi turns. It is inserted into the bottom of the bicipital groove between the insertions of the teres major and pectoralis major muscles by a flat tendon about three inches long. Near its insertion it twists upon itself so that the lower fibers are inserted highest, and the upper ones lowest. The inferior margin of the tendon is united to that of the teres major muscle, a bursa usually existing between the two. Sometimes there is another bursa between this muscle and the lower angle of the scapula. As it
turns around the teres major it forms with that muscle the posterior fold of the axilla.

The latissimus dorsi muscle is subcutaneous throughout its entire extent, except at that portion of its origin where it is overlapped by the trapezius muscle. It lies, from below upward, upon the vertebral aponeurosis which covers the erector spinae muscle and its upward continuations, the serratus posticus inferior muscle, lower ribs, external intercostal muscles, serratus magnus muscle, inferior angle of the scapula, rhomboideus major, infra-spinatus, and teres major muscles. Just above the crest of the ilium there appears, except in very muscular subjects, a triangular interval (triangle of Petit), which is bounded below by the crest of the ilium, behind by the anterior border of the latissimus dorsi muscle, and in front by the posterior border of the external oblique muscle. Its floor is formed by the internal oblique muscle. This triangle is not present in very muscular subjects, because the posterior border of the external oblique muscle is overlapped by the latissimus dorsi muscle. When the arm is abducted, a small triangular interval exists between the upper border of the latissimus dorsi muscle, the vertebral border of the scapula, and the trapezius muscle. In the floor of this triangle are found the lower part of the rhomboideus major muscle and the sixth intercostal space. With the exception of the median line of the sternum, this is the only part of the wall of the thorax which is not covered by muscle.

Nerve Supply.—From the long subscapular nerve.

Blood Supply.—From the subscapular artery.

Action.—It is an internal rotator of the humerus and draws the arm downward and backward. Acting from its insertion it elevates the lower ribs, as in forced inspiration, laterally flexes the spinal column, and draws the trunk and pelvis forward and upward, and hence is much used in horizontal-bar exercise and climbing. It is well developed in swimmers, as it draws the arm downward and at the same time rotates it inward.

Dissection.—The trapezius muscle should now be cut through about one and one-half inches from its vertebral attachment and reflected outward, carrying with it the deep layer of the deep fascia which covers the under surface of the muscle. Dissection of the deep surface of the trapezius muscle will demonstrate the presence of the spinal accessory nerve, branches of the cervical plexus, and the terminal portion of the superficial cervical artery. The nerve filaments join to form the subtrapezial plexus, twigs from which supply the muscle. In close relation with the lower portion of the spinal accessory nerve is the superficial cervical artery, which, if traced downward to the anterior border of the trapezius muscle, will be seen to arise from the transversalis colli artery.

Reflection of the trapezius muscle will expose a group of three muscles
attached to the posterior, or vertebral, border of the scapula: The levator anguli scapulae, above the base of the spine; the rhomboideus minor, opposite the base of the spine; and the rhomboideus major, below the base of the spine. The posterior belly of the omo-hyoid muscle, which arises from the upper border of the scapula internal to the supra-scapular notch, will also be seen.

The levator anguli scapulae muscle arises from the posterior tubercles of the transverse processes of the upper four cervical vertebrae by four tendinous slips. These slips unite to form a flat, fleshy mass, which passes down the back of the side of the neck to be inserted into the vertebral border of the scapula above the base of the spine. Its superficial surface is in relation with the deep fascia of the neck, the middle scalene, the trapezius, and sterno-mastoid muscles, the internal jugular vein, the spinal accessory nerve, and some of the descending branches of the cervical plexus. It rests upon the splenius colli, transversalis colli, cervicalis ascendenis, and serratus posticus superioris muscles, and the posterior scapular vessels.

Blood Supply.—From the vertebral, ascending cervical, superficial cervical, and posterior scapular arteries.

Nerve Supply.—From the fifth cervical nerve, and additional filaments from the deep branches of the cervical plexus.

Action.—This muscle draws the upper angle of the scapula upward and forward, at the same time rotating that bone so as to depress the summit of the shoulder. Acting from its insertion, it inclines the neck to one side and extends it.

The rhomboideus minor is a small, flat, ribbon-like muscle arising from the lower end of the ligamentum nuchae, the last cervical and first thoracic spines, and the supra-spinous ligament. It extends obliquely downward and outward, and is inserted into the vertebral border of the scapula opposite the base of the spine. It is covered by the trapezius muscle, and lies upon the serratus posticus superioris and intercostal muscles, the posterior scapular artery, and the ribs.

Blood Supply.—From the posterior scapular artery.

Nerve Supply.—From a branch of the fifth cervical nerve which will be seen beneath the rhomboidei.

Action.—It draws the scapula upward and inward toward the spinal column.

The rhomboideus major muscle lies below the rhomboideus minor, and is about three times as broad. It arises from the upper four or five thoracic spines and their supra-spinous ligaments, and is inserted into the vertebral border of the scapula opposite the infra-spinous fossa.

This muscle and the rhomboideus minor have similar relations, except that the former covers part of the splenius colli, the vertebral aponeurosis, and the erector spinae muscle.
Blood Supply.—From the posterior scapular artery.

Nerve Supply.—From a branch of the fifth cervical nerve.

Action.—It draws the scapula upward and inward toward the spinal column, and rotates the scapula so as to depress the summit of the shoulder.

Dissection.—The fatty tissue covering the posterior belly of the omohyoid muscle should be removed, when this muscle will be seen to arise from the superior border of the scapula immediately internal to the supra-scapular notch, and in part from the ligament converting the notch into a foramen. It passes forward and upward into the neck.

Divide the posterior belly of the omohyoid muscle a short distance above its origin and reflect it upward. This will expose the supra-scapular artery and nerve on their way to enter the supra-scapular fossa.

Before dividing the levator anguli scapulae and rhomboidei muscles the dissector should turn his attention to the cap of the shoulder, as this covers many of the structures to be considered.

The cap of the shoulder is formed by the deltoid muscle, which is covered by a part of the deep fascia called the deltoid aponeurosis. This aponeurosis is thick and strong, and sends many septa between the bundles of fibers of the muscle. The fascia is continuous with that covering the pectoralis major muscle in front and the infra-spinatus muscle behind, and is attached to the clavicle, acromion, and spine of the scapula.

The deltoid muscle resembles an inverted triangle with an indented base; or the Greek ά inverted; hence its name, delta-like. It arises from the shoulder girdle opposite the insertion of the trapezius muscle, and so marked is this that the clavicle and acromion process and spine of the scapula seem but bony interruptions in one grand trapezo-deltoid muscle which is inserted into the middle of the humerus. It arises from the outer one-third of the anterior border of the clavicle, the outer border and superior surface of the acromion process, and the entire lower border of the spine of the scapula. From these points its fibers converge to form a thick, short tendon, which is inserted into the middle of the outer side of the shaft of the humerus opposite the insertion of the coracobrachialis muscle. Its fibers are irregular in direction, presenting a twisted appearance, and coiling behind one another. There are several main bundles. Many tendinous intermuscular septa subdivide it, giving insertion to some of its fibers and origin to others, the largest bundle coming from the tip of the acromion. On account of these tendinous septa the deltoid resembles the gluteus maximus muscle. It rounds off the shoulder. Superficially, this muscle is related to the platysma, deep fascia, and supra-acromial nerves. It almost completely envelopes the shoulder-joint, and is separated from the greater tuberosity of the humerus by
a large sacculated bursa. It covers the coracoid process of the scapula, the tendons of the pectorales major and minor, the coraco-brachialis, the subscapularis, the short and long heads of the biceps, the supra-spinatus, the infra-spinatus, the teres minor, the long and outer heads of the triceps, the coraco-clavicular and coraco-acromial ligaments, the circumflex vessels and nerve, and the upper end of the humerus. Anteriorly, it adjoins the upper, outer margin of the pectoralis major muscle, with which it forms the delto-pectoral sulcus in which is lodged the cephalic vein and the descending branch of the acromio-thoracic artery. Abscess of the shoulder-joint, or the subdeltoid bursa, rarely burrows through the substance of this muscle but usually points at one of its borders.

Atrophy of the deltoid muscle causes the acromion process to appear more prominent, and a depression to exist beneath it. This condition is caused by disuse, as in ankylosis of the shoulder-joint; more frequently by diseases of the spinal cord, as acute anterior polio-myelitis; by ascending neuritis of the circumflex nerve, usually due to disease of the shoulder-joint and causing paralysis of the muscles; and by injury of the circumflex nerve, by a blow or fracture of the upper part of the humerus. A careless observer might regard a case of atrophy of the deltoid one of dislocation of the head of the humerus.

Blood Supply.—From the acromio-thoracic, the anterior and posterior circumflex arteries.

Nerve Supply.—From the circumflex nerve.

Action.—It is by no means simple in its action. The whole muscle abducts the arm, raising it to a right angle with the body. The posterior fibers retroduct the arm and rotate it outward; and the anterior fibers draw the arm forward and rotate it inward. Thus this muscle draws the arm forward, backward, or outward, and rotates it inward or outward.

Dissection.—Divide the deltoid muscle about one inch from its origin, and reflect it downward. This will expose the structures already enumerated as in relation with its under surface. When reflecting the muscle, the bursa separating the deltoid muscle from the acromion process and the greater tuberosity may have been opened; but if it be still intact, it should be incised and its extent carefully noted by passing the finger into it. In some injuries of the shoulder this bursa may be affected by traumatic bursitis, with marked increase of the fluid contents of the sac. This would cause much prominence of the shoulder cap, and the consequent increased pressure would account for much of the pain experienced upon movement of the arm.

Divide the latissimus dorsi muscle just above the level of the inferior angle of the scapula, and reflect the two portions. The lower portion of the muscle should not be reflected beyond its aponeurosis.
Circumflex arteries and nerve.—The anterior and posterior circumflex arteries and the circumflex nerve, which have been described with the dissection of the axilla, will be seen on the under surface of the reflected deltoid muscle.

The teres major muscle arises from the lower part of the axillary border of the scapula, from the back of the inferior angle of the scapula, and from the fibrous septum between the teres major and the teres minor muscle. It passes upward and outward, and forms a short, flat tendon, which is inserted into the posterior bicipital ridge of the humerus behind the tendon of the latissimus dorsi muscle, from which it is separated by a bursa.

Blood Supply.—From the subscapular and posterior circumflex arteries.

Nerve Supply.—From the lower subscapular nerve.

Action.—It assists the latissimus dorsi muscle in adducting the arm and rotating it inward; if the arm be fixed upward and forward, it rotates the scapula by drawing the lower angle forward; and if the scapula also be fixed, it assists the latissimus dorsi muscle in drawing the trunk upward and forward, as in climbing.

The infra-spinous fascia is a dense membrane which covers the infra-spinatus and teres minor muscles. It is attached to the circumference of the infra-spinous fossa, and gives origin to some of the fibers of the muscles which it covers. At the outer border of the deltoid it gives off a process which passes over that muscle. This fascia must be removed to expose the underlying muscles.

The teres minor muscle hugs the axillary border of the scapula. It arises from the upper two-thirds of the dorsal surface of this margin. There is an aponeurotic lamina between it and the teres major muscle, and a lamina between it and the infra-spinatus muscle. It passes upward and outward, slightly diverging from the teres major muscle, and is inserted into the lowermost of the three facets upon the greater tuberosity of the humerus and the bone just below it. It is covered by infra-spinous fascia, the deltoid muscle, and the deep fascia, while beneath it are the scapula, the dorsalis scapulae artery, the long head of the triceps muscle, the teres major and the subscapularis muscle, and the back of the shoulder-joint. Its upper border is in contact with the infra-spinatus muscle, while the lower border assists in forming the upper boundary of the subscapular triangle.

Blood Supply.—From the posterior circumflex and dorsalis scapulae arteries.

Nerve Supply.—From the circumflex nerve.

Action.—It is an external rotator of the humerus, adducts it, protects the back of the shoulder-joint, and aids in holding the head of the humerus in place.

The long head of the triceps muscle is seen arising from the axillary border of the scapula just below the glenoid fossa. It passes downward toward the back of the arm, between the two teres muscles, and through the triangular space formed by
PLATE CIII.

POST-SCAPULAR MUSCLES AND TRICEPS MUSCLE.

381
their divergence (the teres minor being behind and the teres major in front), subdividing this interval into an inner triangular and an outer rectangular space. (See Dissection of Axilla.) The former gives passage to the dorsalis scapulae vessels, and the latter to the posterior circumflex vessels and the circumflex nerve.

The **scapula** has two dorsal fosse, separated by the spine of the bone, and one anterior, or ventral, making three in all, from each of which arises a muscle; these muscles are known as the supra-spinatus, infra-spinatus, and subscapularis.

The **infra-spinatus muscle**, thick and triangular, arises from the inner two-thirds of the infra-spinous fossa, the under surface of the spine of the scapula, the infra-spinous fascia, and the septum separating it from the teres major and teres minor muscles. Its fibers converge to a tendon which passes below the concave outer border of the spine of the scapula, and crosses the shoulder-joint to be inserted into the middle facet upon the greater tuberosity of the humerus. A bursa, which sometimes communicates with the shoulder-joint, occasionally exists between the tendon and the outer border of the spine of the scapula. This muscle is covered by the **infra-spinous fascia**, which sends fibrous septa between it and the two teres muscles, and is continuous with the deep fascia of the arm. It is also covered by the deltoid, trapezius, and latissimus dorsi muscles. Beneath it lie the scapula, the supra-scapular vessels and nerve, the dorsalis scapulae vessels, and the capsule of the shoulder-joint. External to it are the teres major and teres minor muscles.

Blood Supply.—From the dorsalis scapulae and supra-scapular arteries.

Nerve Supply.—From the supra-Scapular nerve.

Action.—It rotates the humerus outward, adducts it, and aids in holding the head of the bone in place.

Dissection.—The acromial end of the clavicle and the acromion process should be removed so as to fully expose the top of the shoulder-joint, and afford a clearer view of the muscles inserted into the greater tuberosity of the humerus.

The **supra-spinous fascia** is a dense membrane covering the supra-spinatus muscle, and giving origin to some of its fibers. It is very thick internally but less so under the coraco-acromial ligament. It is attached to the margins of the supra-spinous fossa, and must be removed to expose the supra-spinatus muscle.

The **supra-spinatus muscle** fills the supra-spinous fossa, and arises from its inner two-thirds, the upper surface of the spine of the scapula, and the fascia covering the muscle. Its fibers converge into a short, stubby tendon which crosses the top of the shoulder-joint under the acromion process, to be attached to the uppermost of the three facets upon the greater tuberosity of the humerus. It is closely adherent to the capsule of the shoulder-joint. Superficial to it are the thick and dense supra-spinous aponeurosis, the trapezius muscle, clavicle, acromion, coraco-acromial ligament, and deltoid muscle; under it are the capsule of the
shoulder-joint, the supra-scapular vessels and nerve, the omo-hyoid muscle, and the scapula.

Blood Supply.—From the supra-scapular artery.

Nerve Supply.—From the supra-scapular nerve.

Action.—It assists the deltoid muscle in abducting the arm, and holds the head of the humerus in contact with the glenoid fossa.

Dissection.—Having carefully studied the muscles just described, the dissector, in order to obtain a better view of the vessels and nerve which pass beneath them, should divide the levator anguli scapulae muscle near its attachment to the base of the scapula and reflect it upward; the infra-spinatus and supra-spinatus muscles should be divided near their insertions and reflected inward; divide the rhomboidei muscles near their insertion and reflect them outward; then divide the teres minor muscle near its insertion and reflect it downward.

The posterior scapular artery, one of the terminal branches of the transversalis colli, runs beneath the vertebral border of the scapula, between the levator anguli scapulae and the rhomboidei muscles behind and the serratus magnus muscle in front, to the inferior angle of that bone, where it anastomoses with the terminal portion of the subscapular artery. In its course it gives off numerous branches, which ramify on the dorsal and ventral aspects of the scapula. These branches supply the rhomboidei, supra-spinatus, infra-spinatus, trapezius, and latissimus dorsi muscles. They anastomose with the supra-scapular, dorsalis scapulae, subscapular, and branches of the intercostal arteries. The posterior scapular often arises from the third portion of the subclavian artery. The nerve to the rhomboidei muscles accompanies this artery.

The supra-scapular artery, a branch of the thyroid axis, after passing along the under surface of the posterior belly of the omo-hyoid muscle enters the supra-spinous fossa by passing over the transverse ligament. It traverses that fossa beneath the supra-spinatus muscle and passes around the outer border of the spine of the scapula and enters the infra-spinous fossa. Within these fossae it supplies the supra-spinatus and infra-spinatus muscles, and anastomoses with the posterior scapular and dorsalis scapulae arteries.

The supra-scapular nerve accompanies the supra-scapular artery, but passes through the supra-scapular notch beneath, and not over, the transverse ligament. It supplies twigs to the supra-spinatus muscle and the shoulder-joint, and passes into the infra-spinous fossa together with the supra-scapular artery, terminating in the infra-spinatus muscle.

The dorsalis scapulae, a branch of the subscapular artery, enters the infra-spinous fossa by winding around the axillary border of the scapula under the teres minor muscle. It supplies the infra-spinatus muscle and anastomoses with
the supra-pectoral and posterior scapular arteries. It sends a branch along the axillary border of the scapula, between the teres major and minor muscles, to the posterior surface of the inferior angle of that bone, where it again anastomoses with the posterior scapular artery.

The subscapularis, a large and triangular muscle, fills the subscapular fossa. It arises from the inner two-thirds of that fossa, except from the front of the upper and lower angles and the front of the posterior border to which the serratus magnus muscle is attached. Its scapular origin is fleshy, except at the ridges on the bone, where it is tendinous. Its fibers converge to a strong tendon, which lies below the base of the coracoid process, and is inserted into the lesser tuberosity of the humerus; those fibers arising from the axillary border are inserted into the surgical neck of the humerus for an inch below the lesser tuberosity. Between its tendon and the coracoid process is found a large bursa, which communicates with the shoulder-joint. The muscle is covered by a thin subscapular aponeurosis attached to the entire circumference of the fossa, and gives origin to some of its fibers. In addition to this covering it lies behind the serratus magnus and coraco-brachialis muscles, the short head of the biceps, the axillary vessels and brachial plexus, and some of their branches. Behind, it rests upon the scapula, the teres minor muscle, the long head of the triceps, the capsule of the shoulder-joint, and the intervening bursa. To its outer side are the teres major and the latissimus dorsi muscle, the posterior circumflex and dorsalis scapulae vessels, and the circumflex nerve.

Blood Supply.—From the axillary and subscapular arteries.

Nerve Supply.—From the short and lower subscapular nerves.

Action.—It is an internal rotator of the humerus, draws the arm downward after it has been raised, and holds the head of the humerus in place.

Dissection.—The anterior dissection of the chest having been made, the clavicle should be severed, when the serratus magnus muscle will be the only remaining connection between the trunk and upper extremity.

The serratus magnus muscle is closely attached to the upper outer anterior part of the thorax. It arises by nine fleshy digitations from the upper eight ribs and the corresponding interspaces, two digitations arising from the second rib. From this broad origin its fibers converge backward around the chest for insertion into the anterior surface of the vertebral border, and of the upper and lower angles of the scapula. It is therefore irregularly quadrilateral in form. It is conveniently divided for examination into an upper, middle, and lower part. The upper portion—narrowest, thickest, and shortest—consists of the first two digitations arising from the first and second ribs and intervening intercostal space, whence it passes upward, outward, and backward to the anterior surface of the
superior angle of the scapula. The *middle portion* consists of the third, fourth, fifth digitations arising from the second, third, and fourth ribs and intervening intercostal spaces. It is a thinner and wider layer than the preceding portion, and passes horizontally backward to be inserted into the anterior surface of the vertebral border of the scapula between the upper and lower angles. The *lower portion* consists of the remaining four digitations arising from the fifth, sixth, seventh, and eighth ribs and the corresponding intervals, and interdigitates with the upper serrations of the external oblique muscle. Its fibers pass upward, outward, and backward, to be inserted into the oval space on the anterior surface of the inferior angle of the scapula. The serratus magnus muscle is in relation superficially with the pectoralis major and minor muscles, the subscapularis and latissimus dorsi muscles, the subclavian and axillary vessels, the axillary or brachial plexus of nerves, and the posterior or long thoracic nerve. It covers the ribs, intercostal muscles, and serratus posticus superioris muscle.

Blood Supply.—From the axillary and intercostal arteries.

Nerve Supply.—From the posterior or long thoracic nerve (external respiratory of Bell). This nerve is seen running over the muscle at the side of the chest.

Action.—It draws the scapula and entire shoulder forward, thus increasing the forward reach of the arm and antagonizing the rhomboidei muscles and central fibers of the trapezius muscle. If the scapula are fixed close to the spinal column, the lower fibers of the two serratus magnus muscles will evert and draw the ribs upward, thus pushing the sternum outward and increasing the antero-posterior and lateral diameters of the chest. It helps sustain weight upon the shoulder by holding the lower angle of the scapula forward, thus aiding the trapezius in drawing the summit of the shoulder upward. It holds the scapulae firmly against the chest wall, and its lower portion—by far the strongest—pulls the inferior angle of the scapula forward. It steadies the scapula while the deltoid muscle abducts the arm to a right angle; then, by rotating the inferior angle forward, it can raise the arm to the vertical position. Paralysis of the serratus magnus muscle prevents the deltoid muscle from raising the arm, and allows the inferior angle and vertebral border of the scapula to project from the chest, producing the "winged scapula."

Before leaving the shoulder the student should carefully note the actions and relations of the magnificent tripartite muscle composed of the trapezius, deltoid, and pectoralis major muscles. The trapezius and deltoid may be considered, for many reasons, a single muscle; so may the pectoralis major and deltoid muscles be viewed as one muscular mass, arising from an extensive origin, beginning at the costo-chondral margin and extending up the side of the sternum and along the
SUBSCAPULARIS MUSCLE AND SUBSCAPULAR TRiANGLE.
SERRATUS MAGNUS MUSCLE.

391
entire length of the shoulder girdle—i.e., the clavicle, acromion, and spine of the scapula. It is inserted into the anterior bicipital ridge and the middle of the outer side of the shaft of the humerus.

The following grouping of the seventeen muscles attached to the scapula will be of considerable aid to the student in remembering them:

Three to the vertebral border, . . . | Serratus magnus muscle.
| Rhomboideus minor muscle.
| Rhomboideus major muscle.

Three to the axillary border, . . . | Long head of triceps muscle.
| Teres minor muscle.
| Teres major muscle.

Three to the three fossæ, | Supra-spinatus muscle.
| Infra-spinatus muscle.
| Subscapularis muscle.

Three to the coracoid process, . . . | Short head of biceps muscle.
| Coraco-brachialis muscle.
| Pectoralis minor muscle.

Three irregularly attached, | Omo-hyoid muscle.
| Long head of the biceps muscle.
| Levator anguli scapulae muscle.

Two to the spine of the scapula, . . . | Trapezius muscle.
| Deltoid muscle.

Dissection.—It is now necessary to remove the arm and scapula. This can be done by dividing the coraco-clavicular ligament, the serratus magnus muscle at its origin, and the axillary vessels and brachial plexus of nerves.

There are two serratus posticus muscles—the superior and inferior. The superior lies under the three muscles attached to the vertebral border of the scapula; and the inferior under the latissimus dorsi muscle.

The serratus posticus superioris is a thin, flat muscle, which arises by a thin aponeurosis from the lower end of the ligamentum nuchæ, the last cervical and the upper two or three thoracic spines; it is inserted by four fleshy slips into the upper borders of the second, third, fourth, and fifth ribs beyond their angles. The fibers are directed downward and outward. It is covered by the trapezius and the levator anguli scapulae and the rhomboidei muscles. It lies upon the splenius muscle, the vertebral aponeurosis covering the upper continuations of the erector spinae, upon the intercostal muscles, and the ribs.

Nerve Supply.—From the branches of the second and third intercostal nerves.
Action.—It draws upward the ribs to which it is attached, assisting in inspiration.

The *serratus posticus inferioris* is also a thin, flat muscle. It arises by an aponeurosis from the last two dorsal and upper two or three lumbar spines and from the interspinous ligaments. It passes upward and outward, and is inserted by four fleshy digitations into the lower borders of the lower four ribs beyond their angles. It is covered by the latissimus dorsi muscle and rests upon the erector spinae and its continuations, upon the levatores costarum and intercostal muscles, and ribs. Its upper margin blends with the vertebral aponeurosis.

Nerve Supply.—From the branches of the tenth and eleventh intercostal nerves.

Action.—It depresses and fixes the lower four ribs, resisting the action of the diaphragm, which tends to elevate and draw forward the lower ribs; it is a muscle of inspiration.

The *splenius muscle* (*splenius capitis et colli*) arises from the lower two-thirds of the ligamentum nuchae, and, by tendinous slips, from the spines of the last cervical and upper six thoracic vertebrae, and the intervening interspinous ligaments. It passes upward and outward, expanding into a broad, flat muscle which divides into two portions, one going to the head and the other to the neck. The head segment (*splenius capitis*) is inserted into the mastoid process of the temporal bone and the surface of the occipital bone below the superior curved line and under the sterno-cleido-mastoid muscle. The neck segment (*splenius colli*) is inserted into the posterior tubercles of the transverse processes of the upper three or four cervical vertebrae. The muscle is covered by the posterior process of the deep cervical fascia and the following muscles: Trapezius, serratus posticus superioris, rhomboidei, levator anguli scapulae, sterno-cleido-mastoid. It lies upon the spinalis dorsi, semi-spinalis colli, longissimus dorsi, cervicalis ascendens, transversalis colli, complexus, and trachelo-mastoid muscles.

Nerve Supply.—From the external branches of the posterior divisions of the lower cervical nerves.

Action.—It extends the head and neck, rotates them to the same side, and flexes them laterally.

The *vertebral fascia or vertebral aponeurosis* is a thin, fibrous membrane, which extends from the spines of the vertebrae to the angles of the ribs, and binds down the muscles occupying the vertebral groove. It is continuous below with the upper margin of the serratus posticus inferioris muscle and the aponeurosis of the latissimus dorsi muscle; above, it passes under the serratus posticus superioris muscle and is continuous with the deep fascia over the splenius muscle. This aponeurosis separates the deeper muscles of the back from the posterior axo-
PLATE CVII.

MUSCLES OF BACK.

396
appendicular muscles—i.e., those muscles upon the back which unite the trunk with the upper limb.

Dissection.—Beginning from below, remove the aponeurosis of the latissimus dorsi muscle, the serratus posticus inferioris muscle, and the vertebral fascia. Divide the serratus posticus superioris and splenius muscles at their middle, and reflect the two halves. This exposes the erector spinae muscle and its upward continuations and the greater part of the complexus muscle.

The erector spinae is an extensive, sectional fibro-muscular mass with numerous costo-vertebral attachments extending the entire length of the spine. It is densely fibrous and pointed in the sacral region, becomes very muscular in the lumbar region, and divides in the lower dorsal region into three main sections—an outer, ilio-costalis or sacro-lumbalis; an inner, spinalis dorsi; and an intermediate, longissimus dorsi. It arises, by a thick aponeurosis, from the spines of the lower two thoracic, from the lumbar, and upper four sacral vertebrae; from the back of the sacrum and the posterior sacro-iliac ligaments; and, by muscular fibers, from the posterior fifth of the crest of the ilium. The whole mass ascends, and divides below the last rib into three columns.

The outer column is subdivided into the ilio-costalis or sacro-lumbalis and its continuations—the accessorius ad ilio-costalem and the cervicalis ascendens muscle.

Blood Supply.—From the posterior scapular, intercostal, and lumbar arteries.

Nerve Supply.—From the external branches of the posterior divisions of the spinal nerves in the lumbar, thoracic, and cervical regions.

The ilio-costalis or sacro-lumbalis is the outermost and fleshy part of the erector spinae muscle, and is inserted into the angles of the ribs from the sixth to the eleventh, and into the inferior border of the twelfth, the transverse processes of the lumbar vertebrae, and into the middle layer of the lumbar fascia. Very often this muscle is inserted as high as the fourth rib.

Nerve Supply.—From the external branches of the posterior divisions of the spinal nerves in the lumbar and thoracic regions.

Action.—It depresses the ribs, and is, therefore, a muscle of expiration. It keeps the body erect by extending the spinal column, which it also flexes laterally.

Dissection.—Turn the ilio-costalis muscle outward to expose the origins of the accessorius muscle.

The accessorius muscle (accessorius ad ilio-costalem) is the upward continuation of the ilio-costalis muscle and arises, by tendinous slips, from the angles of the lower six ribs, internal to the costal insertions of the ilio-costalis muscle. It is inserted into the angles of the upper six ribs and the transverse process of the seventh cervical vertebra.
NERVE SUPPLY.—From the external branches of the posterior divisions of the spinal nerves in the thoracic region.

ACTION.—With fixation of the lower six ribs by the ilio-costalis this muscle draws downward the upper six ribs, as in expiration. It also aids in extension and lateral flexion of the spinal column; acting from its insertion, it elevates the lower six ribs, as in inspiration.

The **cervicalis ascendens** is the continuation of the accessorius muscle and arises from the upper four or five ribs internal to the costal insertions of the accessorius muscle. It passes upward over the first rib and the transversalis colli muscle, and is inserted into the posterior tubercles of the transverse processes of the fourth, fifth, and sixth cervical vertebrae.

NERVE SUPPLY.—From the external branches of the posterior divisions of the spinal nerves in the thoracic and cervical regions.

ACTION.—It extends the neck and flexes it laterally. Acting from its insertion, it elevates the ribs to which it is attached, as in inspiration.

The **intermediate column** consists of the longissimus dorsi, transversalis colli, and trachelo-mastoid muscles.

BLOOD SUPPLY.—From the princeps cervicis, profunda cervicis, intercostal, and lumbar arteries.

The **longissimus dorsi muscle** is the largest of the erector spinae group. Its inner side lies in close contact, in the lumbar region, with the spinalis dorsi muscle, from which it often receives a slip. It has two series of insertions—an inner, or vertebral; and an outer, or costal: the inner series, by rounded tendons, is attached to the transverse processes of all of the thoracic and the lumbar vertebrae; the outer series, by fleshy and tendinous slips, is inserted into all of the ribs external to the tubercles, the transverse processes of the lumbar vertebrae, and the adjacent portion of the middle lamella of the lumbar fascia.

NERVE SUPPLY.—From the external branches of the posterior divisions of the spinal nerves in the lumbar and thoracic regions.

ACTION.—It extends the spinal column, flexes it laterally, and depresses the ribs, as in expiration.

The **transversalis colli muscle** is the upward continuation of the longissimus dorsi, and is situated upon the inner side of that muscle. It arises from the transverse processes of the upper five or six thoracic vertebrae, and is inserted into the posterior tubercles of the transverse processes of the cervical vertebrae from the second to the sixth.

NERVE SUPPLY.—From the external branches of the posterior divisions of the spinal nerves in the thoracic and cervical regions.

ACTION.—It extends the neck, flexes it laterally, and rotates it to the same side.
The **trachelo-mastoid muscle** is situated upon the inner side of the transversalis colli, and forms the continuation of that muscle toward the head. It arises from the transverse processes of the third, fourth, fifth, and sixth thoracic vertebrae and, by additional tendons, from the back of the articular processes of the lower three or four cervical vertebrae. It proceeds upward as a small muscle which is inserted into the posterior border of the mastoid process under the splenius and sterno-mastoid muscles. It has frequently a tendinous intersection near its insertion.

Nerve Supply.—From the external branches of the posterior divisions of the spinal nerves in the thoracic and cervical regions.

Action.—It flexes the head laterally, rotates it to the same side, and with the aid of its fellow extends the head.

The **inner column** of the erector spinae muscle consists of the **spinalis dorsi muscle**.

The **spinalis dorsi muscle** is the continuation of that portion of the erector spinae muscle which arises from the upper two lumbar and lower two thoracic spines. It is inserted into the spines of the upper thoracic vertebrae, varying from four to eight in number. Its outer lower side is closely connected with the longissimus dorsi muscle, and, at its insertion, with the semi-spinalis dorsi muscle.

Blood Supply.—From the intercostal and lumbar arteries.

Nerve Supply.—From the posterior branches of the spinal nerves of the thoracic region.

Action.—It extends the spinal column and flexes it laterally.

The **spinalis colli muscle**, analogous to the spinalis dorsi muscle, generally extends from the fifth and sixth cervical spines to the spine of the axis. It varies considerably, and may be attached to two additional spines below the origin and insertion here given. This muscle is not present in all subjects.

Nerve Supply.—From the posterior branches of the cervical nerves.

Action.—It extends the neck and inclines it laterally.

The **complexus** is a broad, bulky muscle occupying the cervical and upper thoracic regions, and passing upward and inward to the occipital bone. It arises from the posterior surface of the transverse processes of the upper six thoracic and the last cervical vertebrae, the posterior surface of the articular processes of the cervical vertebrae (third to the sixth) and the spine of the seventh cervical vertebra. It is inserted into the occipital bone between the superior and inferior curved lines. Near the center it has a transverse tendinous interruption. It lies beneath the trapezius and the splenius muscles, external to the ligamentum nuchae, which separates it from its fellow of the opposite side, and internal to the trachelo-mastoid and
transversalis colli muscles. It lies upon the obliquus capitis superioris and inferioris muscles, the rectus capitis posticus major and minor muscles, the semispinalis colli muscle, the profunda cervicis and princeps cervicis arteries, and the posterior division of the spinal nerves, including the great occipital nerve which pierces it.

Blood Supply.—From the profunda cervicis, princeps cervicis, and superficial cervical arteries.

Nerve Supply.—From the suboccipital, great occipital, and the internal branches of the posterior divisions of the third, fourth, and fifth cervical nerves.

Action.—It is a powerful extensor of the head and neck, flexes the head laterally, and turns the face slightly to the opposite side.

The biventer cervicis, which is the innermost portion of the complexus, is a small, delicate, double-bellied muscle.

Dissection.—The attachments of the erector spinae and the spinalis dorsi muscles to the spines of the vertebrae and the insertions of the longissimus dorsi and the ilio-costalis muscles should be severed, and the muscles reflected downward. Next detach the accessorius, the cervicalis ascendens, the transversalis colli, and the trachelo-mastoid muscle. Sever the complexus muscle where the great occipital nerve pierces it, preserving that nerve intact; reflect the two portions, when the suboccipital and the other nerves which enter its deep surface will be brought into view.

In reflecting the trachelo-mastoid and the complexus muscle avoid injuring the occipital, princeps cervicis, and profunda cervicis arteries, and the deep cervical vein.

The occipital artery in the deepest part of its course will be found beneath the mastoid process of the temporal bone. At this point it is covered by the origin of the posterior belly of the digastric muscle, the mastoid process, the trachelo-mastoid, splenius capitis and sterno-mastoid muscles. This artery winds through the interval between the mastoid process of the temporal bone and the transverse process of the atlas; it is separated from the vertebral artery by the rectus capitis lateralis muscle, and then traverses the occipital groove upon the mastoid portion of the temporal bone. It crosses the superior oblique and a portion of the complexus muscle and at the posterior border of the splenius pierces the trapezius muscle together with the great occipital nerve. The vessels arising from this portion of the artery are the princeps cervicis, the mastoid, and muscular arteries.

The princeps cervicis artery is given off near the posterior border of the splenius muscle, and divides into a superficial and a deep branch. The superficial branch pierces the splenius, and, passing downward between that muscle and the trapezius, anastomoses with the superficial cervical artery. The deep branch passes
downward between the complexus and semi-spinalis colli muscles and anastomoses with the profunda cervicis artery and some small branches of the vertebral artery.

The mastoid branch passes through the mastoid foramen to supply the mastoid cells, the diploë, the walls of the lateral sinus, and the dura mater.

The muscular branches supply adjacent muscles.

The profunda cervicis artery, a branch of the superior intercostal, emerges from between the transverse process of the last cervical vertebra and the neck of the first rib, and, passing upward between the complexus and the semi-spinalis colli muscle anastomoses with the princeps cervicis artery and branches of the ascending cervical and vertebral arteries.

The deep cervical vein is formed by small veins in the suboccipital triangle, usually receives the occipital vein, accompanies the princeps cervicis and then the profunda cervicis artery, and empties into the vertebral or innominate vein.

The previous dissection exposed the deepest muscles of the back; these are, from below upward, the following: The multifidus spinæ, the levatores costarum, semi-spinalis dorsi, semi-spinalis colli, the obliquus capitis superioris and inferioris, the rectus capitis posticus major and minor. The middle layer of the lumbar fascia, the occipital, the princeps cervicis, and the profunda cervicis arteries, the great occipital and suboccipital nerves, and the suboccipital triangle were also revealed.

Blood Supply.—These deep muscles are nourished by the vertebral, princeps cervicis, profunda cervicis, intercostal, and lumbar arteries.

The semi-spinalis dorsi muscle is composed of small, fleshy bellies uniting rather long tendons. It arises from the transverse processes of the fifth to the tenth thoracic vertebrae, and is inserted into the spines of the upper four thoracic and lower two cervical vertebrae. It is covered by the longissimus dorsi and the spinalis dorsi muscle, and rests upon the multifidus spinæ muscle.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—It is an extensor and lateral flexor of the spinal column.

The semi-spinalis colli muscle is thicker and shorter than the semi-spinalis dorsi. It arises from the transverse processes of the upper five or six thoracic vertebrae, and is inserted into the spines of the second to the fifth (inclusive) cervical vertebrae. It is covered by the branches of the posterior division of the cervical nerves, the princeps cervicis and profunda cervicis arteries, the deep cervical vein, and the complexus muscle; it rests upon the multifidus spinæ muscle.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.
SURGICAL ANATOMY.

Action.—It is an extensor and lateral flexor of the cervical portion of the spinal column.

The **levatores costarum muscles** arise from the tips of the transverse processes of the last cervical and all of the thoracic vertebrae except the twelfth, and are inserted into the upper border and outer surface of the next rib below, between the tubercle and angle. The lower levatores divide into two slips, the additional one going to the second rib below. They lie external to the semi-spinalis dorsi muscle.

Nerve Supply.—From the intercostal nerves.

Action.—The levatores, as indicated by their name, elevate the ribs, thus assisting the external intercostal muscles.

The **multifidus spinae muscle** is situated in the groove at the side of the spinous processes, under the semi-spinalis muscle, and extends from the axis to the sacrum. The fibers originate from the groove on the dorsal aspect of the sacrum, the posterior superior spine of the ilium, the posterior sacro-iliac ligament, and the deep surface of the aponeurotic origin of the erector spinae muscle. In the lumbar region the fibers arise from the mammillary processes; in the thoracic, from the transverse processes; and in the cervical, from the articular processes of the lower four vertebrae. From these numerous points of origin the muscular bundles pass upward in an oblique direction, and are attached to the spinous processes and laminae of the vertebrae; the most superficial bundles are the longest, and pass to the third or fourth vertebra above their origin; while the deeper ones pass to the next vertebra and to the second or third above.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

The **rotatores spinae**, situated under the multifidus spinae muscle, are eleven small quadrilateral muscles, each of which arises from the upper back part of a transverse process of a thoracic vertebra, and ascends to be inserted into the lower margin and outer surface of the lamina of the vertebra immediately above, extending as far inward as the base of the spinous process.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They rotate the spinal column, turning the body of the vertebra toward the opposite side; and, acting bilaterally, extend the spinal column.

The **interspinales muscles** extend in pairs between contiguous vertebral spines, the muscles of the two sides being separated by the interspinous ligaments. There are six **cervical** pairs between the axis and the first thoracic vertebra, and these are the most distinct. Two or three **thoracic** pairs are found between the first and second thoracic spines above and the eleventh and twelfth below, and
occasionally a pair may be found between the second and third thoracic spines. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.

Nerve Supply.—From the internal branches of the posterior divisions of the spinal nerves.

Action.—They assist, to a slight degree, in extending the spinal column.

The intertransversalis muscles lie between the transverse processes of adjacent vertebrae. There are four lumbar pairs between the five lumbar spines. Sometimes there are pairs above the first and below the last lumbar spine.
suboccipital, nerve. The \textit{vertebral artery} in the suboccipital triangle is seen emerging from the transverse process of the atlas and running above its posterior arch. It leaves the triangle by piercing the posterior occipito-atlantal ligament. The \textit{suboccipital nerve} passes through the posterior occipito-atlantal ligament and between the vertebral artery and the posterior arch of the atlas. It is small and supplies the posterior recti, the obliqui, and the complexus muscle.

The \textit{rectus capitis posticus major muscle}, cone-shaped, arises by its apex from the spine of the axis, passes upward, outward, and backward, and is inserted by its base into the inferior curved line of the occipital bone and the surface immediately below it. It is covered by the complexus muscle, and, at its insertion, by the superior oblique muscle; it rests upon the posterior arch of the atlas, the occipital bone, the posterior occipito-atlantal ligament, and the rectus capitis posticus minor muscle.

\textbf{Nerve Supply.}—From the suboccipital nerve.

\textbf{Action.}—It extends the head and rotates it to the same side.

The \textit{rectus capitis posticus minor muscle}, triangular in shape, arises by its apex from the tubercle upon the posterior arch of the atlas and ascends directly upward. It is inserted into the inferior curved line of the occipital bone and the surface immediately below it. It is covered by the complexus and the rectus capitis posticus major muscle, and lies upon the posterior occipito-atlantal ligament.

\textbf{Nerve Supply.}—From the suboccipital nerve.

\textbf{Action.}—It extends the head.

The \textit{obliquus capitis superioris muscle}, also triangular in shape, is smaller than the inferior oblique muscle. It arises by its apex from the back of the upper surface of the transverse process of the atlas, and passes upward and backward. It is inserted into the occipital bone between the two curved lines beneath the complexus muscles. It is covered by the complexus, the trachelo-mastoid, and the splenius muscles, and rests upon the rectus capitis posticus major muscle, vertebral artery, and posterior occipito-atlantal ligament.

\textbf{Nerve Supply.}—From the suboccipital nerve.

\textbf{Action.}—It extends the head, flexes it laterally, and rotates the face to the opposite side.

The \textit{obliquus capitis inferioris muscle}, larger than the superior oblique muscle, arises from the spinous process of the axis between the attachments of the rectus capitis posticus major and semi-spinalis colli muscles. It passes almost directly outward, and is inserted into the tip of the transverse process of the atlas. It is covered by the complexus muscle and the great occipital nerve,—the latter curving over its lower margin,—and rests upon the posterior atlo-axial ligament and the vertebral artery.
NEERVE SUPPLY.—From the suboccipital nerve.

ACTION.—It rotates the atlas upon the axis, carrying the face to the same side.

The lumbar fascia is a dense aponeurotic structure seen in the space between the last rib and the crest of the ilium. It assists in supporting the muscles of the loin, and gives partial origin to the internal oblique and transversalis muscles of the abdominal wall. It is attached above to the last rib and the cartilage of the eleventh rib, and below to the posterior one-third of the crest of the ilium. Internally, it divides into three layers. The posterior layer passes behind the erector spinae muscle and blends with the aponeuroses of the latissimus dorsi and serratus posticus inferioris muscles, which aponeuroses are continued upward as the vertebral fascia. This division of the lumbar fascia is attached to the spines of the lower thoracic, lumbar, and sacral vertebrae. The middle layer passes between the erector spinae muscle and the quadratus lumborum, and is attached to the tips of the transverse processes of the lumbar vertebrae. The anterior layer passes in front of the quadratus lumborum, and is attached to the anterior surface of the bases of the transverse processes of the lumbar vertebrae. The upper portion of the anterior layer which extends between the transverse process of the first lumbar vertebra and the tip and lower border of the last rib is called the ligamentum arcuatum externum. The lumbar fascia is overlapped to the outer side of the erector spinae muscle by the latissimus dorsi and external oblique muscles. It is an important guide in operations upon the kidney or colon through the loin.

In lumbar abscess, pointing at Petit's triangle, the pus burrows through the middle and posterior lamellae of the lumbar fascia.

The nerves of the back are derived from the posterior primary divisions of the spinal nerves. With the exception of the first and second cervical nerves, the posterior primary are smaller than the anterior primary divisions.

The posterior primary division of the first cervical nerve (suboccipital) runs backward, pierces the occipito-atlantal ligament, passes between the vertebral artery and the posterior arch of the atlas and through the suboccipital triangle. It supplies twigs to the rectus capitis posticus major and minor muscles, the obliquus capitis superioris and inferioris muscles, and the complexus muscle. A small branch usually communicates with the great occipital nerve.

The posterior primary division of the second cervical nerve divides into an external and an internal branch, the latter being much the larger. The external branch sends a twig to the inferior oblique muscle, and then ends in the complexus and the trachelo-mastoid muscle. The internal branch is called the great occipital nerve. It sends twigs upward and downward which communicate with the first and third cervical nerves, forming the posterior cervical plexus of Cruveilhier. The great occipital nerve then ascends, turning upward and backward over
the lower border of the inferior oblique muscle and under cover of the complexus. It crosses over the suboccipital triangle, pierces the complexus muscle—which it supplies—and the outer border of the trapezius near the superior curved line of the occipital bone. It then ramifies in the superficial fascia of the back of the scalp with the occipital artery.

The **posterior divisions of the third, fourth, and fifth cervical nerves** pass backward at the outer border of the semi-spinalis colli muscle, and divide into external and internal branches. The *external branches* supply the splenius, the trachelo-mastoid, the cervicalis ascendens, and the transversalis colli muscle. The *internal branches* supply the semi-spinalis colli and the complexus muscle, between which they lie, and send branches to the multifidus spinæ. They next pass between the complexus muscle and the ligamentum nuchæ, pierce the origin of the trapezius muscle, and are distributed to the integument of the back of the neck.

The **smallest occipital nerve** is the internal branch of the posterior division of the third cervical nerve. It passes upward and communicates with the great occipital nerve.

The *external branches of the posterior divisions of the sixth, seventh, and eighth cervical nerves* supply the splenius, the complexus, the cervicalis ascendens, and the transversalis colli muscle. The *internal branches* supply the semi-spinalis colli and the multifidus spinæ muscle.

The **posterior primary divisions of the thoracic nerves** pass backward between the transverse processes of the thoracic vertebrae. They then divide into external and internal branches, the former increasing and the latter decreasing in size from the second to the last.

The *external branches* of the posterior divisions of the upper six or seven thoracic nerves terminate in the longissimus dorsi and accessorius muscles. The lower five or six pierce the outer insertions of the longissimus dorsi, and are then found between that muscle and the accessorius. After piercing the latissimus dorsi muscle they reach the integument of the lower and outer part of the back.

The *internal branches* supply the longissimus dorsi, the spinalis dorsi, the semi-spinalis dorsi, the multifidus spinæ, the rotatores spinæ, the intertransversales, and the interspinales muscles. The upper six or seven branches pierce the origin of the trapezius muscle and supply the integument.

The **posterior divisions of the lumbar nerves** also divide into external and internal branches, the latter going entirely to the multifidus spinæ muscle. The *external branches* of the upper three lumbar nerves pierce the aponeurosis of the latissimus dorsi near the outer border of the erector spinæ muscle, cross the crest of the ilium, and are distributed to the integument of the gluteal region. The
external branch of the fourth lumbar nerve supplies, and that of the fifth passes to, the erector spinae muscle; the last communicates with the first sacral nerve.

The posterior primary divisions of the upper four sacral nerves emerge at the posterior sacral foramina; that division of the fifth sacral nerve emerges at a point between the sacrum and coccyx, and the coccygeal nerve issues from the lower opening of the spinal canal.

The posterior divisions of the upper three sacral nerves divide into external and internal branches, while the lower two sacral and the coccygeal nerve remain undivided. The external branches of the posterior divisions of the upper three sacral nerves form loops between themselves and the external branch of the last lumbar nerve on the back of the sacrum, and form a second series of loops on the posterior surface of the great sacro-sciatic ligament. From these loops are derived two or three nerves which pierce the gluteus maximus muscle to supply the integument. The internal branches of the posterior division of the upper three sacral nerves supply the multifidus spinae muscle. The posterior divisions of the lower two sacral nerves form loops with the coccygeal nerve and the posterior branch of the third sacral nerve. Branches from these loops supply the skin over the coccyx.

A careful study of the groups of muscles of the back will reveal the fact that their arrangement is simpler than is generally supposed. The five axo-appendicular muscles—i.e., the trapezius, latissimus dorsi, levator anguli scapulae, and the two rhomboidei—are well known. The two posterior serrati muscles are not readily forgotten. The deep cranio-vertebral group, the two recti and the two oblique muscles, are interesting and easily understood and remembered. The erector spinae muscle, with its three upward extensions, like a spreading vine, picking its way, hand over hand, as it were, from rib to rib, by regular intervals, is not difficult to master: The inner stem being the spinalis dorsi muscle, the middle consisting of the longissimus dorsi, the transversalis colli, and the trachelo-mastoid muscle; and the outer stem being composed of the ilio-costalis, the accessorius ad ilio-costalem, and the cervicalis ascendens muscle. The complexus and the biventer cervicis really form but one muscle. The semi-spinales dorsi and colli muscles—extending by long fibers from the transverse to the spinous processes, over a number of intervening vertebrae—form really one long, slender group. The only group remaining is formed by the deep muscles which fill the posterior spinal groove; these extend—between the spines (interspinales), between the transverse processes (intertransversales)—from the dorsal aspect of the transverse processes of the thoracic vertebrae to the laminae just above (rotatores spinae),—found only in the thoracic region,—and similar but more extensive muscles having the same origins and going to the spines of the two or three vertebrae above (multifidus spinae muscle).
LIGAMENTS OF THE VERTEBRAL COLUMN.

The ligaments uniting the vertebrae may be divided as follows: Those connecting the bodies; the laminae; the spinous processes; the transverse processes, and the articular processes of the vertebrae.

The Ligaments which Unite the Bodies of the Vertebrae are the anterior and posterior common ligaments, the intervertebral discs, and the lateral vertebral ligaments.

The anterior common ligament is a fibrous band which is situated upon the anterior surface of the bodies of the vertebrae, and extends from the tubercle upon the anterior arch of the atlas to the front of the middle piece of the sacrum. Above, it is narrow and forms the central portion of the atlanto-axoid ligament. As it descends it broadens and forms a glistening white investment for the anterior surface of the bodies of the vertebrae. Below, it is attached to the front of the sacrum, and is lost in the periosteum of that bone. It is continued as the anterior sacro-coccygeal ligament. The ligament is composed of numerous fibers of various lengths. The most superficial fibers extend over four or five consecutive vertebrae, deeper ones over two or three vertebrae, and the deepest connect adjacent vertebrae. The fibers of these different lengths are so interlaced that it is impossible to separate the ligament into these three sets of fibers. The ligament is closely attached to the intervertebral discs and the edges of the bodies of the vertebrae, but is not so firmly united with the intermediate portion of the bodies. It is thickest in the thoracic region, and in the lumbar is thicker than in the cervical region.

The posterior common ligament is located upon the posterior surface of the bodies of the vertebrae and lines the anterior wall of the spinal canal. It extends from the basilar groove of the occipital bone to the coccyx; is broader above than below, and thickest in the thoracic region; presenting opposite the intervertebral discs lateral expansions which give it a dentated appearance. Between the ligament and the middle of the posterior surface of bodies of the vertebrae is an interval which is occupied by some areolar tissue and vessels to the bodies of the vertebrae. The filum terminale of the spinal cord blends with the ligament at the back of the base of the coccyx. The more superficial fibers extend between three or four vertebrae, and the deeper ones between adjacent vertebrae.

The intervertebral substance or intervertebral discs are twenty-three in number, situated between the adjacent surfaces of the bodies of the vertebrae from the axis to the sacrum. They are tough, elastic, and compressible, and form the chief bond of union between the vertebrae. In the sacral region they are more or less completely ossified. They are flattened or rather wedge-shaped, and their outline corresponds to that of the adjacent vertebral bodies. In the thoracic region
POSTERIOR COMMON BIG.

INTER-VERTEBRAL SUBSTANCE.
PULPY CENTRE.

ANTERIOR COMMON BIG.

VENA BASIS VERTEBRAE.

LIGAMENTS OF SPINAL COLUMN.
their thickness is nearly uniform, and the thoracic curve is chiefly formed by the bodies of the vertebrae, and in the cervical and lumbar regions their greater thickness in front assists in forming the curves of those portions of the spinal column. They form about one-fourth of the length of the spinal column, and are thickest and largest in the lumbar region. When they are shrunken or compressed, as in old persons or laborers, the spinal column shortens and bends forward. They are composed of a firm ring of fibro-cartilaginous tissue and a central pulpy substance. The fibro-cartilaginous tissue is arranged in concentric laminae, the fibers of which pass obliquely from one surface of the disc to the other. The directions of the fibers of the two adjacent laminae are not parallel, but form angles like the limbs of the letter X. The central substance of the discs is of a pulpy consistency, and is composed of a fine connective-tissue matrix which contains cartilage cells in its meshes.

The lateral or short vertebral ligaments connect the adjacent margins of the bodies of the vertebrae in the interval between the anterior and posterior common ligaments, with which they are continuous. They are best developed in the thoracic and lumbar regions.

The Laminae are connected by the ligamenta subflava.

The ligamenta subflava are found in the spaces between and connecting the laminae of the vertebrae. The first of these ligaments extends from the axis to the third cervical vertebra, the two spaces above being filled by the posterior occipito-atlantal and posterior atlanto-axoid ligaments. The ligamenta subflava are attached, above, to the inner surface of the inferior articular process and the inner surface of the lower margin of the lamina of the vertebra; below, to the inner surface of the superior articular process and the upper margin of the lamina. Each ligament extends from the articular processes of one side to those of the opposite side, forming one broad, short ligament. These ligaments assist in forming the capsular ligaments, which connect the articular processes and are continuous with the interspinous ligaments at the roots of the spinous processes. They are strongest in the lumbar region, of greater strength in the thoracic than in the cervical region, are composed of yellow elastic tissue, and assist in retaining the spinal column in the erect position.

The Spinous Processes are connected by the supra-spinous and interspinous ligaments.

The supra-spinous ligaments connect the tips of the spinous processes, and present the appearance of a strong, narrow, continuous band extending from the seventh cervical vertebra (vertebra prominens) to the spinous processes of the sacrum. They are continued upward as the ligamentum nuchae and downward along the spines of the sacrum. The downward continuation of the supra-spinous
SURGICAL ANATOMY.

ligaments closes in the lower end of the spinal canal, and is attached to the back of the coccyx.

The **interspinous ligaments** are thin, membranous sheets which connect adjacent spinous processes of the vertebrae. The fibers of each ligament decussate. They are stronger in the lumbar than in the thoracic region, and in the cervical region are delicate and supported by the *interspinales* muscles.

The **Transverse Processes** are connected by the intertransverse ligaments.

The **intertransverse ligaments** pass between the tips of the transverse processes. In the thoracic region they are weak bands; in the lumbar region they are weak and membranous; and in the cervical region they are replaced by the intertransversales muscles.

- The **Articular Processes** are connected by capsular ligaments.

The **capsular ligaments** connect adjacent articular processes and are attached along the margins of the articulating surfaces. Their inner portion is formed by the lateral part of the ligamenta subflava. In the cervical region they are loose; in the lumbar region not so lax; and in the thoracic region short and tight. Each joint is lined by one synovial membrane.

** Movements.**—The spinal column is the axis of the skeleton; it supports the cranium, upper extremities, and part of the trunk, and is supported by the pelvis and lower extremities. It is composed of a number of bones, one superimposed upon another and bound together by numerous strong ligaments. When assisted by the surrounding muscles, it is capable of sustaining great weight, and by means of their elasticity the intervertebral discs diminish or prevent the transmission of shock. Although the vertebrae are firmly united and there is little movement between adjacent vertebrae, the spinal column is quite flexible and capable of many movements; these are possible on account of the elasticity of the intervertebral substance, and all occur around an axis which passes through the central pulpy substance of the intervertebral discs. The movements vary in different regions, and their freedom differs with the shape of the bodies, the articular, transverse, and spinous processes. The bodies and intervening discs are the chief supports of the superimposed weight, and the articular processes, assisted by the ligaments between the spines and between the transverse processes, steady the column. The movements are flexion, extension, lateral flexion, circumduction, and rotation.

In the **neck** there is little movement between the axis and the third cervical vertebra, but below this vertebra all movements are free in this region. Flexion is more limited than in the lumbar region.

In the **thoracic region** there is slight movement, because of the obstruction offered by the ribs.
PLATE CXI.

1. Occipito-Atlantal Capsular Lig.
2. Anterior oblique, Occipito-Atlantal Lig.
4. Capsular Lig. between articular processes of Axis and third Cervical Vertebra.
5. Superficial portion of Anterior Occipito-Atlantal Lig.
6. Anterior Occipito-Atlantal Lig.
7. Atlanto-Axioidean Capsular Lig.
8. Atlanto-Axioidean Capsular Lig. and Synovial Membrane.

ANTERIOR VIEW.

1. Anterior Oblique or Lateral Occipito-Atlantal Lig.
2. Posterior Occipito-Atlantal Lig.
4. Lamina of Axis.
5. Posterior Atlanto-Axioidean Lig.
6. Atlanto-Axioidean Capsular Lig. and Synovial Membrane.
7. Short Vertebral Lig.

POSTERIOR VIEW.

27 OCCIPITO-ATLANTAL AND ATLANTO-AXIOIDEAN LIGAMENTS.

417
In the **lumbar region** all of the movements are comparatively free between the third and fourth, and fourth and fifth vertebrae.

As the forms of the joints between the occipital bone, atlas, and axis differ from those of the intervertebral joints below, they require a separate description.

The **Axis is Connected with the Atlas** by the anterior and posterior atlanto-axoid, two capsular, transverse, and atlanto-odontoid capsular ligaments, and between them are two lateral and one central atlanto-axoid joint.

The **anterior atlanto-axoid ligament** is a thin, fibro-elastic membrane. It is attached above to the anterior surface and lower border of the anterior arch of the atlas, and below to the base of the odontoid process and the transverse ridge on the front of the body of the axis. Its median portion is covered by the narrow upper end of the anterior common ligament, which, in this location, is sometimes called the **superficial anterior atlanto-axoid ligament**. On either side the atlanto-axoid ligament is continuous with the capsular ligaments. It is covered by the longus colli muscles.

The **posterior atlanto-axoid ligament** is a thin membrane which takes the place of the ligamenta subflava in this location. It is attached above to the posterior surface and lower margin of the posterior arch of the atlas and below to the dorsal aspect of the superior margins of the lamina of the axis. On either side it extends to the posterior roots of the transverse processes, and is continuous with the capsular ligaments. It is covered by the rectus capitis posticus major and obliquus capitis inferioris muscles.

The **lateral atlanto-axoid joints** are formed by the articulation of the superior articular processes of the axis with the inferior articular surface of the lateral mass of the atlas. Each joint has a loose **capsular ligament** and one synovial sac. The ligaments are strengthened in front and behind by the anterior and posterior atlanto-axioidean ligaments.

The **central atlanto-axoid joint** is divisible into two joints—one between the odontoid process of the axis and the transverse ligament (syndesmo-odontoid) and the other between the odontoid process and anterior arch of the atlas (atlanto-odontoid). Each of these joints has a synovial membrane. The synovial sac of the syndesmo-odontoid joint is limited by a fibrous membrane which passes from the transverse ligament to the margins of the articular facet upon the posterior surface of the odontoid process and thus forms a capsular ligament. This synovial sac often communicates with the occipito-atlantal synovial sacs. The synovial sac of the atlanto-odontoid joint is supported by the atlanto-odontoid capsular ligament, which passes between the margins of the articular surface upon the anterior aspect of the odontoid process and those of the articular surface upon the internal surface of the anterior arch of the atlas. The atlanto-odontoid capsular liga-
ment is continuous with the occipito-atlantal capsular ligaments. At the margins of the arch of the atlas it blends with the central occipito-odontoid, anterior occipito-atlantal, and anterior atlanto-axoid ligaments.

The transverse ligament is a strong, closely woven, fibrous band which passes across the large central opening in the arch of the atlas, and divides it into a small anterior portion—through which the odontoid process projects—and a large posterior part, which is the upper continuation of the spinal canal and transmits the spinal cord, its membranes, and the spinal portion of the spinal accessory nerves. Upon each side the transverse ligament is attached to the tubercle upon the inner surface of the lateral mass of the atlas. A vertical band of fibers, placed immediately behind the transverse ligament, passes from the back part of the base of the odontoid process to the occipital bone. This band is strengthened by fibers, some of which pass upward and others downward from the transverse ligament. The transverse ligament and the vertical band form a crucial ligament. The anterior surface of the transverse ligament is smooth and in relation with the syndesmo-odontoid synovial membrane. The lower margin of the ligament is closely apposed to the neck of the odontoid process and thus firmly suspends that process in place.

Movements.—The movements between the atlas and axis are necessarily chiefly in a rotatory direction. These movements are limited by the occipito-axoid (check) and the atlanto-axoid ligaments. The movement in the lateral atlanto-axoid joints is of a gliding character. There is also slight antero-posterior and lateral flexion.

The Ligaments which Connect the Axis with the Occipital Bone are the occipito-cervical, crucial, and three odontoid ligaments.

The occipito-cervical, cervico-basilar, or occipito-axoid ligament is the upper portion of the posterior common ligament, some of the fibers of which are not attached to the axis but pass upward to the occipital bone. The ligament is attached below to the posterior surface of the body of the axis from the root of the odontoid process downward, and its lower attachment also extends to the upper part of the body of the third cervical vertebra. Above, it is attached to the basilar groove of the occipital bone. It is narrow at the body of the axis and gradually broadens above. It is in relation in front with the crucial ligament, and behind with the dura mater of the spinal cord, and is exposed by removing the spines and laminae of the atlas and axis.

The crucial ligament is described with the transverse ligament.

The odontoid ligaments connect the odontoid process with the occipital bone. They are three in number—viz., a central and two lateral.

The central odontoid ligament, or suspensory ligament, is attached below to the
LIGAMENTS IN POSTERIOR SURFACE OF UPPER PART OF ANTERIOR WALL OF SPINAL CANAL.

CENTRAL ATLANTO-AXOID JOINT.
tip of the odontoid process and above to the under surface of the anterior margin of the foramen magnum. It is a slender band which is located between the two lateral odontoid ligaments. It is in relation in front with the anterior occipito-atlantal, and behind with the upper division of the crucial ligament.

The lateral odontoid, or check, ligaments are strong, rounded bands which pass almost transversely outward and slightly upward from the sides of the apex of the odontoid process to the rough depressions upon the inner surfaces of the condyles of the occipital bone.

The Ligaments which Connect the Atlas with the Occipital Bone are the anterior and posterior occipito-atlantal, two capsular, and two lateral occipito-atlantal ligaments.

The anterior occipito-atlantal ligament is attached below to the upper margin of the anterior arch of the atlas, and above to the anterior margin of the foramen magnum. Its central portion is thick and strong, and is the upward continuation of the anterior common ligament. The lateral portions of the ligament are thinner and continuous with the capsular ligaments. It is covered in front by the rectus capitis anticus minor muscles. Behind it are the odontoid ligaments.

The posterior occipito-atlantal ligament is a thin membrane and corresponds to the ligamenta subflava, but contains no elastic tissue. Its laxity, however, permits free motion. The ligament is attached below to the posterior surface and upper margin of the posterior arch of the atlas, and above to the posterior margin of the foramen magnum from one condyle to the other. Upon each side its lower and outer portion contains an opening close to the arch of the atlas. This opening gives passage to the vertebral artery and suboccipital nerve. In front the ligament is in relation with the dura mater, and behind with the rectus capitis posticus minor and superior oblique muscles.

The two capsular ligaments are attached to the margins of the condyles of the occipital bone above, and below to the margins of the articular surfaces upon the upper aspect of the lateral mass of the atlas. These ligaments are lax and not very strong, and therefore do not add much strength to the joint. Each capsular ligament is lined with a synovial membrane which occasionally communicates with the synovial sac of the transverso-odontoid joint.

The lateral occipito-atlantal or anterior oblique occipito-atlantal ligaments are two strong fibrous bands placed upon the front of the external surface of the capsular ligament. They pass from the bases of the transverse processes of the atlas forward and upward to be attached to the jugular processes of the occipital bone.

 Movements.—The movements of the occipito-atlantal articulations are gliding
backward and forward, thus giving a limited nodding movement to the head. In more extensive forward and backward movements of the head the cervical portion of the spinal column is flexed and extended. There is also a very slight transverse and oblique gliding movement.

Blood Supply.—The blood supply of the spinal column and its articulations is derived from the vertebral, occipital, ascending pharyngeal, ascending cervical, intercostal, lumbar, ilio-lumbar, sacra-media, and lateral sacral arteries.

Nerve Supply.—From the spinal nerves.

Fractures and dislocations of the vertebra are most common in the cervical and lumbar regions where mobility of the spinal column is greatest. If displacement exists, the spinal cord is compressed, lacerated, or pulpified. Pressure upon or laceration of the motor tracts of the spinal cord causes loss of voluntary motion in muscles supplied by nerves which arise below the site of injury, because the motor cells of the cerebral cortex can not send impulses to the motor cells in or below the injured segments of the spinal cord. Sensation in the paralyzed parts is lost through involvement of the sensory tracts of the spinal cord and interruption of the impulses to the brain. Through pressure upon or rupture of the inhibitory nerves from the brain the reflexes are not controlled and are much exaggerated unless the lumbar enlargement be destroyed. Pressure upon the inhibitory nerves for this reason causes priapism. Through pressure upon the trophic nerves nutrition of the skin is imperfect and bed-sores develop. Loss of trophic and motor impulses allows degeneration and atrophy of the muscles. Through pressure upon the sensory and motor tracts fullness of the bladder causes no reflex act, and retention of urine results. After some time elapses the function of micturition may be performed through reflex action governed by the cells in the lower portion of the spinal cord. Paralysis of the sphincter ani causes incontinence of feces.

Dissection.—Having finished the study of the muscles of the back, the student should thoroughly clean the posterior aspect of the vertebrae from the skull to the base of the sacrum. In removing the muscles, care must be taken to avoid destroying the posterior divisions of the spinal nerves which supply them. The posterior wall of the spinal canal should then be removed in one piece. To accomplish this, place the body upon the table, face downward, the head hanging over the edge, and a block under the abdomen; saw through the laminae of the vertebrae on each side close to the bases of the spinous processes from the third cervical to the last lumbar, inclusive. The ligaments between the spinous processes and between the laminae of the second and third cervical, and between the
PLATE CXIII.

Posterior Longitudinal Meningo-Rachidean Veins.

Dorsi-Spinal Veins.

Intervertebral Disc.

Anterior Longitudinal Meningo-Rachidean Veins.

Vena Basis Vertebrae.

Dorsi-Spinal Veins

Posterior Longitudinal Meningo-Rachidean Vein.

Spinal Canal.

Intercostal V.

Vena Basis Vertebrae.

Anterior Longitudinal Meningo-Rachidean Veins.

Spinal Veins.
same portions of the last lumbar and first sacral vertebrae, should be divided with
the knife, and the posterior wall of the canal lifted out. This will expose a
quantity of loose areolar tissue and fat which contains plexuses of veins and some
small arteries. Carefully remove the areolar tissue and fat.

The Spinal Arteries.—The blood supply of the spinal column, spinal ligaments, periosteum, and of the spinal cord and its membranes is derived from
the spinal arteries which enter the canal through the intervertebral foramina. The spinal arteries in the cervical region are derived from the vertebral, ascending
cervical, and profunda cervicis arteries; in the thoracic region, from the dorsal branches of the intercostal arteries; in the lumbar region from the posterior branches of the lumbar arteries; and in the sacral region from the lateral sacral arteries. The arrangement of the arteries after entering the spinal canal is similar in the different regions. Each spinal artery divides into three branches—one of
which passes to the vertebral arches and ligamenta subflava; another pierces the
dura mater above the corresponding spinal nerve, and supplies the spinal cord and
its membranes; and a third passes to the posterior surface of the bodies of the
vertebrae. The small plexuses of arteries seen on the posterior aspect of the bodies
of the vertebrae are formed by the divisions of the third set of branches which
anastomose with each other. These plexuses also give off branches which pass
anteriorly around the wall of the canal to join branches from a median artery
found on the posterior surface of the anterior common ligament.

The Veins found Within the Spinal Canal are the meningo-rachidian and
the medulli-spinal veins. The meningo-rachidian veins lie in the extra-dural
fat, and are arranged in two plexuses—one anterior and one posterior. The ante-
rior plexus, of course, can not be studied until the spinal cord and its membranes
have been removed from the spinal canal. It consists of two longitudinal veins
which communicate freely with each other by means of transverse veins which
pass beneath the posterior common ligament and receive the veins from the bodies
of the vertebrae (venae basis vertebrae). The anterior plexus communicates with
the basilar and occipital sinuses. Near the arch of the atlas it gives off a branch
which forms the origin of the vertebral vein. Other branches are given off near
the intervertebral foramina, and accompany the spinal nerves. The posterior
longitudinal plexus consists of two longitudinal veins or channels, placed upon
the inner surface of the laminae. Branches pass freely from one channel to the
other; others pierce the ligamenta subflava to communicate with the dorsi-spinal
veins; while other branches pass forward to join the anterior plexus, thus forming
a network which entirely encircles the spinal cord. The posterior plexus commun-
icates with the occipital sinus.

The medulli-spinal veins are described with the spinal cord.
THE SPINAL CORD.

The spinal cord (medulla spinalis) is the continuation of the medulla oblongata. It extends from the lower border of the foramen magnum (below the decussation of the pyramids of the medulla) to the level of the upper border of the second lumbar vertebra; near its termination it assumes a conic shape,—the conus medullaris,—and terminates in a slender thread, the filum terminale. In the fetus the cord extends the entire length of the spinal canal, but does not in the adult, as the vertebral column grows more rapidly than the spinal cord. The length of the spinal cord in the adult is from sixteen to eighteen inches, and its average weight is about one and one-half ounces. It is a somewhat flattened cylinder, wider in the transverse diameter. In the thoracic region, however, it is almost cylindric in form. As it is lodged in the spinal canal, it follows the curves of the spinal column. It presents a cervical enlargement between the third cervical and second thoracic vertebrae, and a lumbar enlargement between the ninth thoracic and the first lumbar vertebra. The former enlargement is widest opposite the sixth cervical, and the latter opposite the twelfth thoracic vertebra. These enlargements occur where the large nerves are given off to supply the extremities.

The Membranes of the Spinal Cord.—The membranes of the spinal cord are the dura mater, arachnoid, and pia mater. They are continuous with the corresponding membranes of the brain, and hold the same relation to each other as do those of the brain.

The dura mater is a non-adherent, dense, fibrous sheath which surrounds the spinal cord. It differs from the dura mater of the brain in that it does not form the internal periosteum of the spinal canal, nor the fibrous septa for the spinal cord; it does not contain sinuses, nor adhere to the walls of the canal. Like the dura mater of the brain, the dura mater of the spinal cord sends over the nerves tubular prolongations which become continuous with their sheaths.

The periosteum which lines the spinal canal is continuous with and represents the periosteal layer of the dura mater of the brain. The extra-dural veins of the spinal canal (meningo-rachidian) correspond in position to the sinuses of the dura mater of the brain. The dura mater is separated from the walls of the spinal canal by loose areolar tissue, fat, and the anterior and posterior plexuses of the extra-dural veins (meningo-rachidian). It extends from the lower margin of the foramen magnum to the back of the base of the coccyx, where it blends with the periosteum. It exists as an enveloping membrane only as far as the third sacral vertebra, beyond which it is impervious and exists only as a hollow, slender cord which surrounds the filum terminale. It is attached above to the margin of
the foramen magnum, to the axis, and third cervical vertebra; and below, to the posterior surface of the base of the coccyx.

Dissection.—The spinal cord and its membranes should now be removed. To do this, divide the medulla oblongata and membranes of the cord at the foramen magnum, and the spinal nerves as far outward in the intervertebral foramina as possible, so as to preserve the ganglia on their posterior roots. If the cord be perfectly fresh, it should be hardened before its membranes are removed; but if soft, it should be dissected in plenty of water, which will protect it from pulpefac-
tion. Incise the dura mater near its termination, and open it along its posterior median surface with a pair of blunt-pointed scissors. Care must be taken to avoid injuring the subjacent arachnoid. Reflect the dura mater laterally, and note the shining, inner surface. Note also that the spinal nerves as they leave the cord are enveloped by prolongations of the dura mater.

It will be seen that each nerve has a separate tubular prolongation of the dura mater, and that the anterior and posterior roots of the nerves are separated by a septum. The space exposed by reflecting the dura mater is known as the subdural space, and lies between the dura mater and the arachnoid. It is prolonged for a short distance upon the roots of the spinal nerves.

The arachnoid.—The arachnoid is a thin, delicate, veil-like membrane which is continuous with the arachnoid of the brain, and lies between the dura and pia mater. It is more delicate than that of the brain, but resembles the encephalic arachnoid in sending tubular prolongations along the nerves. It is attached to the dura mater behind by prolongations of connective tissue. These trabeculae of connective tissue are not always demonstrable, and exist only in few and scattered places. Below it is prolonged upon the cauda equina.

It will be noted that the arachnoid forms a long sac, the cavity of which lies between the arachnoid and the pia mater, and is known as the subarachnoid space. It contains the cerebro-spinal fluid, and is continuous with the subarachnoid space of the brain. To demonstrate this space, inflate it by injecting air into it through a blow-pipe inserted near the foramen magnum. This will illustrate the condition found in the congenital defect spina bifida, in which there is an overabundance of cerebro-spinal fluid with faulty development of the posterior wall of the lumbar portion of the spinal canal. In this condition the membranes are pushed through the opening in the spinal canal by the weight of the cerebro-spinal fluid which occupies the space now containing air.

Through the foramen magnum the subarachnoid space of the spinal cord communicates with the corresponding space of the brain, and through openings in the posterior part of the fourth ventricle (foramina of Magendie, Key, and Retzius) the subarachnoid space of the brain communicates with the ventricles of the latter
organ. Pressure exerted upon the swelling of a spina bifida will at times cause slight bulging of the anterior fontanel. As the subarachnoid space communicates with the ventricles of the brain, opening a spina bifida may drain the cerebrospinal fluid from the brain and result in fatal convulsions.

Dissection.—Incise the arachnoid and reflect it from the underlying pia mater. This will open the subarachnoid space, which has just been inflated. It will be seen that the arachnoid is attached to the pia mater by numerous trabeculae of subarachnoid tissue, and by three incomplete septa,—a posterior and two lateral, —which not only attach the two membranes to each other, but at the same time divide the subarachnoid space into compartments. The posterior septum is placed opposite the posterior median fissure of the cord, and is less marked in the cervical region. It carries blood-vessels to the cord. The two lateral septa are formed by the ligamenta denticulata.

The pia mater.—The pia mater is a thin, delicate, vascular membrane which is continuous with the pia mater of the brain. It is closely adherent to the cord, and sends vertical partitions, or septa, into the anterior and posterior median fissures. Along the anterior median line of the cord the pia is thickened into a glistening band—the linea splendens. The pia mater is supported at the sides by two lateral bands—the ligamenta denticulata. Each ligamentum denticulatum is a fibrous band which is attached to the median lateral aspect of the pia from the level of the foramen magnum to the level of the first lumbar vertebra. The attachment of each ligament to the pia is found midway between the anterior and posterior nerve roots. From this attachment each ligament extends outward, and is attached to the dura mater by numerous denticulations, or strips, which pass outward in the interval between the anterior and posterior roots of the spinal nerves. These processes push the arachnoid before them. It will be seen from this arrangement that the ligamenta denticulata divide the subarachnoid space into two compartments, in the anterior of which the anterior roots of the spinal nerves are found, and in the posterior the posterior roots of the nerves. The posterior compartment is again subdivided by a third or posterior septum, already mentioned in connection with the subarachnoid space. The ligamenta denticulata swing the cord in the center of the dural sac. From the conus medullaris the pia mater is continued downward as a slender thread, the filum terminale, as far as the base of the coccyx, to the periosteum of which it is attached. The filum terminale contains very little nervous matter, and is distinguished from the nerves of the cauda equina by its glistening white appearance.

The anterior and posterior roots of the spinal nerves emerge from the anterolateral and posterolateral aspects of the cord, and form a double row on each side of it. The anterior roots arise from the anterior horns of the gray matter and con-
PLATE CXV.

Ligamentum denticulatum
Dura mater
Anterior spinal a.

Filum terminale

L. 1
2
3
4
5
C 5
2
3

CAUDA EQUINA.
433
tain motor fibers; the posterior are sensory fibers, and arise from the posterior horns. The fibers of the anterior roots emerge in several bundles which are not placed in a single line; whereas the posterior roots are larger, and their fibers also emerge in several bundles, which form a single row at the postero-lateral fissure. These roots of the nerves pass along for a varying distance within the dural sheath of the cord, which intra-dural portion of their course is called intra-thecal. The *intra-thecal course* of the nerves is shorter above and longer below, as the upper spinal nerves pass transversely outward and the lower pass downward with increasing degrees of obliquity. As the cord terminates opposite the second lumbar vertebra, the lumbar and sacral nerves and the coccygeal nerve have a longer intra-thecal course than those above. If the lumbar and sacral nerves are cut out with the cord, a condition similar in appearance to the under surface of a horse's tail will be seen, and hence the designation *cauda equina* given to these nerves. As the spinal cord is shorter than the spinal canal, and as the nerves emerge from the whole length of this canal, each succeeding nerve, growing longer in its intra-thecal course, is held to the cord by its arachnoid investment until opposite its foramen of exit, when it also passes horizontally outward like the first spinal nerve. The nerves of the cauda equina, however, pass down the canal parallel to one another and enter the intervertebral foramina a little obliquely. The two roots unite within the intervertebral foramen to form a single nerve. A short distance above the point of junction the posterior roots contain swellings or ganglia. These ganglia contain the trophic centers for the sensory fibers of the spinal nerves.

The **Fissures of the Spinal Cord** are an anterior median, a posterior median, two antero-lateral, and two postero-lateral.

The **antior median** is a true fissure, and has a depth equal to one-third of the antero-posterior diameter of the cord. It extends the entire length of the cord, and is the continuation of the corresponding fissure of the medulla oblongata, at the lower part of which it is considerably interrupted by the decussation of the pyramids. The pia mater dips into it as a double fold.

The **posterior median fissure** is not an open and true fissure, but a narrow cleft, lodging only a process of the pia mater, which dips into it and forms a septum. It is continuous with the corresponding fissure of the medulla oblongata, and extends in depth one-half the diameter of the cord, as far as the gray commissure. With the anterior median fissure it divides the cord into two symmetric halves.

An **antero-lateral** and a **postero-lateral fissure** or groove exist on each side of the cord at the lines of emergence of the anterior and posterior roots of the spinal nerves. The antero-lateral fissure is more imaginary than real, as the fibers of the anterior roots of the nerves leave the cord in from three to eight thin bundles, which are not placed in a single row. The postero-lateral fissure is, how-
ever, well marked, the fibers of the posterior roots of the nerves emerging from it in a single row of bundles. It is deepest in the cervical region, and is continuous with the dorso-lateral fissure of the medulla.

Formerly, the spinal cord was divided into three columns,—an anterior, a lateral, and a posterior,—which are marked out by the anterior median, antero-lateral, postero-lateral, and posterior median fissures; but as the antero-lateral fissure is incomplete, the cord is now divided into an antero-lateral and a posterior column.

In the spinal cord the arrangement of white and gray matter is the reverse of that in the brain, its white matter being upon the outside and the gray matter inside, though the gray matter comes to the surface at the bottom of the posterior median and postero-lateral fissures.

The Macroscopic Structure of the Spinal Cord in a transverse section is very simple. If cut across, it is found to consist of white matter enveloping an \(\text{H} \)-shaped central mass of gray matter. The arms of the \(\text{H} \) are in the form of crescents whose convexities are adjacent and united by a band of gray matter called the gray commissure, a misnomer, however, as the commissure is chiefly composed of decussating, and not commissural, fibers. The anterior ends of these crescents are expanded and the posterior extremities taper, so that the crescents have been described as comma-shaped. The portion of the crescent in front of the commissure is called the anterior horn, while that part behind it is termed the posterior horn. The end of the anterior horn is rounded and expanded; the posterior horn is long and tapering, gives origin to the posterior roots of the spinal nerves, and closely approaches the surface of the cord. The anterior horns do not reach the surface, but send out numerous nerve fibers to form the anterior roots of the spinal nerves. In the center of the gray commissure is the central canal of the cord, which is lined by epithelium and is continuous, above, with the fourth ventricle of the brain. It appears, upon section of the cord, as a very small spot. This canal is the remains of the original neural canal of the embryo, from the walls of which the spinal cord is formed. In front of the gray commissure, between it and the bottom of the anterior median fissure, is a layer of white substance called the white commissure. For further details, both as to arrangement and changes in size and form of the cord on section at different levels, the reader is referred to the accompanying illustrations.

The substantia gelatinosa Rolandi is a translucent mass of gray matter which caps the end of the posterior horn.

It has been demonstrated, chiefly through embryologic and pathologic research, that the bundles of medullated nerve fibers in the white matter of the
SECTIONS OF SPINAL CORD. W. R. GOWERS.
437
NERVE-TRACTS OF SPINAL CORD.

spinal cord have a definite arrangement. Each half of the spinal cord is divided into an antero-lateral and a posterior tract by the postero-lateral fissure.

The antero-lateral tract contains the direct pyramidal, crossed pyramidal, and direct cerebellar tracts, Gowers' tract, and the antero-lateral ground bundle.

That portion of the antero-lateral tract which is in relation with the anterior median fissure is the anterior or direct pyramidal tract (column of Turck). It is the continuation of the anterior pyramid of the medulla, and contains those fibers which do not decussate in the medulla, though in all probability they do so in the cord by passing through the anterior commissure and thence to the crossed pyramidal tract of the opposite side. It tapers as it passes downward, and terminates in the middle of the thoracic region. It contains descending fibers—i.e., fibers in which nerve impulses descend.

The crossed or lateral pyramidal tract contains the greater number of the fibers of the anterior pyramid of the medulla—those which decussate. It passes downward into the posterior portion of the antero-lateral tract in front of and to the outer side of the posterior cornu. It contains descending fibers, and extends the whole length of the cord.

The direct cerebellar tract lies between the lateral pyramidal tract and the surface of the cord, and does not extend further forward than that tract. It begins at the level of the root of the first lumbar nerve, ascends to form part of the restiform body of the medulla, contains ascending fibers, and increases in size as it ascends.

Gowers' tract, or the antero-lateral ascending tract, is a band of fibers on the surface of the cord in front of the direct cerebellar tract. It contains ascending fibers which enter the outer side of the tract of the fillet.

The antero-lateral ground bundle comprises the remainder of the antero-lateral tract. This has been subdivided into the anterior ground bundle, the mixed lateral zone, and the lateral ground bundle.

The anterior ground bundle is separated from the remainder of the antero-lateral ground bundle by the anterior roots of the spinal nerves and the anterior cornu. This division is hardly warrantable, as it contains fibers similar to those of the mixed lateral zone. Its fibers connect the cells of the anterior cornu.

The mixed lateral zone is the backward continuation of the anterior ground bundle, and is limited behind by the crossed pyramidal tract. It contains both ascending and descending fibers which are connected with the cells of the anterior cornu. The anterior ground bundle and mixed lateral zone seem to be continuous above with the posterior longitudinal bundle of the medulla oblongata.

The lateral ground bundle lies between the mixed lateral zone and crossed pyramidal tract externally, and the crescent of gray matter internally. Its ante-
rior portion contains fibers which are connected with the anterior cornu, and its posterior portion has fibers connected with the posterior cornu.

The **posterior tract** of the white matter of the cord is divided into two portions—the columns of Goll and Burdach. These are separated by a septum, and on the surface of the cord by a furrow.

The **column of Goll, or postero-internal tract**, is in relation with the posterior median fissure. It contains ascending fibers which are derived from the posterior roots of the nerves and others which connect the cells of the posterior cornu. Above, it is continuous with the posterior pyramid of the medulla.

The **column of Burdach, or postero-external tract**, lies between the column of Goll and the posterior cornu. It contains ascending fibers which are derived from the posterior roots of the nerves and others which are associated with the cells of the posterior cornu. Like the column of Goll, it is continuous above with the posterior pyramid of the medulla.

The **boundary zone of Lissauer** is composed of the most external fibers of the posterior roots of the spinal nerves; these fibers ascending in that column or zone to enter the posterior cornu.

The microscopic structure of the cord is not within the scope of this work, and is therefore not given.

The **Arteries of the Spinal Cord** are the anterior spinal artery and the posterior and lateral spinal arteries which form upon the cord an anterior median and four postero-lateral arteries.

The **anterior spinal artery** is a small branch which arises from the vertebral artery near its termination. It joins its fellow of the opposite side in front of the medulla oblongata, and forms a single median vessel which descends in front of the cord to its termination and for some distance on the filum terminale. It is joined on either side by branches from the lateral spinal arteries. This median vessel is lodged under the pia mater in the anterior median fissure, and supplies the cord and the cauda equina.

The **posterior spinal arteries** are derived from the vertebral artery at the side of the medulla; each artery passes to the side of the cord and divides into an anterior and a posterior branch, one branch running in front of the posterior roots of the spinal nerves and the other behind them. These arteries continue down the postero-lateral aspect of the cord to its termination. They are joined by the lateral spinal arteries and supply the adjacent cord, membranes, and cauda equina.

The **lateral spinal arteries** in the cervical region are branches of the vertebral, ascending cervical, and deep cervical arteries; in the thoracic region, of the dorsal branches of the intercostal; and in the lumbar region, of the lumbar
arteries. They enter the spinal canal through the intervertebral foramina, and divide into two branches—one of which goes to the back of the bodies of the vertebrae and the other reaches the cord upon the posterior root of a spinal nerve. Some of the latter branches join the anterior median artery while the others either terminate in the nerve root or join the postero-lateral arteries of the cord. They supply the cord, its membranes, and the vertebrae.

The Veins of the Spinal Canal and Spinal Cord are the dorsi-spinal, the meningo-rachidian, the venae basis vertebrae, and the veins of the cord itself. All the veins of the spinal canal and spinal cord are devoid of valves.

The meningo-rachidian veins have been described.

The veins of the spinal cord (medulli-spinal) form a plexus over the surface of the cord within the pia mater, and emerge chiefly from the anterior and posterior median fissures. Branches from the plexus pass outward upon the nerve roots and communicate with the meningo-rachidian veins which in the upper part of the spinal canal empty into the vertebral and the inferior cerebellar veins or into the inferior petrosal sinuses, and in the lower part of the canal into the intercostal and lumbar veins.

The Motor, Sensory, and Reflex Areas of the body governed by the spinal cord at different levels are approximately shown in the accompanying table from Gowers. While it is not my object to go into any details as to the structure or function of the spinal cord, it is perhaps well to say a few words upon the subject. Thus, while most of the motor fibers cross at the decussation of the pyramids in the medulla, the sensory fibers cross in the cord throughout its entire length. This difference in the motor and sensory decussation is only anatomic, for from the functional standpoint they cross over upon the same principle—i.e., practically upon their entrance into the cord: the motor fibers, with the exception of those of the direct pyramidal tract, entering above en masse, soon decussate in a body; and the sensory fibers, entering at different levels, cross over soon after their entrance, thus decussating separately all along the cord.

Reflex Action is a fanciful designation to indicate the centripetal impulse along a sensory nerve to the nerve center (gray matter) and the resulting centrifugal (return, reflected) impulse along a motor nerve. Thus, if a corn be stepped upon, the resulting excitation of the gray matter of the cord is so great that it promptly responds by a reflex motor impulse tending to withdraw the damaged part from the site of injury, even before the centripetal impulse reaches the brain and the individual becomes conscious of injury. This quick reflex act independent of conscious action is what is generally meant by reflex action, though all acts are reflex.

Each portion of the spinal cord from which a pair of spinal nerves arise is
termed a segment, though, of course, there is no anatomic separation of the cord into these segments.

Pathologic processes may involve one of these segments; such a lesion is called a focal lesion: a tumor would be an example of this. When one or more longitudinal tracts or systems of fibers are diseased the condition is designated a systemic disease; of this, locomotor ataxia is an example.

Disease of the Spinal Cord may affect its entire transverse area, or certain portions of it, in varying lengths; or it may begin at any level, and thence extend upward or downward; in that event being designated ascending or descending.

Inflammation of the anterior horns of the spinal cord is a disease quite often seen in infants, and frequently overlooked; its most constant symptom is paralysis of a group of muscles of the extremities; because of an infant's inability to walk, this symptom is not readily detected.

The signs of lesions of the cord depend upon the area of gray matter or column of nerve fibers involved. Whether the symptoms be those of irritation or of paralysis depends upon the kind and degree of the pathologic process. An active congestion of the cord may cause symptoms of irritation, such as tingling, fibrillary twitching, and pains; while enough turgescence and exudate to cause marked compression will result in numbness and motor paralysis. Passive congestions produce their most marked symptoms in the morning, because of the gravitation of venous blood to the cord during recumbency upon the back. All active inflammatory diseases of the spinal cord are aggravated by exercise, for the double reason that movements of the spinal column and functional activity of the cord increase the blood supply. Again, an intra-spinal tumor will, as it begins to encroach upon the cord, at first produce signs of irritation, and compression symptoms (paralysis or loss of function) will manifest themselves as the encroachment increases. Any disease involving the integrity of the entire transverse diameter of the cord will cause complete motor and sensory paralysis of the areas supplied by the part of the cord at and below the site of the disease. If the lesion affect only one lateral half of the cord, there will be motor disturbance on the same side of the body below the lesion and sensory disturbance upon the other side, which is accounted for by the different modes of decussation of the motor and sensory nerve fibers.

No other affections of the body offer the same field for absolute accuracy in diagnosis and localization of lesions as do diseases of the spinal cord; or, in fact, of the entire cerebro-spinal axis. A careful study of the areas of motor and sensory disturbance, together with the mode of onset and general course of the disease, usually leaves no room for doubt as to the location of the lesion, though its nature may be doubtful.
<table>
<thead>
<tr>
<th>REFLEX</th>
<th>SENSORY</th>
<th>MOTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck and Scalp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck and Shoulder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front of thorax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensiform area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdomen (Umbilicus 10th)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttock, upper part</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groin and Scrotum (front)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cremasteric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knee-joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gluteal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot clonus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin from coccyx to anus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approximate relation to the spinal nerves of the various motor, sensory, and reflex functions of the spinal cord (Gowers).
Protection to the Spinal Cord is afforded by a number of safeguards; these are the following: The free mobility of the spinal column as a whole; the slight amount of movement between any two vertebrae; the elastic intervertebral discs which break up force and shock applied to the spinal column; the comparatively large size of the spinal canal in the cervical and lumbar regions where the mobility is most marked; the curves of the spinal column which lessen shock and force; suspension of the cord in the spinal canal by the ligamenta denticulata; the spinal dura mater which is so tough that the cord may be ruptured without laceration of the dura; and the cerebro-spinal fluid.

Injuries.—The spinal cord is most likely to be injured at the atlo-axoid joint, at the junction of the cervical and thoracic regions, and near the junction of the thoracic and lumbar regions of the spinal column. At the atlo-axoid joint injury is more likely because of the mobility of that part of the spinal column and the fact that in that location the cord nearly fills the canal. At the junction of the cervical and thoracic regions injury is common, because there the freely movable cervical vertebrae join the thoracic vertebrae, between which there is very little motion. Injury of the cord in the neighborhood of the last thoracic and first lumbar vertebra is frequent, because in that location the almost rigid thoracic region joins the freely movable lumbar region of the spinal column, and because the length of that part of the spinal column above permits great leverage.

Fractures of the Spinal Column are usually produced by indirect violence, as in overflexion or overextension of the spinal column, as when a person falls upon the head or buttocks, or is stooping and a heavy weight falls upon the shoulders, one of the supra-spinous ligaments ruptures and the posterior arches of one or two of the vertebrae near the point of rupture are fractured. Usually the fragments so completely crush the cord that operation to remove or elevate them does not improve the condition.

Fractures of the spinal column above the fifth cervical vertebra—that is, above the origins of the phrenic nerves—are almost invariably fatal because of paralysis of the diaphragm.

Fractures of the fifth, sixth, and seventh cervical vertebrae cause paralysis of the intercostal and abdominal muscles; while death may not occur at an early date, respiration can only be maintained by the action of the diaphragm, and this finally fails through lack of assistance from the paralyzed muscles.

In fractures of the lower part of the thoracic region the prognosis is not so unfavorable.

Tumors within the spinal canal, arising from the membranes of the cord or the wall of the canal, as they increase in size, gradually cause more pressure upon the spinal cord. At first, through irritation, they cause spasm and hyper-
esthesia, and later, through pressure, cause complete paralysis and anesthesia of the parts supplied by the portion of the cord below the site of the tumor. There may be some disturbance of micturition or defecation, but after a time the centers in the spinal cord more or less imperfectly control these latter functions. Irritation of the cord just above the tumor causes a girdle sensation, produced by the nerves which arise from that portion of the cord. In the early part of the progress of the growth but one side of the cord is usually affected; later, the whole cord is involved, and the symptoms are present in both sides of the body.

Marked pressure upon or any other total transverse lesion of the spinal cord, as in fractures of the spinal column, irritates the nerves which arise immediately above the lesion, and causes pain in the area supplied by these nerves. Therefore girdle pains may be of value in locating the lesion. The upper thoracic nerves supply corresponding intercostal spaces; the sixth and seventh thoracic nerves, the region of the ensiform cartilage; the tenth thoracic, the region of the umbilicus.

Degeneration in the Motor Tracts of the cord descends, and in the sensory tracts ascends. This is due to the fact that the trophic centers of the motor tracts are in the gray matter of the brain, whereas those of the sensory tracts are in the ganglia upon the posterior roots of the spinal nerves. In the crossed pyramidal tracts we find three sets of fibers—motor, vasomotor, and fibers which carry impulses for inhibition of reflex action. The vasomotor and inhibitory fibers pass to the motor cells of the anterior horns. When the crossed pyramidal tract degenerates, these inhibitory and vasomotor fibers are included, and dilatation of the blood-vessels and increased reflexes result.

Voluntary motor impulses arise in the motor region of the cerebral cortex near the fissure of Rolando. They then pass through fibers of the corona radiata, the internal capsule, partly through the corpus striatum, through the crista of the crura cerebri, the pons, and the anterior pyramids of the medulla. Here most of the fibers cross to enter the crossed pyramidal tract of the opposite side of the spinal cord, and the fibers which do not cross continue downward as the direct pyramidal tract and cross through the anterior or white commissure to the anterior horn of the opposite side; therefore all impulses eventually pass to the opposite side. They pass to the motor cells in the anterior horns of the gray matter, and, through the motor nerves which arise from these cells, pass to the muscles.

A sensory impulse arises in the sensory end organs in the skin and passes along the sensory nerves directly to the cells in the posterior horns, or indirectly through the column of Burdach and boundary zone of Lissauer. The fibers pass from the cells in the posterior horn to the postero-internal column of the
opposite side and the direct cerebellar and Gowers' tract of the same side. These sensory fibers all decussate in the cord except those for muscular sense, which decussate in the medulla oblongata. Some of these fibers pass through the posterior pyramid of the medulla and the restiform body to the cerebellum, and others pass through the formatio reticularis of the pons, the tegmentum of the crura, the optic thalamus, the posterior part of the internal capsule, and the corona radiata to the sensory cells of the gray matter of the cerebrum.

As some of the motor nerve-fibers of the spinal cord cross in the medulla oblongata and the remainder in the spinal cord, and the sensory fibers cross in the cord soon after entering it, a lesion of one-half the spinal cord causes loss of motion and hyperesthesia of the corresponding side of the body and anesthesia of the opposite side, motion on this side not being much affected.

In spinal meningitis, either acute or due to caries of the spinal vertebrae, irritation of the cord causes pain along the course of the spinal nerves and spasm of the muscles supplied by them.

SURFACE ANATOMY OF THE CRANIUM.

The cranium is that portion of the head which extends from the lower margin of the forehead in front to the upper extremity of the neck behind, from ear to ear laterally, and along the base of the brain-case below. The base of the brain-case is represented by a line which extends from the eyebrows, through the external auditory meatus, to the nape of the neck. The covering of this area, with the exception of that of the forehead and part of the temporal regions, constitutes the scalp.

The scalp is covered by hair, which is more or less abundant. At the junction of the middle and posterior thirds of the sagittal suture can be seen a dividing point of the hair, from which it falls radially in all directions. It is at this point that baldness usually begins. The density of the scalp is well marked. The integument is closely connected with the cranial or occipito-frontalis aponeurosis, on account of which attachment many persons can readily move the scalp by the alternate contractions of the occipital and frontal divisions of the muscle. The scalp is lacking in elasticity, especially in the back part. In peeling the scalp back, during postmortem examinations, it sometimes tears, and in the subsequent sewing stitches pull through if drawn very tightly. In this respect the scalp differs remarkably from the skin of other regions of the body. The skin elsewhere has more elasticity and allows much stretching before it tears. Tumors
of the scalp are movable if above the cranial aponeurosis; when below it they are immovable.

The arteries of the scalp are the frontal, which ascends near the median line; the supra-orbital, which is found above the supra-orbital notch and for some distance up the forehead; the anterior branch of the temporal artery (often very tortuous), found about one and one-quarter inches behind the external angular process of the frontal bone; the posterior branch of the temporal, which runs above and in front of the ear; the posterior auricular, above and behind the ear; and the occipital, distinguishable about midway between the mastoid process and the external occipital protuberance.

In examining the head as a whole, it will be noticed that the two sides are not symmetric—one side almost always having larger dimensions than the other. Although the general conformation of the skull cap is a fair index of its contents, it does not follow that every minute change in form of the brain has its effect upon the skull, as is claimed by many phrenologists.

The cranial bones are the frontal, two parietal, two temporal, the occipital, the sphenoid, and the ethmoid. In the adult they are immovably connected with one another, the lines of their junctions being termed sutures. In infancy the frontal bone consists of two portions; these coalesce very early in life, the line of union being the frontal suture. The two parietal bones are joined by the sagittal suture. The course of the two sutures, the frontal and sagittal, corresponds to a line drawn from the root of the nose, directly backward over the median line of the vault of the skull, to the external occipital protuberance. In this line, within the skull, are the superior longitudinal sinus and the longitudinal fissure of the cerebrum. The parietal bones are joined to the frontal bone by the coronal suture, and to the occipital bone by the lambdoid suture. About one inch anterior to the center of a vertical line drawn directly over the skull from one external auditory meatus to the other, and at the junction of the coronal with the sagittal suture, is the bregma, which is the situation of the anterior fontanel of the infant. The coronal suture corresponds to a line drawn from the bregma to the middle of the zygomatic arch. The lambdoid suture is represented by a line drawn from the posterior border of the base of the mastoid process to a point midway between the bregma and the external occipital protuberance. The lambda is the point of junction of the sagittal and lambdoid sutures. This is the site of the posterior fontanel in infants. The pterion—the junction of the anterior inferior angle of the parietal, the frontal, the temporal, and the greater wing of the sphenoid bone—is found about one and one-half inches behind the external angular process of the frontal bone, and about the same distance above the zygoma.

The superciliary ridges commence on each side of the glabella, which is
the elevation above the root of the nose, and extend outward in a gentle curve, gradually becoming less prominent. The superciliary ridges mark the location of the sinuses of the frontal bone, but may vary greatly, generally because of the difference in size of the frontal sinuses. They are small in females and absent in children. Although the size of the ridge may be an indication of the size of the frontal sinus, yet this does not always hold good, as we may find a large ridge with but little development of the sinus; and vice versa. Some of the Australian aborigines have very small sinuses, but large ridges, due to great thickness of the bone.

Above the superciliary ridges are found the **frontal eminences**. They are slightly convex elevations which mark the original centers of ossification in the two frontal bones. Their prominence is generally considered as an index of the amount of intellectual capacity of the individual. The increase in the development of the skull as a whole causes the frontal bones to become upright, and thus makes the frontal eminences more prominent.

Immediately behind the external ear is the **mastoid process** of the temporal bone. It is but rudimentary in infancy, and develops later in life. It extends downward for about an inch below the external auditory meatus, and projects forward slightly under it. The **digastric fossa** is internal to the mastoid process. The body of the process is honeycombed with air-cells, which are connected with the middle ear. At times these become so inflamed that trephining or incision is necessary to afford relief. The incision should be made in the hairless space behind the ear (Wilde’s incision). A line connecting the tips of the two mastoid processes would pass through, or immediately under, the condyles of the occipital bone.

About half an inch above and three-quarters of an inch behind the posterior border of the mastoid process is the **asterion**—the junction of the lambdoid and squamous sutures.

The **external occipital protuberance** (inion) is distinctly felt in the median line at the posterior part of the head, at the junction of the skin of the neck with that of the head. It is the thickest part of the vault of the skull. From it the superior curved lines of the occipital bone extend laterally and give attachment to some of the muscles which support the head. The external occipital protuberance marks the position of the torcular Herophili, or the confluence of the superior longitudinal, two lateral, straight, and occipital sinuses. Above the superior curved lines the general contour of the skull can be readily seen, as the covering is composed of thin structures. Below these lines, however, the skull recedes to a considerable extent, the space being filled in with the strong muscles and fasciae of the neck. In the region of the occiput there is occasionally found a bulging of the membranes of the brain (meningocele), or of the brain itself (encephalocele); in these cases there is defective ossification of the
occipital bone, and the tumor caused by the protruding cranial contents is always in the median line.

The **parietal eminences** which mark the position of the centers of ossification in the parietal bones are readily distinguishable on the sides of the skull above the ears. They are much more marked in infancy, gradually becoming rounded and less prominent. Anterior to the parietal eminences, and running along the sides of the head, are the two **temporal ridges** which limit the temporal fossae above and give attachment to the temporal fascia. They commence at the external angular process of the frontal bone and arch upward, backward, and then downward, to become lost on the posterior roots of the zygomatic process. The point where the coronal suture is crossed by the temporal ridge is known as the **stephanion**. It is about one and one-quarter inches above the pterion.

The **middle meningeal artery** passes upward on the anterior inferior angle of the parietal bone, and is found by trephining an inch and a half behind and about an inch above the external angular process.

The **course of the superior longitudinal sinus** is indicated by a line drawn over the median line of the top of the head, or from the root of the nose to the external occipital protuberance.

The **course of the horizontal portion of the lateral sinus** is shown by the posterior part of a line drawn from the external occipital protuberance to a point one inch above the external auditory meatus. The sinus turns downward and becomes the sigmoid sinus at the point where a vertical line drawn through the posterior border of the base of the mastoid process crosses the line for the horizontal portion.

The **course of the sigmoid sinus** is marked by a line drawn from the point of termination of the horizontal portion of the lateral sinus to the tip of the mastoid process.

SURFACE ANATOMY OF THE FACE.

The appearance of the face in health and disease deserves attention from the physician. In infancy, owing to greater abundance of subcutaneous fat and the lack of development of the muscles of expression, the face is full and round; the relatively greater development of the brain and sense organs causes the upper portion of the face to be broader than the lower; the nasal fosse are shallow, and the maxillary bones are small.

In old age the subcutaneous fat largely disappears and the integument becomes wrinkled and thinner. Not infrequently there are observed areas of
thickened, brownish epidermis (keratosis senilis), particularly in persons much exposed to the weather. After middle life there is a tendency to dilatation of the superficial vessels, especially on the nose and cheeks.

The absorption of the alveolar processes and loss of the teeth cause the characteristic appearance of the mouth in old age; the lips being inverted, the red border becomes narrower, and when the mouth is closed the chin is drawn toward the nose.

The more or less characteristic changes produced by disease can not, of course, be described here; allusion may be made to the waxy hue of the skin in certain renal affections, the cyanosis in grave cardiac lesions, the hectic flush associated with pulmonary tuberculosis, and the "facies hippocratica." In the last named the sunken temples and cheeks; the pointed nose and chin; the dull, leaden hue; the few drops of perspiration, and the cold, clammy skin portend the near approach of death.

The supra-orbital arches are readily recognized as the dividing line between the forehead and the face. They are strong arches which form the upper boundary of the circumference of the orbit. They are covered by the eyebrows. Internally they end in the internal angular processes of the frontal bone, which articulate with the lacrymal bone and the nasal process of the superior maxilla. Between the two internal angular processes, at the fronto-nasal suture, a meningocele or an encephalocele sometimes appears. Externally, the supra-orbital arches terminate in the external angular processes, which articulate with the malar bone. Immediately below the supra-orbital arches are the eyes. They and their lids present points of interest. In size the eyes do not vary much in different individuals, the apparent difference being due to the variations in the length of the palpebral fissure, which thus permits a larger or smaller portion of the ocular surface to come into view. The palpebral fissure is the aperture between the edges of the two lids, and extends from the inner to the outer canthus. The fissure is not, as a rule, exactly horizontal, the outer canthus being generally a little higher than the inner.

By everting the eyelids, the tarsal cartilage may be felt as a thickened portion of the lid. The vertical arrangement of the Meibomian glands in the tarsal cartilage can also be made out. During sleep the eyeball turns upward and inward, thus sheltering the pupil behind the base of the upper lid under the supra-orbital arch, the lower lid, at the same time, moving upward and somewhat inward. In fainting spells, or during sleep, the white sclerotic of the eyeball shows through the palpebral fissure. This fact is often of value in detecting a sham sleep or a sham faint; when, after gently lifting the upper lid by pressing upward and against the eyeball, if the pupil is in view, the patient is not asleep.
The puncta lachrymalia are readily discernible near the inner canthus, the lower being the larger and more external. The introduction of a probe into the lacrimal canaliculus should be preceded by drawing the lid outward, thus straightening the canal.

The tendo oculi can be felt after drawing the eyelids outward, or forcibly closing the eye. Immediately behind this is the lacrimal sac. If a knife were pushed backward just below the tendo oculi it would enter the sac, with the angular artery and vein on the inner side of the puncture. A probe passing through this opening into the sac, and then downward, slightly outward, and backward, would enter the nasal duct and appear in the inferior meatus of the nose. Tension upon the tendon, as in closure of the eyelids, compresses the sac, with which it is closely connected, thus emptying the sac and forcing the tears which have collected at the inner angle of the eye down the nasal duct.

The nasal duct extends from the inner angle of the eye to the inferior nasal meatus, just under the inferior turbinated bone. It is about three-quarters of an inch in length, and constricted in its middle. The lower opening in the nasal mucous membrane is a slit, but there is quite a large opening in the dry bone. When the lower end of the duct lies in the lateral wall of the meatus instead of in its roof, greater difficulty is experienced in passing a probe into the duct.

The lower border of the orbit (infra-orbital margin) lies immediately below the eyeball and is formed by the superior maxillary and malar bones. It can be readily felt throughout its entire extent.

The glabella is a flat, triangular eminence situated between the two internal extremities of the superciliary ridges. Immediately below the apex of the glabella is found the prominence of the nose formed by the nasal bones.

The form of the nose and much of the general expression of the face are due to the size and form of the nasal bones. The difference in these bones accounts for the variations we find in the various races. In the Mongolian and Ethiopian the nasal bones are flat and broad at their base, and thus form the flat nose which is so characteristic of those races. In the Caucasian race, however, the nasal bones are narrow and elongated as well as prominent at the bridge. The nose is rigid at its root and base as far as its middle, beyond which it is cartilaginous and flexible. The intimate adherence of the skin to the nasal cartilages, which are attached to the lower ends of the nasal bones, makes furuncles or erysipelas in this region exceedingly painful, because of the lack of cutaneous elasticity.

The lower end of the nose is open and divided into the two anterior nares by the nasal septum and the columna. It should not be forgotten that the nose is attached lower than the floor of its cavity; so that it must be elevated when the interior is to be inspected.
Below the nose is seen the mouth, which is the upper opening of the gastrointestinal tract. The lips contain muscles and vessels, and play a large part in the general expression of the face. In the living subject the pulsations of the superior and inferior coronary arteries can be easily felt by holding the lips between the finger and the thumb. In the operation for harelip these arteries are divided, the ensuing hemorrhage being easily controlled by pressure with the finger and thumb. Although the aperture between the lips is generally spoken of as the mouth, it must be remembered that the mouth extends backward from the lips to the pharynx.

Below the lips can be found the prominence of the symphysis of the lower jaw. The lower jaw is easily felt from the symphysis to the condyle, where it articulates with the temporal bone. By slight pressure along the bone the alveolar border, in which the teeth are set, can be readily distinguished. In passing the finger backward along the lower border of the body of the jaw the angle, which is at the junction of the body with the ramus, can be distinguished. In front of the angle is a depression through which passes the facial artery, the pulsation of which can be detected in the living subject. The condyle of the lower jaw is felt in front of the tragus of the external ear and below the zygomatic arch. When the mouth of a living person is opened, the condyle can be felt leaving the glenoid fossa and advancing upon the eminentia articularis. This forward motion of the condyle affords a freer access to the external ear, which can be demonstrated by passing the little finger into the external auditory meatus and opening and closing the mouth.

In the supra-orbital margin, at the junction of its inner with its middle third, is the **supra-orbital notch, or foramen**, which gives passage to the supra-orbital vessels and nerve. The **mental foramen** is found in the lower jaw, opposite the second bicuspid tooth; it gives passage to the mental vessels and nerve. In a line drawn between the supra-orbital notch and mental foramen, and just below the infra-orbital margin, is the infra-orbital foramen, which gives passage to the infra-orbital vessels and nerve. These nerves are derived from the fifth cranial nerve. Quite frequently accessory foramina are found external to the constant ones, and usually transmit a portion of the nerve which commonly passes through the normal foramen. These anomalies, especially on account of their frequency, are of considerable significance in the treatment of neuralgias by nerve section. The anomalous openings occur most frequently in connection with the supra-orbital, the infra-orbital, or the mental foramen, in the order named, and upon the right side. At times a deep groove extends for several inches upward from the accessory supra-orbital foramen and about a finger's breadth internal to the temporal ridge. Failure to obtain relief in some cases of neuralgia, after section of the nerve which
passes through the normal foramen, may be due to an accessory nerve, instead of to central disease or affections of the ganglia connected with the parent stem.

Continuing outward from the external angular process is the zygomatic arch, formed by the malar bone and the zygomatic process of the temporal bone. The anterior part of the arch is flat and broad, and forms the prominence of the cheek, or the "cheek bone." Posteriorly, the zygomatic arch terminates in front of, and just above, the external auditory meatus. On account of the attachment of the dense temporal fascia to the upper border of this arch, the lower border is more easily distinguished. The zygomatic arch forms a dividing line between two depressions. These are generally filled with fat in the healthy individual, and, therefore, are not markedly evident. As soon as a wasting disease begins to tax the organism, the fat above the zygoma is absorbed, and this bony arch becomes much more prominent; as the wasting progresses, the masseteric depression can be plainly seen, and, at the same time, the fat in front of the anterior margin of the masseter muscle and below the anterior half of the malar bone disappears, with resultant sinking of the cheeks.

The arteries of the face are the temporal, between the ear and zygoma, and the facial, on the body of the lower jaw just in front of the masseter muscle, at the angle of the mouth, and passing along the naso-labial fold and side of the nose to the inner angle of the eye. The facial vein runs straight across the face from the inner canthus of the eye to the anterior inferior angle of the masseter muscle at the lower border of the lower jaw. The anterior temporal and facial arteries are useful to the anesthetizer in studying the pulse, and also to the physician when the patient is sleeping.

Expression is due to muscular traction upon the facial integument. In facial hemiplegia, when the muscles of the affected side have lost their power, expression is gone, and the wrinkles of the face disappear. The "expression of the eye" is due to wrinkling of the lids and the peri-ocular integument. The study of the relation between facial expression and the permanent markings of the face resulting therefrom, as an index to character and disposition, is still in its infancy. Note the proximity of the muscle centers of the face in the ascending frontal and parietal gyri to the speech center. The latter is at the tip of the operculum around the ascending arm of the Sylvian fissure, and at the lower part of the ascending gyri. Just above it is the lip center, followed by that of the face, fingers, hand, and arm, with that of the lower limb overtopping all. Is this not also the order in which these muscle groups are involved during increasing animation accompanying a discussion? The central excitement becomes greater and extends over wider areas, sending larger and more intense impulses to those muscle bundles which traverse the facial integument and pull its surface hither and thither, forming wrinkles,
Layers of scalp.

Cirrsoid aneurysm.

463
SCALP.

Dimples, scowls, and puckerings, expressive of the condition of the mind in relation to the matter engaging it. The habitual recurrence of these emotional results leaves its impress by gradually undermining the elasticity of the skin involved and by contracting the affected muscles, producing upon the individual's face indications of his character which may be read by all who are competent.

The external ear, or pinna, is placed at the junction of the face, neck, and cranial vault. The general conformation and direction of the pinna, and its utility for the collection and partial condensation of sound, need only be mentioned. During inspection of the tympanic membrane and of the whole length of the external auditory canal, the direction of the latter concerns us practically. It is about an inch and a quarter long. When removing foreign bodies, which frequently lodge in this canal, it is important to note that it sags at its outer end, and can be straightened by pulling the pinna upward. The greatest diameter of the canal is vertical at the external end, and transverse at the internal. The upper and posterior portions of the tympanic membrane incline outward.

SCALP.

Dissection.—The dissection of the scalp should be made before that of the face and neck. The body should lie on its back, the head being well elevated by means of a large block placed under the nape of the neck. The head having been shaved, an incision should be carried from the root of the nose over the middle line of the vertex to the external occipital protuberance; and a second incision, at a right angle to the first, commencing at the nasal eminence, should extend on each side as far back as the ear. Beginning at the junction of the two incisions, reflect the skin backward and outward, forming two flaps. When dissecting these flaps great care must be taken to remove only the skin, the best guide being the bulbs of the hair, which are in the superficial fascia.

The scalp is that portion of the cranial covering which lies in front of the superior curved ridges of the occipital bone and above the two temporal ridges, though in the dissection of the scalp, for convenience, the tissues in the temporal region are included.

Layers.—The scalp above the temporal ridges is made up of five layers—viz., skin, superficial fascia, occipito-frontalis aponeurosis, loose areolar tissue, and pericranium (external periosteum). In the frontal and occipital regions, in place of the aponeurosis, are the muscular bellies of the occipito-frontalis muscle. Below the temporal ridges (in the temporal regions) the scalp is composed of eight layers—
vz., skin, superficial fascia, attolens and attrahens aurem muscles, occipito-frontalis (epicranial) aponeurosis, areolar tissue, temporal fascia, the temporal muscle, and the periosteum. That which is usually spoken of as the scalp includes the skin, the superficial fascia, and the occipito-frontalis muscle and aponeurosis; these three layers are closely adherent to one another.

The **skin of the scalp** is thicker than that of any other part of the body. By means of the superficial fascia the skin is closely adherent to the occipito-frontalis muscle and aponeurosis, which accounts for the movement of the skin with the muscle and its aponeurosis. It is rich in sebaceous glands which, when enlarged on account of occlusion of their ducts, constitute sebaceous cysts or wens, so common in this region. These growths, even when large, except in very rare instances, are superficial to the occipito-frontalis aponeurosis, and with care can, therefore, be removed without risk of opening the areolar tissue layer. The skin is well nourished by the vessels of the superficial fascia.

The **superficial fascia of the scalp** consists of but one layer, which presents a granular appearance, due to the nodulated fat and dense fibrous septa. Its septa firmly connect the skin to the occipito-frontalis aponeurosis. In its density and capability of resisting pressure it is like the superficial fascia of the palm of the hand and sole of the foot. It is continuous behind with the superficial fascia of the back of the neck; laterally, and in front, with the superficial fascia of the face. It contains the principal blood-vessels and nerves of the scalp, in this respect differing from the superficial fascia elsewhere, with the exception of that of the face and ischio-rectal fosse, the muscles of the auricle, and the hair-bulbs. The arteries of the scalp lie, as it were, in canals in the fascia, and are attached to the walls of these canals by loose fibrous tissue; when divided, they have a slight tendency to retract within these channels or canals, and, on account of the density of the fascia, it may be difficult to seize them with the artery forceps. Consequently, some form of pressure is often employed to check the bleeding. The presence of the hair-bulbs in this dense fascia and their firm attachment to the scalp enable a strong person, by securely grasping the hair, to lift the entire weight of the body without tearing out the hair-roots. Owing to the density of the superficial fascia, redness and swelling are not very pronounced in inflammation of the scalp. The superficial fascia is thickest in the occipital region, and gradually grows thinner as it approaches the front and sides of the cranium.

Wounds of the scalp bleed freely, because the arteries can not contract or retract on account of the density of the superficial fascia and their close adherence to the connective-tissue septa within which they ramify.

Dissection.—Upon one side of the head the superficial fascia with the vessels
and nerves are to be removed as one common layer, bringing into view the corresponding half of the occipito-frontalis aponeurosis and muscle; while upon the other side only the superficial fascia in the immediate neighborhood of the vessels and nerves is to be removed, in this way exposing and giving a clear idea of the blood and nerve supply of the scalp. In reflecting the superficial fascia preserve the attolens and attrahens aurem muscles which lie between it and the aponeurosis.

The Extrinsic Muscles of the Ear are very feeble and rudimentary, the auricle in man being practically immovable. They are three in number—the attolens aurem, attrahens aurem, and retrahens aurem; they require considerable care in dissection to avoid being overlooked and destroyed.

Dissection. — Draw the pinna downward and fasten it with hooks; this will make tense the attolens and attrahens aurem muscles.

The attolens aurem, the largest of the three muscles, is broad and fan-shaped, converging to a narrow tendon below. It arises from the superficial surface of the occipito-frontalis aponeurosis below the temporal ridge, and is inserted into the cranial aspect of the upper part of the pinna.

Nerve Supply. — From the temporal branch of the facial nerve.
Action. — It draws the pinna upward.

The attrahens aurem is the smallest muscle of the three, and arises from the occipito-frontalis aponeurosis in front of the attolens aurem muscle, and is inserted into the front of the helix.

Nerve Supply. — From the temporal branch of the facial nerve.
Action. — It draws the pinna forward and upward.

Dissection. — Release the pinna from its present position and draw it forward; fasten it with hooks, and divide the integument over the tense band behind the auricle to expose the retrahens aurem muscle.

The retrahens aurem muscle consists of two or three short muscular bundles which arise from the mastoid process of the temporal bone and are inserted into the back of the concha.

Nerve Supply. — From the posterior auricular branch of the facial nerve.
Action. — It draws the pinna backward.

The Arteries of the Scalp are derived, in front, from the supra-orbital and frontal arteries; on the sides, from the temporal; and behind, from the posterior auricular and occipital arteries.

The supra-orbital artery, a branch of the ophthalmic, leaves the orbit through the supra-orbital notch, and divides into a superficial and a deep branch, which ascend toward the vertex, anastomosing with the temporal and frontal arteries and with the supra-orbital artery of the opposite side. It supplies the tissues of the forehead.
The **frontal artery**, one of the two terminal branches of the ophthalmic, leaves the orbit at its inner angle and ascends on the forehead, anastomosing with the supra-orbital and with the frontal artery of the opposite side.

The **temporal artery**, the smaller of the two terminal divisions of the external carotid, commences in the substance of the parotid gland and ascends over the posterior root of the zygoma, about two inches above which it divides into the *anterior and posterior temporal*; in some cases it divides immediately after crossing the zygoma; rarely, it divides below the zygoma. It is accompanied by branches of the facial and auriculo-temporal nerves. It is covered by the atrahens aurem muscle and crossed by one or two small veins. The temporal and anterior temporal arteries are the vessels used by the anesthetizer to ascertain the character of the pulse.

The **anterior temporal artery** passes forward in a tortuous course to anastomose with the supra-orbital and frontal arteries and with the anterior temporal artery of the opposite side. It supplies the tissues along its course. It is the branch usually selected when blood is to be extracted from the arterial system.

The **posterior temporal artery**, the larger of the two, passes upward and backward above the pinna and anastomoses with the posterior temporal artery of the opposite side and with the occipital and posterior auricular arteries.

The transverse facial, anterior auricular, and middle temporal branches of the temporal artery will be described with the dissection of the face.

The **posterior auricular artery** passes over the mastoid process, and divides into two branches—an anterior and a posterior. The anterior branch passes forward and anastomoses with the posterior temporal artery; the posterior branch passes backward and anastomoses with the occipital artery. It is accompanied by the posterior auricular nerve, a branch of the facial nerve.

The **occipital artery** pierces the trapezius muscle at its attachment to the superior curved line of the occipital bone, about midway between the mastoid process and the external occipital protuberance. Thence it ascends in a tortuous course over the back of the head to the vertex, dividing into numerous branches, which anastomose with the occipital artery of the opposite side and with the posterior temporal and posterior auricular arteries. It is accompanied by the great occipital nerve.

The arteries of the scalp sometimes become elongated and tortuous, producing what is known as **cirsoid aneurysm**. The anterior temporal artery is the one most commonly affected.

The **Veins of the Scalp** accompany the corresponding arteries, with the exception of the supra-orbital and frontal veins, which unite to form the angular, the commencement of the facial, vein. The veins of the scalp communicate with
Nerves of Scalp and Facial Nerve.
the sinuses in the interior of the skull and with the veins of the diploë by means of the emissary veins.

The **Nerves of the Scalp** are branches of the trifacial, facial, and great occipital nerves, and of the cervical plexus.

The **supra-orbital nerve**, the larger of the two terminal branches of the frontal branch of the ophthalmic nerve, leaves the orbit with the supra-orbital artery through the supra-orbital notch or foramen, which is located in the upper margin of the orbit at the junction of its inner and middle thirds, and ascends upon the forehead beneath the orbicularis palpebrarum and the frontal belly of the occipito-frontalis muscle. It divides into two branches—an inner and an outer—and becomes subcutaneous; the inner branch, the smaller, pierces the frontal belly of the occipito-frontalis muscle and ascends as high as the parietal bone; the outer branch, the larger, pierces the occipito-frontalis aponeurosis and ascends over the vertex as far as the occipital bone.

The **supra-trochlear nerve**, the smaller of the two terminal branches of the frontal branch of the ophthalmic nerve, appears at the inner angle of the orbit above the pulley of the superior oblique muscle, and ascends upon the forehead. It is covered by the orbicularis palpebrarum and frontalis muscles, piercing the latter to end in the integument. It supplies the skin of the forehead and the upper eyelid.

Neurectomy.—The supra-orbital and supra-trochlear nerves are often affected by neuralgia, for the relief of which division or resection of these nerves may be required. The supra-orbital notch, if present, forms a sure guide to the position of the supra-orbital nerve, which can be reached and exposed by a vertical incision immediately over the notch, or by a transverse incision parallel to and a little below the eyebrow. The latter method, as it leaves a less noticeable scar, is the one more commonly practised. The former method, however, will expose a larger portion of the nerve. The skin having been divided by either a vertical or a transverse incision, the further dissection should be in a direction parallel to the fibers of the orbicularis palpebrarum muscle. The old subcutaneous operation is now seldom done on account of the extensive extravasation from division of the supra-orbital vessels. To divide the nerve well back in the orbit, it is necessary to sever the orbito-tarsal ligament and depress the orbital fat, when the nerve is separated from its connections and lifted on a blunt hook. The supra-trochlear nerve is exposed through an incision carried in a line drawn from the angle of the mouth through and beyond the inner canthus. The nerve will be found at the point of intersection of this line with the upper margin of the orbit. The occasional presence of an accessory supra-orbital foramen, giving passage to a division of the supra-orbital nerve, should not be overlooked. Recurrence of pain
immediately after operation is good presumptive evidence of the existence of an accessory foramen.

Temporal branch of the orbital nerve.—About an inch above the zygoma the temporal fascia is pierced by the temporal branch of the orbital branch of the superior maxillary nerve, which is distributed to the integument of the temple and communicates with the temporal branch of the facial nerve.

The *auriculo-temporal nerve*, a branch of the inferior maxillary nerve, accompanies the temporal vessels, lying posterior to them. The auriculo-temporal nerve emerges from beneath the upper part of the parotid gland, and divides into two terminal branches—the anterior and posterior temporal. The anterior temporal nerve, the larger, accompanies the anterior temporal artery to the vertex, and communicates with the facial and temporo-malar nerves. The posterior temporal nerve, the smaller, accompanies the posterior temporal artery.

Temporal branches of the facial nerve extend upward over the zygoma upon the temple to supply the attractens and attolens aurem, the orbicularis palpebrarum, the frontalis, and the corrugator superciliii muscle. They communicate with the temporo-malar, auriculo-temporal, lacrymal, and supra-orbital nerves.

The *posterior auricular nerve*, a branch of the facial, accompanies the posterior auricular artery, and, like the latter, divides into two branches—a posterior and an anterior. The posterior (occipital) supplies the occipitalis muscle; the anterior (auricular), the auricle and the retrahens and attolens aurem muscles. This nerve is joined by filaments from the auricular branch of the pneumogastric nerve and from the great auricular and small occipital nerves.

The *small occipital nerve* (occipitalis minor), a branch of the anterior division of the second cervical nerve, supplies the scalp behind the ear and over the occiput. It communicates with the great auricular and the great occipital nerve, and with the posterior auricular branch of the facial nerve. It can be seen in the neck running along the posterior border of the sterno-mastoid muscle.

The *great occipital nerve* (occipitalis major), the largest cutaneous nerve of the scalp, accompanies the occipital artery over the occiput. It is the internal branch of the posterior division of the second cervical nerve; pierces the complexus and trapezius muscles near their attachment to the occipital bone; enters the superficial fascia with the occipital artery, and breaks up into a number of large branches which spread over the back of the head, supplying the integument as far forward as the vertex. It communicates with the small occipital and the first cervical nerve, and receives a branch from the third cervical nerve.

The **Lymphatics of the Scalp** follow the same course as the blood-vessels, which is the general rule. The posterior, or occipital, lymphatics enter the occipital glands situated along the origin of the occipitalis muscle; the postero-
ARTERIES, NERVES, AND MUSCLES OF SCALP AND FACE.

477
lateral, or posterior auricular, set enter the posterior auricular glands situated upon the mastoid attachment of the sterno-mastoid muscle; the temporal lymphatics enter the glands situated upon and within the parotid gland; and a frontal set end in the facial lymphatics. In congestion of the scalp due to cold, and in other affections of this region which increase the activity of the lymphatics, these glands are considerably swollen and painful.

The occipito-frontalis muscle and aponeurosis, exposed upon the side from which the superficial fascia has been removed, will now be studied.

The **occipito-frontalis** is a broad, musculo-aponeurotic layer covering one side of the vertex of the skull from the occiput to the brow. It consists of two flattened muscular bellies, an occipital and a frontal, with an intervening aponeurosis.

The **occipital belly** (*occipitalis muscle*), thin and quadrangular, arises from the outer two-thirds of the superior curved ridge of the occipital bone and the adjoining mastoid process, thus leaving a triangular interval between the two occipitales muscles as their fibers eventually meet higher up in the median line. The fibers are about an inch and a half in length and ascend to the aponeurosis.

Blood Supply.—From the occipital and posterior auricular arteries.

Nerve Supply.—The occipitalis muscle derives its nerve supply from the posterior auricular branch of the facial and, exceptionally, from the occipitalis minor nerve.

The **frontal belly** (*frontalis muscle*), a thin, muscular layer having intimate cutaneous connections, arises from the aponeurosis below the coronal suture. It descends over the forehead and blends with the orbicularis palpebrarum, the corrugator supercilii, and the pyramidalis nasi muscle.

Blood Supply.—From the frontal, supra-orbital, and anterior temporal arteries.

Nerve Supply.—The frontalis muscle derives its nerve supply from the temporal branch of the temporo-facial division of the facial nerve.

The **aponeurosis** extends over the vertex and is continuous across the middle line with the aponeurosis of the opposite side; laterally it is continued over the temporal fascia to the zygoma, just above which it is attached to that fascia. Connected with the lateral portion of the aponeurosis are the attolens and attrahens aurem muscles. It is intimately connected with the skin through the attachment of the superficial fascia, and but loosely connected with the pericranium by the connective tissue which intervenes, thus accounting for the movement of the integument when the occipito-frontalis muscle is in action.

Action.—Contraction of the anterior belly of the muscle elevates the eye-
brow and produces wrinkling of the forehead; if contraction be continued, it draws the scalp forward, and pulls up the skin of the nose, to the extent even of moving the naso-labial folds; contraction of the occipital belly draws the scalp backward; and alternate contraction of the two bellies moves the scalp backward and forward.

Dissection.—Divide the aponeurosis in the median line, and make another incision at its junction with the frontalis muscle. Reflect the aponeurosis outward and backward, and the frontalis muscle downward.

Areolar tissue layer.—The mobility of the scalp depends entirely upon the laxity of the subjacent areolar tissue layer; it is this layer which permits extensive flaps of the scalp to be torn loose. When the hairs become caught in moving machinery the entire scalp may be torn off, laying this tissue bare. It was due to the laxity of this layer that the American Indian, with no knowledge of anatomy or surgery, was able to peel off the scalp with so much ease. Exposure of the skull in a postmortem examination is effected by peeling off the scalp along this layer of tissue, and it is remarkable with what ease the skull can thus be exposed. To further illustrate the laxity of this tissue, it will suffice to relate a case mentioned by the late D. Hayes Agnew: A midwife attending a woman in child-birth incised the child’s scalp, thinking it the protruding bag of waters. Labor pains came on, and the head protruded through the scalp wound with the entire vault of the skull laid bare.

Tumors.—By careful examination tumors situated above the occipito-frontalis aponeurosis or in it will be seen to be freely movable. All immovable growths of the scalp should be most carefully examined before extirpation, for they are probably beneath the aponeurosis; a tumor originating within the cranium may force its way outward and form a prominence on the scalp.

Wounds involving only the skin and superficial fascia of the scalp, when the occipito-frontalis muscle or its aponeurosis has not been divided, do not gape, because of the close adherence of the skin to the superficial fascia and of the superficial fascia to the aponeurosis. The areolar tissue layer permits of wide separation of the edges of a wound which divides the occipito-frontalis aponeurosis. Antero-posterior wounds which involve the aponeurosis gape but little, while the edges of transverse wounds are widely separated by the contraction of the occipito-frontalis muscle. The great vascularity of the scalp lessens the likelihood of sloughing and gangrene. A large flap of the scalp attached by but a small pedicle is much less likely to perish than a flap of skin torn from another part of the body, as the vessels of the scalp run immediately beneath the skin and are included in the flap. In phlegmonous erysipelas and in deep inflammation of the scalp the areolar tissue layer becomes infiltrated with pus and consequently sloughs. As the vessels are superficial to this layer the skin does not
necrose, ulcerate, and allow pointing, and for this reason it is important to incise early.

The pericranium (external periosteum) is but loosely attached to the bone, except at the sutures, where the union is firm. In lacerated wounds of the scalp the pericranium is frequently stripped from the skull to the extent of exposing large areas of bone. The pericranium differs in its functions from the periosteum covering other bones in that, if the periosteum be removed to any extent from another bone, the part of the bone from which it is removed will most probably necrose, while the pericranium may be stripped from a considerable part of the vault of the cranium without necrosis following. This is due to the fact that the bones of the skull receive their blood supply chiefly from the vessels of the external (endosteal) layer of the dura mater, while the other bones are nourished to a great extent through their periosteal covering. The pericranium at the sutures becomes continuous with the external layer of the dura mater, constituting the so-called intersutural membrane. It is also continuous with the dura at the foramina; hence it is that inflammation of the pericranium may extend by continuity and involve the dura mater, producing pachymeningitis.

Collections of blood or pus in the scalp may be situated superficial to the occipito-frontalis aponeurosis, between the aponeurosis and the pericranium or beneath the pericranium. A collection superficial to the aponeurosis is of but little moment, since the density of the superficial fascia causes it to be circumscribed. Collections in the areolar tissue layer, between the aponeurosis and the pericranium, are limited only by the attachments of the occipito-frontalis muscle and its aponeurosis; thus they may undermine the entire scalp and prove serious if not evacuated early. Collections beneath the pericranium are limited to a single bone, on account of the sutural attachments of the membrane. Collections in the areolar tissue layer call for drainage, and should they be slow in healing, the scalp must be firmly bandaged in order to arrest the movements of the occipito-frontalis muscle. Hematomata in the areolar tissue layer are uncommon, except as a result of fissured fracture of the skull with rupture of one of the branches of the middle meningeal artery, or of the superior longitudinal or lateral sinus, as the areolar tissue between the aponeurosis and the pericranium contains but very few vessels. Collections of blood beneath the pericranium, generally termed cephalhematomata, must be limited to one bone, since the membrane dips into the sutures and becomes continuous with the dura mater; they are usually congenital and due to pressure upon the head at birth.

In septic inflammation of the scalp infection may reach the superior longitudinal sinus through the parietal emissary vein and the lateral sinus through the occipital and posterior auricular veins and their communications with
the mastoid vein which empties into the lateral sinus. Through the anastomoses
between the diploic veins and the veins of the pericranium septic material in the
scalp may reach the sinus alae parvae and the cavernous sinus through the fronto-
sphenoid diploic vein, the superior petrosal sinus through the anterior temporal
diploic vein, and the lateral sinus through the posterior temporal and occipital
diploic veins. In erysipelas, abscess, and other infectious inflammations of the
scalp germs may enter the sinuses through these various routes and cause throm-
busis, embolism, and pyemia.

Temporal fascia.—The temporal fascia is a white, shining membrane, which
is stronger than the occipito-frontalis aponeurosis in this location, and which gives
attachment by its under surface to the superficial fibers of the temporal muscle.
Above, it is attached to the entire extent of the temporal ridge as a single layer;
while below, it divides into two layers, the outer of which is attached to the
external and the inner to the internal border of the upper margin of the zygo-
matic arch and zygomatic process of the malar bone. Between these two layers
are seen a small quantity of fat, the orbital branch of the middle temporal artery,
and the temporal branch of the temporo-malar or orbital branch of the superior
maxillary nerve. In relation with its outer surface is the extension of the occipito-
frontalis aponeurosis, the orbicularis palpebrarum, the attolens and attrahens
aurem muscles, the temporal vessels, the auriculo-temporal nerve, and the temporal
branches of the orbital and facial nerves. Immediately above the zygoma it is
pierced by the middle temporal artery, a branch of the temporal.

Density of the temporal fascia.—Owing to the density of this fascia abscesses
beneath it very rarely point upon the surface, the pus passing in the direction of least
resistance—namely, through the pterygo-maxillary region into the mouth or neck.
Its unyielding nature is well illustrated by a case recorded by Denonvilliers: “A
woman who had fallen in the street was admitted to the hospital with a deep
wound in the temporal region; a piece of bone several lines in length was found
loose at the bottom of the wound and was removed. After its removal the finger
could be passed through an opening with an unyielding border, and came in
contact with some soft substance beyond. The case was considered one of com-
pound fracture of the squamous portion of the temporal bone, with separation
of a fragment and exposure of the brain. A bystander, however, noticed that the
bone removed was dry and white. A more thorough examination of the wound
revealed the fact that the skull was uninjured, that the supposed hole in the skull
was merely a laceration of the temporal fascia, that the soft matter beyond was
muscle and not brain, and that the fragment removed was simply a piece of bone,
which, lying on the ground, had been driven into the soft parts when the woman
fell” (Treves).
PLATE CXXIX.

INCISIONS FOR DISSECTION AND LINES FOR VESSELS AND NERVES.

487
Dissection.—The temporal fascia should now be detached from the zygomatic arch and reflected upward, when the greater portion of the temporal muscle and a quantity of fat overlying the muscle above the zygoma will be exposed. The tendon of insertion of the muscle will be seen in dissecting the face.

The temporal muscle, broad, flat, and triangular, is situated on the side of the head, and occupies the temporal fossa. It arises from the under surface of the temporal fascia and from the whole of the temporal fossa, whence its fibers descend and converge to a tendon which passes under the zygomatic arch to be inserted into the apex, the inner surface, and the fore part of the coronoid process of the lower jaw down to the last molar tooth.

Blood Supply.—From the middle and deep temporal arteries.

Nerve Supply.—Derived from the temporal branches of the inferior maxillary nerve.

Action.—The action of the temporal muscle is to elevate the lower jaw; its posterior fibers also assist in drawing the lower jaw backward after other muscles have carried it forward.
of a layer of lax cellular tissue, is loosely adherent to the parts beneath. Over the cartilages of the nose the skin is so intimately adherent to the tissues beneath that it is removed with difficulty. It is very freely supplied with sebaceous and sudoriferous glands, and hence is commonly the site of acne and eruptions which especially involve the sebaceous follicles; it is also the site of sebaceous tumors. Facial abscesses usually point quickly and seldom attain large size.

The superficial fascia—the cellular tissue layer of the face—contains a considerable amount of fat, except in the eyelids and over the bridge of the nose. The laxity of the cellular tissue favors the spreading of infiltrations, so that the cheeks and other parts of the face may become greatly swollen. In general dropsy the face soon becomes puffy, the edema first appearing, as a rule, in the lax areolar tissue of the lower eyelid. The soft tissues of the cheek favor the spread of destructive processes. In cancrum oris—a form of gangrene of the mouth attacking the young—the whole cheek may be lost in a few days. Great contraction is apt to follow upon loss of substance, so that the jaw may be firmly closed in some cases, as is seen after recovery from deep ulceration (Treves). The mobility of the tissues of the face renders this region favorable for the performance of plastic operations, and their vascularity insures a prompt and perfect union. Notwithstanding the fact that there is a large quantity of fat in the subcutaneous tissue, fatty tumors are rarely seen in this region. The thickness of the tissues of the cheeks and lips favors the embedding of foreign substances in these parts. Thus, a tooth which has been knocked out has remained embedded in the lip. Henry Smith reported a remarkable case in which he removed a piece of tobacco-pipe three inches long from the cheek, where it had remained for several years.

Dissection.—The superficial fascia—underlying which are the muscles, vessels, and nerves—should be removed in the same manner as the skin, taking care not to disturb the muscles. As the superficial fascia is not easily removed in a continuous layer, it may be taken away in sections, the dissection being made in the line of the muscular fibers; this is necessary, too, in order to avoid dividing the blood-vessels and nerves of the face. The removal of the fascia in this manner exposes the muscles, the vessels, and the nerves.

The **Muscles of the Face** (muscles of expression) are divided into three groups: those of the nose, those of the eyebrows and eyelids, and those of the mouth—i.e., nasal, palpebral, and oral.

The **Muscles of the Nose** are the **pyramidalis nasi**, the **compressor nasi**, the **levator labii superioris alaeque nasi**, the **dilator naris**, and the **depressor alae nasi**.

The **pyramidalis nasi muscle** covers the nasal bone, and is continuous above with the **frontalis muscle**, where it is attached to the deep surface of the inter-superciliary integument. It arises from the aponeurosis over the cartilage of
Pyramidalis nasi m.
Orbiculatris palpebrarum m.
Orbicularis oris m.
Depressor labii inferioris m.
Levator menti m.
Posterior dilator narium m.
Anterior dilator narium m.
Compressor narium m.
Compressor narium minor m.
Zygomaticus major m.
Zygomaticus minor m.
Risorius m.
Levator anguli oris m.
Levator labii superioris m.
Levator labii superioris alaeque nasi
Depressor anguli oris m.
Occipito-frontalis aponeurosis
Attrahens aurem m.
Attrahens aurem m.
Retrahens aurem m.
Occipitalis m.
Parotid gland
Deep portion of masseter m.
Stenson's duct
Socia parotidis
Superficial portion of masseter m.
Buccinator m.
Platysma myoides m.
the nose, where it joins the lower edge of the nasal bone and the compressor nasi muscle.

Nerve Supply.—From the infra-orbital branch of the temporo-facial division of the facial nerve.

Action.—It renders the skin over the cartilages tense, and that over the root of the nose lax, thus forming the transverse crease at the root of the nose.

The *compressor nasi muscle* is triangular in shape, arises by its apex from the canine fossa of the superior maxillary bone, and ends in the aponeurosis covering the cartilaginous part of the nose, blending with the corresponding muscle of the opposite side. The origin of this muscle is concealed by the levator labii superioris alaeque nasi muscle.

Nerve Supply.—From the infra-orbital branch of the upper division of the facial nerve.

Action.—It throws the skin at the side of the nose into vertical wrinkles, aids in the elevation of the upper lip, and slightly compresses the cartilaginous ridge of the nose.

When the compressor nasi muscle is reflected from the median line outward, the superficial branch (naso-labial) of the nasal nerve, which becomes subcutaneous between the nasal bone and the lateral nasal cartilage, will be seen running downward to the tip of the nose.

The *levator labii superioris alaeque nasi muscle*, placed by the side of the nose and overlapping the origin of the compressor nasi muscle, arises from the upper part of the nasal process of the superior maxilla. It descends, and divides into two portions: the inner and smaller part is inserted into the inner side of the ala nasi, and the outer into the upper lip, blending with the orbicularis oris muscle. It is partially overlapped near its origin by the orbicularis palpabrarium muscle.

Nerve Supply.—From the infra-orbital branch of the facial nerve.

Action.—It raises the inner half of the upper lip, and draws outward the wing of the nose, thus dilating the anterior naris.

The *dilator naris muscle* consists of two portions—an anterior and a posterior. The anterior portion is a thin fasciculus which passes from the lower edge of the cartilage of the wing of the nose to the integument over the ala; the posterior portion arises from the margin of the nasal notch of the superior maxilla and from the outer surface of the sesamoid cartilages of the nose, and is inserted into the skin over the back and lower margin of the ala of the nose.

Nerve Supply.—From the infra-orbital branch of the facial nerve.

Action.—It enlarges the anterior naris by raising and everting its outer edge, thus counteracting its tendency to be closed by atmospheric pressure. In conditions occasioning dyspnea—e.g., laryngeal or tracheal obstruction—the action of
these muscles can plainly be seen, and constitutes one of the signs which indicate tracheotomy or intubation.

The **depressor alae nasi** is a short, flat muscle which may be exposed when the upper lip is everted and its mucous membrane removed from the side of the labial frenum. It arises from the incisive fossa of the superior maxilla, whence its fibers ascend to be inserted into the septum nasi and the posterior lower part of the wing of the nose.

Nerve Supply.—From the buccal branch of the cervico-facial division of the facial nerve.

Action.—It draws downward and inverts the edge of the nasal cartilages.

The **Muscles of the Eyelids and Eyebrows** are the orbicularis palpebrarum, the corrugator supercilii, the levator palpebræ superioris, and the tensor tarsi.

Tendo oculi (tendo palpebrarum).—Before examining the orbicularis palpebrarum the tendo oculi (internal tarsal ligament) is to be noted. It is a short tendon, about one-sixth of an inch in length by one-twelfth of an inch in breadth, and can readily be felt at the inner angle of the eye after drawing the eyelids outward. It is attached to the nasal process of the superior maxilla in front of the lacrymal groove, passes transversely outward in front of the lacrymal sac, and divides into two portions, separated by the caruncula lachrymalis; the upper portion is attached to the inner extremity of the upper, and the lower to the inner extremity of the lower, tarsal cartilage. As the tendon crosses the lacrymal sac it gives off a strong aponeurotic lamina, which covers the sac and is attached to the margin of the lacrymal groove. This expansion will be seen on reflecting that portion of the orbicularis palpebrarum muscle which covers the lacrymal sac. To puncture the lacrymal sac a knife is inserted below the tendo oculi in a direction downward and a little backward, dividing the skin, the orbicularis palpebrarum muscle, and the fibrous expansion derived from the tendo oculi. The angular artery and vein are situated on the inner side of the incision.

The **external tarsal ligament** extends, undivided, transversely inward from the edge of the frontal process of the malar bone to the adjacent outer extremities of the two tarsal cartilages.

The **orbicularis palpebrarum** (orbicularis oculi, sphincter oculi) is a thin, broad muscle which surrounds the margin of the orbit and the eyelids, forming a sphincter; it is continuous, above, with the fibers of the frontalis muscle. It arises from the internal angular process of the frontal bone, the nasal process of the superior maxilla, the tendo oculi, and the lower margin of the orbit. From this origin the fibers are directed outward, forming a series of oval curves which cover the eyelids, surround the margin of the orbit, and spread over the forehead, temple, and cheek. The central fibers, occupying the eyelids and connected inter-
Tensor Tarsi and Corrugator Supercilii Muscles.
nally with the tendo oculi and externally with the external tarsal ligament and the malar bone, constitute the palpebral portion of the muscle. The fibers of this portion, which are in immediate relation with the eyelashes, have been described as the ciliary muscle; but this, however, must not be confounded with the ciliary muscle proper—the muscle of visual accommodation. More peripheral fibers constitute the orbital portion of the muscle. The latter arise from the internal angular process of the frontal bone and from the nasal process of the superior maxillary bone, and are distributed around the margin of the orbit. They are continuous above with the frontalis and corrugator supercilii muscles, and extend outward upon the cheek to mingle with the elevators of the upper lip and nose and with the zygomaticus minor muscle.

Nerve Supply.—From the temporal and malar branches of the temporo-facial division of the facial nerve; hence in paralysis of this nerve the eyelids on the paralyzed side can not be closed.

Action.—The orbicularis palpebrarum muscle closes the eyelids and protects the eye. The palpebral portion of the muscle contracts during winking. Contraction of the orbital portion presses the eyeball backward into the orbit and draws the soft parts covering the margin of the orbit around the eyeball, thus protecting it from injury. While this cushion of tissue may be severely bruised, as is seen in a "black" eye, the eyeball itself is rarely injured. As the outer portion of the orbicularis is mingled with the fibers of the frontalis muscle and the elevators of the upper lip and nose, slight depression of the eyebrow and elevation of the upper lip and of the wing of the nose follow contraction of this portion. Strong contraction of the entire muscle holds the eye firmly in the orbit, thus protecting it against the severe strain in violent coughing, sneezing, and vomiting, during which acts the muscle usually contracts spasmodically. Contraction of the palpebral portion of the muscle following that of the orbicular portion tends to draw the lids slightly inward, thus directing the tears to the inner angle of the fissure between the eyelids, near which are situated the puncta lachrymalia.

The tensor tarsi (Horner's muscle) is a small muscle, really a deep portion of the orbicularis palpebrarum, situated at the inner angle of the orbit behind the tendo oculi. To expose it it is necessary to cut perpendicularly through the middle of the upper and lower eyelids, when the nasal half of each lid should be reflected inward and the mucous membrane removed. The muscle will be seen to arise from the ridge on the lacrymal bone. It passes outward behind the lacrymal sac and divides into two portions which cover the posterior aspect of the canaliculi. The two portions terminate in the inner ends of the upper and lower tarsal cartilages near the puncta lachrymalia.
NERVE SUPPLY.—From the infra-orbital branch of the temporo-facial division of the facial nerve.

ACTION.—It compresses the lacrimal sac.

The corrugator supercilii muscle arises from the inner end of the superciliary ridge of the frontal bone. Its fibers are directed outward and a little upward to the under surface of the orbicularis palpebrarum and frontalis muscles, to be inserted into the former over the middle of the supra-orbital arch.

NERVE SUPPLY.—From the temporal branch of the temporo-facial division of the facial nerve.

ACTION.—It draws the eyebrow downward and inward, thus making the vertical wrinkle of the forehead at the inner extremity of the eyebrow.

DISSECTION.—The nasal half of the orbicularis palpebrarum and a small part of the frontalis muscle having been reflected inward, the corrugator supercilii is exposed.

The levator palpebræ superioris muscle.—By reflecting the outer as well as the nasal half of the orbicularis palpebrarum muscle, and detaching the orbitotarsal ligament from the superior orbital margin and reflecting the ligament downward, the insertion of the levator palpebræ superioris muscle by a broad aponeurosis into the upper border of the tarsal cartilage of the upper eyelid can be seen.

The muscles of the mouth are the orbicularis oris, the levator labii superioris, the levator anguli oris, the zygomaticus major, the zygomaticus minor, the buccinator, the risorius, the depressor labii inferioris, the depressor anguli oris, and the levator labii inferioris.

The risorius muscle (Santorini’s muscle), a part of the platysma myoides, consists of a thin bundle of fibers which arises from the fascia covering the masseter muscle and parotid gland, and passes horizontally forward to the angle of the mouth, where it joins the fibers of the orbicularis oris and depressor anguli oris muscles; some of its fibers pass to the skin at the angle of the mouth.

NERVE SUPPLY.—From the buccal branch of the lower division of the facial nerve, which enters it from beneath.

ACTION.—It retracts the corner of the mouth. Its contraction during certain conditions, as in tetanus, causes the “risus sardonicus” of the old authors.

The orbicularis oris muscle (sphincter oris), nearly an inch in breadth, surrounds the mouth, forming a sphincter; at its periphery it unites with several muscles which act upon that aperture. It consists of two parts—an inner, central, or labial part, and an outer, peripheral, or facial part; the two differing in appearance and in the arrangement of fibers, like the orbicularis palpebrarum muscle. The inner, central, or labial portion consists of pale, thin fibers, fine in texture,
corresponds in position with the red margin of the lips, and has no bony attachment, but is continuous around the angles of the mouth from one lip to the other. The outer, peripheral, or facial part is thinner and wider than the labial, and has a bony attachment as well as connection with the adjacent muscles. In the upper lip the orbicularis oris muscle is attached at each side of the middle line to the lower part of the septum nasi by naso-labial slips, and to the alveolar border of the upper jaw opposite the incisor teeth; in the lower lip it is attached to the alveolar border of the lower jaw opposite the canine teeth by a single fasciculus (musculi incisivi). The cutaneous surface of the muscle is intimately connected with the skin of the lips and surrounding parts. The intimacy of this union is so great in some instances that the mouth is surrounded by radiating wrinkles, especially marked in the upper lips of women. The labial integument of the male probably contains fewer wrinkles on account of the presence of large hair-bulbs. The deep surface of the orbicularis oris is covered by mucous membrane, between which and the muscle, in the submucous tissue, are the coronary arteries and the labial glands.

Nerve Supply.—From the buccal and supra-maxillary branches of the cervico-facial division of the facial nerve.

Action.—When the facial and labial portions act conjointly, they press together and project the lips. The labial fibers acting alone bring the lips and the angles of the mouth together and invert the lips. The facial fibers acting alone press the lips against the alveolar borders of the jaws, and, at the same time, evert the lips. The orbicularis oris is the antagonist of all those muscles which converge to the lips from the various parts of the face. Hypertrophy of the orbicularis oris or, rather, an increase of the connective tissue, particularly of the portion in the upper lip, to the extent of producing a considerable deformity, is sometimes seen, and indicates a plastic operation involving the removal of a transverse, wedge-shaped section from the lip.

The **levator labii superioris muscle** (levator labii proprius) arises from the superior maxilla above the infra-orbital foramen, and is inserted into the upper lip, its fibers blending with the orbicularis oris muscle. At its origin it is overlapped by the orbicularis palpebrarum, and covers the infra-orbital vessels and nerves. It is a landmark in exposing the infra-orbital nerve.

Nerve Supply.—From the infra-orbital branch of the upper division of the facial nerve.

Action.—It raises the upper lip, at the same time making prominent the skin below the eye.

Dissection.—The levator labii superioris muscle is to be reflected downward from its origin, when will be exposed the levator anguli oris, the infra-orbital plexus of nerves, and the infra-orbital vessels.
The levator anguli oris muscle (musculus caninus) arises from the canine fossa of the superior maxilla below the infra-orbital foramen, and is inserted into the angle of the mouth, superficial to the buccinator muscle, its fibers blending with the orbicularis oris, the zygomatici, and the depressor anguli oris muscle.

Nerve Supply.—From the infra-orbital branch of the upper division of the facial nerve.

Action.—It raises and draws inward the angle of the mouth.

The depressor labii inferioris muscle (quadratus menti) arises from the oblique line of the lower jaw by a wide origin, extending from a point below the foramen mentale nearly to the symphysis. Its fibers are associated with those of the muscle of the opposite side, ascend, and are inserted into the integument of the lower lip, blending with the orbicularis oris. Its outer border is overlapped by the depressor anguli oris muscle.

Nerve Supply.—From the supra-maxillary branch of the cervico-facial division of the facial nerve.

Action.—It depresses and everts the lip.

The depressor anguli oris muscle, triangular in shape, hence also called triangularis oris, arises from the oblique line of the lower jaw external to the depressor labii inferioris muscles. Its fibers ascend, to be inserted into the angle of the mouth, intermingling with the zygomatici, the levator anguli oris, the risorius, and the orbicularis oris muscle. Its outer border overlaps the anterior part of the buccinator muscle.

Nerve Supply.—From the supra-maxillary branch of the cervico-facial division of the facial nerve.

Action.—It draws the angle of the mouth downward and outward, producing an expression of sorrow.

The levator labii inferioris, or levator menti, is a small muscle seen by everting the lip and dissecting off the mucous membrane on each side of the labial frenum. It arises from the fossa below the incisor teeth, near the symphysis. Its fibers descend, and are inserted into the integument of the chin.

Nerve Supply.—From the supra-maxillary branch of the cervico-facial division of the facial nerve.

Action.—It assists in raising the lower lip, at the same time wrinkling the integument of the chin over the point of its insertion.

The zygomatic muscles pass obliquely from the zygomatic arch to the upper lip and angle of the mouth. The zygomaticus major arises from the outer part of the malar bone in front of the suture, between it and the zygoma; its fibers pass obliquely downward and inward, to be inserted into the angle of the mouth, blending with the fibers of the orbicularis and depressor anguli oris muscles.
The **zygomaticus minor** arises from the outer part of the malar bone, anterior to the zygomaticus major, and behind the suture between the malar bone and the superior maxilla; its fibers pass downward and inward, to be inserted into the lower border of the levator labii superioris muscle. It is often absent.

Nerve Supply.—From the infra-orbital branch of the temporo-facial division of the facial nerve.

Action.—The zygomaticus major draws the corner of the mouth upward and backward; the zygomaticus minor assists the levator labii superioris muscle in raising the upper lip.

Bucco-pharyngeal fascia.—Before making a dissection of the buccinator muscle, the thin layer of fascia which covers and adheres closely to its surface should be studied; it is attached to the alveolar borders of the superior and inferior maxillary bones, and posteriorly, where it is thickest, is continuous with the fascia over the constrictors of the pharynx. It is called by Holden the "bucco-pharyngeal fascia," since it supports and strengthens the walls of the pharynx and mouth. The density of the buccal fascia offers a barrier to the escape of pus into the mouth or pharynx from an abscess in the cheek.

The **buccinator**, quadrangular in form, is a thin, flat muscle which occupies the interval between the jaws at the side of the face. It arises from the outer surface of the alveolar borders opposite the middle and posterior molar teeth of the superior and inferior maxillae, and behind from the pterygo-maxillary ligament. The **pterygo-maxillary ligament** is a fibrous band extending from the apex (hamular process) of the internal pterygoid plate of the pterygoid process to the posterior extremity of the internal oblique line (mylo-hyoid ridge) of the lower jaw; it separates the buccinator muscle from the superior constrictor of the pharynx. The fibers of the buccinator pass forward, to be inserted into the orbicularis oris muscle at the angle of the mouth. The central fibers intersect one another, while the upper fibers pass to the upper lip and the lower fibers to the lower lip. In relation with the superficial surface of the buccinator muscle is a large mass of fat (buccal pad), which separates it from the ramus of the lower jaw, the masseter muscle, a small portion of the temporal muscle, and the muscles converging to the angle of the mouth. Absorption of the fat overlying the muscle is followed by sinking of the cheek, as seen in persons who are emaciated. In compression of the brain the flapping of the cheeks in breathing is the result of paralysis of the nerve supplying the buccinator, while the stertorous breathing (snoring) is the result of paralysis of the nerves of the soft palate. The duct of the parotid gland (Stenson's duct), which pierces the buccinator muscle opposite the second molar tooth of the superior maxilla, crosses the upper part of the muscle obliquely, at about a finger's breadth below the zygoma. It is also crossed by the facial artery and vein and
by branches of the facial nerve. Internally it is lined by the mucous membrane of the mouth; between this and the muscle lie a number of racemose glands called the buccal glands. A few of these glands are found on the outer surface of the muscle and are called molar glands.

Nerve Supply.—From the facial nerve. The long buccal nerve, a branch of the inferior maxillary, pierces the buccinator muscle on its way to supply the mucous membrane of the mouth.

Action.—The two buccinator muscles widen the aperture of the mouth transversely and contract and compress the cheeks so that during mastication the food will not remain between the cheeks and the teeth. When but one muscle acts, the angle of the mouth is drawn to that side, and the cheek is wrinkled; when whistling, the muscle contracts and prevents bulging of the cheeks.

It is hardly fair to the earnest dissector to leave this subject without the consoling reminder that the most expert dissectors can not bring out these muscles in the cadaver as they are shown in the anatomic plates. It must be remembered that some of the facial muscles belong to the panniculus carnosus group, so extensive in animals but so limited in man. In some faces the musculature is a complex network of subcutaneous fibers running in all directions. In a muscular subject a large number of distinct fasciculi are seen crossing one another, and more or less merged with the constant muscles of the face. This difference in the amount of facial musculature undoubtedly accounts for much of the variation in the amount of facial wrinkling observed in different persons. It is safe to say that a dissection of the muscles of the face with their boundaries as well defined as shown in pictures does more credit to the dissector’s skill in imitating a diagram than to any painstaking effort to exhibit the natural state of the parts.

The **Facial Artery**, a branch of the external carotid, enters the face over the body of the lower jaw, at the anterior inferior angle of the masseter muscle, where its pulsation may readily be felt and it may be compressed against the bone. Thence it ascends forward across the cheek, over the buccinator muscle, and beneath the platysma myoides muscle, to the angle of the mouth; thence to the side of the nose, to terminate at the inner canthus of the eye as the angular artery. Where the artery passes over the lower jaw it is covered by the platysma myoides muscle and the deep fascia; near the mouth it passes beneath the zygomatici major and minor and the risorius muscle; and along the side of the nose it is usually covered by the levator labii superioris alaeque nasi. It rests successively on the lower jaw, the buccinator, and the levator anguli oris muscle. The companion vessel of the facial artery, the **facial vein**, runs in an almost straight line from the inner canthus of the eye to the anterior inferior angle of the masseter muscle, being in contact
ARTERIES, NERVES, AND MUSCLES OF SCALP AND FACE.
with the facial artery at these points, but elsewhere above and external to it. The artery is crossed by filaments of the facial nerve, while the levator labii superioris muscle separates it from the infra-orbital nerve behind.

Branches of the Facial Portion of the Facial Artery.—These are the muscular, inferior labial, inferior coronary, superior coronary, lateralis nasi, and angular.

The **muscular branches** are directed outward to supply the buccinator, masseter, and internal pterygoid muscles. They anastomose with the masseteric and buccal branches of the internal maxillary and with the infra-orbital and transverse facial arteries.

The **inferior labial artery** passes inward beneath the depressor anguli oris to supply the muscles and integument of the lower lip and chin. It anastomoses with the inferior coronary, the submental branch of the facial, and the mental branch of the inferior dental artery.

The **inferior coronary artery** arises, either independently or in common with the inferior labial, from the facial artery near the angle of the mouth. It passes forward and inward in a tortuous manner beneath the depressor anguli oris toward the angle of the mouth, then pierces the orbicularis oris, and continues between it and the mucous membrane along the free margin of the lower lip. It anastomoses with the inferior coronary artery of the opposite side, the inferior labial, and the mental branch of the inferior dental artery.

The **superior coronary artery**, which is larger and takes a more tortuous course than the inferior coronary, arises from the facial artery beneath the zygomaticus major muscle. It pierces the orbicularis oris, and runs between it and the mucous membrane along the free margin of the upper lip to anastomose with the artery of the opposite side. By the anastomosis of the superior and inferior coronary arteries with their fellows an arterial circle is formed, which surrounds the mouth and can be felt pulsating on the internal surface of the lips between one-fourth and one-half of an inch from the junction of the skin and the mucous membrane. A small branch to the ala nasi and numerous branches to the labial glands are given off from this circle.

The **artery of the septum of the nose** is a branch of the superior coronary. The twigs of this *arteria septi narii* are a common source of epistaxis (nosebleed). The hemorrhage from the branches of this vessel is readily controlled by compression of the artery of the septum, either by direct backward pressure against the upper lip, or by pressure from within outward, as when a firm pledget of cotton, paper, or other substance is pushed well up under the lip so as to put its tissues upon the stretch and occlude the lumen of the artery. This is a common procedure practised by the laity. Another simple method is that of holding the cartilaginous end of the nose between the thumb and finger.
Harelip.—In the operation for harelip the bleeding can be controlled by grasping the lip between the thumb and forefinger. In introducing the harelip pin or suture, it must be passed deep enough to go beneath the divided coronary artery. Harelip is a congenital deformity consisting of one or more fissures in the upper lip, the result of arrested development. It may be single or double, the fissure or fissures being to the side of the median line of the lip, corresponding to the line of union between the intermaxillary and the superior maxillary bone. In double harelip the intermaxillary bone is often displaced forward. Double harelip is frequently associated with cleft palate.

The *lateralis nasi artery* arises from the facial artery opposite the wing of the nose, and passes forward over the lower part of the nose and over the ala; it supplies the side and dorsum of the nose, and anastomoses with the lateralis nasi artery of the opposite side, the nasal branch of the ophthalmic, the infra-orbital, and the artery of the septum.

The *angular artery*, the terminal part of the facial, passes to the inner canthus of the eye, where it lies on the nasal side of the lacrymal sac and tendo oculi; it anastomoses with the nasal branch of the ophthalmic and with the infra-orbital artery, and supplies branches to the cheek. In opening an abscess of the lacrymal sac it is important to bear in mind the situation of this artery on the inner side of the sac.

Nervi molles.—The facial artery and its branches are surrounded by a minute plexus of sympathetic fibers (nervi molles) not demonstrable macroscopically. These fibers are branches of the superior cervical ganglion of the sympathetic, and supply the walls of the artery and its branches; they furnish the sympathetic root to the submaxillary ganglion.

Transverse facial artery.—Passing transversely across the face between the zygoma and the duct of the parotid gland, and resting upon the masseter muscle, is the transverse facial artery, which arises from the temporal artery in the substance of the parotid gland. It supplies the small, often detached, part of the parotid gland (the socia parotidis) in relation with the duct, the masseter and orbicularis palpebrarum muscles, and the integument. It anastomoses with the infra-orbital, facial, and masseteric arteries. It is accompanied by two or three branches of the facial nerve. It is quite small except when it supplies those parts which usually receive blood from the facial artery. It occasionally gives off the coronary and nasal arteries, the facial itself being small. It arises, at times, from the external carotid artery.

The *facial vein*, the continuation of the angular vein, and formed by the union of the frontal and supra-orbital veins, commences at the inner canthus of the eye and,
VEINS OF SCALP, FACE, AND NECK.

509
as already stated, runs in an almost straight line to the anterior inferior angle of the masseter muscle, where it comes into relation with the outer side of the facial artery. In its course across the face it lies above and to the outer side of the artery, passing over the levator labii superioris, beneath the zygomatic muscles, and over the parotid duct, the buccinator muscle, the anterior inferior angle of the masseter muscle and masseteric fascia, and the body of the lower jaw. Below the jaw it is joined by the anterior branch of the temporo-maxillary vein, and empties into the internal jugular vein. It receives veins from the lower eyelid (the inferior palpebral), from the side of the nose (the lateral nasal), from the orbital vein, and, beneath the zygomaticus major muscle, a branch (deep facial) from the pterygoid plexus, besides muscular branches and branches corresponding to those of the facial artery. The facial vein—through the angular, in which it commences—communicates freely with the ophthalmic vein, and thus with the cavernous sinus; and it also communicates with the cavernous sinus, through the deep facial vein with the pterygoid plexus of veins, which, in turn, communicates with the sinus by means of small veins which pass through the foramen ovale, the foramen of Vesalius, and the middle lacerated foramen. Owing to the free communication between the vein and the cavernous sinus, the latter is endangered by any inflammatory condition of the facial vein.

Disease involving the facial vein.—The facial vein, as a rule, has no valves; it will therefore be understood how emboli are readily carried to the internal jugular vein and thus into the general circulation. Carbuncle of the face may prove fatal by inducing thrombosis of the cerebral sinuses through the communications previously described. Any deep inflammation of the face, as phlegmonous erysipelas, may be complicated by thrombosis or pyemia. The injection of facial nevi in infants may result in death from thrombosis, owing to the direct communication of the facial with the internal jugular vein. Pulmonary embolism and death have followed the injection of perchlorid of iron for nevoid growths of the face. In arterio-venous aneurysm of the cavernous sinus arterial blood, through the ophthalmic and angular veins, flows through the facial vein and gives rise to a pulsating varicose condition of the latter vein and a distinct thrill and bruit.

Vascularity of the face.—It has been demonstrated that the tissues of the face are very vascular. In persons exposed to cold, or in those addicted to strong drink, the very small vessels of the skin, especially over the nose, appear permanently injected or varicose. Attention has been called to the fact that nevi and various forms of erectile tumors are common about the face. Wounds of the face, while they bleed freely, heal very rapidly; their edges should be carefully adjusted as soon after the accident as possible. "Extensive flaps of
skin which have been torn up in lacerated wounds of the face often retain their vitality in almost as marked a manner as similar flaps torn from the scalp (Treves). The anastomoses of the facial artery are so free that when the vessel is divided, both ends bleed freely and, according to the general rule, they should both be tied.

Dissection.—Upon the side of the face on which the muscles have been exposed the appendages of the eye,—including the eyelids, eyebrows, eyelashes, tarsal cartilages, conjunctiva, and lacrimal caruncle,—the parotid gland, and the external ear should be carefully dissected before turning the head to make the dissection of the nerves.

The eyebrow is a prominent arch of integument connected with the orbicularis palpebrarum, corrugator supercilii, and occipito-frontalis muscles. It is covered by numerous short, thick hairs which surmount the upper circumference of the orbit, their general direction being outward, though they interlace, the upper ones curving downward and the lower ones upward. They serve the two-fold purpose of acting as a shield against the admission of foreign bodies to the eye, and as a multiple spring buffer reducing somewhat the impact of blows against the brow, thus often preventing serious wounds of the skin from traumatism applied against the sharp supra-orbital margin.

The eyelids (palpebrae) are two movable semilunar curtains placed in front of each eyeball to protect that exceedingly delicate and important organ. Their free edges are transverse and are studded with hairs, called eyelashes. The upper lid is the longer, so that when the lids are closed, their margin of contact lies below the center of the eye. The upper lid is also more freely movable; it has a special muscle to raise it—the levator palpebrae superioris. The interval between the open eyelids is called the fissura palpebrarum, or interpalpebral slit. At the points of union of the eyelids are the external and internal canthi, or palpebral commissures. The internal canthus is the larger; within it is a triangular space containing a depression, the lacus lachrymalis, and an elevation, the caruncula lachrymalis. At their free margins, which are concave, the lids are thickest. At their inner extremities and upon their free surfaces are two small elevations—the papillae lachrymalis, in the center of which are small openings called the puncta lachrymalia, the orifices of the lacrimal canaliculi. The free margins are provided in front with eyelashes and with orifices of sebaceous and modified sweat glands; and, behind, with small openings—the orifices of the ducts of the Meibomian glands. That portion of the lids internal to the orifices of the lacrimal canaliculi is devoid of eyelashes and Meibomian glands. When the eyelids are closed, an interval exists between the lids and the eyeball for the inward passage of the tears. Inflammation of the ducts opening on the free
PLATE CXXXV.

Lacrymal punctum
Lacrymal caruncle
Lacrymal punctum
Plica semilunaris

Orifices of ducts of meibomian glands
The eyelashes (cilia) are two or more rows of short, thick, curved hairs, fixed in the anterior margin of the free border of the eyelids. They are longer and more numerous in the upper lid, and have their convexities directed downward, while those of the lower lid have their convexities directed upward. They protect the eye against the admission of dust and other foreign substances, especially during high winds.

The conjunctiva.—Before dissecting the eyelid, the conjunctiva and the lacrimal caruncle should be examined. The conjunctiva is the mucous membrane which covers the inner surface of the eyelids and the anterior part of the eyeball. At the free margin of the lids it is continuous with the integument. The part covering the eyeball is in relation with the sclerotic and the cornea. The conjunctiva consists of four divisions: the palpebral, the portion in relation with the eyelids; the reflected, the portion between the eyelids and the eyeball; the sclerotic, and the corneal portions. The lacrimal ducts (excretory ducts of the lacrimal gland) empty upon the free surface of the reflected portion of the conjunctiva. The palpebral portion is more vascular than the remaining parts, and is studded with a number of small papillae, which, when enlarged by inflammation, constitute the disease known as granular lids, though this condition is at times also due to true granulations, which have a similar origin. The conjunctiva covering the sclerotic is loosely attached, and that covering the cornea is very thin, consisting merely of an epithelial layer which is very adherent. In congestion of the conjunctiva with effusion into the loose subconjunctival tissue (chemosis) the membrane is at times swollen to the very edge of the cornea, where it then forms a sharp elevated margin.

The caruncula lachrymalis is a small, reddish elevation situated at the inner canthus in the lacus lachrymalis. It consists of a separated portion of skin, which presents minute hairs upon its surface. It contains connective tissue, a small number of plain and striated muscular fibers and modified sweat glands, as well as a few sebaceous glands. External to the caruncle, and resting upon the eyeball, is a vertical triangular fold of conjunctiva, with its free concave margin directed toward the cornea; this is called the plica semilunaris, and is a rudimentary membrane nictitans (the third eyelid in birds). Müller found smooth muscular fibers in this fold, and in some of the domestic animals a thin plate of cartilage has been discovered in it (Gray).

As previously stated, the conjunctiva is continuous with the skin at the free borders of the lids. It is also continuous, through the lacrimal canaliculi, with the mucous membrane lining the lacrimal sac, the nasal duct, and the margin of the eyelid, which usually affects those on the anterior border, constitutes a stye.
SURGICAL ANATOMY.

inferior meatus of the nose. In the loose subconjunctival tissue there are not infrequently seen, especially in elderly persons, small yellowish masses of fat, called pingueculæ.

In post-conjunctival operations, as in section of the ocular muscles, the conjunctiva must be cut. Its lax attachment to the sclera is now of advantage, for a loose fold is readily raised with the forceps and incised to the required extent, after which it is with ample facility peeled back as far as necessary.

The eyelids are composed of the skin, subcutaneous tissue, orbicularis palpebræ muscle, palpebral ligaments, orbito-tarsal ligaments, the tarsal cartilages, Meibomian glands, vessels, and nerves, and conjunctiva. The upper lid contains, in addition to the structures just mentioned, the aponeurotic insertion of the levator palpebræ superioris muscle. The skin of the lids and the orbicularis palpebræ muscle have already been described.

The subcutaneous areolar tissue of the eyelids contains no fat. Its laxity accounts for the extensive ecchymosis after comparatively slight traumatism, and for the early appearance of puffiness of the eyelids in chronic Bright’s disease.

The palpebral ligaments are fibrous bands attaching the tarsal cartilages to the outer and inner margins of the orbit. The external ligament is undivided and extends from the malar bone to the outer extremities of the tarsal cartilages. The internal ligament (tendo oculi) extends from the nasal process of the superior maxilla and the crest of the lacrymal bone to the internal extremities of the tarsal cartilages. The division of the tendo oculi which is attached to the nasal process of the superior maxilla passes in front of the lacrymal sac, while the limb attached to the crest of the lacrymal bone passes over its outer wall.

The orbito-tarsal ligaments (palpebral fasciae) are fibrous membranes continuous with the periosteum, and extend from the superior and inferior orbital margins to the tarsal cartilages. In the upper lid the orbito-tarsal ligament fuses with the tendon of the levator palpebræ superioris muscle. These ligaments prevent pus in the subcutaneous areolar tissue from making its way into the orbit, and hence are called the septa orbitale.

The tarsal cartilages, situated in the free margins of the eyelids, are two plates of dense connective tissue. They are thickest at their free, or ciliary, margins, and give support and shape to the eyelids. The cartilage of the upper lid is much larger than that of the lower, and gives attachment to the aponeurosis of the levator palpebræ superioris muscle. In both lids the attached margins of the tarsal cartilages are continuous with the orbito-tarsal ligaments.

The Meibomian glands are sebaceous glands lodged in the substance of the tarsal cartilages, and number between twenty and thirty in the upper and somewhat less in the lower lid. The orifices of the glands open on the free borders of
Superior portion of lacrimal gland
Inferior portion of lacrimal gland
Levator palpebrae superioris m.

Frontal sinus
Tensor tarsi m.
Lacrimal sac

LACRYMAL APPARATUS AND MEIBOMIAN GLANDS.

517
the lids behind the lashes. Each gland consists of a straight tube with many short, blind, diverticula. The Meibomian glands secrete a sebaceous material which prevents the lids from adhering, and are readily distinguished as closely adjacent, vertical, parallel, yellow streaks across the inner surface of the lids. When the duct of one of these glands becomes occluded, a retention cyst, similar to a wen, is formed.

Non-striated muscular fibers are found in both lids. In the upper lid these fibers originate from the lower surface of the levator palpebrae superioris; in the lower lid they arise from the vicinity of the inferior oblique muscle. In both lids they are inserted close to the attached border of the tarsal cartilage. They are known as the superior and inferior palpebral muscles of Müller.

Blood Supply.—The eyelids receive their blood supply from the palpebral and lacrimal branches of the ophthalmic artery and from small branches of the temporal and transverse facial arteries. The palpebral branches of the ophthalmic, two in number, arise from that artery near the pulley of the superior oblique muscle; one is found in each lid and runs through the fibrous tissue layer of the lids between the orbicularis palpebrarum muscle and the tarsal cartilages near their margins. The lacrimal is the first branch of the ophthalmic artery. It accompanies the lacrimal nerve and gives off palpebral twigs which anastomose with the other palpebral arteries to form the tarsal arches.

The veins of the eyelids are larger than the arteries, and outnumber them. They empty into the frontal and angular veins at the inner canthus, and into the orbital vein at the outer canthus. Some of the veins of the lids pass between and through the bundles of fibers of the orbicularis palpebrarum, and hence in many inflammatory conditions of the conjunctiva and cornea in children, in which prolonged spasm of this muscle occurs, the lids are very apt to become edematous, from interference with the venous flow (Fucho).

Nerve Supply.—The nerve supply is free. The nerves to the palpebral portion of the orbicularis palpebrarum muscle arise from the facial nerve and enter the lids near the outer canthus. The cutaneous filaments of the upper lid are obtained from the lacrimal, supra-orbital, and supra-trochlear nerve, and the lower lid derives its supply from the infra-orbital and infra-trochlear nerves. The non-striated muscular tissue of the lids is supplied by the sympathetic nerve.

The lymphatics of the eyelids pass to the parotid and submaxillary lymph glands.

The conjunctiva has been described.

The levator palpebrae superioris muscle arises from the under surface of the lesser wing of the sphenoid bone above the optic foramen; its fibers terminate
in a broad, thin aponeurosis which is inserted into the upper border of the superior tarsal cartilage. This muscle runs above the superior rectus, and its upper surface is in relation with the frontal nerve and the supra-orbital artery.

The parotid gland, the largest of the salivary glands, weighs from one-half to one ounce. It is situated on the side of the face, and extends as high as the zygoma and below the level of the angle of the lower jaw. It covers about one-third of the masseter muscle, and extends backward to the external auditory meatus, the mastoid process, and the sterno-mastoid muscle. It is lodged in the space between the ramus of the lower jaw and the mastoid process. This space—known also as the bed of the parotid gland—can be increased in size by extending, and diminished by flexing, the head. With the mouth wide open—in which position the angle of the jaw is carried backward and the condyle forward—the width of the space is diminished below, but increased above. The size of the space is influenced by the age of the individual. In the infant, owing to the obliquity of the ramus and the absence of the angle of the lower jaw, it is broader, in proportion, below. In advanced age, when the teeth have fallen out, thus allowing the angle of the lower jaw to project forward, the space is broader below. When operating in this space these facts should be kept in mind, as it may be necessary to take advantage of them. The gland has three large processes or lobes: one, the glenoid lobe, extends upward into the posterior part of the glenoid cavity of the temporal bone which it occupies; another, the pterygoid lobe, extends forward beneath the ramus of the lower jaw, between the external and internal pterygoid muscles; the third process, the carotid lobe, passes behind the styloid process and beneath the mastoid process and the sterno-mastoid muscle, coming in contact with the internal jugular vein and the internal carotid artery. From the relation which the carotid lobe holds to the internal jugular vein, it follows that swelling of the gland, as in mumps, may cause passive congestion of the brain by compression of that vein. The anterior margin of the parotid gland overlaps the masseter muscle, and a detached portion of the gland (sacca parotideis) lies over that muscle in relation with the upper border of Stenson’s duct. From the position which the parotid gland holds with reference to the temporomaxillary articulation it follows that, in inflammation of the gland, movement of the articulation is attended by pain; the extent to which the lower jaw can be depressed under these circumstances is dependent upon the amount of swelling.

Parotid fascia.—The parotid gland is covered by a dense and strong layer of fascia—a prolongation of the superficial layer of the deep cervical fascia, and called the parotid fascia. It is attached above to the zygoma, and is continuous in front with the fascia covering the masseter muscle. From the parotid fascia numerous processes are sent into the substance of the gland to support its lobules.
The deep fascia of the neck also sends beneath the gland a process continuous with the stylo-maxillary ligament, which separates the parotid from the submaxillary gland. The fibrous envelop of the parotid gland is incomplete above and in front, where its cavity is in communication with the pterygo-maxillary region. In parotid abscess the pus may, on account of this gap in the fascial envelop, extend into the pterygo-maxillary region, and by way of the latter into the temporal fossa, or to the side of the pharynx, meeting with less resistance in taking either of these directions than in attempting to reach the surface. The abscess may, however, extend into the neck by ulcerating through the layer of fascia beneath the gland. Many cases of retro-pharyngeal abscess are attended by swelling in the parotid region. Retro-pharyngeal growths—as, for example, sarcomata, when they have attained any size—cause bulging of the parotid region; and, conversely, tumors of the parotid may bulge into the pharynx. The severe pain in a rapidly growing tumor or abscess of the gland is due to the density of the fascia covering it. This, too, makes it difficult to detect fluctuation early. It also explains why the pus in a parotid abscess is so slow to find its way to the surface, and why an early opening should be made. The intimate relation existing between the parotid gland, the external auditory meatus, and the temporo-maxillary articulation is to be borne in mind, as a parotid abscess may open into the meatus or cause involvement of the joint.

Purulent meningitis and thrombosis of the cranial sinuses may be caused when pus finds its way through the foramina at the base of the skull.

The sensory nerves supplying the parotid gland are the auriculo-temporal branch of the inferior maxillary nerve, the great auricular branch of the cervical plexus, the facial nerve, and branches from the carotid plexus of the sympathetic nerve. In painful affections of the gland the pain is apt to be referred to the areas of distribution of these nerves.

The parotid lymphatic glands.—Lying upon the surface of the parotid gland (in front of the cartilage of the ear, and close to the root of the zygoma) are one or more superficial lymphatic glands, enlargement of which must not be mistaken for a similar condition of the parotid gland itself.

Contents of the parotid gland.—The parotid gland is important, not only on account of its function, of the position which it occupies, and of the relation it bears to the surrounding parts, but also because important structures are found in it. These structures are, from without inward: The facial nerve, passing from behind forward; the temporo-maxillary, superficial temporal, internal maxillary, and posterior auricular veins; the commencement of the external jugular vein; the external carotid artery which supplies branches to the gland and divides at the neck of the lower jaw into its two terminal branches—the temporal and internal
maxillary arteries; the terminal part of the great auricular nerve; and one or two lymphatic glands. The posterior auricular branch of the external carotid artery and the transverse facial branch of the temporal artery arise in the substance of the gland.

The parotid gland is separated from the internal carotid artery, from the internal jugular vein, and from the pneumogastric, glosso-pharyngeal, and hypoglossal nerves by a thin layer of fascia; therefore in stab wounds of the parotid region involving one of the two carotid arteries it may be difficult, at first, to tell which of the two vessels has been wounded.

From an anatomic point of view it is difficult to see how complete removal of the parotid gland is possible, yet the operation has been done so many times by skilful surgeons that there is no question of its feasibility. Doubtless, as long ago suggested by Führer, when the gland becomes the site of a neoplasm it becomes more compact, its processes being rounded off, as it were, and lifted away from the surrounding structures.

Complete removal of the parotid gland results in paralysis of the muscles of expression, for it is impossible to avoid dividing the facial nerve. The author has seen a growth of the overlying lymphatic gland cause facial paralysis from pressure, and thus so closely simulate a parotid neoplasm as to be pronounced a tumor of the parotid gland; but upon the removal of the growth the parotid gland was seen to occupy the bottom of the wound, and to be in a very much atrophied condition.

Socia parotidis.—That portion of the parotid gland resting upon the masseter muscle above the parotid duct (Stenson's duct), and quite separate from the gland proper, is known as the socia parotidis. Its duct empties into Stenson's duct.

Stenson's duct.—Running about one finger's breadth below the zygoma, or in a line drawn from the lower margin of the concha to a point midway between the free margin of the upper lip and the ala of the nose, is the duct of the parotid (Stenson's duct). It is about two inches in length by one-eighth of an inch in diameter, being narrowest at its point of communication with the mouth. It lies between the transverse facial artery above and the buccal branch of the facial nerve below. The duct runs over the masseter muscle, turning abruptly inward at its anterior border, passes through the mass of fat overlying the buccinator muscle and beneath the facial vein, and pierces the buccinator muscle to open into the mouth opposite the crown of the second molar tooth of the upper jaw. The turn of the duct around the anterior border of the masseter muscle must be borne in mind when passing a probe into the duct from the mouth. In opening a parotid abscess the incision should be horizontal, and should be made below the line of the duct and in front of the posterior border of the ramus of the lower jaw. Failure to observe this caution may result in section of the duct, with
resulting fistula (salivary fistula). It is also advisable to take every precaution against cutting through the gland tissue in opening a parotid abscess, for these collections of pus, like those of the mammae, generally affect the connective tissue of the gland and not its substance or parenchyma.

Stenson’s duct may be divided into a massteric and a buccal portion. The massteric portion rests upon the masster muscle and the buccal part extends from the anterior border of the masster muscle to the termination of the duct in the mucous membrane of the cheek. Fistulae of the massteric part are closed with difficulty, whereas fistulae of the buccal portion are remedied by making an opening from the duct into the mouth on the proximal side of the fistula. The author has successfully treated fistulae of the buccal portion by exposing the duct through an incision in the cheek, dividing the duct at the proximal side of the fistula, freeing the duct from the surrounding tissues, and stitching the divided end to the margins of an opening made in the mucous membrane of the mouth.

Dissection.—Before turning over the head to make the dissection of the opposite side of the face, the parotid gland should be removed entire; this operation will convey an approximate idea of the difficulties which would attend the removal of the gland in the living subject. The masster muscle should then be exposed and the external ear dissected. In exposing the parotid gland, its fascial covering is seen to be continuous anteriorly with the fascia covering the masster muscle, and, therefore, the parotid and massteric fasciae are practically one. These fasciae are derived from the superficial layer of the deep cervical fascia, which is continued upward over the body of the lower jaw and attached above to the zygoma. By displacing the parotid gland forward and removing the fascia covering that portion of the masster muscle in advance of the gland, the muscle itself is exposed.

The masster, the most superficial of the muscles of mastication, is of quadrat form, and arises as two portions—a large, tendinous, superficial layer, and a small, fleshy, deep layer. The superficial sheet arises from the anterior two-thirds of the lower border of the zygomatic arch and from the lower border of the malar bone; its fibers pass downward and backward to be inserted into the outer surface of the angle and lower portion of the ramus of the lower jaw. The deep sheet arises from the posterior third of the lower border and all of the inner surface of the zygoma; it passes downward and forward to be inserted into the upper half of the ramus and the outer surface of the coronoid process of the lower jaw. The posterior portion of the muscle is concealed by the parotid gland. In relation with the superficial surface of the muscle are the orbicularis palpebrarum, the zygomatici major and minor, and the platysma myoides muscle, the anterior margin of the parotid gland, Stenson’s duct, the transverse facial vessels, branches of the facial nerve, and, at its anterior inferior angle, the facial vein. In relation
with its deep surface are the buccal pad of fat, the buccinator and a small part of the temporal muscle, the masseteric artery and nerve, and the ramus of the jaw.

Blood Supply.—From the masseteric branch of the internal maxillary, the transverse facial, and the facial artery.

Nerve Supply.—From the masseteric nerve, a branch of the inferior maxillary division of the trigeminal nerve.

Action.—It raises the lower jaw, as in mastication.

The **External Ear** consists of the pinna, or auricle, and of the tube leading to the tympanic membrane—the external auditory canal. The pinna collects the vibrations of sound, and the canal conveys them to the tympanum.

The **pinna, or auricle,** is pyriform in shape, with its concave surface directed outward and slightly forward, and consists of a layer of yellow fibro-cartilage having an uneven surface covered with integument. It is attached to the commencement of the external auditory meatus, and consists of various elevations and depressions, each elevation having a corresponding depression on its opposite surface. The deep hollow in its center, which is wide above and narrow below, is called the **concha.** The concha leads to the commencement of the external auditory meatus, and is partly divided into two by the beginning of the helix. The **helix** passes upward, forms the rim of the pinna, and terminates behind in the **lobule,** which is the lowest portion of the auricle and consists of fatty and areolar tissue. Internal to the helix is the depression called the **fossa of the helix,** or **scaphoid fossa.** Internal to the fossa of the helix is the ridge bounding the concha behind and above. This ridge is called the **anthelix;** it begins above the lobule, at a small prominence, the **antitragus,** and bifurcates at the upper part of the auricle, embracing a small triangular depression—the **fossa of the anthelix.** In front of the concha and projecting backward over the orifice of the external auditory meatus is the **tragus.** Between the tragus and antitragus is a notch—the **incisura intertragica.**

Dissection.—The integument should be removed from the pinna, when the small and rudimentary muscles and the cartilage will be exposed.

The integument of the pinna is thin and delicate. It contains sebaceous glands which are largest in the concha, and here the ducts of the glands often become filled with foreign matter, giving rise to the so-called comedones.

Upon the posterior aspect of the auricle the integument is less firmly attached to the underlying parts than elsewhere, consequently inflammatory swellings, as in erysipelas, are most marked in this situation.

Extravasations of blood beneath the skin are not uncommonly seen as the result of blows upon the ear; these so-called othematomata have been most often observed in insane persons and in prize-fighters. According to Virchow and
PLATE CXXXVIII.

Darwin's tubercle
Helix
Fibrous band
Helicis minor m.
Antitragus m.
Processus caudatus

Helicis major m.

Obliquus auris m.

Transvesus auris m.

Fissure of Santorini

INTRINSIC MUSCLES OF PINNA.

527
Ludwig Meyer, degenerative changes in the blood-vessels and cartilage favor the occurrence of such extravasations. Cicatricial contractions may cause deformity of the pinna after the absorption or evacuation of such hematomata. Under the integument of the lobule gouty deposits (tophi) are sometimes found.

The **Muscles** which move the cartilage of the ear as a whole, three in number, have been described under the dissection of the scalp. The muscles proper of the auricle, which extend from one part of the cartilage to another, are six in number—namely, the muscle of the tragus, the muscle of the antitragus, the small muscle of the helix, the large muscle of the helix, the transverse muscle of the auricle, and the oblique muscle of the auricle.

The **tragicus**, the muscle of the tragus, is situated upon the outer surface of the tragus.

The **antitragicus**, the muscle of the antitragus, arises from the outer part of the antitragus; its fibers pass upward and are inserted into the posterior extremity of the helix.

The **helicis minor**, the small muscle of the helix, is attached to the commencement of the helix and extends into the concha. This muscle is sometimes absent.

The **helicis major**, the large muscle of the helix, is situated upon the anterior margin of the helix; it arises above the small muscle and is inserted into the front of the helix, where it begins to curve backward.

The **transversus auris**, the transverse muscle of the auricle, is situated on the back of the auricle in the depression between the helix and the convexity of the concha; it arises from the convexity of the concha and is inserted into the back of the helix.

The **obliquus auris**, the oblique muscle of the auricle, extends from the upper back part of the concha to the convexity immediately above it.

Nerve Supply.—The pinna derives its nerve supply from the auriculotemporal, the posterior auricular, the auricular branch of the pneumogastric (Arnold’s nerve), the occipitalis minor, and the auricularis magnus nerve.

Action.—The muscles of the helix assist those of the tragus and antitragus in retarding the passage of sound to the meatus.

Blood Supply.—The pinna is well supplied with freely anastomosing vessels—branches of the posterior auricular, temporal, and occipital arteries. The veins accompany the corresponding arteries.

The numerous lymphatics empty into the pre-auricular glands and into those situated upon the insertion of the sterno-mastoid muscle.

The **cartilage of the pinna** is a single piece, and presents the irregularities characteristic of the external ear. It is prolonged inward in the shape of a tube.
which forms the outer part of the external auditory meatus; it is wanting between the tragus and the commencement of the helix, the interval between them being occupied by fibrous tissue. Where the helix makes its first bend, at the front part of the pinna, is a conic projection of the cartilage—the process of the helix. At the highest part of the helix there is not infrequently to be seen another conic projection, to which Darwin first called attention; he regards it as the representative of the extreme tip of the pinna of some of the lower animals. At certain places the cartilage is incomplete; these gaps are known as fissures, and are located as follows: at the anterior part of the pinna, behind the process of the helix (fissure of the helix); on the surface of the tragus; and at the lower part of the anthelix. In the piece of cartilage which forms the outer part of the meatus are two fissures—the fissures of Santorini. The pinna is attached anteriorly to the root of the zygoma and posteriorly to the mastoid process by bands of fibrous tissue; in addition, there are various intrinsic ligaments, uniting the different parts.

Dissection.—Turn the head to the opposite side, fix it with hooks, and work out the facial nerve and the branches of the trifacial nerve which make their exit upon the face. Expose the facial nerve by a longitudinal incision carried into the substance of the parotid gland in front of the lobe of the ear, cutting away a little of the gland with each movement of the knife until the nerve is seen, when it can be traced both backward and forward.

The facial nerve (the seventh cranial) is the motor nerve of the face; it consists of three portions—the intra-cranial, the temporal, and the facial. The facial portion, that which concerns us in this dissection, supplies all the muscles of expression and the platysma, the buccinator, the occipito-frontalis, the attrahens, attolens, and retrahens aurem, the posterior belly of the digastric, and the stylohyoid.

A line drawn from the anterior border of the mastoid process opposite the base of the lobule of the ear downward and forward across the face for about one inch will represent the course of the facial portion of the trunk of the nerve.

Course.—It leaves the cranial cavity through the internal auditory meatus in company with the auditory nerve, the pars intermedia of Wrisberg, and the auditory artery. Reaching the bottom of the internal auditory meatus it enters the facial canal, or aqueductus Fallopii of the temporal bone, from which it makes its exit by way of the stylo-mastoid foramen. Passing downward and forward from the foramen it enters the parotid gland, crosses the external carotid artery, gives off a posterior auricular, a digastric, and a stylo-hyoid branch, and terminates in two divisions—the temporo-facial and the cervico-facial.

The posterior auricular nerve, the first extra-cranial branch, passes upward in the groove between the ear and the mastoid process, communicates with the
PLATE CXXXIX.

NERVES OF SCALP AND FACIAL NERVE.

531
auricular branch of the pneumogastric and the great auricular branch of the cervical plexus, and divides into an auricular and an occipital branch. The auricular branch supplies the attolens and retrahens aurem muscles. The occipital branch passes along the superior curved line of the occipital bone, supplies the occipitalis muscle, and communicates with the small occipital branch of the cervical plexus.

The digastric branch supplies the posterior belly of the digastric muscle, and communicates, by a twig which usually perforates that muscle, with the glossopharyngeal nerve.

The stylo-hyoid branch is longer than the digastric; it enters the stylo-hyoid muscle about its middle, and communicates with filaments of the sympathetic nerve on the external carotid artery.

The temporo-facial, the larger of the two terminal divisions, runs obliquely upward and forward through the substance of the parotid gland, crosses the external carotid artery and the temporo-maxillary vein, and breaks up into the temporal, malar, and infra-orbital branches. It communicates with the auriculo-temporal nerve. The temporal branches ascend obliquely over the zygomatic arch to supply the tensor tarsi, the orbicularis palpebrarum, the corrugator supercilii, the frontalis, and the attolens and attrahens aurem muscles, and to communicate with the supra-orbital, the lacrymal, and the auriculo-temporal nerve, and with the temporo-malar branch of the superior maxillary nerve.

The malar branches run across the malar bone to the outer angle of the orbit to supply the orbicularis palpebrarum muscle, and communicate with the lacrymal and the supra-orbital nerve and with the infra-orbital and temporo-malar branches of the superior maxillary nerve. The infra-orbital, the largest branch, gives off a superficial and a deep set of branches, which pass transversely forward over the masseter and beneath the zygomatic muscles to supply the zygomatic muscles, the elevators of the upper lip, the muscles of the nose, and the orbicularis oris muscle. The superficial branches communicate with the nasal and infra-trochlear nerves which are derived from the ophthalmic division of the trifacial nerve. The deep branches form a loop with the buccal branch of the cervico-facial division, and pass beneath the levator labii superioris muscle, where they unite with the infra-orbital branch of the superior maxillary nerve, forming the infra-orbital plexus.

The cervico-facial, the smaller of the two terminal divisions of the facial nerve, is joined by a branch of the great auricular nerve while in the substance of the parotid gland. It passes obliquely downward toward the angle of the lower jaw, crosses the external carotid artery and the temporo-maxillary vein, and divides into buccal, supra-maxillary, and infra-maxillary branches. The buccal branches
pass forward over the masseter and buccinator muscles below Stenson's duct, to the angle of the mouth, to supply the buccinator and orbicularis oris muscles, and communicate with the infra-orbital nerve, the infra-orbital branches of the temporo-facial branch, and the long buccal branch of the inferior maxillary nerve. The buccal branch of the facial nerve and the long buccal branch of the inferior maxillary nerve form a plexus over the buccinator muscle and the facial vein. The *supra-maxillary branch* passes downward and forward over the masseter muscle and the facial artery, and beneath the platysma myoides and the depressor muscles of the lower lip. It supplies the muscles of the lower lip, the risorius, and the levator menti, and communicates with the buccal branch of the facial and the mental branch of the inferior dental nerve. The *infra-maxillary branch* emerges from the lower border of the parotid gland in front of the external jugular vein and passes downward and forward toward the sternum beneath the platysma myoides muscle, which it supplies. It communicates with the great auricular and superficial cervical nerves—branches of the cervical plexus. The infra-maxillary branch can be traced when dissecting the superficial fascia of the neck.

The **pes anserinus** (plexus parotideus).—The breaking up of the two terminal divisions of the facial nerve within the substance of the parotid gland gives rise to a plexus, the *pes anserinus* (goose's foot).

Bell’s palsy.—Paralysis of the facial nerve is known as Bell’s palsy, and may be either central or peripheral. A central paralysis is due to involvement of the nucleus of the nerve, its center in the cortex of the brain, or the fibers connecting these, and results from pressure, as by hemorrhage, abscess, or tumor; it may also be brought about by degenerative processes in the brain. A peripheral paralysis is due to affection of the trunk of the nerve within the cranial cavity by tumors or meningitis; within the facial or Fallopian canal, by middle ear disease or fracture of the base of the skull; external to the stylo-mastoid foramen, by a growth at the stylo-mastoid foramen, rapidly growing tumors or abscess of the parotid gland, division during an operation, or exposure of the face to cold. When the lesion is situated beyond the origin of the chorda tympani nerve the muscles of expression and the buccinator muscle on the same side of the face become paralyzed, the mouth is drawn to the opposite side, and the affected side of the face becomes flattened and free from wrinkles. Through paralysis of the orbicularis palpebrarum muscle the eye on the paralyzed side remains open, and the tears run down the cheek. The anterior naris of the affected side is smaller in appearance through paralysis of the nasal muscles. Paralysis of the orbicularis oris muscle the saliva dribbles from the mouth, and the patient can not whistle. When the lesion is situated in the aqueductus Fallopii
PLATE CXL.

OPERATION FOR EXPOSURE OF FACIAL NERVE.
TEMPORAL FASCIA AND NERVES OF FACE.

587
and above the origin of the chorda tympani nerve, there is loss of the sense of
taste in the anterior two-thirds of the tongue on the diseased side, and through
paralysis of the stapedius muscle loud sounds are distressing. When the lesion is
central or in the brain, the brow and eyelid are not affected—i.e., the frontalis,
corrugator supercilii, and orbicularis palpebrarum muscles are not involved. This
is probably due to escape of the fibers which arise from the nucleus of the opposite
side.

Spasms, both tonic and clonic, of the muscles supplied by the facial nerve
may occur. Persistent spasm of these muscles is relieved by stretching the facial
nerve.

Operative exposure of the facial nerve.—The facial nerve is exposed by
carrying a vertical incision from in front of the mastoid process and behind the
lobule of the ear downward toward the angle of the lower jaw, laying bare first
the posterior border of the parotid gland, which is displaced forward, and then
the anterior border of the sterno-mastoid muscle at its insertion. The parotid
gland should be separated from the mastoid process to the depth of about one
centimeter, when the nerve may be seen. The exact location of the nerve in the
wound can be ascertained by the use of the faradic battery.

The trifacial nerve.—The branches of the trifacial or fifth nerve which
make their exit upon the face are the supra-orbital and the supra-triöchlear (pre¬
viously described), the lacrymal, the infra-orbital, the malar, the anterior branch
of the nasal, and the mental nerve.

The lacrymal nerve, the smallest of the ophthalmic branches, supplies the
lacrymal gland, and frequently communicates with the temporal branch of the
temoro-malar nerve in the orbit; it sends a small filament—the palpebral—to
the skin and conjunctiva around the outer canthus of the eye.

The infra-orbital nerve, the terminal branch of the superior maxillary
division of the trifacial nerve, emerges from the infra-orbital foramen in company
with the infra-orbital artery, under cover of the levator labii superioris muscle.
It immediately divides into palpebral, nasal, and labial branches. The palpebral
branches, the smallest, pass upward beneath the orbicularis palpebrarum muscle,
supply the lower eyelid, and communicate with the facial and the malar branch of
the orbital or temero-malar nerve. The nasal branches, three or four in number,
pass inward under the levator labii superioris alaeque nasi muscle to supply the
side of the nose, and communicate with the external (naso-labial) branch of the
nasal nerve. The labial branches, usually four, are larger than the palpebral or
nasal branches, and descend beneath the levator labii superioris muscle to supply
the upper lip. Beneath the levator labii superioris the branches assist in forming
the infra-orbital plexus. (See description of plexus under Facial Nerve.)
The **infra-orbital artery**, a branch of the internal maxillary, accompanies the infra-orbital nerve through the infra-orbital foramen, and divides into branches which are distributed like those of the nerve. It anastomoses with the transverse facial, facial, and ophthalmic arteries.

The **infra-orbital vein** communicates with the facial vein in front, and empties into the pterygoid plexus of veins.

The **malar division** of the orbital or temporo-malar branch of the superior maxillary nerve makes its exit through a foramen in the malar bone, pierces the orbicularis palpebrarum muscle, and supplies the skin of the cheek covering the malar bone. It communicates with the facial and the palpebral branches of the infra-orbital nerve.

The **external or terminal branch** of the nasal nerve, also known as the naso-labial, emerges between the nasal bone and the lateral cartilages of the nose, supplying the tip of the nose as it descends beneath the compressor narium muscle. It communicates with the infra-orbital branches of the facial and trifacial nerves.

The **mental nerve**, the continuation of the inferior dental, emerges from the mental foramen in company with the mental artery. It divides beneath the depressor anguli oris muscle into three branches, the smallest of which descends to supply the chin, while the other two ascend to supply the lower lip. It inosculates with the supra-maxillary branch of the facial nerve.

The **mental artery**, the terminal portion of the inferior dental, supplies the chin and anastomoses with the submental, inferior labial, and inferior coronary arteries.

PTERYGO-MAXILLARY REGION.

The pterygo-maxillary region is the space included between the ramus of the lower jaw, externally; the lateral wall of the pharynx and the pterygoid process of the sphenoid bone, internally; the zygomatic surface of the superior maxilla, anteriorly; and the lower surface of the greater wing of the sphenoid and the adjacent temporal bone, above. The posterior limit of the space is represented by a plane passing directly inward from the posterior border of the ramus of the inferior maxilla to the pharynx.

Dissection.—The zygomatic arch should be removed by sawing through the zygomatic processes of both the malar and temporal bones. In the latter, the point selected should be just in front of the tubercle of the zygoma. Reflect the masseter muscle from the ramus of the inferior maxilla, carrying the zygoma with it; locate the masseteric artery and nerve which pass through the sigmoid notch of the lower jaw; trace them into the masseter muscle as far as possible, and then sever them. A portion of the ramus of the lower jaw should be
removed in the following manner: With Hey's saw cut downward behind the last molar tooth, half way through the body of the jaw, then backward to near the angle. Discard the saw when it reaches the cancellous tissue, and use the chisel to avoid division of the inferior dental vessels and nerve. The saw should now be directed downward from the sigmoid notch, just in front of the neck of the jaw, through the ramus to the end of the incision in the body of the bone. The removal of this portion of the inferior maxilla is tedious, as the internal pterygoid muscle, internal lateral ligament, and the inferior dental vessels and nerve oppose elevation of the section of bone thus separated. Remove the posterior inferior corner of the section of the ramus with bone forceps as far as the inferior dental canal, which contains the inferior dental vessels and nerve; then reflect the bone with the lower portion of the temporal muscle, taking care to avoid destroying the mylo-hyoid artery and nerve which arise from the inferior dental artery and nerve, near the inferior dental foramen, and pass downward and forward in a groove on the internal surface of the ramus. In making this dissection it is advisable to use the back of the point of the scalpel, as the vessels and nerves are small, of delicate structure, and are easily severed.

The contents of the pterygo-maxillary region are the internal and external pterygoid muscles, the internal maxillary artery with some of its branches and their companion veins, the pterygoid plexus of veins, the inferior maxillary nerve, and the following branches of that nerve: The anterior and posterior deep temporal, long buccal, masseteric, internal and external pterygoid, inferior dental, auriculo-temporal, and lingual nerves, the chorda tympani nerve, a portion of the parotid gland, the internal lateral ligament of the lower jaw, and the internal maxillary lymphatic glands.

The internal maxillary artery, which is closely related to the nerves of this region, passes forward either over or behind the external pterygoid muscle.

The internal lateral ligament is a thin, fibrous band which lies beneath the inferior dental vessels and nerve; it passes, with the lingual and inferior dental nerves, through the triangular interval between the two pterygoid muscles and the incised edge of the jaw.

The external pterygoid muscle, the more superficial of the two pterygoids, arises by an upper head from that portion of the greater wing of the sphenoid bone situated between the pterygoid ridge and the foramina ovale and spinosum; by a lower head from the outer surface of the external pterygoid plate of the sphenoid bone, from the tuberosities of the palate and superior maxillary bones. Its fibers pass horizontally backward and converge for insertion into the inter-articular fibro-cartilage of the temporo-maxillary joint superiorly, and inferiorly into the anterior portion of the inner surface of the neck of the inferior maxilla.
It is related, externally, with the ramus of the inferior maxilla, the temporal and masseter muscles, the superficial portion of the internal pterygoid muscle, the internal maxillary artery, the anterior and posterior deep temporal arteries, and the buccal artery and nerve. Internally, it is in relation with the deep part of the internal pterygoid muscle, the middle meningeal artery, and the inferior maxillary nerve, the internal lateral ligament of the lower jaw, the lingual and inferior dental nerves, which emerge from beneath its lower border; the long buccal nerve, which runs between its two heads; the chorda tympani nerve, and the anterior and posterior deep temporal and masseteric nerves, which pass out from beneath the upper border of the muscle.

Blood Supply.—From the external pterygoid branches of the internal maxillary artery.

Nerve Supply.—From the inferior maxillary nerve.

Action.—The external pterygoid muscles acting together pull the lower jaw forward; alternately, they move it forward and laterally; and, singly, forward and to the opposite side. They are muscles of trituration.

The internal pterygoid muscle (the internal masseter) arises by two heads, a superficial and a deep. The superficial, the smaller, arises from the lower and back part of the tuberosity of the upper jaw, and the outer side of the tuberosity of the palate bone. The deep lies behind the lower head of the external pterygoid and arises from the internal surface of the external pterygoid plate, and from the grooved portion of the tuberosity of the palate bone situated in the pterygoid fossa. These two heads unite at the lower margin of the external pterygoid muscle, and thence extend downward, backward, and outward for insertion into the rough inner surface of the posterior portion of the ramus of the lower jaw included between the angle and the inferior dental foramen.

It is related, externally, with the ramus of the lower jaw, the external pterygoid muscle, the internal lateral ligament of the lower jaw, the lingual or gustatory nerve, and inferior dental and mylo-hyoid vessels and nerves; internally, with the tensor palati, stylo-glossus, stylo-hyoid, posterior belly of the digastric, and the superior constrictor muscle of the pharynx.

Blood Supply.—From the mylo-hyoid and internal pterygoid branches of the internal maxillary artery.

Nerve Supply.—From the internal pterygoid branch of the inferior maxillary nerve.

Action.—Both internal pterygoid muscles acting together draw the lower jaw upward and forward; and, singly, upward and to the opposite side.

The internal maxillary artery, the larger of the two terminal branches of the external carotid, arises in the parotid gland, opposite to or slightly lower than
INTERNAL MAXILLARY ARTERY AND BRANCHES.
the neck of the lower jaw. The artery is divided into three portions: maxillary, pterygoid, and sphenomaxillary. The first or maxillary portion passes forward between the internal lateral ligament and the neck of the lower jaw, and reaches the lower margin of the external pterygoid muscle. The second or pterygoid portion extends obliquely upward and forward upon the outer surface of the external pterygoid muscle, and is hidden by the insertion of the temporal muscle. The third or sphenomaxillary portion lies in the sphenomaxillary fossa. In some instances the second or pterygoid portion runs entirely beneath the external pterygoid muscle, but, by passing between the two heads of that muscle, appears upon the outer surface of the muscle just before entering the sphenomaxillary fossa.

The branches of the first or maxillary portion of the internal maxillary artery are: The deep auricular, tympanic, middle meningeal, small meningeal, and inferior dental arteries.

The deep auricular artery pierces the wall of the external auditory canal to supply the tympanic membrane.

The tympanic branch passes behind the temporo-maxillary joint through the Glaserian fissure to supply the tympanum.

The middle meningeal artery runs upward between the two roots of the auriculo-temporal nerve to the foramen spinosum, through which it enters the cranial cavity to supply the cranium and dura mater.

The small meningeal artery ascends to the foramen ovale, through which, after supplying a twig to the nasal fossa and soft palate, it enters the cranial cavity.

The inferior dental artery, with its venae comites, accompanies the inferior dental nerve and passes downward, upon the internal pterygoid muscle and the internal lateral ligament, entering the inferior dental foramen together with the inferior dental nerve. The artery then occupies the inferior dental canal, distributing branches to the teeth; it supplies an incisive branch, and emerges, on the face, from the mental foramen; it is then called the mental artery; the mental artery is accompanied by the mental nerve, and is distributed to the structures of the chin and lower lip. Before entering the inferior dental canal the inferior dental artery gives off the mylo-hyoid artery, which accompanies the mylo-hyoid nerve.

The branches of the second or pterygoid portion are the anterior and posterior deep temporal, internal and external pterygoid, and the masseteric and buccal arteries.

The anterior and posterior deep temporal arteries pass upward through the corresponding parts of the temporal fossa, between the temporal muscle and the pericranium, which they supply.
The pterygoid branches, varying in number, supply the external and internal pterygoid muscles.

The masseteric branch, with the masseteric nerve, passes outward behind the temporal muscle through the sigmoid notch of the lower jaw to the masseter muscle.

The buccal branch accompanies the long buccal nerve in its forward course between the ramus of the lower jaw and the external pterygoid to the buccinator muscle.

The branches of the third or sphen-o-maxillary portion are the alveolar, infra-orbital, posterior or descending palatine, Vidian, pterygo-palatine, and naso-palatine or sphenopalatine arteries.

- The alveolar (posterior superior dental or posterior dental) artery gives off branches to the gums and the buccinator muscle, enters the superior maxilla at its zygomatic surface, and supplies the molar and bicuspid teeth and the mucous lining of the maxillary sinus or antrum of Highmore.

The infra-orbital artery immediately enters the infra-orbital groove and canal, accompanied by the superior maxillary division of the fifth pair of cranial nerves, and eventually emerges upon the face in company with the infra-orbital nerve at the infra-orbital foramen. It supplies branches to the orbit, and gives off an anterior superior dental branch, which runs downward in the anterior wall of the maxillary sinus and supplies the incisor and bicuspid teeth and the mucous membrane of the maxillary sinus.

The posterior or descending palatine artery accompanies the posterior palatine branches of Meckel's or the sphenopalatine ganglion of the fifth pair of cranial nerves, through the posterior palatine canal, then emerges from the posterior palatine foramen, and passes forward in a groove situated near the alveolar process along the under surface of the hard palate; it next enters the foramen of Stenson, a subdivision of the anterior palatine foramen, and anastomoses with the naso-palatine artery. It is distributed to the hard and soft palate, palatine glands, and gums.

The Vidian branch runs backward with the Vidian nerve through the Vidian canal to supply the uppermost part of the pharynx, the Eustachian tube, and the tympanum.

The pterygo-palatine branch, which is very small, passes backward with the pharyngeal nerve through the pterygo-palatine canal to supply the upper pharynx, the sphenoid cells, and the Eustachian tube.

The naso-palatine or sphenopalatine, the terminal branch, runs inward through the naso-palatine or sphenopalatine foramen into the superior meatus of the nose. It crosses the roof of this meatus between the mucous membrane and the bone to
reach the septum of the nose, runs downward and forward in a groove on the vomer, to anastomose with the posterior palatine artery. Two or three external branches are distributed to the mucous lining of the lateral nasal walls, the antrum of Highmore and the ethmoid and sphenoid cells.

The veins of the pterygo-maxillary region accompany the branches of the internal maxillary artery, and converge toward the external pterygoid muscle, around which they form a dense plexus—the pterygoid plexus. This is drained from its posterior part by a short venous trunk, called the internal maxillary vein, which accompanies the first (maxillary) portion of the internal maxillary artery into the substance of the parotid gland. The internal maxillary vein joins the temporal vein to form the temporo-maxillary vein. The pterygoid plexus sends a branch (anterior maxillary or deep facial vein) from its anterior part over the buccinator muscle to the facial vein. It also communicates with the cavernous sinus by means of a small emissary vein which passes through the foramen Vesali in the sphenoid bone.

The lymphatics of this region accompany the blood-vessels, and are derived from the regions which those vessels supply and drain. They empty into the deep cervical glands.

The nerves of the pterygo-maxillary region are the inferior maxillary division of the fifth nerve and some of its branches and the chorda tympani nerve. The inferior maxillary nerve leaves the cranial cavity through the foramen ovale. It emerges from the skull as a thick trunk, which lies external to the Eustachian tube and beneath the external pterygoid muscle. It differs from the other two divisions of the fifth nerve—the ophthalmic and the superior maxillary—in being composed of both motor and sensory fibers. After leaving the skull it divides into two portions, an anterior and a posterior. From the anterior portion, chiefly motor, are derived the anterior and posterior deep temporal nerves, the masseteric nerve, branches to the pterygoid muscles, and the long buccal nerve. The posterior division, chiefly sensory, divides into three large branches: the auriculo-temporal, the lingual (gustatory), and the inferior dental nerve.

The deep temporal nerves, anterior and posterior, arise from the motor root of the fifth nerve, and ascend between the pericranium and the temporal muscle, which muscle they supply.

The masseteric nerve emerges from between the external pterygoid muscle and the pterygoid ridge. It proceeds backward along the upper border of the external pterygoid muscle; outward in front of the temporo-maxillary articulation, and through the sigmoid notch of the lower jaw, together with the masseteric artery, entering the masseter muscle, which it supplies.

The branch to the internal pterygoid muscle arises from the inferior maxil-
lary nerve before it divides; it gives off a branch to the otic ganglion, and enters the deep surface of the muscle. The branch to the external pterygoid muscle is, usually, a twig of the long buccal nerve, and divides into two branches, which enter the deep surface of the muscle.

The long buccal, a sensory nerve, is derived from the anterior portion of the inferior maxillary division of the fifth nerve. It runs between the two heads of the external pterygoid muscle, and passes downward and forward beneath the temporal muscle and the anterior edge of the masseter to the buccinator muscle, upon the outer side of which it communicates with the facial nerve and forms a plexus from which filaments pass to the adjacent mucous membrane and skin of the cheek. It contains all of the sensory fibers of the anterior division of the inferior maxillary nerve, and a few fibers from the motor root of the fifth nerve. The motor fibers run to the external pterygoid and temporal muscles.

The auriculo-temporal nerve arises by two roots, between which passes the middle meningeal artery. It runs backward and outward beneath the external pterygoid muscle, between the internal lateral ligament and the temporo-maxillary joint, curves outward around the neck of the condyle of the lower jaw, and pierces the upper part of the parotid gland. It next ascends over the root of the zygoma, in front of the external auditory meatus and beneath the temporal artery. In its course it receives communicating twigs from the otic ganglion, and supplies branches to the external auditory meatus, the parotid gland, and the temporo-maxillary articulation. From the parotid gland it sends a communicating branch to the temporo-facial division of the facial nerve. It divides near the level of the tragus into the anterior auricular and superficial temporal branches. The anterior auricular supplies the upper part of the pinna. The superficial temporal lies on the outer side of the superficial temporal vessels, divides, and accompanies the anterior and posterior temporal arteries.

The lingual (gustatory) nerve emerges from beneath the lower edge of the external pterygoid muscle, whence it descends internal to the inferior dental nerve between the lower jaw and the internal pterygoid muscle; thence it runs beneath the mylo-hyoid nerve and over the superior constrictor of the pharynx, the styloglossus, hyo-glossus, Wharton’s duct, and genio-hyo-glossus muscle, to the tip of the tongue. On the hyo-glossus muscle it is connected with the submaxillary ganglion, which will be described with the submaxillary triangle of the neck. It lies above the ganglion and Wharton’s duct, which it crosses at the anterior border of the hyo-glossus muscle, where it supplies a branch to the sublingual gland and a communicating branch to the hypo-glossal nerve. Before it emerges from behind the external pterygoid muscle it is joined by the chorda tympani nerve.

The lingual nerve supplies branches to the hypo-glossal nerve, submaxillary
PLATE CXLV.

Nasal n.
Olfactory n.
Olfactory tract

Superior nasal nerves
Spheno-palatine n.

Meckel's ganglion
Vidian n.
Pharyngeal n.
Naso-palatine n.

Inferior nasal nerves

Great palatine n.
External palatine n.
Posterior palatine n.

Tensor palati m.
Internal pterygoid m.

Otic ganglion
Sympathetic root of otic gang.
Middle meningeal a.
Auriculo-temporal n.

OLFACTORY NERVES AND INTERNAL VIEW OF THE SPHENO-PALATINE AND OTIC GANGLIA.
ganglion, mucous membrane of the mouth, gums, sublingual gland, and lingual branches to the papillae on the sides and tip of the tongue. As the lingual nerve supplies the tongue with common sensation, the pain due to neuralgia or cancer of the tongue may be relieved by division of this nerve. The incision should be made through the mucous membrane of the floor of the mouth opposite the second molar tooth of the lower jaw and close to the gum, where the nerve lies immediately beneath the mucous membrane.

The **inferior dental nerve**, the largest branch of the inferior maxillary, emerges from beneath the lower head of the external pterygoid muscle and descends between the internal lateral ligament and the ramus of the lower jaw to enter the inferior dental canal. At its origin it lies internal to the inferior dental artery, which it crosses at the inferior dental foramen; the artery is, therefore, nearer the teeth than the nerve. It is a sensory motor nerve, lying external to the lingual nerve and more superficial, the motor filaments being given off as the mylo-hyoid nerve just previous to its entrance into the inferior dental canal.

The **mylo-hyoid nerve** is accompanied by the mylo-hyoid artery, pierces the internal lateral ligament of the lower jaw, and descends to the mylo-hyoid groove upon the inner surface of the lower jaw. It then runs over the superficial surface of the mylo-hyoid muscle, supplying it and the anterior belly of the digastric muscle. In the inferior dental canal the inferior dental nerve supplies branches to the molar and bicuspid teeth and to the gums, and divides into an incisive and a mental branch opposite the mental foramen.

The **incisive branch** passes forward and inward in the inferior dental canal to supply the canine and incisor teeth and the adjacent region of the gum.

The **mental branch** emerges upon the face at the mental foramen, and after communicating with the supra-maxillary branch of the facial nerve divides into several branches. These supply the mucous membrane of the lower lip and the fascia and skin of the lip and chin.

The **chorda tympani nerve** arises from the facial in the aqueductus Fallopii, almost one-fourth of an inch above the stylo-mastoid foramen. It runs in the iter chordae posterius to the middle ear, where it passes between the handle of the malleus and the fibrous layer of the membrana tympani externally, and the mucous membrane internally. It next enters the iter chordae anterius, or canal of Huguer, to reach the pterygo-maxillary region, where it joins the outer side of the lingual nerve beneath the external pterygoid muscle. Some of its fibers leave the lingual nerve to enter the submaxillary ganglion and sublingual gland.

The **otic (Arnold's) ganglion** lies upon the internal surface of the trunk of the inferior maxillary division of the fifth nerve, in front of the middle
meningeal artery, and may be found by tracing any of the larger branches of the nerve until the root of the parent stem, near the foramen ovale, is reached. Its sympathetic root is derived from the plexus on the middle meningeal artery; its sensory root from the inferior maxillary through the internal pterygoid nerve; its motor root from the small superficial petrosal nerve, which communicates with the tympanic branch of the glosso-pharyngeal nerve. It communicates with the auriculo-temporal and chorda tympani nerves. Motor fibers of the inferior maxillary nerve pass through it to the tensor palati and tensor tympani muscles.

Dissection.—To study the first portion of the internal maxillary artery and its branches, the trunk of the inferior maxillary nerve, the origins of its branches, and the otic ganglion, it is necessary to remove the external pterygoid muscle, the condyle of the jaw, and the remainder of the ramus as far as the transverse incision in the ramus.

Fracture of the base of the skull may cause serious hemorrhage into the pterygo-maxillary region, because of rupture of the meningeal vessels. Lacerations of the deep temporal vessels due to cranial fracture would result in the effusion of blood into this space, its escape above the zygoma being rendered impossible because of the attachments of the temporal fascia. Under these conditions pain on pressure made below the zygoma and behind the malar bone would be a rational symptom. Such effusion might give rise to secondary irritation of the nerves in this space. Thus, irritation of the chorda tympani nerve would cause salivation; of the lingual, disturbances of sensation and taste at the end of the tongue; of the inferior dental, toothache; of the motor branches, tonic or clonic spasms of the muscles of mastication; of the mylo-hyoid and anterior belly of the digastric muscles, more or less complete fixation of the jaw.

Tumors and abscess would have similar effects, but would vary in degree in accordance with the exact location and rapidity of growth. Owing to the presence of important structures in this space, it is well to practise Hilton’s method of opening a deep abscess in this region; this is done as follows: Through an incision in the skin push a grooved director into the abscess; then insert a pair of forceps along the director, and withdraw them with the blades sufficiently separated to make an opening large enough to insure good drainage. It is impossible to do serious damage by this procedure.

Dissection.—The pterygo-maxillary region should now be thoroughly cleaned, in order to study the spheno-maxillary fissure, the pterygo-maxillary fissure, and the spheno-maxillary fossa.

It will be remembered that the zygomatic fossa was mentioned in connection with the contents of the pterygo-maxillary region; its contents have been dissected.
They consist of the lower part of the temporal muscle, the internal and external pterygoid muscles, the internal maxillary artery, the inferior maxillary nerve, branches of the artery and nerve, and the chorda tympani nerve.

The **zygomatic fossa** practically corresponds to the upper portion of the pterygo-maxillary region. It is bounded above by the under surface of the great wing of the sphenoid and adjacent portion of the temporal bone; in front, by the zygomatic surface of the superior maxilla; behind, by the posterior border of the pterygoid process of the sphenoid bone and the eminentia articularis; internally, by the external pterygoid plate; and externally, by the pterygoid ridge, the zygomatic arch, and the ramus of the inferior maxilla. At the upper and inner part of the zygomatic fossa two fissures will be observed, one horizontal, the other vertical. The horizontal fissure is the spheno-maxillary, which opens into the outer and back part of the orbit. It transmits the infra-orbital artery and vein, branches from Meckel’s ganglion, and the superior maxillary nerve and its orbital branch. Its bony walls are formed, above, by the lower border of the orbital surface of the great wing of the sphenoid; below, by the orbital surface of the superior maxilla and a portion of the palate bone; externally, by a small part of the malar bone. It joins the pterygo-maxillary fissure at a right angle. The vertical fissure is the pterygo-maxillary, which is formed by the angle between the superior maxillary bone and the pterygoid process of the sphenoid bone. It transmits the internal maxillary artery.

The **spheno-maxillary fossa** lies below the great wing of the sphenoid, external to the vertical portion of the palate bone, and between the orbital process of the palate bone and the zygomatic surface of the superior maxilla, in front, and the pterygoid process, behind. It contains the terminal portion of the internal maxillary artery, the branches of this portion, the superior maxillary nerve, and Meckel’s ganglion. Three foramina are found in the posterior wall: the *foramen rotundum*, which transmits the superior maxillary division of the fifth nerve; below this, the anterior opening of the Vidian canal, which transmits the Vidian nerve and vessels, and still lower the *pterygo-palatine foramen*—the anterior opening of the pterygo-palatine canal, which transmits the pterygo-palatine vessels and the pharyngeal nerve. On the internal wall is the *spheno-palatine foramen*, which transmits the spheno-palatine vessels and the naso-palatine nerve. Below the spheno-palatine foramen is the orifice of the posterior palatine canal, which transmits the posterior or descending palatine vessels and nerve.

The **superior maxillary** (second division of the fifth) *nerve* is a sensory nerve. It arises from the Gasserian ganglion at the apex of the petrous portion of the temporal bone, passes through the foramen rotundum into the spheno-maxillary fossa, and enters the infra-orbital canal with the infra-orbital artery to
become the infra-orbital nerve. Its branches are: In the cranial cavity, recurrent twigs to the dura mater, which communicate with branches of the inferior maxillary nerve; in the sphenomaxillary fossa, orbital or temporo-malar, sphenopalatine, and posterior superior dental branches; in the infra-orbital canal, middle superior dental and anterior superior dental nerves; and upon the face, the terminal divisions of the infra-orbital nerve, the palpebral, nasal, and labial branches. In the sphenomaxillary fossa Meckel's ganglion is associated with it.

Dissection.—Remove the outer wall of the orbit and that portion of the greater wing of the sphenoid bone external to the foramen rotundum by sawing downward from the incised edge of the skull made in removing the brain. The saw should pass through the outer part of the sphenoid fissure and external to the foramen rotundum.

The orbital or temporo-malar nerve enters the orbit through the sphenomaxillary fissure. At the posterior part of the orbit it divides into a temporal and a malar branch. The temporal branch runs forward in the peristeum, lying in a groove in the bone, and passes through a foramen in the malar bone (sphenomalar foramen) to enter the temporal fossa. It runs upward beneath the temporal muscle, piercing it and both lamellae of the temporal fascia to supply the skin of the temporal region; it pierces the superficial layer of the temporal fascia about an inch above the zygoma. In the orbit it communicates with the lacrimal nerve; and in the temporal region with the temporal branch of the facial nerve. The malar branch (ramus subcutaneus mallei) runs forward along the external and inferior portion of the orbit, passes through the malar foramen, pierces the orbicularis palpebrarum, and supplies the skin of the cheek. It communicates with the malar branch of the facial nerve and with the palpebral branches of the infraorbital nerve.

The sphenopalatine branches are two twigs which descend to Meckel's ganglion from its sensory root.

The posterior superior dental nerves are, usually, two in number, and arise from the superior maxillary nerve as it enters the infra-orbital canal. They pass downward and enter the foramina in the zygomatic surface of the superior maxilla; they next run forward in canals in the outer wall of the antrum of Highmore and above the roots of the molar teeth to join the middle superior dental nerve. They supply branches to the pulp of the molar teeth, to the gums, and to the mucous membrane of the antrum of Highmore.

The middle superior dental nerve is given off at the posterior part of the infra-orbital canal, or it may be a branch of the anterior superior dental nerve. It supplies the bicuspid teeth and communicates with the anterior superior and posterior superior dental nerves.
Superior and Inferior Maxillary Nerves:

- Middle superior dental artery (Middle superior dental a.)
- Middle superior dental nerve (Middle superior dental n.)
- Anterior superior dental artery (Anterior superior dental a.)
- Anterior superior dental nerve (Anterior superior dental n.)
- Palpebral branch
- Nasal branches
- Labial branch
- Gingival artery (Gingival a.)
- Incisive branch (Incisive br.)
- Mental nerve (Mental n.)
- Mental artery (Mental a.)
- Infraorbital artery (Infraorbital a.)
- Infraorbital nerve (Infraorbital n.)
- Posterior superior dental nerve (Posterior superior dental n.)
- Orbital nerve (Orbital n.)
- Sphenopalatine nerve (Sphenopalatine n.)
- Vidian nerve (Vidian n.)
- Internal maxillary artery (Internal maxillary a.)
- Ophthalmic division of 5th nerve (Ophthalmic div. of 5th n.)
- Superior maxillary nerve (Superior maxillary n.)
- Inferior maxillary nerve (Inferior maxillary n.)
- Gasserian ganglion
- 5th nerve (5th n.)
- Auriculotemporal nerve (Auriculotemporal n.)
- Middle meningeal artery (Middle meningeal a.)
- Small meningeal artery (Small meningeal a.)
- Inferior dental artery (Inferior dental a.)
- Inferior dental nerve (Inferior dental n.)
- Buccal nerve (Buccal n.)
- Buccal artery (Buccal a.)
- Mylohyoid nerve (Mylohyoid n.)
- Mylohyoid artery (Mylohyoid a.)
- Lingual nerve (Lingual n.)
- Chorda tympani nerve (Chorda tympani n.)
The **anterior superior dental nerve** is larger than the other two superior dental nerves, and arises posterior to the infra-orbital foramen; it runs downward in the anterior wall of the antrum of Highmore, and supplies the incisor and canine teeth, and also a branch to the nasal fossa. The anterior and middle superior dental nerves may be seen by raising the superior maxillary nerve from the floor of the infra-orbital canal.

The **infra-orbital nerve** emerges upon the face at the infra-orbital foramen, which lies beneath the levator labii superioris muscle. It divides here into palpebral, nasal, and labial branches, which, with the infra-orbital branch of the facial nerve, form the *infra-orbital plexus*.

The **palpebral branches** pierce the origin of the levator labii superioris muscle and supply the integument and conjunctiva of the lower eyelid.

The **nasal branches** pass inward under the levator labii superioris alæque nasi muscle to supply the skin of the nose.

The **labial branches** are the largest and most numerous. They run downward beneath the levator labii superioris muscle to supply the skin, mucous membrane, and other tissues of the upper lip.

Meckel’s or the sphenopalatine ganglion is situated in the sphenomaxillary fossa below the superior maxillary nerve. It is triangular in shape, of a reddish-gray color, and measures about one-fifth of an inch in its longest diameter. Its sensory root is derived from the superior maxillary through the sphenopalatine nerve, most of the fibers of which do not enter the ganglion but pass anterior to it. Its motor root is derived from the facial through the great superficial petrosal nerve, which assists the great deep petrosal in forming the Vidian nerve. Its sympathetic root, the great deep petrosal nerve, just mentioned, is derived from the carotid plexus. The motor and sympathetic roots enter the sphenomaxillary fossa as the Vidian nerve. Its branches are classified as ascending, descending, internal, and posterior.

The **ascending or orbital branches** pass through the sphenomaxillary fissure, and pierce the inner wall of the orbit to supply the mucous membrane of the sphenoid sinus and posterior ethmoid cells.

The **descending or palatine branches** are derived mainly from the sphenopalatine branches of the superior maxillary nerve. They are divided into anterior, external, and posterior palatine nerves.

The **anterior or large palatine nerve** passes downward in the posterior palatine canal together with the posterior palatine artery, and appears on the hard palate at the posterior palatine foramen. It runs forward in a groove on the under surface of the hard palate, and joins the terminal portion of the naso-palatine nerve. It supplies the gums and the muco-periosteum of the hard palate. While in the poste-
rior palatine canal it gives off two branches (inferior nasal nerves), which pierce the vertical plate of the palate bone to supply the mucous membrane of the back part of the middle and inferior meatuses and the inferior turbinated bone.

The external or middle palatine nerve, when present, is small; it descends in the external palatine canal to supply the tonsil and adjacent mucous membrane.

The posterior or small palatine nerve descends in the accessory palatine canal to supply the tonsil, adjacent mucous membrane, levator palatii, and azygos uvulae muscles. With the external palatine nerve it joins a branch from the glossopharyngeal nerve to form the circulus tonsillaris, a plexus around the tonsil.

The internal or nasal branches are derived partly from the sphenopalatine ganglion and partly from the sphenopalatine nerve. They are divided into septal and superior nasal branches.

The septal branches pass through the sphenopalatine foramen with the naso-palatine artery, and cross the roof of the nasal fossa beneath the mucous membrane and below the opening of the sphenoid sinus to reach the septum, where the smaller branches terminate.

The naso-palatine nerve (nerve of Cotumnius), the largest of these branches, runs downward and forward on the septum of the nose, between the periosseum and the mucous membrane, to the anterior palatine canal, where it passes through one of the foramina of Scarpa (subdivisions of the anterior palatine foramen) to supply the mucous membrane of the anterior portion of the hard palate and to join the terminal portion of the anterior palatine nerve.

The superior nasal nerves are several twigs which pass through the sphenopalatine foramen to supply the mucous membrane of the posterior part of the middle and superior turbinated bones, and of the posterior ethmoid cells and antrum of Highmore.

The posterior branch is the pharyngeal nerve.

The pharyngeal or pterygo-palatine nerve runs backward through the pterygo-palatine canal in company with the pterygo-palatine artery; it supplies the upper portion of the pharynx and the Eustachian tube.

The Vidian nerve has been considered a posterior branch of the sphenopalatine ganglion, but it is really the nerve which is formed by the junction of its motor and sympathetic roots. It will be seen emerging from the Vidian canal at the root of the pterygoid process.

The superior maxillary nerve and its many communications are especially important, because it is so frequently affected by neuralgia, the operation for which follows.

Trifacial neuralgia may be due to many causes; among these are: Reflected irritation from diseased teeth, eruption of the wisdom teeth, irritable ulcers in the
area of distribution of the nerve, and abscess or tumors of the antrum of Highmore, of the pterygo-maxillary region, or of the sphenomaxillary fossa. The **infra-orbital foramen** is on a line drawn from the supra-orbital notch to a point between the bicuspied teeth of the upper jaw. It corresponds to a point about one-half of an inch below the junction of the inner and the middle one-third of the infra-orbital margin. The infra-orbital nerve is best exposed through a semilunar incision with its convexity directed downward, and carried a short distance below the foramen. A flap, including skin, cellular tissue, and the orbicularis palpebrarum muscle, is raised. The levator labii superioris muscle, which covers the foramen, is now apparent, and must be displaced laterally or divided, when both the infra-orbital plexus and nerve will readily be found, surrounded by a small quantity of fatty tissue.

In some cases of obstinate neuralgia of the peripheral branches of the trifacial nerve it becomes necessary to remove a portion of the affected nerve in order to give the patient relief. The infra-orbital nerve may be divided at its exit from the infra-orbital foramen by either a subcutaneous or a conjunctival section; in the latter method the tenotome is introduced through the conjunctiva and carried over the infra-orbital margin; it is best to expose the infra-orbital nerve by turning up a flap from the face, when a portion of the nerve can be removed. The nerve being exposed and freed at its point of exit, a slightly curved or hooked knife can be entered close to the external canthus just below the outer palpebral ligament, and passed backward along the floor of the orbit toward the apex, and along the anterior border of the sphenomaxillary fissure, which is crossed by the nerve at about an inch behind the orbital margin. The knife is then carefully withdrawn, and the nerve divided as it enters the infra-orbital canal. Traction is then made upon the peripheral end of the nerve to remove it from the infra-orbital canal. Should the knife be carried too far and the sphenomaxillary fossa be entered, serious hemorrhage would result.

The objections to this last method are, first, the hemorrhage which results from the division of the infra-orbital vessels inaccessible for ligature; second, the uncertainty of accomplishing the division of the nerve; and third, in many of these cases the posterior, as well as the anterior, dental branches are involved; if this be the case, removal of the superior maxillary nerve behind Meckel’s ganglion will be required in order to insure positive relief.

The best method for removing the superior maxillary nerve through the face from behind Meckel’s ganglion is the following: Expose and free the infra-orbital nerve at its exit from the infra-orbital foramen; then, with a three-quarter-inch trephine, remove a button of bone from the anterior wall of the antrum of Highmore; this button should include the outer wall of the infra-orbital foramen, and
in removing it care must be taken not to sever the infra-orbital nerve. Open the antrum by tearing through the lining membrane, and then, with a trephine one-half of an inch in diameter or with a small chisel, perforate its posterior wall. This opens up the spheno-maxillary fossa, and will be followed by considerable bleeding from wounded branches of the internal maxillary vessels. Before proceeding with the next step in the operation pack the opening in the posterior wall with sterile gauze to check the hemorrhage; then, with a small chisel, break away the floor of the infra-orbital canal and the back part of the floor of the orbit along the roof of the antrum; this permits the infra-orbital nerve to be drawn down into the antrum, when, by making slight traction upon it, a pair of long, slender scissors, sharply curved and with blunt points, can be carried along the nerve through the antrum, and the superior maxillary nerve divided behind Meckel’s ganglion. In breaking away the floor of the infra-orbital canal the infra-orbital vessels will be torn, but the bleeding therefrom is of no serious consequence and can be controlled by packing a strip of sterile gauze into the broken canal. If hemorrhage persist after the removal of the superior maxillary nerve, the spheno-maxillary fossa also may be packed with gauze, which should protrude through the opening in the anterior wall of the antrum. The gauze may remain for two or three days and serves a two-fold purpose: in controlling the bleeding and in favoring drainage. The operation is facilitated by the use of an incandescent lamp attached to a head-band.

Clavus (nail) is the name given to a neuralgic pain, which, from its intensity and the smallness of its area, is likened to a nail being driven through the flesh and bone. It generally affects hysterical young women.

It is not inappropriate for the author to say here that, having had a large experience in the operative treatment of cases of trigeminal neuralgia (tic douloureux), he is of the opinion that the simpler operative procedure should first be pursued, for the period of relief following any operation is, comparatively speaking, but temporary in the majority of cases. This is not in accord with the views of some of the leading operators, but it has, nevertheless, been the author’s experience. He has operated on a number of cases several times,—in one instance as many as five,—each operation having been followed by relief for from twelve to eighteen months. The peripheral operations may be repeated, a little more of the nerve being removed at each operation. This course affords the patient a more prolonged period of relief than could be obtained by first performing the more radical operation. As a last resort, the most radical operation of all, intra-cranial section of the affected nerve or removal of the Gasserian ganglion, may be done. In cases where the neuralgia has returned after removal of the superior maxillary nerve back of Meckel’s ganglion by opening both walls of the antrum and removing
the infra-orbital nerve from its canal, the author has, by simply cleaning out the track of the original wound, seen relief follow.

In trifacial neuralgia one, two, or all three branches of the trifacial nerve may be involved. The ophthalmic division supplies the skin above the palpebral fissure; the superior maxillary division, the skin between the palpebral and oral fissures, including the temple; the inferior maxillary division supplies the skin below the oral fissure as far as the hyoid bone. The superior and the inferior maxillary nerves also supply the teeth through their branches, while the latter supplies the anterior two-thirds of the tongue through its lingual branch; the motor root of the third division also supplies the muscles of mastication, except the buccinator—i.e., the temporal, masseter, and external and internal pterygoid muscles. Thus, complete paralysis of the trifacial nerve abolishes sensation upon one side of the face and on top of the head, from the highest point of the vertex above to the hyoid bone below; laterally, to and including the front of the ear and external auditory canal and temple; mesially, the anterior nares and the sensibility as to touch and taste of the anterior two-thirds of the tongue, besides completely paralyzing the muscles of mastication on the affected side, with the exception of the buccinator. Because of the insensibility of the conjunctiva the lids do not properly protect this membrane, and it becomes congested and inflamed, a condition which often occurs spontaneously through implication of the trophic fibers of the trifacial nerve. At the same time anterior rhinitis may result from similar causes, or may be excited by the discharge of the conjunctival secretion into the inferior meatus of the nose.

Trifacial neuralgia may be accompanied by active implication of the trophic filaments, so that there is not only conjunctivitis and rhinitis, but vesicles may form upon the lips and anterior nares. This should be borne in mind, as these trophic nerve disturbances, when overlooked, may be the source of much perplexity to the physician, and may lose him a desirable patient.

Paralysis of the orbicularis palpebrarum muscle also leads to conjunctivitis, from inability to close the eyelids; this must not be confounded with the inflammation of perverted function of the trophic nerves.

The trophic filaments are derived from the sympathetic nerve; this is a general rule worth remembering.

The entire width of the occiput, as high up as the vertex, and the back of the pinna are supplied by the occipitalis major nerve. As Hilton pointed out, the pinna may, therefore, often be used to differentiate between spinal and cerebral central nerve disease causing neuralgia; if spinal, the back of the pinna is affected and the front is not; if cerebral, the signs are reversed.

Reflex or referred pains are frequent in the area of distribution of the trifacial
nerve because of the abundance of its filaments and their numerous inosculations. The physician must, therefore, be careful not to be misled by the location of pain, for an earache may be due to a diseased tooth, as was the case in a patient treated by Hilton: The patient had consulted several leading aurists for a persistent earache without obtaining relief except from the use of anodynes; the ingenious Hilton sagaciously concluded it to be useless to treat where so many others had failed, and looked elsewhere than at the ear for the cause of the trouble. This he found in a jagged molar tooth which was continually irritat- ing a small nerve filament at the bottom of an ulcer upon the side of the tongue adjoining the tooth. He advised the removal of the tooth, which resulted in healing of the ulcer and in cure of the earache. In a similar manner affections of any filament of the trifacial nerve may produce pain in any part supplied by other branches of the nerve.

The Lymphatic Glands of the Head are divided into a superficial and a deep set. The superficial set is composed of the occipital, posterior auricular, parotid, buccal, and submaxillary lymphatic glands.

The occipital or suboccipital lymphatic glands are situated in the superficial fascia along the superior curved line of the occipital bone over the attachments of the trapezius muscle and the occipital belly of the occipito-frontalis muscle. These glands receive the lymphatic vessels from the posterior portion of the scalp or that area supplied by the occipital artery, and may be involved in erysipelas or other septic conditions of the posterior portion of the scalp. The efferent vessels from these glands empty into the superficial lymphatic glands of the neck.

The posterior auricular or mastoid lymphatic glands are situated behind the pinna, over the mastoid process and the insertion of the sterno-mastoid muscle. They receive the lymphatic vessels from the posterior auricular region and the portion of the scalp above it. Their efferent vessels empty into the superficial lymphatic glands of the neck.

The parotid lymphatic glands lie upon the parotid salivary gland in front of the pinna, below the zygoma, and a few are found in the substance of the parotid salivary gland. They receive the lymphatic vessels from the temporal region, the portion of the scalp above it, and the outer portion of the eyelids and of the cheek. Their efferent vessels empty into the superficial lymphatic glands of the neck and into the submaxillary lymphatic glands.

The buccal lymphatic glands rest upon the buccinator muscle. They receive some of the lymphatics from the anterior portion of the face, inner half of the eyelids, brow, and front of the scalp. Their efferent vessels empty into the submaxillary and the internal maxillary lymphatic glands.

The submaxillary lymphatic glands are the largest group. They are
situated below the border of the lower jaw, most of them lying in the submaxillary triangle in relation with the submaxillary salivary gland; two or three of them (supra-hyoid lymphatics) lie above the body of the hyoid bone, between the anterior bellies of the two digastric muscles. The submaxillary lymphatic glands receive the lymphatic vessels from the front of the scalp, inner part of the eyelids, anterior portion of the face, floor of the mouth, anterior portion of the tongue, sublingual and submaxillary salivary glands, and some of the efferent vessels from the parotid lymphatic glands. Their efferent vessels empty into the superficial and deep cervical lymphatic glands.

The **deep lymphatic glands** of the head are the internal maxillary, lingual, and post-pharyngeal lymphatic glands.

The **internal maxillary lymphatic glands** are situated in the pterygo-maxillary region; some are in relation with the internal maxillary artery, others lie upon the posterior portion of the buccinator muscle, and still other deep glands lie upon the side of the pharynx. They receive the lymphatic vessels from the orbital, nasal, temporal, and zygomatic fossae, the roof of the mouth, and the soft palate, and some of the efferent vessels from the buccal lymphatic glands. Their efferent vessels empty into the deep cervical lymphatic glands and partly into the deep parotid lymphatic glands.

The **lingual lymphatic glands** lie upon the hyo-glossus and genio-hyo-glossus muscles. They receive the lymphatic vessels from the upper surface and posterior part of the tongue. Their efferent vessels unite with the upper glands of the deep cervical chain.

The **post-pharyngeal lymphatic gland** is situated below the base of the skull, between the posterior wall of the pharynx and the rectus capitis anticus major muscle. It receives the lymphatic vessels from the upper part of the pharynx, part of the nasal fossa, and the upper part of the prevertebral muscles.

The **lymphatic vessels of the scalp**, which drain that portion behind a vertical line passing through the external auditory meatus, terminate in the occipital and posterior auricular lymphatic glands; the lymphatics of the temporal region of the scalp and that portion above it empty into the superficial and deep parotid lymphatic glands; the lymphatic vessels of the frontal region of the scalp follow the frontal, supra-orbital, and the facial veins downward over the face to the submaxillary lymphatic glands.

The **lymphatic vessels of the face** are divided into a superficial and a deep set. The superficial lymphatics of the anterior portion of the face—*i.e.*, of the inner half of the eyelids, of the nose, lips, and anterior part of the cheek—pass downward into the submaxillary lymphatic glands, and those of the outer half of
the eyelids and outer part of the cheek terminate in the parotid lymphatic glands. The *deep lymphatics of the face*—i.e., those of the orbit, part of the nasal fossa, the hard and soft palates, deeper portion of the cheek, temporal fossa, and pterygo-maxillary region—enter the internal maxillary lymphatic glands.

From the course of the lymphatic vessels it follows that in septic conditions, such as infected wounds, erysipelas, and abscess of the posterior portions of the scalp, the occipital and posterior auricular glands may become affected, and that in the same condition of the lateral part of the scalp the parotid lymphatic glands may become enlarged or inflamed, and septic matter from the frontal region of the scalp may eventually reach the submaxillary lymphatic glands. The course of the lymphatic vessels usually corresponds to that of the veins.

Metastasis from carcinomatous growths generally follows the lymphatic vessels. In septic conditions or carcinomata of the anterior portion of the face, of the lips, of the tongue, and of the sublingual and submaxillary salivary glands the submaxillary lymphatic glands become enlarged. Similar affections of the outer part of the eyelids and face involve the parotid lymphatic glands; and in corresponding conditions of the orbital, nasal, temporal, and zygomatic fossae, of the deeper tissues of the cheek and of the roof of the mouth, the internal maxillary lymphatic glands may be affected.

Before dissecting the neck, the student should remove the brain and place it in a solution to prepare it for dissection; he should study the diploic veins, the dura mater and its processes, trace the meningeal vessels and the sinuses, and follow the cranial nerves to their respective foramina of exit from the cranial cavity. These structures and their dissection are described under the Membranes and Vessels of the Brain.

THE MEMBRANES AND VESSELS OF THE BRAIN.

Dissection.—Before removing the calvaria, or skull cap, entire, its outer compact table should be removed on one side, so as to expose the diploë or middle table, with its bony channels for the accommodation of the diploic veins. This is most readily done by sawing through the outer table in the horizontal line described in the removal of the calvaria as a whole, and in the sagittal line of the skull, when, with a chisel, it can be lifted off piecemeal. To remove the portion below the line of the horizontal section a Hey’s saw may be used.

The **Diploic Veins**, named from the bones in which they ramify, are the frontal, the fronto-sphenoid, the fronto-parietal (anterior temporal), the external parietal (posterior temporal), and the occipital (parieto-occipital). They vary greatly,
Occipital diploic v.
Posterior temporal diploic v.
Mastoid foramen
Anterior temporal diploic v.
Fronto-sphenoidal diploic v.
Frontal diploic v.
Frontal sinus

DIPLOIC VEINS.
569
however, in different subjects (Merkel). These veins are distinct before the cranial bones unite with one another, after which there is a free anastomosis between them. In young subjects they are small, but they increase in size as age advances (Quain). They have no valves, and their walls are extremely thin.

The **frontal veins** are situated in the anterior part of the frontal bone; they pass most frequently through the supra-orbital foramen and empty into the supra-orbital vein; they may, however, empty into the fronto-sphenoid vein. Varicosity of this vein, even to the extent of causing absorption of the outer table of the bone, may occur.

The **fronto-sphenoid veins** lie in the lateral part of the frontal and in the sphenoid bone; they empty into the sinus alae parvae.

The **fronto-parietal or anterior temporal veins** are situated in the posterior part of the frontal and in the anterior part of the parietal bone; externally they empty into the deep temporal veins, and internally into the superior petrosal sinus or a meningeal vein.

The **external parietal or posterior temporal vein** is situated in the parietal bone; it passes through a foramen in the posterior inferior angle of this bone, or through the mastoid foramen to empty into the lateral sinus.

The **occipital or parieto-occipital vein**, the largest of the diploic veins, is confined to the occipital bone; it empties externally into the occipital vein, or internally into the lateral sinus.

In **compound fractures of the skull** the diploic veins offer an opening favorable to the introduction of septic matter into the circulation, thereby permitting thrombosis of the sinuses, septic meningitis, general sepsis (pyemia), or, possibly, abscess of other organs, especially the liver. The diploic veins communicate with those of the scalp by means of very small vessels; through these the septic matter may be conveyed to the diploic veins and thence to the sinuses. It is doubtless through one or more of these emissary veins, in the majority of cases, that septic material—the result of inflammation of the scalp—enters the venous system.

Dissection.—Remove the calvaria (skull cap) by sawing through the outer and middle tables along a line carried horizontally around the skull, connecting a point one-half of an inch above the supra-orbital margin with a point the same distance above the external occipital protuberance; then, with a chisel and mallet, cut through the inner table, prying the calvaria from the underlying dura mater. In breaking through the inner table the mallet and chisel are preferred to the saw, there being less danger of cutting the dura mater; even when closely adherent to the calvaria, the dura mater should only be divided as a last resort. In dividing the bone in the temporal region its thinness must be borne in mind, otherwise the brain, as well as the dura mater, may be injured.
Pacchionian bodies.—The outer surface of the dura mater being exposed by removal of the skull cap, it appears rough, especially along the lines of the sutures and in the neighborhood of the foramina, where it is most closely attached to the bone. The anterior and posterior branches of the middle meningeal artery, with the corresponding veins, will be seen to ramify upon the dura mater over each hemisphere; in most instances granular masses, the Pacchionian bodies, which are villous processes of the arachnoid, will be observed upon the surface on each side of the middle line. The position of these bodies should be carefully noted, and they must not be regarded as pathologic when seen on the operating or postmortem table. In some cases they are quite large: the author has known one to be so large as to occasion sufficient pressure to give rise to focal (Jacksonian) epilepsy; the patient was trephined, and the enlarged Pacchionian body with the underlying cerebral cortex removed, in the belief that it was a neoplasm. The convulsions were arrested temporarily, but returned after a time; this, unfortunately, occurs in the majority of cases of Jacksonian epilepsy operated upon. These bodies are always impressed upon the calvaria, so that depressions, corresponding in size to the bulk of the bodies causing them, may be seen upon each side of the median line of the skull; at times they almost perforate the bone. As a rule, they hollow the bone out sufficiently to render it translucent. The existence of these bodies may, therefore, be ascertained by inspection of the interior of the calvaria, and it is even possible, by the aid of transmitted light, to determine their presence by examining from without. The Pacchionian bodies, as previously stated, are processes of the arachnoid, and serve as channels for the passage of the cerebro-spinal fluid into the venous sinuses of the dura mater; in this way they relieve intra-cranial pressure. They vary greatly in size in different persons, and in children are quite small.

The dura mater, the most external of the three membranes of the brain, forms the internal periosteum of the skull, and affords an excellent protection to the brain. Through the medium of this internal periosteum the bones of the skull receive the greater part of their nourishment; this explains why they seldom necrose in scalp wounds in which the pericranium or external periosteum is torn away. The dura mater is a dense, tough, inelastic, fibrous membrane. It is intimately adherent to the base of the skull, owing, partly, to the numerous foramina found there; therefore, extra-dural extravasations or collections of blood or pus between the dura and skull rarely, if ever, occur at the base of the skull; at the sides and roof of the cranial cavity, however, where the membrane is comparatively loosely attached (except along the sutures and around the foramina), purulent collections and extravasations from rupture of one or both branches of the middle meningeal artery are not uncommon. These conditions cause compression of the brain, the symptoms of which, coming on immediately after
PLATE CXLVIII.

DURA MATER, ARACHNOID, AND MENINGEAL VESSELS.

573
an injury to the head, indicate depressed fracture; if they appear a short time thereafter, hemorrhage; some days after, pus. Tillaux has demonstrated that the dura mater is less firmly attached to the temporal fossa, the most frequent site of extra-dural hemorrhage, than to any other portion of the interior of the skull (Treves). It is most closely adherent to the bone in infancy and old age. It has been demonstrated by Sir Charles Bell that the dura mater may be separated from the vault and sides of the skull by striking the head of a cadaver a hard blow with a heavy mallet.

Extra-dural hemorrhage. —The most common cause of extra-dural hemorrhage is rupture of the branches of the middle meningeal artery; this is usually associated with fracture of the parietal bone at its anterior inferior angle, the site of the groove through which the anterior branch of the artery passes. The author has trephined for compression of the brain produced by an extra-dural clot not associated with fracture. The next most frequent source of extra-dural hemorrhage is the lateral sinus.

Attachments of the dura mater. —Besides being closely adherent to the base of the skull, the dura mater is continuous, through the optic foramen, with the periosteum of the orbit; through the foramen magnum, with the dura mater of the spinal canal; and through the fissures and the various foramina through which the vessels and nerves enter and leave the cranial cavity, clothed by prolongations of this membrane, with the pericranium. As the dura mater is directly continuous with these various structures, it can be readily understood how inflammation may extend by continuity into the cranial cavity and cause secondary meningitis.

Pulsations of the dura mater. —The dura mater, when exposed in the living subject, may present two distinct pulsations, communicated from the underlying brain: one synchronous with the pulsation of the arteries, the other with respiration, rising in expiration and sinking in inspiration.

Layers of the dura mater. —The dura mater consists of two layers: an outer, the endosteal, and an inner, the meningeal; the latter is lined by endothelium, which gives it its shiny appearance. Between the two layers venous channels or sinuses and the Gasserian ganglion are found. The inner or meningeal layer sends in partitions which separate and support the different portions of the brain.

Sarcomata of the dura mater may protrude through the bones of the cranium and cause a swelling in the scalp.

Dissection. —Preliminary to removing the brain, and in order to obtain the most correct idea of the normal relations of the two larger partitions formed by the inner layer,—namely, the falx cerebri and the tentorium cerebelli,—divide the dura mater in the following manner: Carry two incisions through it from before
backward, one-half of an inch on each side of the median line, thus avoiding the superior longitudinal sinus. From the center of these incisions carry a transverse incision upon each side as far as the divided margin of the bone. Reflect the flaps thus made, and with the fingers gently separate the hemispheres of the cerebrum. The falx cerebri, with the veins from the surface of the cerebrum which empty into the superior longitudinal sinus, may then be seen. The tentorium cerebelli can now be readily exposed by lifting up the posterior extremities of the hemispheres of the cerebrum (occipital lobes). Next lay open the superior longitudinal sinus and inspect its interior. The small openings of the veins from the top of the hemispheres (superior cerebral veins), the diploë, and the dura mater will be seen along its entire course; they generally enter from behind forward. Divide the anterior uncut portion of the dura mater, and sever the falx cerebri from its attachment to the crista galli, along with the veins which empty into the superior longitudinal sinus; together with the falx cerebri turn back the strip of dura mater in which is contained the superior longitudinal sinus.

Removal of the brain.—The brain should now be removed in the following manner:

Draw the subject well up so that the head will hang over the edge of the table. With the fingers of the left hand lift the frontal lobes of the cerebrum from the anterior cranial fossa and raise the olfactory bulbs from the cribiform plate of the ethmoid bone, thus severing the olfactory nerves. The optic nerves with the ophthalmic arteries beneath will now be seen, and both should be cut across (preferably with scissors), a short distance from the brain. By gently lifting and displacing the hemispheres backward, the internal carotid arteries and the infundibulum (a process of gray matter which connects the pituitary body with the tuber cinereum) will be seen. These should next be divided or the artery should be severed and the pituitary body removed from the pituitary fossa after incising the diaphragma sellae. The third pair of cranial nerves, the oculo-motor, will be seen lying behind the anterior clinoid processes on their way to reach the cavernous sinuses. Divide these nerves and then, turning the head to the right, lift the temporosphenoid lobes from the middle cranial fossa, and the tentorium cerebelli will be brought into view. This should be cut through close to its attachment to the posterior clinoid process and to the petrous portion of the temporal bone. The pathetic, or fourth, and the trigeminal, or fifth, pairs of cranial nerves should be severed on the left side; turn the head to the left, and divide the corresponding structures on the right side. Bring the face back to the middle line, draw the brain well backward, and divide the following structures from within outward in the order named: The abducens or sixth, the facial or seventh, the auditory or eighth, the glossopharyngeal or ninth, the pneumogastric or vagus or
Middle meningeal a.

Veins of Galen

Inferior longitudinal sinus

Falx cerebri

Superior longitudinal sinus

Straight sinus

Sphenoidal cells

Lateral sinus

Tentorium cerebelli

Sphenoidal cells

Tentorium cerebelli

Inferior petrosal sinus

Nasal septum

Circular sinus

Transverse sinus
Optic n.
6th n.
Motor oculi n.
4th n.
Optic division of 5th n.
Superior maxillary n.
Gasserian ganglion
Inferior maxillary n.

9th and 10th nerves
5th n.
7th n.
8th n.

11th n.
12th n.

579
tenth, the spinal accessory or eleventh, and the hypo-glossal or twelfth pair of cranial nerves. The next and final step consists of carrying a scalpel down into the spinal canal as far as possible and cutting through the spinal cord, the two vertebral arteries, and the spinal portions of the spinal accessory nerves. The fingers of the right hand should then be slipped beneath the cerebellum and pons, and the brain removed.

Preservation of the brain.—If the brain be not dissected at once, it should be placed in a solution of chlorid of zinc, in alcohol and formaldehyd, or Müller's fluid. If placed in the zinc solution, the pia mater should be removed later, for if allowed to remain in this solution for some time, it is more easily separated than in the fresh condition. If alcohol alone be used to preserve the brain, the pia mater must be removed before placing it therein; this is most readily done under water; but if preserved in alcohol and formaldehyd, the membrane may be removed at leisure. Brains hardened in chlorid of zinc should afterward be kept in alcohol. When the brain has been removed from a subject injected (embalmed) with chlorid of zinc, the pia mater can at once be separated and the brain placed in alcohol. If the brain from a fresh subject be immediately placed in alcohol, subsequent removal of the pia mater will be found almost impossible on account of its firm adherence. If the pia mater is not removed, the study of the convolutions is much less satisfactory. Brains which have been hardened in chlorid of zinc and afterward kept in alcohol are much easier to handle than when kept in zinc alone, as the latter, by its action on the skin, makes the fingers sticky. Brains preserved in alcohol and formaldehyd are preferable to those preserved in a solution of zinc chlorid and alcohol, because they are not shrunken so much as the latter. Brains taken from a subject embalmed with zinc chlorid should be hardened in a solution of the same; only fresh brains should be hardened and preserved in alcohol and a two per cent. solution of formaldehyd.

Processes of the dura mater.—The dura mater, through duplication of its inner or meningeal layer, sends three larger and five smaller partitions, folds, or processes into the cavity of the skull and between certain divisions of the brain; these afford support to the latter. The three larger processes are the *falx cerebri*, the *tentorium cerebelli*, and the *falx cerebelli*. The five smaller processes or folds comprise two pairs and a single one. Of the two pairs, the larger are attached to the lesser wings of the sphenoid bone and project into the Sylvian fissure. The smaller pair, crescentic in shape, are attached to the clinoid processes and overhang the optic nerves. The single fold of the smaller group stretches across the pituitary fossa covering the pituitary body, and is known as the *diaphragm of the pituitary fossa*, or *diaphragma sellae*. Its center contains an opening for the passage of the infundibulum.
The falx cerebri is a sickle-shaped process, narrowed almost to a point in front, where it is attached to the crista galli; it is broad behind, where it is attached to the middle of the upper surface of the tentorium cerebelli. It projects into the great longitudinal fissure of the brain and separates the hemispheres of the cerebrum. Its convex upper border is attached upon the inner surface of the calvaria to the edges of the groove which accommodates the superior longitudinal sinus. The concave lower border is free, arches over the corpus callosum, and contains the inferior longitudinal sinus.

The tentorium cerebelli is a somewhat triangular-shaped process, having its base attached upon the inner surface of the occipital bone to the edges of the groove for the lateral sinuses; the sides are attached to the line of junction of the upper and posterior surfaces of the petrous portion of the temporal bone, from the apex of which they are continued to the posterior and anterior clinoid processes. The apex corresponds to the free edge, which forms the lateral and posterior boundaries of the triangular opening known as the superior occipital foramen or superior foramen magnum. This foramen gives passage to the crura cerebri, the superior peduncles of the cerebellum, the oculo-motor and pathetic nerves, and the basilar artery. The tentorium cerebelli projects into the great transverse fissure of the brain and separates the posterior lobes of the cerebrum from the cerebellum. In the convex border of the base of the tentorium cerebelli the horizontal portions of the lateral sinuses are contained; in the sides, the superior petrosal sinuses; and in the middle, at its union with the falx cerebri, the straight sinus. The base of the falx cerebri is attached along the entire median line of the upper surface of the tentorium cerebelli, and the falx cerebelli to the median line of the lower surface. The tentorium serves to support the posterior lobes of the cerebrum, thus protecting the cerebellum from pressure.

The falx cerebelli is a small, vertical fold attached posteriorly to the internal occipital crest or inferior vertical limb of the occipital cross, and above to the under surface of the tentorium cerebelli; it is situated between the hemispheres of the cerebellum. In its posterior border is contained the occipital sinus. This border at times splits into two parts, which are attached to the sides of the back part of the foramen magnum.

Sinuses of the dura mater.—The sinuses of the dura mater are venous channels formed by the separation of its endosteal and meningeal layers, and are lined by a prolongation of the lining membrane of the veins. They are rigid tubes, which always remain patent (Macewen); their function is to return the venous blood from the brain and its coverings, the diploë (with a few exceptions), and also the greater part of the blood from the orbit and eyeball. They collect this blood and convey it to the jugular or posterior lacerated foramina, where it is taken.
up by the internal jugular veins. There are sixteen in all, and they consist of two groups: those situated at the upper and back part of the cranial cavity, and those situated at the base of the skull. The former group includes the superior longitudinal, the inferior longitudinal, the straight, the lateral, and the occipital sinuses. The last-named group includes the cavernous, the sinuses alae parvae, the circular, the superior petrosal, the inferior petrosal, and the transverse. They can also be divided into a median and a lateral group, the former including the single sinuses, situated in the middle line of the skull, and the latter the paired sinuses, situated on both sides of the middle line. Five are in pairs and six are single. The five pairs are the lateral, the superior petrosal, the inferior petrosal, the cavernous, and the sinuses alae parvae. The six single sinuses are the superior longitudinal, the inferior longitudinal, the circular, the transverse, the straight, and the occipital. Some anatomists describe the sigmoid portions of the lateral sinuses as an additional pair, thus making the number eighteen.

The superior longitudinal sinus, which has already been exposed, occupies the convex border of the falx cerebri. It passes from the foramen cecum at the root of the frontal crest through the mesial groove on the inner surface of the calvaria; deviating slightly to the right in the posterior part of its course, it runs to the internal occipital protuberance, to end in the torcular Herophili. The torcular Herophili is the point of confluence of the superior longitudinal, lateral, straight, and occipital sinuses, and is situated a little to the right of the internal occipital protuberance. The superior longitudinal sinus is triangular on section, the base being directed toward the calvaria; it is narrower in front, gradually increasing in width as it passes backward. Its lumen is crossed by a number of fibrous bands, the chordae Willisii, and Pacchionian bodies are frequently found projecting into it. It receives veins from the scalp through the parietal foramina, from the diploe, the dura mater, and the hemispheres of the cerebrum. These veins, particularly those from the cerebrum,—the superior cortical,—run into the sinus from behind forward in the direction opposite to that in which the blood current passes; furthermore, they pierce the wall of the sinus very obliquely. In the fetus the sinus communicates with the veins of the nose by a small emissary vein which passes through the foramen cecum, but this seldom occurs in the adult. The superior longitudinal sinus presents a variable number of lateral outgrowths or pouches, which have been named the lacunae laterales. It is into these that the Pacchionian bodies project.

Wounds of, and line for, the superior longitudinal sinus.—The relation of the sinus to the skull renders it likely to be wounded in compound fracture of the vertex, and in trephining operations over the median line of the vertex. Hemorrhage from this or any of the sinuses is best controlled by plugging with sterile
gauze, unless the wound be small, in which case it can be closed by sutures. The course of the sinus is represented on the scalp by a straight line drawn from the root of the nose over the median line of the vertex to the external occipital protuberance.

Septic or infective processes of the scalp may enter the superior longitudinal sinus through the parietal emissary veins; septic processes of the nose may reach that sinus through the vein in which the sinus has its origin.

The lateral sinuses, the largest of the cranial sinuses, extend from the internal occipital protuberance to the jugular foramina, terminating at the beginning of the internal jugular veins. They arise on each side of the internal occipital protuberance, across which they are connected by a small branch; thence they pass outward and forward, grooving the squamous portion of the occipital, the posterior inferior angle of the parietal, the mastoid portion of the temporal, and the jugular process of the occipital bone. Each sinus consists of two portions, a horizontal and a sigmoid. The horizontal portion is situated in the base of the tentorium cerebelli; it is triangular on section, the base of the triangle being directed toward the occipital bone and the posterior inferior angle of the parietal bone. The sigmoid portion is situated below the tentorium cerebelli, and grooves the mastoid portion of the temporal and the jugular process of the occipital bone; it is semicylindric on section, and is considered by some anatomists a separate sinus—the sigmoid. The superior petrosal sinus empties posteriorly into the sigmoid portion of the lateral sinus at its origin. The lateral sinus varies somewhat in size and position, a fact to be remembered in trephining operations.

Tributaries of the lateral sinus.—The right lateral sinus is usually larger than the left; it begins at the torcular Herophili, and is the continuation of the superior longitudinal sinus. The left lateral sinus is the continuation of the straight sinus. In addition to the superior petrosal sinuses, the lateral sinuses receive emissary veins from the scalp, which pass through the mastoid and posterior condylloid foramina; veins from the diploë (the occipital and the external parietal); the lateral inferior cerebral, and some of the superior and inferior cerebellar veins.

Leeching.—A suitable site for applying leeches in meningitis is behind the ear; in this way blood is extracted directly from the lateral sinus through the mastoid emissary vein, thus depleting the intra-cranial circulation. Another, but less favorable, location for the application of leeches in meningitis is near the inner canthus of the eye, where the angular vein anastomoses with the ophthalmic vein.

Thrombosis of the lateral sinus.—The sigmoid portion of the lateral sinus, or the sigmoid sinus, is the portion of the intra-cranial venous circulation most con-
cerned in diseases of the middle ear. Thrombosis of this portion of the sinus and of the commencement of the internal jugular vein constitutes one of the complications of suppurative middle ear disease, and is due to the proximity of the sinus to the middle ear and mastoid cells, and to the fact that veins pass directly from the mastoid portion of the temporal bone to the lateral sinus. This condition demands exposure of the sinus and removal of the clot; this is best done before general systemic infection has occurred. When sepsis is present and the mastoid antrum has been drained by trephining the mastoid process without producing the desired effect, the sigmoid portion of the lateral sinus should be exposed without delay. The presence of a clot can readily be determined by palpation; removal of the clot should immediately be followed by antiseptic packing of the sinus. The four most serious complications of suppurative otitis media are septic thrombosis of the lateral sinus, septic meningitis, abscess of the temporo-sphenoid lobe of the cerebrum, and cerebellar abscess.

Infective processes may also reach the lateral sinus from the scalp through the mastoid vein, occipital diploic and posterior temporal diploic veins, and through the superior longitudinal and the cavernous sinus.

Line for the lateral sinus.—In trephining for depressed fracture of the occipital bone, cerebellar tumor, cerebellar abscess; in opening the mastoid cells or mastoid antrum; or in exposing the sinus itself in septic thrombosis, it is highly important to bear in mind the relation of the lateral sinus to the exterior of the skull. Its course is represented as follows: Draw a line from the external occipital protuberance to a point an inch above the external auditory meatus. The sinus follows this line as far as the base of the mastoid process; thence it runs downward in the middle line of the mastoid to its apex. According to MacEwen, the right sigmoid groove is generally wider and deeper, projects farther outward, and reaches farther forward than the left sigmoid groove. The closer proximity of the sigmoid portion of the right lateral sinus to the middle ear perhaps explains the greater frequency of intra-cranial lesions consecutive to right-sided otitis media.

Operations on the mastoid process.—In opening the mastoid cells or mastoid antrum it is better to expose the entire surface of the mastoid process by turning up a large flap, than to expose a limited surface through a vertical incision behind the ear; this is particularly the case if the disease be advanced, when the overlying soft parts become so swollen as to render it impossible to outline the process with any degree of certainty. When the mastoid process is exposed, draw two lines—a horizontal one through the roof of the external auditory meatus, and a vertical one through its posterior wall. In adults apply the trephine or gouge at a point a little below the horizontal and behind the perpendicular line; in children apply
the instrument at a point directly over the horizontal and behind the perpendicular line. With the trephine or gouge make an opening in a forward and inward direction. Having removed the external table, the mastoid antrum can usually be entered with a small elevator or a stiff director; this is to be preferred to the trephine or gouge, as it lessens the risk of injuring the sigmoid portion of the lateral sinus. Both the tympanum, or middle ear, and the mastoid cells can be drained through the mastoid antrum. In the majority of cases the pus is primarily in the tympanum, yet occasionally suppuration takes place ab origine in the mastoid cells. It must not be forgotten that in children and in many adults there are no well-developed mastoid cells; opening directly into the mastoid antrum is, therefore, the safest course to pursue in all cases.

The **inferior longitudinal sinus** is situated in the free concave margin of the falx cerebri. It is of small size, cylindric on section, and terminates in the straight sinus at the junction of the falx cerebri with the anterior margin of the tentorium cerebelli and at the posterior boundary of the superior occipital foramen. It receives veins from the falx cerebri, the median surface of the cerebral hemispheres, and the basilar surface of the frontal lobes.

The **straight sinus** is formed by the union of the inferior longitudinal sinus with the veins of Galen. It is situated at the junction of the falx cerebri with the tentorium cerebelli, and terminates at the internal occipital protuberance, whence it is continued as the left lateral sinus. It is triangular on section and increases in size as it passes backward. It receives veins from the tentorium cerebelli and the upper surface of the cerebellum (the superior cerebellar). Its direction is downward and backward.

The **occipital sinus** is formed by the union of two small veins (marginal sinuses) which pass around the lateral margins of the foramen magnum and communicate with the sigmoid portion of the lateral sinus near the jugular foramen and with the posterior spinal veins. It passes along the attached margin of the falx cerebelli to the internal occipital protuberance, where it empties into the torcular Herophili. It may empty into one of the lateral sinuses or into the straight sinus. It receives veins from the tentorium cerebelli and cerebellum, communicating also with the vertebral veins and the anterior spinal plexus.

The **sinus alæ parvae**, or sphenoparietal sinus, one of the paired sinuses, occupies a groove on the inferior surface of the lesser wing of the sphenoid bone, and runs through the sphenoid fold of the dura mater. This fold is attached to the base of the lesser wing of the sphenoid bone, and is continuous with the dura mater at its attachment to the anterior clinoid process. It empties into the cavernous sinus, and often receives the fronto-sphenoid veins of the diploë as tributaries.
The cavernous sinuses are situated along the sides of the body of the sphenoid bone, and extend from beneath the anterior clinoid processes to the apices of the petrous portions of the temporal bones. The outer wall of the sinus—the most distinct—contains the third and fourth nerves and the ophthalmic division of the fifth, while the inner wall contains the internal carotid artery, the sixth nerve, and the cavernous plexus of the sympathetic. "Tillaux alludes to some cases of aneurysmal communication between the internal carotid artery and the sinus; the signs of such lesion are dilatation of the ophthalmic vein and a pulsatory swelling behind the internal angular process of the frontal bone" (Owen). The endothelial lining membrane of the sinus prevents the blood from coming into contact with the nerves and artery. Practically speaking, the inner wall of the sinus does not exist as a distinct lamella, but is formed by the structures previously enumerated as being contained therein. Section of the sinus discloses numerous bands and spaces on its interior—hence its name. The nerves which occupy the outer wall of the sinus observe the same order, both from above downward and from within outward, in which they have been mentioned. Of the structures occupying the inner wall, the sixth nerve is the most external. The sinus receives the ophthalmic vein in front, and the sinus alae parvae above the third nerve. It communicates with its fellow by means of the circular sinus, and divides posteriorly (at the apex of the petrous portion of the temporal bone) into the superior and inferior petrosal sinuses. It receives the middle cerebral veins and those from the basilar surface of the frontal lobe, communicating with the pterygoid plexus of veins by means of the Vesalian vein, which runs through the Vesalian foramen in the greater wing of the sphenoid bone. It also communicates with the internal jugular vein through the venous plexus surrounding the petrous portion of the internal carotid artery, and with the pterygoid and pharyngeal plexuses of veins by means of veins which run through the foramen ovale and the foramen lacerum medium.

Infected material may reach the cavernous sinus from the scalp through the supra-orbital or frontal and ophthalmic veins, and through the fronto-sphenoid diploic vein and the sinus alae parvae; from the orbit through the ophthalmic vein; and from the pterygo-maxillary region through the vein of Vesalius and emissary veins which pass through the foramina at the base of the skull._relations of the cavernous sinus to the Gasserian ganglion.—But one of the cavernous sinuses should be opened at this stage of the dissection, the opening of the other being deferred until the nerves which run in the walls of the sinus to enter the orbit have been traced. Upon opening the cavernous sinus it will be seen to occupy an interval between the endosteal and meningeal layers of the dura mater, as is the case with the other sinuses. In this interval Meckel's space, which is
occupied by the Gasserian ganglion, may also be demonstrated at this time. The comparatively intimate relation existing between the sinus and the ganglion should, therefore, be borne in mind when attempting to remove the ganglion for relief of trigeminal neuralgia, otherwise the sinus might be injured; an accident of this kind, it is hardly necessary to say, might be serious.

The circular sinus, through which the two cavernous sinuses communicate, surrounds the pituitary body. The anterior half is larger than the posterior, and in advanced life is larger than in early life. At times one-half is absent. It receives veins from the pituitary body and the neighboring bone and dura mater.

The superior and inferior petrosal sinuses are the terminal divisions of the cavernous sinus. The superior petrosal sinus runs in a small groove in the superior edge of the petrous portion of the temporal bone, in the margin of the tentorium cerebelli. It terminates in the lateral sinus at the point where the sigmoid portion of the sinus begins. At its origin it is crossed by the fourth nerve, and it, in turn, crosses the fifth nerve. It receives some of the inferior cerebral and superior cerebellar veins, a vein from the middle ear which makes its exit through the petro-squamous suture, and some diploic veins.

The inferior petrosal sinus, which is shorter and wider than the superior, runs in the groove formed by the junction of the inferior border of the petrous portion of the temporal with the basilar process of the occipital bone, and at the jugular foramen empties into the commencement of the internal jugular vein. The terminal portion of the inferior petrosal sinus separates the glosso-pharyngeal from the pneumogastric and spinal accessory nerves. It receives some of the inferior cerebellar veins and some from the medulla oblongata and pons; veins from the internal ear which make their exit by way of the aqueductus vestibuli and aqueductus cochleae also empty into it.

The transverse sinus, through which the inferior petrosal sinuses communicate with each other, passes across the basilar process of the occipital bone. It extends inferiorly as far as the anterior margin of the foramen magnum, where it communicates with the anterior spinal veins. The sixth pair of nerves pass through it. Some authors describe the transverse sinus as a plexus of veins (basilar plexus).

Blood Supply.—The blood supply of the dura mater is derived from the meningeal arteries, though the chief function of these vessels is to supply the bones of the cranium. These arteries comprise practically three sets,—an anterior, a middle, and a posterior,—and in the dried skull their course can readily be traced by following the grooves in the bones which they occupy. The meningeal arteries are accompanied by relatively small veins.

Nerve Supply.—The nerve supply of the dura mater is derived from the
Gasserian ganglion, the first, second, and third divisions of the trigeminal or fifth, the pneumogastric, the hypo-glossal, and the sympathetic nerves.

Dissection.—Before studying the courses of the meningeal arteries, which necessitates stripping the dura mater from the skull, examine the cranial nerves as they pass through the foramina at the base of the skull. The dura mater should then be disposed of in the foregoing manner.

INTRA-CRANIAL COURSE AND MODE OF EXIT OF THE CRANIAL NERVES.

Coverings.—In tracing the cranial nerves to their exit through the foramina at the base of the skull, observe that each pair of nerves receive investments from all three membranes of the brain. The coverings derived from the dura mater and the pia mater are continuous with the sheaths of the nerve, while that from the arachnoid terminates as the nerves enter the dura mater.

Enumeration.—The names of the twelve pairs of nerves, mentioned from before backward, are: The olfactory, the optic, the oculo-motor, the pathetic, the trifacial, the abducent, the facial, the auditory, the glosso-pharyngeal, the pneumogastric, the spinal accessory, and the hypo-glossal nerves.

The olfactory nerves, the first pair, consist of the olfactory tracts and bulbs, and have been removed with the brain and their branches divided. Strictly speaking, the olfactory bulb and tract are to be regarded as portions of the brain. Arising from the lower surface of the olfactory bulb are some twenty filaments,—the real olfactory nerves,—which are arranged in two rows, an inner and an outer. They supply the upper portions of the septum and the outer wall of the nose respectively, and terminate in cells in the mucous membrane. By carefully separating the dura mater from the grooves in the base of the skull on each side of the crista galli, these real olfactory nerves may be seen running through the foramina in the cribiform plate of the ethmoid bone.

The optic nerves, the second pair, pass through the optic foramina accompanied by the ophthalmic artery.

The oculo-motor nerves, the third pair, pierce the dura mater near the anterior clinoid processes, and enter the outer wall of their respective cavernous sinuses. In this situation they lie above the fourth nerve and the ophthalmic branch of the fifth. They enter the orbits through the sphenoid fissures, and here lie below the fourth nerve and part of the ophthalmic. They next divide into two branches, which pass between the heads of the external recti muscles, separated from each other by the nasal branches of the ophthalmic nerves; they supply all the extrinsic muscles of the eyeball with the exception of the superior oblique and
external rectus, and also supply the circular muscular fibers of the iris and the ciliary muscle.

The pathetic nerves (trochlearis), the fourth and smallest pair of cranial nerves, pierce the dura mater near the free edge of the tentorium cerebelli, a little behind the posterior clinoid processes and above the oval openings for the fifth nerves. Each enters the outer wall of its respective cavernous sinus, where it lies below the third nerve and above the ophthalmic nerve, and passes into the orbit through the sphenoid fissure, in which it lies above the third nerve and the ophthalmic division of the fifth. It supplies the superior oblique or trochlearis muscle.

The trifacial nerves, the fifth pair, have two roots,—a larger sensory and a smaller motor,—and pass through an oval opening in the dura mater beneath the free border of the tentorium cerebelli. Above the fifth nerve is the fourth nerve, and below it are the apex of the petrous portion of the temporal bone and the internal auditory meatus. Upon the larger or sensory root is the Gasserian ganglion, which can not be seen until the dura mater is raised from the base of the skull. Its description will therefore be deferred until this has been done. The ophthalmic branch of the trifacial nerve is exposed, and is seen running through the outer wall of the cavernous sinus, where it lies beneath the fourth nerve. It divides into three branches,—the lacrymal, frontal, and nasal,—after which it enters the orbit by way of the sphenoid fissure. In the wall of the sinus the ophthalmic branch is joined by filaments from the carotid plexus of the sympathetic nerve, communicating with the third, fourth, and sixth nerves, and giving off a recurrent branch which passes backward between the layers of the tentorium cerebelli.

The abducent nerves, the sixth pair, pierce the dura mater behind the body of the sphenoid bone immediately below the posterior clinoid processes, and pass through the transverse sinus. Each then courses along the inner wall of the cavernous sinus to the outer side of the internal carotid artery, and enters the orbit by way of the sphenoid fissure, lying between the ophthalmic vein and the inferior branch of the oculo-motor nerve. It supplies the external rectus muscle, between the two heads of which it passes. Within the wall of the cavernous sinus it is joined by filaments from the carotid plexus of the sympathetic nerve.

The facial nerves, the seventh pair, leaves the cranial cavity by way of the internal auditory meatus. Each nerve is accompanied by the pars intermedia of Wrisberg, the auditory nerve, and the auditory artery. At the bottom of the meatus it enters the facial or Fallopian canal. (For a description of the course of the nerve through the facial canal see the Dissection of the Internal Ear.) It lies within the meatus, first to the inner side of, and then directly over, the auditory nerve.
The auditory nerves, the eighth pair, leave the cranial cavity through the internal auditory meatuses in company with the auditory arteries, the facial nerves, and the pars intermedia. Reaching the bottom of the meatus each nerve divides into two branches, the cochlear and the vestibular, for the supply of the cochlea, the vestibule, and the semicircular canals.

The glossopharyngeal nerves, the ninth pair; the pneumogastric (vagus), the tenth pair; and the spinal accessory, the eleventh pair, leave the cranial cavity by way of the jugular or posterior lacerated foramen, passing through its middle compartment. The glossopharyngeal nerves have a separate sheath of dura mater and arachnoid, and lie in front of the pneumogastric and spinal accessory nerves. The last-mentioned two have a sheath of dura mater common to both, but they have separate sheaths of arachnoid. The spinal accessory nerve is made up of two parts: a smaller or accessory portion (accessory to the pneumogastric nerve), which runs with the pneumogastric, and a spinal, which arises from the spinal cord, and is by far the larger portion. The latter enters the cranial cavity through the foramen magnum and joins the accessory portion shortly after the latter emerges from the medulla.

The hypoglossal nerves, the twelfth pair, leave the cranial cavity through the anterior condyloid foramina.

The internal carotid artery.—When the cavernous sinus has been laid open and the nerves within its wall exposed, carefully examine the internal carotid artery running in the inner wall of the sinus before disturbing the dura mater further. After its exit from the carotid canal, the curves which the artery makes in reaching the brain can now be seen to the best advantage. Having emerged from the carotid canal the artery turns upward, passing toward the posterior clinoid process. It next runs forward through the inner wall of the sinus to reach the inner side of the anterior clinoid process, where it again turns upward and pierces the dura mater on the inner aspect of the anterior clinoid process; just before piercing the dura mater it gives off the ophthalmic branch. The cranial or terminal portion thus makes two bends, which give it the shape of the letter S. Running along with the artery and external to it is the abducent (sixth) nerve. The lining membrane of the sinus alone separates both the artery and the nerve from the interior of the sinus. Within the walls of the sinus the artery gives off branches known as the arteriae receptaculi, which supply the walls of the sinus, the pituitary body, the Gasserian ganglion, and the dura mater (through the anterior meningeal). It is surrounded by filaments of the sympathetic nerve which form two plexuses, the carotid on the outer and the cavernous on the inner side of the artery. The former plexus communicates with the abducent nerve and the Gasserian and Meckel’s ganglia; the latter communicates with the oculo-
motor, pathetic, and ophthalmic nerves, and furnishes the sympathetic root to the ophthalmic or lenticular ganglion.

Dissection.—The dura mater should now be dissected from the sides and base of the skull; it will be found closely adherent to the latter, requiring care in its removal in order to avoid injuring the following structures: The Gasserian ganglion, the superior and inferior maxillary nerves, which are branches from the ganglion, the large superficial petrosal, the external superficial petrosal when present, and the motor root of the trigeminal nerve. The last and the large superficial petrosal nerve run beneath the ganglion.

The Gasserian ganglion occupies a depression on the superior surface of the petrous portion of the temporal bone near the apex, and rests to a slight extent on the cartilage filling the middle lacerated foramen. It holds an intimate relation, therefore, to both the internal carotid artery and the cavernous sinus. It is crescentic in outline, its concavity being directed backward and its convexity forward and outward, and it measures about one-half of an inch in width. Its upper and lower surfaces are slightly convex. It occupies an interval between the endosteal and meningeal layers of the dura mater (Meckel's space), and for this reason the endosteal layer of the dura mater must be divided in attempting its removal through the side or base of the skull. From the convexity of the ganglion arise the ophthalmic, superior maxillary, and inferior maxillary nerves, the first two being sensory nerves throughout. The inferior maxillary nerve is sensory until it reaches the outside of the skull; here it is joined by the motor root of the trigeminal nerve, which leaves the cranial cavity with it by way of the foramen ovale; the inferior maxillary thus becomes a mixed nerve.

The superior maxillary nerve, intermediate in size between the ophthalmic and the inferior maxillary, leaves the cranial cavity by way of the foramen rotundum.

The inferior maxillary nerve, the largest branch of the fifth, leaves the cranial cavity by way of the foramen ovale which also transmits the small superficial petrosal nerve and the small meningeal artery.

Intra-cranial neurectomy of the superior and inferior maxillary nerves.—This is one of the operations for relief of trigeminal neuralgia, and is performed in the following manner: An 2-shaped flap is made over the temporal region, beginning near the tragus of the auricle and carried upward to about the level of the temporal ridge, ending near the external angular process of the frontal bone. All the structures down to the bone are divided. They include the skin and superficial fascia, the attractens auri musculi, the temporal branches of the facial and auriculo-temporal nerves, the anterior and posterior temporal arteries and veins, the occipito-frontalis aponeurosis, the areolar tissue layer, the temporal fascia and muscle, the deep temporal vessels, and the periosteum. The bone is then cut through in
THE MEMBRANES AND VESSELS OF THE BRAIN.

the line of the original incision, preferably with an instrument specially constructed for this purpose. Care must be taken to avoid injuring the membranes of the brain. An elevator is introduced beneath the bone after it has been cut through along the whole line of the incision, and the entire flap is forced outward and downward. The bone will fracture between the ends of the oval incision a little above the line of the zygomatic arch. The bone and soft structures should be reflected as one flap in thus exposing the dura mater of the brain. When the middle meningeal artery lies in a canal in the temporal and parietal bones, it may be torn in forcing the flap downward. This necessitates tying the vessel or plugging the canal for the vessel with gauze, as the bleeding would be severe. The dura mater is separated from the floor of the middle cranial fossa, and when the brain is lifted upward, the superior and inferior maxillary divisions of the fifth or trifacial nerve will be exposed. As much as possible of both nerves is then excised, and the distal ends pushed through their respective foramina of exit. The operation is completed by repositing the flap of bone, suturing the soft parts, and dressing the wound.

Removal of the Gasserian ganglion.—In removing the Gasserian ganglion one of two routes can be selected, either through the side of the skull or through its base; the latter method was first practised by Mr. Rose. In the former method, by far the most preferable, an osteo-plastic resection of the side of the skull is made, similar to that in the previous operation. The flap of bone includes part of the frontal, greater wing of the sphenoid, parietal, and the squamous portion of the temporal bone. After the superior and inferior maxillary nerves are exposed, they should be traced backward to the Gasserian ganglion; this is lodged in a depression near the apex of the petrous portion of the temporal bone, in a space (Meckel's) situated between the two layers of the dura mater. The outer layer of the dura mater should be incised; and the ganglion removed. The inferior and superior maxillary divisions of the trifacial nerve are then resected up to their point of exit from the skull, and the distal ends pushed through their respective foramina. The inferior maxillary nerve leaves the skull through the foramen ovale; the superior maxillary nerve through the foramen rotundum. The osteo-plastic flap is then replaced and the wound closed. The final steps of this and the succeeding operation will be greatly facilitated by the use of an electric headlight attached to a head-band.

In the second method the first step consists of dissecting up a flap of skin, superficial and deep fascia from the side of the face, and exposing the zygoma, taking care not to wound the parotid duct. The zygoma should be sawed through at each end and turned down, along with the masseter muscle. Next divide the coronoid process of the inferior maxilla and turn it upward with
the temporal muscle; this exposes the internal maxillary artery and pterygoid muscles. The internal maxillary artery should be tied at two points and divided. The external pterygoid muscle should then be carefully detached from its origin, thus exposing the inferior maxillary nerve as it emerges from the foramen ovale, which is the point at the base of the skull to be attacked with the trephine. If the inferior maxillary nerve has not been removed by a previous operation, it acts as an important guide in locating the foramen. The eminentia articularis and the root of the pterygoid process are additional guides, the foramen being usually just in front of a transverse line drawn through the eminence, and immediately behind the root of the external pterygoid plate. When the foramen has been clearly exposed, apply a small trephine, one-half of an inch in diameter, to the base of the skull and remove a button of bone which includes the margin of the foramen. The proximity of the foramen to the carotid canal renders this step a very important one. The disc of bone having been removed, the exposed dura mater, which bulges more or less into the trephine hole, should be opened and the inferior maxillary nerve, if not already exposed, sought. When found, it is traced to the Gasserian ganglion, which is then removed piecemeal. The operation is completed by replacing the tissues in as nearly the normal position as possible; the zygoma and the bone on each side of it are drilled and sutured, drainage is introduced, and the wound closed. The button of bone is not replaced. Extreme care should be exercised throughout this operation, which is one of great magnitude. The nutrition of the eyeball may be so seriously affected as to result in its destruction.

Dissection.—To continue the dissection, divide the larger or sensory root of the trifacial nerve, lift the Gasserian ganglion, and displace it forward and downward so as to better expose the smaller motor root and the large superficial petrosal nerve, both of which lie beneath the ganglion. The motor root of the trifacial nerve can be traced to the foramen ovale, where, with the inferior maxillary nerve, it makes its exit from the skull.

The large superficial petrosal nerve arises from the geniculate ganglion of the facial nerve, and will be seen emerging from the hiatus Fallopii. Thence it runs in a small groove on the side of the superior surface of the petrous portion of the temporal bone to reach the cartilage which fills the middle lacerated foramen. It pierces the cartilage and is joined by the great deep petrosal nerve from the carotid plexus of the sympathetic, thus forming the Vidian nerve.

The small superficial petrosal nerve arises from the facial nerve, emerges from the facial canal by way of a small foramen situated external to the hiatus Fallopii, passes to the foramen ovale, and joins the otic ganglion. Occasionally it passes through a small foramen situated between the foramina ovale and spinosum.
The *external superficial petrosal nerve* leaves the facial nerve and canal by way of a small foramen placed external to that for the small superficial petrosal nerve, on its way to join the plexus of the sympathetic upon the middle meningeal artery. This nerve is seldom found in the dissection of the interior of the base of the cranium, for in lifting up the endosteal layer of the dura mater the petrosal nerves are very apt to be severed unless the utmost care is observed.

The **Meningeal Arteries**—the anterior, the middle, the small, and the posterior meningeal—run between the skull and the dura mater, and are apt to be destroyed, or at least cut, when removing the dura mater; notwithstanding this they can be traced by the grooves in the bones which they occupy. The greater part of the anterior branch of the middle and the terminal part of the posterior meningeal arteries have been observed when removing the calvaria.

The **middle meningeal artery**.—The largest and most important of the meningeal arteries is the middle. As seen when dissecting the pterygo-maxillary region, both this and the small meningeal are branches of the internal maxillary artery. The middle meningeal artery runs between the two roots of the auriculo-temporal nerve and enters the cranial cavity by way of the foramen spinosum; it occupies a groove in the greater wing of the sphenoid bone, and almost immediately divides into two branches, the anterior and the posterior. Small branches of the middle meningeal artery pierce the cranial bones and anastomose with the vessels of the scalp.

The **anterior branch** runs through a groove across the great wing of the sphenoid, and continues into another groove in the anterior inferior angle of the parietal bone. The commencement of this latter groove for a distance of one-fourth to one-half of an inch is often bridged over by a thin plate of bone, and is thus converted into a canal. The vessel continues along the groove near the anterior border of the parietal bone, runs almost parallel with the coronal suture to within a short distance of the superior longitudinal sinus, and gives off branches which run upward to the vertex and backward toward the occipital bone. The sinus alae parvae or sphenoparietal venous sinus at times accompanies the artery for a part of its course, and may consequently be injured in fracture or during the manipulations of the surgeon.

The **posterior branch**, the smaller of the two, crosses the squamous portion of the temporal bone along the line of junction of the squamous with the petrous portion, and then upon the posterior inferior angle of the parietal bone, where it divides into its branches.

Extra-dural hemorrhage.—From the relation which the anterior branch of the middle meningeal artery holds to the anterior inferior angle of the parietal bone, it follows that fracture of this part of the skull is apt to result
in hemorrhage, which would be located between the bone and the dura mater. The vessel may be injured either by sharp bony spicula or by the sudden alteration in shape to which the skull is subjected in cases of severe head injury. It has already been noted that the dura mater is loosely attached to the vault of the cranium; this accounts for the size of the large extra-dural blood-clots occasionally seen. From the relation of this branch to the motor area of the brain it can readily be understood why the symptoms consequent upon the pressure of an extra-dural clot are largely, if not altogether, motor. These cases constitute an especially favorable class for trephining, which should be done as soon as the diagnosis is made, or as early as possible. If upon the removal of the clot the bleeding has not ceased; the vessel should be tied. This may necessitate enlarging the original trephine opening in order to expose the bleeding points. The author has found it necessary to tie both the anterior and the posterior branch. It occasionally happens that the injury to the middle meningeal artery occurs on the opposite side to that upon which the external lesion exists.

Point for trephining.—The point of election for applying the trephine in a suspected case of extra-dural hemorrhage, meningeal in origin, is at a point one and one-half inches behind and one inch above the external angular process of the frontal bone. When a simple or a compound depressed fracture is associated with the hemorrhage, the trephine should be applied near the fracture. To reach the posterior branch the trephine should be applied immediately below the parietal eminence, and on the same horizontal level as in the preceding operation. The opening can subsequently be enlarged in a downward or backward direction and the vessel thus brought into view.

Branches of the middle meningeal artery.—The middle meningeal artery gives off branches within the cranial cavity to the Gasserian ganglion: a petrosal branch, which enters the hiatus Fallopii to supply the facial nerve and anastomoses with the stylo-mastoid branch of the posterior auricular artery; a lacrimal branch which enters the orbit by way of the sphenoid fissure, or by a separate canal in the greater wing of the sphenoid bone, and anastomoses with the ophthalmic artery; a branch to the tensor tympani muscle; and branches which leave the cranial cavity through foramina in the greater wing of the sphenoid bone to anastomose in the temporal fossa with the deep temporal arteries. It is accompanied by two veins which empty into the internal maxillary vein.

The anterior meningeal arteries are branches of the ethmoid arteries; they supply the dura mater of the anterior cranial fossa in the region of the median line. One of the arteria receptaculii, derived from the cavernous portion of the internal carotid artery, supplies the dura mater of the middle cranial fossa. It
anastomoses with the middle meningeal artery, and it also receives the name of anterior meningeal. The dura mater of the middle cranial fossa is supplied chiefly by the small meningeal artery, a branch of the internal maxillary, which enters the cranial cavity by way of the foramen ovale, and one or two branches from the ascending pharyngeal artery, which enter the cranial cavity through the middle lacerated foramen.

The posterior meningeal arteries are the cranial branches of the ascending pharyngeal, the occipital, and the vertebral arteries; those arising from the ascending pharyngeal and the occipital artery enter the cranial cavity by way of the posterior lacerated or jugular foramen, and those from the vertebral artery by way of the occipital foramen (foramen magnum); they supply the dura mater of the occipital or posterior cranial fossa.

The ascending pharyngeal artery also sends a meningeal branch through the middle lacerated foramen, and an occasional one through the anterior condyloid foramen.

The meningeal veins, with the exception of those accompanying the middle meningeal artery, empty into the sinuses.
INDEX.

In this Index the references in **heavy-face type** are to the pages containing plates illustrating the subject named. References in regular type are to the text.

Abdomen, viscera of, relation, 363
Abducent nerve, 592
Abductor indicis m., 211, 159, 173, 206
 action, 212
 blood supply, 212
 insertion, 211
 origin, 211
 relations, 212
Abscess beneath temporal fascia, 484
 cold, 356
 lumbar, 356, 409
 mammary, 58
 of axilla, 27, 79, 95
 of carpal bursa, 158
 of face, 490
 of hand, 37
 incision for, 37
 of lacrymal sac, 508
 of palmar bursa, 158
 fascia, deep, 158
 of pectoral region, 68
 of ptterygo-maxillary region, 556
 of scalp, 481
 of shoulder joint, 379
 of subdeltoid bursa, 379
 of vertebrae, 356
 cervical, 356
 dorsal, 356
 lumbar, 356

Abscess of wrist, 32
 parotid, 321
 incision for, 522
 pscaas, 356
 retro-pharyngeal, 356
 Accessorius ad ilio-costalem m., 399, 396, 397. **Vide Accessorius M.**
 action, 400
 insertion, 399
 nerve supply, 400
 origin, 399
 relations, 399
 Accessory ligament of shoulder, 223
 Acine of mammary gland, 55
 Acromial angle, 351, 362, 43
 branch of acromio-thoracic a., 48, 85
 Anastomosis of acromial with supra-scapular and posterior circumflex a., 48
 branch of acromio-thoracic a., 55
 Amputation, general considerations, 259
 methods used in, 250
 circular, 250
 modified, 250
 flap, 251
 Lister's, 252
 oval, 253
 Spence's, 252
 Teale's, 251
 of arm, 253
 structures involved, 253
 of elbow, 258
 structures involved, 258
 of forearm, 257
 flexor carpiulum m. in, 134
 structures involved, 257
 of phalanges, 283
 structures involved, 283
 of shoulder-joint, 293
 structures involved, 293
 of thumb, 37, 284
 structures involved, 294
 of upper extremity, 279
 general considerations, 279
 Anastomosis of acromial with suprascapular and posterior circumflex a., 48
 branch of acromio-thoracic a., 55
 of anastomotica magna a., 114
 of angular a., 508
 of anterior circumflex a., 85, 89
 temporal a., 470
 ulnar recurrent a., 147
 of arteries around scapula, 84, 385
 of circumflex a., 85
 anterior, 85, 89
 posterior, 85, 86
 of coronary a., 507
 inferior, 507
 superior, 507
 of dorsal digital a., 211
 of dorsalis indicis a., 211
 scapulae a., 86, 384, 385
 of facial a., 512
 transverse, 508

Ampullae of mammary gland, 54, 55

601
INDEX

Anastomosis of frontal a., 470
of humeral branch of acromiothoracic a., 55
of inferior coronary a., 507
labial a., 507
or long thoracic a., 85
profunda a., 114
of infra-oral a., 540
of internal mammary a., 85
of interosseous a., palmar, 180
posterior, 208
recurrent a., 209
of latissimus dorsi a., 508
of mammary lymphatics, 57
of mental a., 540
of occipital a., 470
of palmar interosseous a., 180
of perforating a., 180, 173
superior, of hand, 180
of posterior auricular a., 470
of posterior carpal a., 210, 194
precarpal, 148
superficial palmar, 147, 161, 145, 159, 177
branches, 161
course, 161
formation, 161
line, 122, 176, 300
relations, 161
superior, of ramus of elbow after excision, 263
Anatomia magna, 114, 110, 111, 115, 118, 128, 145
anastomosis, 114
branches, 114
Anatomic neck of humerus, 273
displacement in, 273
structures involved, 273
of scapula, fracture, 270
sunlight box, 272
branches of radial a. in, 32
contents, 32
cision to expose radial a. in, 337
radial a. in, 339
Anatomy, long bones, 256
structural, of arteries, 298
Anconeus m., 202, 184, 194, 200
action, 202
blood supply, 202
insertion, 202
nerve supply, 202
origin, 202
relations, 202
Anel's method of treating aneurysm, 297
Anesthesia, temporal a. in, 470
Anesthesy, arterio-venous, 81
crissoid, 470, 463
general considerations, 294
method of treating, Anel's, 297
Antylyus', 297, 295
Brasder's, 297, 295
coulagulating material, 295
foreign body, 298
galvano-puncture, 298
Hunter's, 297, 295
manipulation, 298
pressure, 297
Wardrop's, 297, 295
treatment of, 294
varicose, 509, 295
Aneurysmal varix, 308, 295
Ankylodes, false, 215
Angular a., 502, 508, 504
anostomosis, 508
vein, 509
Ankylony, false, 215
of elbow after excision, 263
Anular ligament of wrist, anterior and posterior, 129, 157, 230, 193, 173
compartments, 157, 167
relations, 187
posterior, 129, 196, 194, 206
compartments, 197
Anomalies of mammary glands, 63
Antihelix, 524, 525
Anthelix, Vide Antihelix
Antihelix, 524, 525
Antitragicus m., 529, 555
Arch, anterior carpal, 173
bony, of shoulder, 18
carpal, anterior, 173
hemorrhage from, 180
posterior, 210, 194
branches, 210
corac-o-acromial, 322
Arch, deep, in, 173, 145, 173
branches, 180
course, 180
line, 122, 176, 300
relations, 180
wounds, 180
palmar, deep, 179, 145, 173, 177
branches, 180
course, 180
line, 122, 176, 300
relations, 180
wounds, 180
superficial, 147, 161, 145, 159, 177
branches, 161
course, 161
formation, 161
line, 122, 176, 300
relations, 161
superior, of supra-orbital, 470
zygomatic, 460
Areas of spinal cord, motor, 445
deficit, 445
sensory, 445
Aretine of nipple, 54, 55
Areolar tissue of axilla, 95
of eyelids, 516
of scalp, 480
Achs, amputation of, 293
111 structures involved, 283
arteries, superficial, 103
back of, dissection of, 188
fascia, deep, 188
muscles of, 185
collateral circulation, diagram, 324
comparative lengths of, 18
edema, 81
fascia, deep, 100
front of, 96
cutaneous nerves, 96
dissection, 96
fascia, deep, 107
lymphatic glands, 104, 105
vessels, 104, 105
muscles, 104
veins, superficial, 100
intermuscular septa, 107
landmarks, 21, 24, 25
measurements, 47
movements of, in affections of the breast, 58
nerves, 130
osteofascial compartments, 108
Artery, anterior carpal, ulnar. 148, 135, 140, 141, 145, 173, 177
anastomosis, 148
circumflex. 89, 76, 77, 111, 118
anastomosis, 89
branches, 89
in excision of shoulder-join, 89
dep temporal, 547, 542, 546, 550
dental, 540
interosseous of internal mammary, 48
intersosseous, 147, 140, 145, 177, 203
meningeal, 598
spinal, 444, 429, 433
superior dental, 541, 549
temporal, 470, 467, 472, 477, 504
anastomosis, 470
ulnar recurrent, 147, 111, 140, 141, 145
anastomosis, 147
articular branch of posterior intersosseous, 398
auricular, anterior, 470, 472, 477, 484, 504
anastomosis, 470
deep, 547, 546
posterior, 470, 467, 472, 477, 484, 504
anastomosis, 542
anastomosis, 470
axillary, 81, 62, 72, 76, 77, 111
branches of first portion, 82
of second portion, 85
of third portion, 86
course, 27, 81
digital compression, 82
divisions, 82
first portion, 82
branches, 82
incision for ligation, 301
ligation, 82, 304
collateral circulation after, 306
line for, 45
operation to expose, 316, 317
pressure upon, 81
relations, 82, 89, 305, 316
second portion, 85
branches, 85
third portion, 85
branches, 86
bicipital branch of anterior circumflex, 89
brachial, 108, 110, 111, 115, 118, 128, 131, 135, 140, 141, 145
branches, 113, 111
course, 28
Artery, brachial, incision for ligation, 301
ligation, 307
collateral circulation after, 308, 309
structures involved, 307
line, 108, 307, 122, 300
operation to expose, 316, 317, 319
relations, 108, 307, 316, 317
at elbow, 328, 329
vene communis, 135, 145, 542, 546, 559
carotid, common line for, 487
external, 542, 546, 559
internal, 593, 579
course, 593
carpal, anterior, radial, 144, 135, 145, 173, 177
anastomosis, 148
ulnar, 148, 135, 140, 141, 145, 173, 177
posterior, radial, 211, 145, 177, 200, 206
ulnar, 211, 140, 141, 177, 200, 206
recurrent, 180, 145, 173, 177
anastomosis, 180
course, 180
circumflex, 184, 185
anterior, 89, 76, 77, 111, 118
anastomosis, 85, 89
branches, 89
in excision of shoulder-join, 89
posterior, 85, 111, 184, 185
anastomosis, 85, 86
incision for, 40
ligation, 306
structures involved, 306
operation to expose, 484
collateral digital, 162, 140, 159, 173, 177
line, 176
common carotid, 487
line, 487
intersosseous, 147, 140, 141, 145, 203
coronary, inferior, of lip, 507, 472, 477, 504
anastomosis, 507
course, 507
superior, of lip, 507, 472, 477, 504
anastomosis, 507
deep auricular, 547, 546
temporal, anterior, 542
posterior, 547, 542, 546
INDEX.
603
Arm, osteo-fascial compartments, contents, 108
section of, transverse, 290, 291
superficial arteries, 103
fascia of front, 96
veins, 103
vasa aberrantia, 114
Arm-pit, the, 74. Vide Axilla.
Arnold's ganglion, 555
Arteria septum narium, 507
Arteria septum narium, 507
Arterial receptaculi, 583
Arterial blood in facial vein, 511
Arteries, anastomoses around scapula, 84, 385
anatomy, 298
divided in excision of breast, 58
ligation, gangrene following, 304
general considerations, 303
hemorrhage following, 304
of back, 307
of ear, 529
of face, 460, 472, 477, 504
of forearm, 145
of hand, 145, 177
lines, 35
of back, 206
of palm, 176
of scalp, 452, 469, 472, 477, 504
of septum of nose, 507, 472, 477, 504
hemorrhage from, 507
of spinal cord, 444
of upper extremity, ligation, 294
lines, 122, 300
sheath, 298
superficial, of arm, 103
Arterio-venous aneurysm, 81
Artery, acromial branch of acro-mio-thoracic, 48, 85
anastomosis, 85
acromio-thoracic, 85, 70, 71, 76
acromial branch, 48, 85
branches, 85
descending branch, 48, 85
thoracic branch, 48, 85
anastomosis, 85
alar thoracic, 85, 76
alveolar, 548, 542
anastomotica magna, 114, 110, 111, 115, 118, 128, 145
anastomosis, 114
branches, 114
angular, 502, 508, 472, 477, 504
anastomosis, 508
anterior auricular, 472, 477, 484, 504
carpal, radial, 144, 145, 135, 173, 177

Artery, dental, anterior, 546
superior, 548, 559
inferior, 547, 542, 546,
550, 559
middle superior, 559
posterior, 548, 546
descending branch of acro-
mio-thoracic, 48
palatine, 548, 546
digital, of hand, 161, 140,
141, 145, 156,
159, 173, 177
collateral, 162, 140,
159, 173, 177
line, 176
dorsal, 211
anastomosis, 211
line, 176
of bifurcation, 37
relations, 162
dorsal interosseous, 145,
177, 206
dorsalis indicis, 211, 145,
177, 200, 206
anastomosis, 211
pollicis, 211, 145, 177,
200, 206
scapula, 86, 384, 76,
77, 84, 111,
185, 343, 385
anastomosis, 86, 384,
385
external carotid, 542, 546,
550
mammary, deep, 58, 55
superficial, 58
pterygoid, 548, 546
facial, 472, 477, 484, 485,
504
anastomosis, 512
branches, 507
course, 502
line, 487
relations, 502
transverse, 472, 477,
484, 504, 542
anastomosis, 508
frontal, 470, 467, 472, 477,
494, 504
anastomosis, 470
gingival, 546, 559
humoral branch of acromio-
thoracic, 85
anastomosis, 85
incisive, 547, 546
inferior coronary, of lip, 507,
472, 477, 504
anastomosis, 507
course, 507
dental, 547, 542, 546,
550, 559
labial, 507, 472, 477,
504
anastomosis, 507
profunda, of arm, 113,
110, 111,
115, 118, 128
145
anastomosis, 114
thoracic, 85
anastomosis, 85
Artery, infra-orbital, 540, 548,
484, 542, 546, 550,
559
anastomosis, 540
intercostal, anterior, of inter-
oral mammary, 45
internal carotid, 593, 579
route, 503
mammary, 85
branches, 48
maxillary, 543, 544,
484, 485, 542,
546, 550, 559
branches, 547
divisions, 547
pterygoid, 548, 546
interosseous, anterior, 147,
140, 141, 145, 177,
203
course, 593
anastomosis, 507
branches, 502
relation, 208
anastomosis, 507
branches, 208
recurrent, 208, 211,
145, 200
second, 210
third, 210
labial, inferior, 546, 472,
477, 504, 546
anastomosis, 507
lateral nasal, 477
spinal, 444
lateralis nasi, 508
anastomosis, 508
long thoracic, 53, 58, 76
mammary, deep external,
58, 85
external, deep, 58, 85
internal, 85
masceren, 548, 485, 542,
546
mastoid, 403
maxillary, internal, 543, 544,
547, 484, 485,
542, 546, 550, 559
anastomosis, 85
median, of forearm, 148, 140
of spinal cord, 444
meningeal, anterior, 508
middle, 456, 547, 597,
546, 550, 554,
559, 573, 578,
579
branches, 597, 598
wound, 598
posterior, 598
small, 547, 599, 546,
550, 559
mental, 540, 547, 484, 546,
559
Artery, mental, anastomosis, 540
metacarpal, 211, 145, 200,
206
middle meningeal, 456, 550,
579, 546, 554,
559, 573, 578,
579
branches, 579, 598
wound, 598
superior dental, 559
temporal, 472, 504,
477, 454
mylo-hyoid, 547, 546, 550,
559
nasal, 546
lateral, 477
naso-palatine, 548
nutrient, of humerus, 114,
111
occipital, 402, 470, 406,
467, 472, 477, 504
anastomosis, 470
branches, 492
ophthalmic, 579
orbital, 472, 504, 546
palatine, descending, 548,
546
palmar interosseous, 180,
145, 177
anastomosis, 180
course, 180
palpebral, 546
perforating branches of in-
ternal mammary, 48, 49
of interosseous, 211
of hand, 180, 173, 177
anastomosis, 180
course, 180
posterior articular branch of
the superior profunda, 113
auricular, 470, 467,
472, 477, 484,
504, 542
anastomosis, 470
carpal, radial, 211, 145,
177, 200, 206
ulnar, 211, 140,
141, 177, 200,
206
circumflex, 85, 111
184, 185
anastomosis, 85, 86
incision, 40
ligation, 306
structures in-
volved, 306
operation to expose, 341
dep temporal, 547, 542,
546
dentale, 546
interosseous, 205, 140,
141, 145, 194,
200, 203
anastomosis, 205
branches, 208
relations, 208
meningeal, 599
scapular, 384, 84, 385
anastomosis, 384,
86, 385
INDEX.

Artery, posterior scapular, branches, 384
relations, 384
spinal, 444
temporal, 470, 467, 472, 477, 504
anastomosis, 470
ulnar recurrent, 147, 111, 140, 141, 200
anastomosis, 147
princeps cervicis, 402, 406
profunda cervicis, 403, 406
pterygoid, 542
radial, 143, 210, 546
pterygo-palatine, 548, 140
radialis indicis, 180, 140
recurrent, anterior ulnar, 147, 111, 140, 141, 145
radial, 144, 131, 145, 345, 347
anastomosis, 144
ulnar, anterior, 147, 111, 140, 141, 145
posterior, 147, 111, 140, 141, 200
scapular, posterior, 384, 84, 383
anastomosis, 384, 86, 385
branches, 384
relations, 384
line, 86
anastomosis, 113, 192, relations, 192
pterygoid, 542
external, 548, 546
internal, 548, 546
pterygo-palatine, 548, 546
radial, 143, 110, 111, 128, 131, 135, 140, 141, 145, 159, 173, 177, 194, 200, 206
branches, 144, 210
in anatomic snuff-box, 39
in anatomic snuff-box, 339
line of incision, 339
incision for ligating, 301
line, 301
collateral circulation after, 311
structures involved, 310
line, 143, 309, 122, 176, 300
pulsation, 31
recurrent, 144, 131, 145, 345, 347
anastomosis, 144
relations, 143, 210, 328, 331, 333
to biccapital aponen-
mosis, 119
vein courses, 128
radialis indicis, 180, 140, 141, 145, 159, 173, 177
course, 180
line, 176
recurrent, anterior ulnar, 147, 111, 140, 141, 145

Artery, recurrent, anterior ulnar, 147
carpal, 180, 145, 173, 117
anastomosis, 180
course, 180
interosseous, 208, 111, 145, 200
posterior ulnar, 147, 111, 140, 141, 200
anastomosis, 144
ulnar, anterior, 147, 111, 140, 141, 145
posterior, 147, 111, 140, 141, 200
anastomosis, 384, 86, 385
branches, 384
relations, 384
line, 301
operation to expose, 343
superficial, of arm, 103
of forearm, 129
temporal, 484, 485, 504, 542, 546, 550
superficialis volae, 32, 144, 131, 135, 145, 159, 173, 177
line, 176
superior coronary of lip, 507, 472, 477, 504
anastomosis, 507
profundus, 113, 192, 110, 141, 145, 184, 194, 200
anastomosis, 113, 192, branches, 113, 192
relations, 192
thoracic, 82, 71, 76
anastomosis, 85
supra-orbital, 469, 472, 477, 484, 504
anastomosis, 469
supra-scapular, 384, 84, 385
anastomosis, 85, 384, 385
relations, 384
temporal, 470, 485

Artery, temporal, anterior, 470, 467, 472, 477, 504
anastomosis, 470
depth, 547, 542, 546, 550
in anesthesia, 470
middle, 472, 477, 484, 504
posterior, 470, 467, 477, 504, 550
anastomosis, 470
depth, 547, 542, 546
superficial, 484, 485
504, 550
scapular, 550
thoracic branch of acromio-
thoracic, 48, 85
anastomosis, 85
inferior or long, 85
anastomosis, 85
superior, 82, 76
anastomosis, 85
transverse facial, 508, 472, 477, 484, 504
anastomosis, 508
tympanic, 547, 546, 550
ulnar, 144, 111, 131, 135, 140, 141, 145, 159, 173, 177
branches, 147
course, 31
guide for ligation, 134
incision for ligation, 301
ligation, 311
collateral circulation after, 311
structures involved, 311
line, 144, 122, 176, 300
recurrent, anterior, 147, 111, 140, 141, 145
anastomosis, 147
posterior, 147, 111, 140, 141, 200
anastomosis, 147
relations, 147, 328, 335
vertebral, 408, 406
Vidian, 548, 546
Arthritis, rheumatic, 215
tubercular, 215
Articular a., of posterior interos-
seous, 208
posterior, of superior pro-
funda, 113
branch of median n., 148
of posterior interosseous
n., 209
of ulnar n., 151
cartilage, 212
Articulation, acromio-clavicular, 218, 219. Vide Scapulo-
clavicular.
atlanto-axoid, 419
central, 419, 421
lateral, 419
ligaments, 419
movements, 420
Articulation, carpal, 238
blood supply, 242
formation, 238
ligaments, 238
movements, 242
nerve supply, 242
carpo-metacarpal, 231, 235
first set, 242
blood supply, 245
formation, 242
ligaments, 245
movements, 245
nerve supply, 242
second set, 245
blood supply, 245
formation, 245
ligaments, 245
movements, 245
nerve supply, 242
elbow, 17, 224, 225
amputation, 228
blood supply, 228
bursa, 228
excision, 228
formation, 224
ligaments, 227
movements, 228
nerve supply, 228
relations, 228
synovial membrane, 228
synovitis, 228
inferior radio-ulnar, 17, 233, 230, 231, 235
blood supply, 234
formation, 233
ligaments, 233
movements, 233
nerve supply, 234
intercarpal, 238, 231, 235
intemetacarpal, 245
blood supply, 246
formation, 246
ligaments, 245
movement, 246
nerve supply, 246
interphalangeal, 247
blood supply, 247
ligaments, 247
movements, 247
nerve supply, 247
position, 27
synovial membrane, 247
lateral atlanto-axoid, 419
medio-carpal, 241
blood supply, 242
formation, 241
ligaments, 241
movements, 242
nerve supply, 242
synovial membrane, 242
metacarpo-phalangeal, 246
blood supply, 246
formation, 246
ligaments, 246
movements, 246
nerve supply, 246
synovial membrane, 246
occipito-atlantal, 423
blood supply, 424
ligaments, 423
Articulation, occipito-atlantal, movements, 423
nerve supply, 424
occipito-axoid, ligaments, 420
radio-carpal, 234, 231, 235,
radio-ulnar, 231, 235
blood supply, 238
disarticulation, 234
dislocation, 235
excision, 235
formation, 234
ligaments, 234
movements, 238
nerve supply, 238
radio-ulnar, inferior, 233,
230, 231, 235
blood supply, 234
formation, 233
ligaments, 233
movements, 233
nerve supply, 234
superior, 17, 233
blood supply, 233
formation, 233
ligaments, 233
movements, 233
nerve supply, 233
scapulo-clavicular, 215, 218,
219
blood supply, 222
formation, 221
ligaments, 221
movements, 222
nerve supply, 222
relations, 222
synovitis, 228
scapulo-humeral, 218
shoulder, 222
access, 379
amputation, 293
blood supply, 221
bursa, 228
excision, 228
formation, 228
ligaments, 228
movements, 228
nerve supply, 228
relations, 228
synovitis, 228
scapulo-humeral, 218
Articulation, Shoulder.
shoulder, 222
access, 379
amputation, 293
blood supply, 221
bursa, 228
excision, 228
formation, 228
ligaments, 228
movements, 228
nerve supply, 228
relations, 228
synovitis, 228
sterno-clavicular, 215, 214
blood supply, 216
formation, 215
ligaments, 216
movements, 216
nerve supply, 216
superior radio-ulnar, 17, 233
blood supply, 233
formation, 233
ligaments, 233
movements, 233
nerve supply, 233
wrist.

Articulations, 212
divisions, 215
of upper extremity, 215
Auspersion of pleural sac, 351
Asterion, the, 455
Athelia, 63
Atlanto-axoid joint, 419
central, 419
INDEX.
Atlanto-axoid joint, lateral, 419
movements, 420
ligament, 415
anterior, 419, 417
capsular, 417
posterior, 419
superficial, 419
synovial membrane, 417
Atrophy of deltoid m., 27, 231, 379
Attachments of dura mater of brain, 575
of muscles of scapula, 393
Attoleans aurem n., 469, 491
action, 469
insertion, 469
nerve supply, 469
origin, 469
Attrahens aurem n., 469, 491
action, 469
insertion, 469
nerve supply, 469
origin, 469
Auditory n., 509
Auricle, the, 524, 525
landmarks, 524
Auricular a., anterior, 470, 472,
477, 484, 504
anastomosis, 470
deep, 474, 546
posterior, 470, 467,
472, 477, 484,
504, 542
anastomosis, 470
lymphatic glands, 506
relations, 479
Auriculo-temporal n., 476, 553,
542, 554, 559
Auriculo-temporal n., 476, 553,
542, 554, 559
division, 553
Auscultation of chest, 352
Axilla, the, 27, 74, 76, 77
access, 27, 79, 95
contents, 80
depth, 79
dissection, from before backward, 76
from below upward, 95, 77
folds, 27, 24
glands, 27
landmarks, 27
suspensory ligament, 68
walls, 79
Axillary a., 81, 62, 72, 76, 77,
111
branches, first portion, 82
second portion, 85
third portion, 86
course, 27, 81
digital compression, 82
divisions, 82
first portion, 82
branches, 82
dissection for ligation, 301
ligation, 82, 304
collateral circulation after, 306
Biceps m., grooves, 27
 head, accessory, 119
 long, 115, 118
 short, 119, 115, 118
 insertion, 119
 origin, 119
 relations, 119
 rupture, 130
 tendon, 110, 115, 118, 128, 131, 135, 140, 141
Bicipital aponeurosis, 119
 relation, to brachial a., 119
 branch of anterior circumflex a., 89
 nerve, 91
 fascia, 110, 115, 128, 131, 135, 140, 141
 groove, 27
 Biventer cervicis m., 402
 Blood-letting, 104
 Body of scapula, fracture, 270
 Body-pituitary, 579
 Bone, cheek, 460
 Bone, calcaneum, 449, 459
 Bones, long, anatomy, 256
 Canal, central, of spinal cord, 436
 Cancellous tissue of long bone, 259
 Cancellous tissue of maxilla, 419, 421
 Biceps m., grooves, 27
 action, 119
 blood supply, 119

INDEX.

Axillary a., line, 45
 operation to expose, 316, 317
 pressure upon, 81
 relations, 82, 89, 305, 316
 second portion, 85
 branches, 85
 third portion, 85
 branches, 86
 fascia, 68, 74, 59
 diagram, 62
 lymphatic glands, 92
 in carcinoma of breast, 92
 nerve plexus, 89, 76, 87
 branches, 90
 formation, 89
 incision to expose, 301
 motor points, 40
 pressure upon, 89
 relations, to axillary a., 89
 to subclavian a., 89
 stretching, 38, 311, 314
 structures involved, 312
 vein, 50, 62, 71, 76, 77
 pressure upon, 81
 relations, 316, 317
 wound, 57, 80
 vessels, 80
 sheath, 80
 wall, anterior, 64
 Axoid-appendicular m., 411

B.
Back, arteries, 367
 cutaneous nerves, 371, 369
 dissection, 367
 fascia, deep, 371
 landmarks, 353
 muscles, 373, 396
 deep, 397
 nerves, 307, 409
 of arm, 188
 of forearm, 195
 of neck, 351
 of shoulder, 351
 of trunk, 351
 surface markings, 353
 Ball of thumb, 32
 Base of skull, fracture, 556
 Basilic plexus, 578
 Basilic v., 104, 100, 110, 115, 118, 128
 median, 103, 100, 110, 128
 infusion into, 104
 Bell, external respiratory n., 92
 Bell's palsy, 534
 Belly, posterior, of omo-hyoid m., 375
Biceps m., 27, 114, 24, 70, 76, 77, 110, 115, 128, 194, 200
 action, 119
 blood supply, 119

Brachialis anticus m., action, 120
 blood supply, 120
 insertion, 120
 nerve supply, 120
 origin, 120
 relations, 120
Brachio-radialis m., 197
Brain, arachnoid membrane, 573
 compression, 572
 membranes, 568
 preservation, 581
 removal, 576
 vessels, 568
Brassor's method of treating aneurysms, 297, 295
Breast, the, 53, 55
 Mammary Gland.
Breathing, stertorous, 501
Brema, 452
Breast, position, 361
Buceal a., 548, 546, 559
 branch of cervico-facial n., 533
 of facial n., 473, 477, 484
 glands, 502
 lymphatic glands, 566
 nerve, 552, 542, 550, 559
 portion of Stenson's duct, 523
Buccinator m., 501, 485, 491, 542, 550
 action, 502
 insertion, 501
 nerve supply, 502
 origin, 501
 relations, 501
Bucco-pharyngeal fascia, 501
Burden, column, 444
Bursa, carpal, great, 157, 166
 abscess, 158
 of mammary gland, 54
 palmar, 157
 abscess, 158
 subacromial, inflammation, 223
 subdeltoid, 379
 abscess, 379
 inflammation, 379
Burse of elbow, 228
 of olecranon, 188
 of shoulder-joint, 223
 of upper extremity, 28

C.
Canal, central, of spinal cord, 436
 tumors within, 449
 of Hugger, 555
 osteo-fibrous, of hand, 167
 Cancellous tissue of long bone, 259
 Cancerous growth, 259
 Cancers of oris, 490
 Carotids, external, 512
 internal, 512
 Cap of shoulder, 378
 Capsular ligament of atlanto-occipital joint, 419, 417, 421
 of carpal joint, 238
INDEX.

Cutaneous branch, superficial, of musculo-spiral n., 96
nerve, external, 126
course, 32
internal, 91, 96, 124.
76, 77, 87, 97.
100, 110, 128
branches, 124, 97
course, 38
lesser internal, 103, 188.
195, 76, 77, 97, 110
nerve, anterior, 52
lateral, 52
of arm, 97
of back, 371, 369
of forearm, 97
of front of arm, 96
palmar, 152
Cyst, sub-mammary, 58

Depressor nasi m., 494
Dental a., anterior, 546
Density of temporal fascia, 482

Dental a., anterior, 546
superior, 548, 559
inferior, 547, 546, 550, 559
middle superior, 559
posterior, 548, 546
nerve, anterior superior, 561, 559
inferior, 555, 542, 550, 559
middle superior, 558, 559
posterior superior, 558, 542, 559

Depressor alae nasi m., 494
action, 494
insertion, 494
nerve supply, 494
origin, 494
anguli oris m., 500, 491
action, 500
insertion, 500
nerve supply, 500
origin, 500
relations, 500

Depressor labii inferioris m., 500, 491
action, 500
insertion, 500
nerve supply, 500
origin, 500
relations, 500

Descending branch of acromio-thoracic a., 48
palatine a., 548, 546
Development of bones of upper extremity, 266
of carpal bones, 269
of clavicle, 266
of humerus, 266
of metacarpal bones, 269
of phalanges, 269
of radius, 266
of scapula, 266
of ulna, 269

Diagnosis of lobar pneumonia, 352

Dissection of arm, back, 188

Dislocation at elbow, 252
at radio-carpal joint, 255
of biceps tendon, 27
of carpus, 255
of clavicle, 248
of humerus, 18, 248, 29, 249
subclavicular, 251
subcoracoid, 251
subglenoid, 27, 248
subspinosus, 251
of metacarpal bones, 255
of phalanges, 256
of radius, 254
and ulna, 253
of scapula, 222
of ulna, 255
of vertebral, 424
subclavicular, of humerus, 251
subcoracoid, 251
subglenoid, 27, 248
subspinosus, 251

Dislocations, general consideration, 247

Displacement in fracture, Colles', of radius, 277, 276
of carpus, 278
of clavicle, 270, 268
of condyles of humerus, 274
of coronoid process of ulna, 278
of humerous, condyles, 274
epiphyseal, 273
intercondyloid, 274
neck, anatomic, 273
surgical, 273

272
shaft, 273
supra-condyloid, 274
tuberosity, greater, 273
of metacarpal bones, 278
of neck, anatomic, of humerus, 273
surgical, of humerus, 273, 272
of olecranon process of ulna, 278
of phalanges, 279
of radius, 277, 276
and ulna, 273
of shaft of humerus, 276
of ulna, 278
supra-condyloid, of humerus, 274

Dissection of arm, back, 188
front, 96
of auricular region, 594
of axilla, from before backward, 74, 76
from below upward, 95, 76
of back, 267
incision, 365
of arm, 188
of fore arm, 195
of hand, 209
of deep infra-clavicular triangle, 73
INDEX.

Excision of humerus, head, 261

shaft, 262

structures involved, 262

of metacarpal bones, 264

structures involved, 264.

of phalanges, 265

structures involved, 265

of radio-carpal joint, 263

structures involved, 264

of radius, 263

structures involved, 263

of shoulder-joint, 89, 261

structures involved, 261

of ulna, 263

structures involved, 263

Excisions, general considerations, 236, 260

Exostosis, 260

Expression, facial, 460

Extensor brevis pollicis m., 207
carpal radialis brevis m., 195, 135, 140, 141, 184, 194

action, 198

blood supply, 198

insertion, 198

nerve supply, 198

origin, 198

relations, 198

langer m., 188, 128, 131, 135, 140, 141, 184, 194, 200

action, 198

blood supply, 198

insertion, 198

nerve supply, 198

origin, 198

relations, 198

tendon, 206

ulnaris m., 201, 194

action, 202

blood supply, 202

insertion, 201

nerve supply, 202

origin, 201

relations, 201

tendon, 200, 206

communis digiturn m., 198, 184, 194

action, 201

blood supply, 201

insertion, 201

nerve supply, 201

origin, 198

relations, 201
	enlon, 206

indicis m., 286, 200

action, 208

Dissection of dura mater, 575

of face, 489

incision, 461, 487

of forearm, back, 195

front, 125

of front of arm, 96

of hand, 125

of hand, back, 209

front, 152

of infra-clavicular triangle, deep, 73

superficial, 67

of membranes of brain, 571

of spinal cord, 428

of neck, incision, 487

of palm of hand, 152

of pectoral region, 48

of pterygo-maxillary region, 540

of scalp, 465

of spinal cord, 428

of superficial infra-clavicular triangle, 67

of temporal region, 489, 485

of upper extremity, 47

Dorsal ligament of carpal joint, 232, 241

carpo-metacarpal joint, 242

two metacarpal joints, 245

vertebrae, abscess, 236

caries, 236

Dorsalis indicis a., 211, 145, 177, 200, 206

anastomosis, 211

pollicis a., 211, 145, 177, 200, 206

scapulae a., 86, 334, 76, 77, 84, 111, 185, 343, 385

anastomosis, 86, 334, 385

Dorsal spinal veins, 425

Duct, nasal, 458

Stenson's, 522, 472, 477, 485, 491, 504

course, 522

divisions, buccal, 523

masseteric, 523

line, 487

relations, 522

Ducts, galactophorous, 54, 55

lacrimal, orifice of, 517

lactiferous, 54, 55

of Meibomian gland, 512

orifice, 517

Dunphy's contraction, 161

Dura mater, of brain, 572, 573

attachment, 575

blood supply, 590

dissection, 575

layers, 575

nerve supply, 590

processes, 581, 578

pulsations, 575

sulci, 575

sinuses, 582, 579

hemorrhage from, 585

of spinal cord, 428, 439
INDEX.

Extensor indicis m., blood supply, 208
insertion, 208
nerve supply, 208
origin, 208
relations, 208
tendon, 206
longus pollicis m., 207. Vide
Extensor Secundi Inter-
modii Pollicis Muscle.
minimi digiti m., 201, 194
action, 201
blood supply, 201
insertion, 201
nerve supply, 201
origin, 201
relations, 201
tendon, 206
ossis metacarpi pollicis m.,
207, 194.
action, 207
blood supply, 207
insertion, 207
nerve supply, 207
origin, 207
relations, 207
tendon, 131, 140, 206, 337
primi intermodii pollicis m.,
207, 194.
action, 207
blood supply, 207
insertion, 207
nerve supply, 207
origin, 207
relations, 207
tendon, 131, 206, 337
secundi intermodii pollicis m.,
207, 194.
action, 208
blood supply, 208
insertion, 208
nerve supply, 208
origin, 208
relations, 208
tendon, 206, 337
tendon, common, 169
unguis, 209
insertion, 210
Extensores of fingers and hand,
deep, 197
radial, 197
superficial, 197
Extra-dural hemorrhage, 575, 507
trephining in, 598
Extremity, upper, amputations,
279
anterior view, 40
arteries, ligation, 294
articular, 17, 215
bones of, development, 266
dissection, 47
divisions, 17
joints, 17, 215
landmarks, 17, 18
movements, 17
nerves, stretching, 311
posterior view, 41
surface markings, 17, 18
Eye, appendages, 512
landmarks, 457
Eyeball, 513
Eyebrow, 512
Eyelashes, 512, 515
Eyelids, 512, 516
areolar tissue, 516
blood supply, 519
lymphatics, 519
muscles, 494
nerve supply, 519
veins, 519
Face, abscess, 490
appearance, 496
arteries, 472, 477, 504
dissection, 489
incision, 461, 487
fascia, superficial, 490
incision for dissecting, 461, 487
landmarks, 456
lymphatics, 567
muscles, 490, 477, 491
nerves, 555, 473, 477, 484
skin, 489
surface markings, 456
vasculaity, 511
veins, 509
wounds, 511
Facial a., 502, 472, 477, 484,
485, 504
anastomosis, 512
branches, 507
course, 502
line, 487
relations, 502
transverse, 508, 472, 477, 478, 504,
542
anastomosis, 508
expression, 490
nerves, 530, 592, 484, 485
branches, 530
buccal branch, 533, 473, 477, 484
course, 530
digastic branch, 533
divisions of facial, 530
infra-cranial, 530
temporal, 530
infra-maxillary branch, 484
infra-orbital branch, 473, 477, 484
Facial nerve, malar branch, 473, 477, 484
operation to expose, 539
paralysis, 533
stylo-hyoid branch, 533
supra-maxillary branch, 534, 473, 477, 484
temporal branch, 476, 473, 477, 484
vein, 508, 477, 484, 485, 509
arterial blood in, 511
communications, 511
course, 511
deep, 551
diseases involving, 511
line, 487
relations, 511
transverse, 509
Facies Hippocratia, 457
Falk cerebelli, 581, 582, 578
crebri, 576, 581, 582, 578
Fascia, axillary, 68, 74, 59
bicapital, 119, 110, 115, 128, 131, 135, 140, 141
clavi-pectoral, 67
deep, of arm, 100
back, 189
front, 167
of back, 371
of forearm, 101
back, 196
front, 129
palmar, 158
abscess, 158
pectoral, 67
infra-spinous, 380, 383
Iumbar, 409, 396, 397
formation, 409
palmar, deep, 158, 156
abscess, 158
dividing line, 37
superficial, 153
parotid, 520
pectoral, 63, 59
superficial, of chest, 48
vessels, 48, 49
of face, 490
of forearm, front, 126
of front of arm, 96
of hand, front, 152
of pectoral region, 49
of scalp, 466, 463, 467
palmar, 153
supra-spinous, 383
temporal, 482, 484
abscess beneath, 482
density, 482
relations, 482
vertebral, 394, 373, 396
Fat embolism, 259
orbital, 496
Felon, deep, 168
superficial, 168
Fetal skeleton, skiagraph, 257
Fetus, spinal cord in, 428
Fibro-cartilage, interarticular, 221
Fibrous, 140, 206
anastomosis, 472
expression, 460
branch, 533
buccal branch, 533, 473, 477, 484
course, 530
digastic branch, 533
divisions of facial, 530
infra-cranial, 530
temporal, 530
infra-maxillary branch, 484
infra-orbital branch, 473, 477, 484
Frontal a., 502, 472, 475, 484,
485, 504
anastomosis, 512
branches, 507
course, 502
line, 487
relations, 502
transverse, 508, 472, 477, 484, 504,
542
anastomosis, 508
expression, 490
nerves, 530, 592, 484, 485
branches, 530
INDEX.

Filum terminale, 428, 432, 429, 433

Fingers, back of, lymphatics, 195
 collateral circulation, 325
 extensor m. of, deep, 197
 radial, 197
 superficial, 197
First cervical n., posterior primary division, 409
n., 591
Fissura palpebrarum, 512
Fissure of helix, 530
of Santorini, 530, 527
Fissures, cerebral, lines, 453
Fistula, salivary, 523
Flap method of amputation, 281

Flexor brevis minimi digiti m., 179, 140, 159
 action, 179
 blood supply, 179
 insertion, 179
 nerve supply, 179
 origin, 179
 relations, 179
 pollicis m., 171, 140, 159, 206
 action, 172
 blood supply, 172
 head of, deep, 171
 superficial, 171
 insertion, 171
 nerve supply, 172
 origin, 171
 relations, 172
 carpi radialis m., 133, 130, 131, 135, 173
 action, 133
 blood supply, 133
 insertion, 133
 nerve supply, 133
 origin, 133
 relations, 133
 tendon, 135
 ulnaris m., 124, 110, 118, 131, 133, 135, 173
 action, 134
 blood supply, 134
 insertion, 134
 theca, 166
 Folds of axilla, 27, 24
 Fontanel, anterior, 452
 posterior, 452
 Foramen caecum, 579
 infra-orbital, 459, 563
 magnus, superior, 582
 mental, 459
 occipital, superior, 582
 of spheno-maxillary fossa, 557
 ptetysio-palatine, 557
 rotundum, 557

Forearm, 31
 amputation, 287
 flexor carpi ulnaris m. in amputation of forearm, 287
 structures involved, 287
 arteries, 145
 back of, dissection, 195
 fascia, 196
 muscles, 194
 nerves, 195
 veins, 101
 collateral circulation, 325
 cutaneous nerves, 97
 fascia, 101
 front of, dissection, 129
 fascia, deep, 129
 superficial, 126
 veins, 100
 intermuscular septum, 129
 interosseous membrane, 234, 140, 235
 landmarks, 31
 lymphatics, 129
 muscles, 130, 131
 section of, transverse, 286
 superficial arteries, 129
 Formation of carpal joint, 238
 of carpo-metacarpal joint, first set, 242
 second set, 245
 of elbow-joint, 224
 of intermetacarpal joints, 245
 of lumbar fascia, 409
 of medio-carpal joint, 241
 of metacarpophalangeal joints, 246
 of palm arch, deep, 190
 superficial, 161
 of radio-carpal joint, 234
 of radio-ulnar joint, inferior, 237
 superior, 233
 of scapulo-clavicular joints, 221
 of shoulder-joint, 222
 of sterno-clavicular joint, 215
 of suboccipital triangle, 407
Fossa, antecubital, 38
gastric, 455
infra-clavicular, 18
of antihelix, 524, 525
of helix, 524, 525
of scapula, 383
pituitary, diaphragm, 581
scaphoid, of ear, 507
spheno-maxillary, 557
contents, 557
foramina, 557
zygomatic, 557
contents, 557

Fourth cervical n., posterior division, 410
 nerve, 592, 579
Fractures, compound, of skull, 571
 general considerations, 269
 intercondylar, of humerus, 274
 nerve injury following, 274
INDEX.

Fractures of acromion process, 18, 270
of carpus, 278
of clavicle, 269
displacement in, 270, 268
of condyles of humerus, 274
of coracoid process of scapula, 270
of coronoid process of ulna, 278
of humerus, 270
intercondyloid, 274
of anatomic neck, 273
of condyles, 274
of epiphyses, 273
of shaft, 274
displacement in, 272
of surgical neck, 273
of tuberosity, greater, 273
supra-condyloid, 274
of metacarpal bones, 278
of neck of humerus, 273
of radius, 277
of scapula, 270
of olecranon process, 278
of phalanges, 279
of radius, 277
and ulna, 278
of scapula, 270
of spine, 270
of shaft of humerus, 273
of skull, base, 556
of spinal column, 449
of ulna, 278
of vertebrae, 424, 449
supra-condyloid, of humerus, 274
Front of arm, dissection, 96
muscles, 114
of forearm, dissection, 125
fascia, 126, 129
veins, 100
Frontal a., 470, 467, 472, 477,
 484, 504
anastomosis, 470
bone, sinuses, 455
diploic v., 571, 569
eminences, 455
lymphatics, 479
sinuses, 517, 569, 573
suture, 452
vein, 509
Frontalis m., 470, 491. Vide
Occipito-frontalis Muscle.
Fronto-sphenoid diploic v., 571,
569
Furrow, nuchal, 351
of fingers, 37
of wrist, 31
palmar, 34
flexor, 37
spinal, 351
G.
Galactophorous ducts, 54, 55
Galen, vein, 578
Galvano-puncture in treatment of
aneurysm, 298
Ganglion, 197
Arnold's, 555
Gasserian, 594, 559, 579
branches, 594
to cavernous sinus, 589
removal, 595
Meckel's, 561, 550, 554
of Wrisberg, 200
totic, 555, 554
spheno-patulatine, 561
Gangrene following ligation of
arteries, 304
Gasserian ganglion, 594, 559,
579
branches, 594
relations, 594
to cavernous sinus, 589
removal of, 595
Gingival a., 546, 559
Glabella, 452, 458
Gland, epitrochlear, 104
lacrymal, 517
glabella, 452
lymphatics, auricular, posterior,
566
lobe, carotid, 520
pterygoid, 520
removal, 522
sensory nerves, 521
wounds, 522
Glands, axillary lymphatic, 92
lymphatic, auricular, postei-
or, 566
axillary, 92
buccal, 562
lacrimal, 517
parotid, 520, 472, 477, 491,
504
contents, 521
lobe, carotid, 530
glenoid, 520
pterygoid, 520
removal, 522
sensory nerves, 521
Glands, sebaceous, of nipple, 54
Gleno-humeral ligament, 223
Glenoid cavity, 219
ligament of interphalangeal
joint, 247
of metacarpophalangeal
joint, 246
of shoulder-joint, 233
lobe of parotid gland, 520
Glusso-pharyngeal n., 463
Goll, nerve column, 444
Gower's nerve tract, 443
Great palatine n., 554
Groove, bicipital, 27
cephalic, 64
for biceps muscle, 27
Growth of bone, 259
Gustatory n., 552
Gynecomastia, 63
H.
Haller, cirvulus venosus, 57
Hand, 32
abscess, 37
arteries, 145, 141
back, 209
arteries, 206
dissection, 210
superficial veins, 101
tendons, 206
wounds, 192
extensor muscles of, deep, 197
radial, 197
superficial, 197
fascia, superficial, 152
landmarks, 274
lines of arteries, 35
palm, of dissection, 152
line for arteries, 176
skin, 152
triangle, 32
Harclip, 508
operation, 508
Harelip, 508
operation, 508
hemorrhage in, 508
Head, accessory, of biceps m., 119
coronoid, of pronator radii
terens m., 140, 141
deep, of flexor brevis pollicis
m., 171
of pronator radii terens m., 130
inner, of flexor brevis polli-
cis m., 140
of triceps m., 128
long, of biceps m., 114, 115,
118
of triceps m., 191, 380,
118
lympathic glands, 566
of flexor carpi ulnaris m.,
134
sublimis digitorum m.,
humeral, 134
radial, 134,
140, 141
ulnar, 134
of humerus, 27
of median n., 123
of triceps m., 191, 380,
115, 118
INDEX.

Interosseous fibro-cartilage of carpal joint, 239
ligament of carpal joint, 241
of carpometacarpal joint, 245
of intermetacarpal joint, 246
membrane of forearm, 143, 140, 145, 203, 230
muscle, 169
dorsal, 211, 173, 206
action, 212
blood supply, 212
insertion, 211
nerve supply, 211
origin, 212
relation, 212
insertion, 169
palmar, 187, 141, 173
action, 187
blood supply, 187
insertion, 187
nerve supply, 187
origin, 187
nerve, anterior, of median, 148
posterior, 209, 135, 140, 141, 200, 203
branches, 209
relations, 209
Interpalpebral slit, 512
Interphalangeal joints, 247
blood supply, 247
ligaments, 247, 244
movements, 247
nerve supply, 247
position of, 37
synovial membrane, 247
Interspinales m., 404
action, 407
blood supply, 403
insertion, 404
nerve supply, 407
origin, 404
Interspinous ligament, 416, 413
Intersutural membrane, 481
Intertransversales m., 407
action, 407
blood supply, 403
cervical, 407
insertion, 407
lumbar, 407
nerve supply, 407
origin, 407
relations, 407
thoracale, 407
Intertransverse ligament, 416
Intervertebral discs, 412, 413, 425
Intra-cranial division of facial n., 530
nerves, 591
course, 591
neurectomy of inferior maxillary n., 594
of superior maxillary n., 594
Intra-thecal course of spinal nerves, 435
Intrinsic m. of pinna, 527
Irritation of circumflex n., 314
of median n., 314
of muscle-spiral n., 314
of ulnar n., 314
Iter chordae anterius, 555
J.
Joints, 212. Vide Articulations.
Jugular v., anterior, 509
external, 509
line, 457
internal, 509
posterior, 509
K.
Keratosis senilis, 457
Kidneys, position, 362
Knuckles, 37
Landmarks, 37
Kyphosis, 352, 358
L.
Labial a., inferior, 507, 472, 546
anastomosis, 507
branch of infra-orbital n., 539, 561, 484, 559
Lacrimal canaliculi, 512, 517
caruncle, 513
ducts, orifice of, 517
gland, 517
nerve, 539
punctum, 513
sac, 458, 517
abscess, 508
Lactiferous ducts, 54, 55
Lacunae lateralis, 583
Lacus lachrymalis, 512
Lambda, 452
Lambdoid suture, 452
Landmarks of arm, 27, 21, 24.
25
of auricle, 465
of axilla, 27
of neck, 351
of shoulder, 352
of trunk, 351
of cranium, 451, 453
of ear, 565
of eye, 467
of face, 456
of forearm, 31
of hand, 32
of knuckles, 37
of neck, 351
of back, 351
of pinna, 565
of shoulder, 352
of back, 352
of trunk, 351
of back, 351
of upper extremity, 17
Lateral atlanto-axoid joint, 419
sinus, 584, 578, 579
of neck, 351
of shoulder, 352
of back, 352
of trunk, 351
of back, 351
of upper extremity, 17
Lateralis nasi a., 508
anastomosis, 508
Latissimus dorsi m., 375, 62, 65, 70, 71, 76, 77, 343, 373
action, 376
aponeurosis, 373, 396
blood supply, 376
insertion, 375
nerve supply, 376
origin, 375
relations, 376
tendon, 185
Layers of dura mater of brain, 575
of scalp, 465
Leaching, 584
Length of arms, comparative, 18
Lesions of spinal cord, 446
Levator anguli oris m., 500, 491
action, 500
insertion, 500
nerve supply, 500
origin, 500
scapulae m., 377, 87, 373
action, 377
blood supply, 377
insertion, 377
nerve supply, 377
origin, 377
relations, 377
labii inferioris m., 500
action, 500
insertion, 500
nerve supply, 500
origin, 500
superioris alaeque nasi m., 493
action, 493
insertion, 493
nerve supply, 493
origin, 493
relations, 493
muscle, 499, 491
action, 499
insertion, 499
nerve supply, 499
origin, 499
relations, 499
menti m., 491
Fide Levator Labii Inferioris Muscle.
palpebrae superioris m., 519
insertion, 519
origin, 519
relations, 520
Levatores costarum m., 404, 397
action, 404
blood supply, 403
insertion, 404
nerve supply, 404
origin, 404
relations, 404
INDEX.

Ligation of axillary a., 82, 304
 collateral circulation, 306
 of brachial a., 307
 collateral circulation, 308, 309
 structures involved
 307
 of circumflex a., posterior, 306
 structures involved, 306
 of radial a., 310
 collateral circulation, 310
 structures involved, 310
 of ulnar a., 311
 collateral circulation, 311
 guide, 134
 structures involved, 311
 of veins, 81
 Ligatures in treatment of aneurysms, 297
 Line, Reid’s base, 453
 to expose radial a. in snuff box, 457
 Linea semilunaris, 432
 Linea splendens, 432
 Lines for arteries of hand, 35
 for superficial palmar arch, 122, 176, 200
 for superficialis volæ a., 176
 for ulnar a., 144, 122, 176, 300
 nerve, 312, 122, 300
 of cerebral fissures, 453
 Lingual lymphatic glands, 567
 nerve, 552, 542, 550, 559
 branches, 552
 vein, 509
 Lister’s method of amputation, 282
 Lobes of mammary gland, 54
 of parotid gland, 520
 Lobule of ear, 524, 525
 Lobules of mammary gland, 54
 Long buccal n., 552
 Longissimus dorsi m., 53, 76
 Longissimus dorsi m., 400, 396, 397
 action, 400
 blood supply, 400
 insertion, 400
 nerve supply, 400
 origin, 400
 relations, 400
 Longitudinal sinus, inferior, 588, 578
 superior, 583, 573, 578, 579
 course, 456
 line, 583
 wounds, 583
 Longus colli m., nerve to, 87
 Lordosis, 352, 358
 Lamina cribrosa, 57
 blood supply, 57
 course of metastasis, 57
 epithelioma, 57
 excision, 58
 in infants, 63
 in males, 53
 lobes, 54
 lymphatics, 57
 anastomosis, 57
 nerve supply, 57
 structure, 54
 supernumerary, 53, 63
 suspensory ligament, 54
 tumors, 58
 Spence’s test, 58
 veins, 57
 Mammilla, 54. Vide Nipple.
 Marrow of bone, 259
 Masseter m., 523, 485, 491
 action, 524
 blood supply, 524
 insertion, 523
 nerve supply, 524
 origin, 523
 relations, 523

M.
 Main en griffe, 277
 Malar branch of facial n., 473, 477, 484
 of orbital n., 558
 of temporo-facial n., 533
 of temporo-malar n., 540
 Mammary abscess, 58
 artery, deep external, 58
 internal, anastomosis, 85
 branches, 48
 perforating branch, 49
 gland, 53, 55
 abscess, 58
 absence, 63
 acine, 55
 adhesions, 58
 ampullae, 54, 55
 anomalies, 63
 blood supply, 57
 capsule, 54
 carcinoma, 53, 57
 course of metastasis, 57
 lobes, 54
 lymphatics, 57
 anastomosis, 57
 nerve supply, 57
 structure, 54
 supernumerary, 53, 63
 suspensory ligament, 54
 tumors, 58
 Spence’s test, 58
 veins, 57
 Mammilla, 54. Vide Nipple.
 Marrow of bone, 259
 Masseter m., 523, 485, 491
 action, 524
 blood supply, 524
 insertion, 523
 nerve supply, 524
 origin, 523
 relations, 523
INDEX.

Masseteric a., 548, 484, 542, 546
nerve, 551, 485, 542
portion of Stenson's duct, 523
Mastoid branch of princeps cervicis a., 403
lymphatic glands, 566
process, 455
operations, 587
Maxillary a., internal, 543, 544, 484, 485, 542, 546, 550, 559
branches, 547, 546
divisions, 547
division of internal maxillary a., 547
lymphatic glands, internal, 567
nerve, inferior, 551, 594, 550, 559, 559, 579
branches, 551
neurectomy of, intracranial, 594
structures involved, 594
superior, 557, 562, 594, 542, 550, 579
branches, 558
course, 557
infra- orbital branch, 473
neurectomy of, intracranial, 594
structures involved, 563
vein, anterior, 551, 509
internal, 551, 509
Measurements of arm, 47
Meckel's ganglion, 561, 550, 554
Median a., 148, 140
nerve, 551, 100, 110, 128
cephalic v., 103, 100, 110, 128
of spinal cord, 444
basilic v., 103, 110, 113
infusion into, 104
nerve, 91, 123, 148, 162, 76, 77, 87, 110, 113, 118, 128, 131, 135, 159
branches, 123, 148, 163
course, 38
cutaneous branch, 129
palmar, 97
divisions, 162
heads, 123
incision for stretching, 301
irritation, 314
line, 122, 300
motor points, 40
operation to expose, 316, 317, 319
above wrist, 349
relations, 123, 148, 316, 317
Median nerve, relations, at elbow, 328, 329
stretching, 312, 313
structures involved, 312, 313
vein, 126, 100, 128
deep, 100, 128
Medial-carpal joint, 241
ligament, anterior, 241
posterior, 241
Medulla spinalis, 428
Medullary-spinal v., 427
Medullary, 579
Medullary, 594
Medullary, 594
Medullary, 481
Medullary spinalis, 428
Medullary, 427
Membrana nictitans, rudimentary, 515
Membrane, costo-coracoid, 68, 62, 70
interosseous, 143, 234, 141, 145, 203, 230, 235
interruption, 451
of brain, 568
of spinal cord, 428, 429
sympathetic, 215
of atlanto-axial joint, 419, 417
of carpal joint, 241
carpo-metacarpal joint, 245
carpus, 228
carpo-metacarpal joint, 246
of interphalangeal joint, 247
of metacarpophalangeal joint, 246
of radio-ulnar joints, 237
inferior, 234
superior, 233
of shoulder-joint, 223
Meningeal a., anterior, 598
middle, 456, 547, 577, 546, 550, 554, 559, 573, 578, 579
branches, 597, 598
wounds, 598
posterior, 599
small, 547, 599, 546, 550, 559
vein, 599
Meningitis, spinal, 568
Meningocele, 455
Meningocele, 455
Micromazia, 63
Mixer's elbow, 188
Mobility of scalp, 480
Motor areas of spinal cord, 268
Motor areas of spinal cord, 445
impulse, voluntary, 450
oculi a., 579
points, 47
of brachial nerve plexus, 40
of circumflex a., 41
of median a., 40
of musculo-spiral a., 40
of posterior intersosseous, 41
of subscapular a., 40
of ulnar a., 40
Motor areas of spinal cord, degeneration in, 301
Motor, 458
muscles, 498
Multifidus spine m., 404, 397, 406
blood supply, 403
insertion, 404
department, 404
origin, 404
Muscle, abductor indicis, 211, 159, 173, 206
Metacarpal bones, excision, 264
structures involved, 264
fracture, 278
displacement, 278
structures involved, 278
position of heads, 37
ligaments, transverse, 166
Metacarpophalangeal joint, 17, 246
blood supply, 246
formation, 246
ligaments, 246, 244
movements, 17, 246
nerve supply, 246
Synovial membrane, 246
Metacarpus, centers of ossification, 268
Metastasis, course of, in carcinoma of breast, 57
Method of amputation, circular, 280
modified, 280
flap, 281
Lister's, 282
ovale, 283
Spence's, 282
Tente's, 281
of treating aneurysms, 281
Attell's, 297
Antyllus', 297, 295
Brasder's, 297, 295
cocagulating material, 298
foreign body, 298
gall-vano-puncture, 298
Hunter's, 297, 295
manipulation, 298
pressure, 297
Wardrop's, 297, 295
Micronazia, 63
Miner's elbow, 188
Mobility of scalp, 480
Montgomery, tubercle, 54, 55
Motor areas of spinal cord, 445
impulse, voluntary, 450
oculi a., 579
points, 47
of brachial nerve plexus, 40
of circumflex a., 41
of median a., 40
of musculo-spiral a., 40
of posterior intersosseous, 41
of subscapular a., 40
of ulnar a., 40
Motor areas of spinal cord, degeneration in, 301
Motor, 458
muscles, 498
Multifidus spinae m., 404, 397, 406
blood supply, 403
insertion, 404
department, 404
origin, 404
Muscle, abductor indicis, 211, 159, 173, 206

Metacarpal bones, excision, 264
structures involved, 264
fracture, 278
displacement, 278
structures involved, 278
position of heads, 37
ligaments, transverse, 166
Metacarpophalangeal joint, 17, 246
blood supply, 246
formation, 246
ligaments, 246, 244
movements, 17, 246
nerve supply, 246
Synovial membrane, 246
Metacarpus, centers of ossification, 268
Metastasis, course of, in carcinoma of breast, 57
Method of amputation, circular, 280
modified, 280
flap, 281
Lister's, 282
ovale, 283
Spence's, 282
Tente's, 281
of treating aneurysms, 281
Attell's, 297
Antyllus', 297, 295
Brasder's, 297, 295
cocagulating material, 298
foreign body, 298
gall-vano-puncture, 298
Hunter's, 297, 295
manipulation, 298
pressure, 297
Wardrop's, 297, 295
Micronazia, 63
Miner's elbow, 188
Mobility of scalp, 480
Montgomery, tubercle, 54, 55
Motor areas of spinal cord, 445
impulse, voluntary, 450
oculi a., 579
points, 47
of brachial nerve plexus, 40
of circumflex a., 41
of median a., 40
of musculo-spiral a., 40
of posterior intersosseous, 41
of subscapular a., 40
of ulnar a., 40
Motor areas of spinal cord, degeneration in, 301
Motor, 458
muscles, 498
Multifidus spinae m., 404, 397, 406
blood supply, 403
insertion, 404
department, 404
origin, 404
Muscle, abductor indicis, 211, 159, 173, 206
INDEX.

Muscle, abductor minimi digiti, 172, 140, 141, 159, 194.

pollicis, 17, 140, 141, 159.

accessorius, 399, 396, 397

ad ilio-costalem. Vide Accessorius Muscle.

brachialis anticus, 120, 194, 200, 337

secundi internodii pollicis Muscles.

miniimi digiti, 201, 194

ossis metacarpi pollicis, 207, 194, 200

primi internodii pollicis, 207, 194, 200

secundi internodii pollicis, 207, 194, 200

external oblique, 52, 65, 373, 396

pterygoid, 543, 542

flexor brevis minimi digiti, 179, 140, 141, 159

pollicis, 171, 159, 206

anterior dilator narium, 491

antitragicus, 529, 491

anconeus, 202, 184, 194

accessorius, 399, 491

coraco-brachialis, 120, 65, 70

compressor nari, 491

corrugator supercilii, 498, 491

depressor alae nasi, 494

eductor brevis pollicis, 207.

Extensor brevis pollicis, 207.

Vide Extensor Secundi Internodii Pollicis Muscle.

carpi radialis brevis, 198, 135, 140, 141, 194

longior, 198, 135, 140, 184, 194, 200

ulnaris, 201, 194

communis, digitorum, 198, 184, 194

indicis, 206, 200

miniimi digiti, 201, 194

ossis metacarpi pollicis, 207, 194, 200

posterior dilator narium, 491

pterygoid, 543, 542

flexor brevis minimi digiti, 179, 140, 141, 159

pollicis, 171, 159, 206

anterior dilator narium, 491

antitragicus, 529, 491

anconeus, 202, 184, 194

accessorius, 399, 491

coraco-brachialis, 120, 65, 70

compressor nari, 491

corrugator supercilii, 498, 491

depressor alae nasi, 494

eductor brevis pollicis, 207.

Extensor brevis pollicis, 207.

Vide Extensor Secundi Internodii Pollicis Muscle.

miniimi digiti, 201, 194

ossis metacarpi pollicis, 207, 194, 200

primi internodii pollicis, 207, 194, 200

secundi internodii pollicis, 207, 194, 200

external oblique, 52, 65, 373, 396

pterygoid, 543, 542

flexor brevis minimi digiti, 179, 140, 141, 159

pollicis, 171, 159, 206

anterior dilator narium, 491

antitragicus, 529, 491

anconeus, 202, 184, 194

accessorius, 399, 491

coraco-brachialis, 120, 65, 70

compressor nari, 491

corrugator supercilii, 498, 491

depressor alae nasi, 494

eductor brevis pollicis, 207.
INDEX.

Muscle of oris. Vide Orbicularis Oris Muscle.
splenius, 394
capitis, 373, 396
et coli. Vide Splenius Muscle.
collis, 373, 396
sterno-hyoid, 65
sterno-mastoid, 65, 373
sterno-thyroid, 135
supinator brevis, 202, 496
subclavius, 68, 65
supra-spinatus, 383, 65
teres major, 380, 65
trapezius, 372, 65
zygomaticus major, 500, 491
tripartite, 388
interossei, dorsal, 211, 491
intertransversales, 407
interspinales, 404
intrinsic, of pinna, 397
of eyelids, 494
of forearm, 130, 131, 194

Muscles of mouth, 498
of nose, 490
of scalp, 477, 491
of scapula, back, 185, 393
rotatores spine, 404
Muscular branch of brachial a., 111
of facial a., 507
of interosseous a., 206, 209
of median n., 148
of princeps cervicis a., 403
Muscle-cutaneous n., 91, 123, 126, 76, 87, 100, 115, 118, 128, 131
branches, 123
course, 38
motor point, 40
posterior branch, 195
relation, 123
Musculo-splendens, n., 91, 124, 192, 76, 135
Musculo-cutaneous n., 91, 123, 126, 76, 87, 100, 115, 118, 128, 131
branches, 123
course, 38
cutaneous branch, external, 100
inferior, 96
superior, 96
internal, 103
incision to expose, 41, 94
irritation, 314
motor points, 40
operation to expose, above elbow, 345, 347
paralysis, 125
relations, 135, 316, 317
stretching, 313
structures involved, 410
Mylo-hyoid a., 547, 542, 546, 550, 559
nerve, 555, 542, 550, 559
branches, 559
inclusive branch, 555
mental branch, 555

N.

Nares, anterior, 458
Nasal a., lateral, 477, 546, 559
branch of infra-orbital a., 539, 561, 484
of Meckel's ganglion, 562
columna, 458
duct, 458
nerve, 539, 561, 473, 484, 554, 559
external branch, 540
nasal-labial branch, 493
of Meckel's ganglion, 562
superior, 562, 554
nerves, inferior, 554
septum, 578
Naso-labial branch of nasal n., 493
Naso-palatine a., 548, 554
Naso-palatine branch of Meckel's ganglion, 562
Neck, anatomic, of humerus, 273
fracture, 273
displacement, 273
structures involved, 273
of scapula, fracture, 270
structures involved, 270
back, 351
landmarks, 351
incision for dissection, 487
landmarks, 351
of radius, fracture, 277
surgical, of humerus, fracture, 273
displacement, 273, 272
structures involved, 273
of scapula, fracture, 270
veins, 509
Nerve, abducent, 592
anterior auricular, 552
cutaneous, 52
superior dental, 561, 559
auditory, 593
auricular, anterior, 552
great, 473
posterior, 476, 530
auriculo-temporal, 476, 559, 473, 477, 484, 542, 550, 554, 559
divisions, 552
buccal, 533, 473, 477, 484, 542, 559
long, 552, 550
cervical, eighth, 87
posterior division, 313
fifth, 87
posterior division, 410
first, posterior primary division, 409
fourth, 87
posterior division, 410
second, posterior primary division, 409
seventh, 87
posterior division, 410
sixth, 87
posterior division, 410
third, posterior division, 410
cervico-facial, 533
branches, 533
chorda tympani, 555, 542, 550, 559
circumflex, 124, 380, 76, 77, 87, 184, 185, 381
branches, 90, 124
cutaneous branch, 97
irritation, 314
motor point, 41
operation to expose, 341
INDEX.

Nerve, circunflex, stretching, 306
structures involved, 306

trauma, 124
collateral digital, 156
cranial, 579

cutaneous, anterior, 52
branch, dorsal, of ulnar, 151, 196, 97, 140, 141
eventual, of musculo-spiral, 97, 100
inferior external, of musculo-spiral, 185
of musculo-spiral, 96
internal, of musculo-spiral, 103, 185
of circumflex, 97
of median, 129
of ulnar, 126, 151
palmar, of median, 148, 97
of radial, 186, 97
of ulnar, 151, 97
superficial, of musculo-spiral, 96

external, 126

course, 38

internal, 91, 96, 124, 76, 77, 87, 97, 100, 110, 128
branches, 124, 97
course, 38
lateral, 52
lesser internal, 103, 188, 195, 76, 77, 97, 110
of arm, 97
of back, 371, 369
of forearm, 97
of front of arm, 96
palmar, 152
deep temporal, 551
dental, anterior superior, 561, 559
inferior, 555, 542, 550, 559
middle superior, 558, 542, 550, 559
posterior superior, 558, 542, 550, 559
digastic, 533
digital, 167, 97, 159
collateral, 156, 159
Pacinian bodies on, 167
relations, 167
eighth cranial, 593, 579
eleventh cranial, 593, 579
external anterior thoracic, 70, 71
cutaneous, 38
palatine, 554
respiratory, of Bell, 79, 92
superficial petrosal, 597
facial, 530, 592, 484, 485
branches, 530
buccal branch, 533, 473, 477, 484

Nerve, facial, course, 530
digastic branch, 533
division of, facial, 530
intra-cranial, 530
temporal, 530
infra-maxillary branch, 534, 484
infra-orbital branch, 533, 473, 477, 484
malar branch, 533, 473, 477, 484
operation to expose, 539
paralysis, 534
stylo-hyoid branch, 533
supra-maxillary branch, 534, 473, 477, 484
temporal branch, 476, 473, 477, 484
fifth cranial, 539, 592, 559, 579
branches, 539
first cranial, 591
fourth cranial, 592, 579
glossopharyngeal, 593
gustatory, 552
hypoglossal, 593
incisive branch of mylo-hyoid, 555, 559
inferior dental, 555, 542, 550, 559
maxillary, 551, 594, 550, 559, 579
branches, 551
divisions, 551
neurectomy, intra-cranial, 594
nasal, 554
infra-maxillary branch of cervico-facial, 504, 484
infra-orbital, 533, 559
branch of superior maxillary, 539, 561, 473, 484, 559
branches, 539, 561, 473, 484, 559
labial, 539, 484
nasal, 539, 484
palpebral, 539, 484
operation to expose, 563
structures involved, 563
infra-trochlear, 473, 477, 484
intercostal, first, 87
intercosto-humeral, 91, 188, 59, 76, 77, 97
internal cutaneous, 91, 96, 124, 76, 77, 87, 97, 100, 110, 128
branches, 124, 97
course, 38
intersosseous, anterior, 148
posterior, 209, 135, 140, 141, 200, 203
branches, 209
relations, 209
infra-cranial, 591
course, 591
labial, 539, 561, 484, 559
lacrimal, 539
lateral cutaneous, 52

Nerve, lesser internal cutaneous, 103, 188, 195, 76, 77, 97, 110
lingual, 552, 542, 550, 559
branches, 552
long buccal, 552
lower subcapular, motor point, 40
humar, origin, 361
posterior division, 410
malar branch of facial, 553
540, 473, 477, 484
of orbital, 558
masseteric, 551, 465, 542
maxillary, inferior, 551, 594, 550, 559, 579
branches, 551
neurectomy, intra-cranial, 594
structures involved, 594
median, 91, 123, 148, 162, 76, 77, 110, 115, 118, 128, 131, 135, 159
branches, 123, 148, 162
course, 38
cutaneous branch, 129
palmar, 97
divisions, 162
heads, 123
incision for stretching, 301
irritation, 314
line, 122, 300
motor points, 40
operation to expose, 316, 317, 319
above wrist, 349

relations, 123, 148, 316, 317
at elbow, 328, 329
stretching, 312, 313
structures involved, 312, 313
mental, 540, 473, 484, 550
middle superior dental, 558, 559
motor celi, 579
musculo-cutaneous, 91, 193, 126, 76, 77, 87, 100, 115, 118, 128, 131
branches, 123
course, 38
motor points, 40
posterior branch, 195
relations, 123
musculo-spiral, 91, 124, 192, 76, 77, 87, 110, 135, 140, 141, 184, 200
branches, 125
INDEX.

Nerve, musculo-spiral, course, 38
cutaneous branch, 100
external, 100
inferior external, 96, 188, 195
internal, 103, 188, 97
superior, 96
incision to expose, 41
irritation, 317
motor points, 40
operation to expose, 345, 347
paralysis, 125
relations, 125, 316, 317
stretching, 313
structures involved, 313
mylo-hyoid, 555, 542, 550
nasal, 539, 555, 559
nasal-labial branch of nasal, 579
ninth cranial, 593
occipitalis major, 476
optic, 579
olfactory, 591, 559
occipital, 554
petrosal, superficial external, 597
oral, 555, 559
ninth cranial, 593
oculo-motor, 477, 539
nasal, 539, 555
naso-labial branch of nasal, 493
nasal-labial branch, 562
of Meckel's ganglion, 562
superior, 563, 554
nasal-labial branch of nasal, 493
nasal-palatine, 563, 554
ninth cranial, 593, 579
occipital, 551
optic, 551
oral, 555, 542
orbital, 555, 542, 550, 559
of Meckel's ganglion, 561
temporal branch, 476
palatine, anterior, 561
external, 563, 554
great, 554
posterior, 562, 554
palpebral, 539, 561, 504, 559
pathetic, 592
petrosal, superficial external, 597
large, 596
small, 596
pharyngeal, 562, 554
phrenic, 87
pneumogastric, 593
posterior auricular, 476, 530
interosseous, motor point, 41
superior dental, 558
542, 550, 559
Nerve, posterior temporal, 542
pterygo-palatine, 562
radial, 151, 196, 97, 131, 135, 140, 141
branches, 151, 100
course, 38
cutaneous branch, 196, 97
incision for stretching, 301
relations, 151, 328, 331
stretching, 313
structures involved, 313
ramus subcutaneous male
538
rhomboid, 87
sacral, origin, 361
posterior division, 411
second cranial, 591
sensory, of parotid gland, 532
septal, of Meckel's ganglion, 562
supra-maxillary branch of facial, 534, 484
supra-orbital, 475, 473, 477
neurectomy, 475
supra-scapular, 381, 76, 87
supra-sphenoidal, 53
supra-trochlear, 475, 473, 477
neurectomy, 475
temporal, anterior, 476
branches, 533
frontal, 476
533, 473, 477
484
of orbital, 476, 558,
473, 477
posterior, 476, 542
superficial, 552
temporo-facial, 533
branches, 533
tempo-malar, 538
tenth, 593, 579
thoracic, external anterior, 90, 76, 87
internal anterior, 90, 76, 87
posterior or long, 92, 76,
77, 87
to subclavius m., 87
to subclavius m., 87
tract, cerebellar, 443
Gowers', 443
of spinal cord, 443, 441
posterior, 444
pyramidal, 443
anterior, 443
lateral, 443
trifacial, 539, 592
branches, 539
twelfth, 593, 579
ulnar, 91, 123, 151, 162, 76,
77, 87, 110, 115,
118, 128, 131, 136,
140, 141, 159, 173,
185, 194, 200, 301
branches, 151, 162
course, 38
cutaneous branch, 126
Nerve, ulnar, cutaneous branch,
dorsal, 196, 97, 140, 141
palmar, 97
incision for stretching,
301
irritation, 314
line, 312, 122, 300
motor point, 40
operation to expose, 316, 317
relations, 123, 151, 162, 316, 317, 321, 328, 335
stretching, 312, 313
structures involved, 312, 313
tramna, 123
vagus, 593
Vidian, 562, 554, 559
Nerves at elbow, 128
cervical, origin, 361
dep deep temporal, 551
injury following fracture, 254
of arm, 120
course, 27
of back, 367, 409
of face, 530, 473, 477, 484
of forearm, 195
of pectoral region, 53
of pterygo-maxillary region, 551
of scalp, 475, 473, 477
of upper extremity, stretching, 311
of Wrisberg, 91, 103, 124
origins of spinal, 351
plexus of, axillary, 89, 76, 87
branches, 90
formation, 89
incision for stretching, 301
motor points, 40
pressure upon, 89
relations, 361
to subclavian artery, 89
stretching, 38, 311, 314
structures involved, 312
basilar, 579
brachial. Vide Axillary Nerve.
cervical, posterior, of Cruveilhier, 409
infra-orbital, 533, 539
section, 38
stretching, 38
thoracic, posterior primary division, 410
to levator anguli scapuli m., 87
to longus colli m., 87
to scaleni m., 86
Nervi molles, 508
Neuralgia, trifacial, 562, 564
Neurectomy, intra-cranial, of inferior maxillary n., 594
of superior maxillary n., 594
INDEX.

Neurectomy of supra-orbital n., 475
of supra-trochlear n., 475
Ninth n., 593, 579
Nipple, 54, 55
areola, 54, 55
eezema, 57
retraction, 58
structure, 54
supernumerary, 63
Nose, 458
Nose-bleed, 507
Nourishment of long bones, 259
Nuchal furrow, 351
Nutrient a. of humerus, 114, 111

O.

Oblique ligament of foræarm, 143, 373, 396
muscle, external, 373, 396
inferior, 496
internal, 373, 396
superior, pulley for, 496
occipito-atlantal ligament, 417

Obliquus auris m., 529, 527
capitis inferioris m., 406, 397, 406
action, 409
blood supply, 403
insertion, 408
nerve supply, 499
origin, 408
relations, 408
superioris m., 408, 396, 397, 406
action, 408
blood supply, 403
insertion, 408
nerve supply, 408
origin, 408
relations, 408

Occipital a., 406, 470, 406, 467, 472, 477, 504
anastomosis, 470
branches, 402
diploic v., 571, 569
foramen, superior, 582
lymphatic glands, 566
lymphatics, 476
nerve, great, 360, 409, 476, 373, 406, 473, 477
small, 476, 473, 477
smallest, 410, 406
third, 385
proteruberance, external, 455
sinus, 588, 579
vein, 509

Occipitalis major n., 476
minor a., 476
muscle, 475
Vide Occipito-frontalis Muscles.

Occipito-atlantal joint, 423
blood supply, 424
ligaments, 415, 423, 417
movements, 423
nerve supply, 424

Occipito-atlantal ligaments, 415
anterior, 423, 417
capsular, 417
lateral, 423, 417
posterior, 423, 406, 417

Occipito-axoid joint, ligaments, 420
ligaments, 420

Occipito-cervical ligament, 420
Occipito-frontalis aponeurosis, 491
muscle, 479
action, 479
aponeurosis, 479, 463, 491
blood supply, 479
insertion, 479
nerve supply, 479
origin, 479
relations, 479

Occipito-odontoid ligament, 420, 421
lateral, 423, 421
Oculo-motor n., 591
Odontoid ligament, 420
Ocleoron process, 28
bursa, 188
fracture, 278
displacement, 278
structures involved, 278

Olfactory n., 591, 554
tract, 554
Olivary body, 439
Omo-hyoid m., 375, 65
Operation for harelip, 508
hemorrhage in, 508
for removal of Gasserian ganglion, 565
structures involved, 595
of parotid gland, 522
for trifacial neuralgia, 563
on mastoid process, 587
to expose axillary a., 316, 317
brachial a., 316, 317, 319
circumflex a., 341
nerve, 341
facial n., 539
infra-ocular n., 563
median n., 316, 317, 319
above wrist, 349
mucoso-spiral n., 345, 347
posterior circumflex a., 341
radial a., in snuff-box, 339
subscapular a., 343
nerve, 343
ulnar n., 316, 317

Ophthalmic n., 597
nerve, 559, 579
Opponens minimi digit m., 179, 141, 173
action, 179
blood supply, 179
insertion, 179

Opponens minimi digit m., nerve
supply, 179
origin, 179
relations, 179

Palmaris longus m., 171, 140, 141, 159
action, 171
blood supply, 171
insertion, 171
nerve supply, 171
origin, 171
relations, 171

Optic n., 591, 579
Orbicular ligament, 233, 225
Orbicularis oculi m. Vide Orbicularis Oculi.
Palpebrarum Muscle.
orbis m., 488, 491
action, 499
nerve supply, 499
relations, 499
palpebrarum m., 494, 491
action, 497
insertion, 497
nerve supply, 497
origin, 494
relations, 494

Orbital a., 472, 477, 504, 546
branch of Meeke’s ganglion, 561
do of superior maxillary n., 558
fat, 496
nerve, 542, 550, 559
temporal branch, 476, 473, 477, 484
vein, 509

Orbito-tarsal ligament, 516
Orifice of duct of Meibomian gland, 517
Orifice of lacrimal duct, 517

Ossification centers of carpus, 269
of clavicle, 266
of humerus, 266
of metacarpus, 269
of phalanges, 269
of radius, 266
of scapula, 266
of ulna, 269

Osteoblasts, 259
Osteo-fascial compartments of arm, 108
contents, 108
Osteo-fibrous canal of hand, 167
Osteo-genetic layer of periosteum, 259
Othomatomata, 594
Otic ganglion, 555, 554

Oval method of amputation, 283

P.

Paechonian bodies, 572, 573
Pacinian bodies of digital n., 167
Paget’s disease, 57
Palatine a., 548, 546
nerve, anterior, 561, 562
external, 554
great, 554
posterior, 562, 554

Palmar aponeurosis, 479
dissection, 152
lines for arteries, 176
INDEX.

Process, acromion, fracture, 18, 270
coracoid, 18, 43, 115
fracture, 270
corapophyseal, of ulna, fracture, 278
placement, 278
structures involved, 278
mastoid, 455
operations upon, 587
olecranon, 28
fracture, 278
placement, 278
structures involved, 278
styloid, of radius, 31
supra-condylar, 28

Processes of dura mater of brain, 581, 578
Procesus caudatus, 527
Fractio, 43, 115, 110, 111, 115, 118, 128, 145
anastomosis, 114
superior, 113, 192, 110, 111, 145, 104, 194, 200
anastomosis, 113, 192
branches, 113, 192
relations, 192
cervicalis a., 403, 406
anastomosis, 403
Pronator quadratus m., 138, 135, 140, 141
action, 143
blood supply, 138
insertion, 138
nerve supply, 138
origin, 138
relations, 138
radii teres m., 130, 118, 128, 131, 135, 140, 141
action, 133
blood supply, 133
head, coracoidal, 140, 141
deep, 130
superficial, 130
insertion, 130
nerve supply, 133
origin, 130
relations, 130
Protection to spinal cord, 449
Protuberance, external occipital, 55
Psos abscess, 356
Pterion, 452
Pterygoid a., 547, 542
external, 548, 546
internal, 548, 546
lobe of parotid gland, 520
muscle, external 543, 542
action, 544
blood supply, 544
insertion, 543
nerve supply, 544
Pterygoid muscle, external, origin, 543
relations, 544
internal, 544, 542, 550
action, 544
blood supply, 544
insertion, 544
nerve supply, 544
origin, 544
relations, 544
plexus of veins, 551
Pterygo-maxillary ligament, 501
region, 540, 542
abscess, 556
contents, 543
dissection, 540
hemorrhage into, 556
lymphatics, 551
nerves, 551
veins, 551
Pterygo-palatine a., 548, 546
formen, 557
nerve, 562
Pulley for superior oblique m., 496
Pulsations of dura mater of brain, 575
of radial a., 32
Pulse, 32
absence, 81
double, 32, 144
Pulsus duplex, 32
Puncta lacrymalia, 458, 512, 496, 513
Pyramid, anterior, 439
Pyramidal nerve tract, anterior, 443
lateral, 443
Pyramidalis nasi m., 490, 491
action, 493
insertion, 490
nerve supply, 493
origin, 490
relations, 490
Q.
Quadratus menti m., 500. Vide Depressor Labii Inferiors Muscle.
R.
Radial a., 143, 210, 110, 111, 128, 131, 135, 140, 141, 145, 159, 173, 177, 194, 200, 206
branches, 144, 210
course, 31
incision for ligating, 301
in snuff-box, 339
line of incision, 337
ligation, 310
collateral circulation, 311
structures involved, 310
line, 143, 309, 122, 176, 300
pulsation, 32
Radial a., recurrent, 144, 145
anastomosis, 144
relations, 143, 310, 328, 331, 333
to bicipital aponeurosis, 119
eve comes, 128
head of flexor sublimis digitorum m., 134
nerve, 151, 196, 97, 131, 135, 140, 141
branches, 151, 100
course, 38
cutaneous branch, 196, 97
incision for stretching, 301
relations, 151, 328, 331
stretching, 313
structures involved, 313
pulse, 32
absence, 81
double, 32, 144
recurrent a., 144, 131, 135, 140, 141, 345
anastomosis, 144
vein, 126, 195, 100, 101, 128, 339
Radialis indicis a., 180, 140, 141, 145, 159, 173, 177
course, 180
line, 176
Radio-carpal joint, 17, 234, 231, 235, 239
blood supply, 238
dissartilication, 284
structures involved, 287
dislocation, 255
structures involved, 255
excision, 263
structures involved, 264
formation, 234
ligaments, 234
movements, 17, 238
nerve supply, 238
ligaments, anterior, 237, 230, 235
external, 237
posterior, 237, 231
Radio-ulnar joint, inferior, 17, 233, 230
blood supply, 234
formation, 233
ligaments, 233
movements, 233
nerve supply, 234
superior, 17, 233
blood supply, 233
formation, 233
ligaments, 233
movements, 233
nerve supply, 233
synovitis, 237
ligaments, anterior, 233, 230, 235
posterior, 233, 231
Radius, 31, 200
INDEX.

Radius and ulna, fracture, 278
structures involved, 278
centers of ossification, 266
development, 266
dislocation, 252, 254
structures involved, 253, 254
excision, 263
structures involved, 263
fracture, 277
displacement, 277, 276
structures involved, 277
position of head, 28, 25
tuberosity, 28
Ramus subcutaneus male n., 558
Rectus capitis posticus major m., 145
Rete, acromial, 85
Retrahens aurem m., action, 469
insertion, 469
nerve supply, 469
origin, 469
Retro-pharyngeal abscess, 356
Rhomboid ligament, 216, 214
relations, 216
nerve, 87
Rhomboides major m., 377, 373
action, 378
blood supply, 378
insertion, 377
nerve supply, 377
origin, 377
relations, 377
minor m., 377, 373
action, 377
blood supply, 377
insertion, 377
nerve supply, 377
origin, 377
relations, 377
Ridges, superciliary, 455
posterior, 456
Risorius muscle, 498
action, 498
insertion, 498
nerve supply, 498
origin, 498
Risus sardonicus, 498
Rights sardonicus, 498
Sacro-lumbalis m., 399
Santorini, fissure, 530
Sagittal suture, 452
Scalenus posticus m., 396
Scapula, dissection, 465
Scapula, innominate joint. Vide
Scapula, scapula.
S. scapula, 465
Scapula, scapula.
Scapula, scapula.
Sclerotic portion of conjunctiva, 515
Scleral portion of conjunctiva, 515
 Reflex action, 445
areas of spinal cord, 445
Reid’s base line, 453
Removal of brain, 576
of Gasserian ganglion, 595
structures involved, 595
Respiratory n., external, of Bell, 92
Rete, acromial, 85
Retrahens aurem m., 469, 491
Retrahens aurem m., action, 469
insertion, 469
nerve supply, 469
origin, 469
Retro-pharyngeal abscess, 356
Rhomboid ligament, 216, 214
relations, 216
nerve, 87
Rhomboides major m., 377, 373
action, 378
blood supply, 378
insertion, 377
nerve supply, 377
origin, 377
relations, 377
minor m., 377, 373
action, 377
blood supply, 377
insertion, 377
nerve supply, 377
origin, 377
relations, 377
Ridges, superciliary, 455
posterior, 456
Risorius m., 498, 491
action, 498
insertion, 498
nerve supply, 498
origin, 498
Risus sardonicus, 498
Roots of spinal nerves, anterior, 432
posterior, 432
Rotatores spine m., 404
action, 404
blood supply, 403
insertion, 404
nerve supply, 404
origin, 404
Roundsness of shoulder, 18
Rupture of biceps m., 130
S. Sacra, larynx, 458, 517
abscess, 358
pleural, aspiration, 351
Saccular n., origin, 361
posterior primary divisions, 411
vertebrae, 361
Sacro-lumbar region, 399. Vide Histo-
costalis Muscle.
Sagittal suture, 452
Salivary fistula, 522
Santorini, fissure, 530, 527
Santorini, fissure, 530, 527
muscle, 498. Vide Risorius
Muscle.
Sacral cord, 361
of dura mater of brain, 575
of tabular of Montgomery, 57
Scalein m., nerve to, 87
Scalenus posticus m., 396
Scapula, 451, 465
abscess, 481
areolar tissue, 480
arteries, 452, 469, 472, 477,
504
congestion, 479
INDEX.

INDEX.
INDEX.

Spinal cord, veins, 445
 curvature, 352
 angular, 359
 lateral, 358
 normal, 358, 359
 farrow, 351
 meningitis, 451
 nerves, 308
 intra-thoracic course, 435
 origin, 361
 roots, 432
 Spinalis colli m., 401
 action, 401
 insertion, 401
 nerve supply, 401
 origin, 401
 relations, 401
 dorsi m., 401, 396, 397
 action, 401
 blood supply, 401
 insertion, 401
 nerve supply, 401
 origin, 401
 relations, 401
 Spine, cervical, seventh, 361
 sixth, 356
 Lumbar, first, second, third, fourth, fifth, 361
 of scapula, 18, 43, 184
 fracture, 270
 sacral, third, 361
 Spines of vertebrae, 352, 356
 Lumbar, 361
 sacral, 361
 thoracic, 361
 Spleen, position, 362
 Splenius capitis et colli m., 394
 Fazenda Splenius Muscle
 muscle, 373, 396
 colli m., 373, 396
 muscle, 394
 action, 394
 insertion, 394
 nerve supply, 394
 origin, 394
 relations, 394
 Stenson's duct, 522, 473, 477, 483, 491, 504
 course, 522
 divisions, 523
 line, 487
 relations, 522
 Stephanion, 456
 Sterno-clavicular joint, 215, 214
 blood supply, 216
 formation, 215
 ligaments, 210, 214
 relations, 216
 movements, 221
 nerve supply, 221
 Sterno-hyoïd m., 65
 Sterno-mastoid m., 65, 373
 Sterno-thyroid m., 65
 Stertorous breathing, 501
 Straight sinus, 588, 578
 Stretching of axillary plexus of nerves, 38, 311, 314
 structures involved, 312
 of circumflex n., 312
 of median n., 312, 313
 of musculo-spiral n., 313
 Stretching of nerves of upper extremity, 311
 of radial n., 313
 of ulnar n., 312, 313
 Stylo-hyoid branch of facial n.,
 533
 Styloid process of radius, 31
 Subacromial bursa, inflammation, 223
 Subacromion m., 192
 action, 192
 nerve supply, 192
 Subarachnoid space of spinal cord
 341
 Subclavian a., relation of, to axillary plexus of nerves, 89
 vein, 509
 Subclavicular dislocation of humerus, 251
 structures involved, 251, 252
 Subclavias m., 68, 62, 71
 action, 73
 blood supply, 73
 nerve supply, 73, 87
 Subcoracoid dislocation of humerus, 251
 structures involved, 251, 252
 Subdeltoid bursa, 379
 abscess, 379
 inflammation, 379
 Subdural space of spinal cord, 431
 Subglenoid dislocation of humerus, 248
 structures involved, 248, 252
 Submaxillary cyst, 58
 Submaxillary lymphatic glands, 566
 Submental a., 546
 Suboccipital lymphatic glands, 566
 nerve, 408, 409, 406
 triangle, 407, 406
 contents, 407
 formation, 407
 Subscapular anepenerosis, 385
 artery, 86, 66, 67, 76, 77, 84, 111, 385
 Anastomosis, 86, 385
 branches, 86
 incision for ligating, 301
 ligation, 306
 structures involved, 306
 line, 86
 operation to expose, 343
 nerve, 90
 lower, 76, 77, 87
 motor point, 40
 operation to expose, 343
 middle or long, 90, 76, 77, 87
 motor point, 40
 operation to expose, 343
 upper, 90, 87
 triangle, 86, 390
 Subscapularis m., 357, 62, 65,
 71, 76, 77, 343, 390
 action, 357
 blood supply, 357
 insertion, 357
 nerve supply, 357
 origin, 357
 relations, 357
 Subspinosus dislocation of humerus, 251
 structures involved, 251, 252
 Substantia gelatlnosa Rolandi, 436
 Subacromial bursa, inflammation, 64
 Superciliary ridges, 452
 Superficialis voce a., 32, 144,
 151, 135, 145, 159, 173, 177
 line, 176
 Supraventricular mammary gland, 53, 63
 nipple, 63
 Supinator brevis m., 202, 135,
 140, 141, 200
 action, 202
 blood supply, 202
 insertion, 202
 nerve supply, 202
 origin, 202
 relations, 202
 longus m., 197, 110, 115,
 118, 128, 131, 135, 140, 141,
 184, 194, 200, 345, 347
 action, 198
 blood supply, 198
 insertion, 197
 nerve supply, 198
 origin, 197
 relations, 197
 radii brevis m., 202
 longus m., 197
 Supra-acromial n., 53, 97
 Supra-clavicular n., 53
 Supra-condyloid foramen, 28
 fracture of humerus, 274
 process, 28
 Supra-maxillary branch of facial n., 534, 473, 477, 484
 Supra-orbital arches, 457
 artery, 469, 467, 472, 477, 484, 504
 Anastomosis, 469
 foramen, 458
 nerve, 475, 473, 477, 484
 neurectomy, 475
 notch, 459
 vein, 509
 Supra-scapular a., 384, 84, 385
 Anastomosis, 84, 384, 385
 relations, 384
 ligament, 222
 nerve, 384, 76, 87
 vein, 509
 Supra-spinatus m., 383, 184,
 185, 373, 381
 action, 384
 blood supply, 384
 insertion, 383
INDEX.

Supra-spinatus m., nerve supply, 384
origin, 383
relations, 383

Supra spinous fascia, 383
ligament, 418, 396, 413

Supra-ternal n., 53

Supra-trochlear n., 475, 473, 477
neurectomy, 475

Surface markings of arm, 27, 21, 24, 25
of auricle, 465
of axilla, 27
of back, 353
of neck, 351
of shoulder, 352
of trunk, 351
of cranium, 451, 453
der of ear, 356
of elbow, 23
of eye, 457
of face, 456
of forearm, 31
of hand, 32
of knuckles, 37
de of neck, 351
of back, 351
of pinna, 565
of shoulder, 352
of back, 351
of trunk, 351
of upper extremity, 17
Surgical neck of humerus, fracture, 273
of scapula, fracture, 270

Suspensory ligament of axilla, 68
of mammary gland, 54
of occipito-axoid joint, 420

Suture, coronal, 452
frontal, 452
lambdoid, 452
sagittal, 452

Synovial membrane, 215
of atlanto-axoid joint, 419, 417
carpal joint, 241
f or metacarpal joint, 245
c of capus, 242
c of elbow, 229
c of intermetacarpal joint, 246
c of interphalangeal joint, 247
of medio-carpal joint, 242
of metacarpal-phalangeal joint, 246
of radio-carpal joint, 237
of radio-ulnar joint, 233, 234
of synovial-joint, 223
Synovitis of elbow, 228
of radio-carpal joint, 237
of shoulder-joint, 223
of wrist, 237

T.

Tarsal cartilage, 457, 516
ligament, external, 494
internal, 494

Teale’s method of amputation, 241

Temporal a., 470
antero, 470, 467, 472
477, 504
deep, 457, 546
452, 530
middle, 472, 477, 484, 504
posterior, 470, 467, 472
anastomosis, 470

Tendon oculi, 458, 494, 516
tendons, 209
Tenalgia crepitans, 32, 197

Tendo palati m., 397

Teflon, 455, 583

Trachelo-mastoid, 401, 509

Tracheo-bifidus, 455, 583

Tracheo-mastoid, 401, 396, 397
action, 401
blood supply, 400
insertion, 401
nerve supply, 401
origin, 401
relations, 401

Tractus, motor, of spinal cord, degeneration in, 450

Trapezii m., 527

Trigeminal nerve, 477, 504

Trigeminus, 527

Trigeminal trigone, 527

Trigno, 524, 525

Trigonalis colli m., 400, 396, 397, 509
action, 400
blood supply, 400
insertion, 400
nerve supply, 400
origin, 400
relations, 400

Turner, 58

Turse’s method of amputation, 466

Tectitis, 32, 168

Tertiary Herophilus, 455, 583

Telo-synovitis, 197

Test, Spence’s, 58

Theca of flexor tendons, 466

Thermocerous, 527

thenar eminence, 32

muscles forming, 171

Third cervical n., posterior division, 410

Third cervical n., 351

cranal n., 591

Thoracic a., 55

long, 53, 58, 85
anastomosis, 85

superior, 52, 76
anastomosis, 85

intertransversales m., 407
nerve, external anterior, 90
76, 87

interanal anterior, 90, 76
87

posterior or long, 92, 76
77, 87

primary division of spinal, 410

origin of spinal n., 361
vertebrae, spines, 361

Thorer, relations of viscera, 363

Thrombosis of lateral sinuses, 584

Thumb, amputation, 37, 284
structures involved, 284

sesamoid bone, 37, 247

Thyroid v., middle, 509

superior, 509

 Tic douloureux, 504

Tissue, adipose, of axilla, 95
dermal, of axilla, 95
eyelids, 516

Tephi, 529

Toricel Herophilus, 455, 583

Tracheo-mastoid, 401, 396, 397

Tributaries of axillary, 27

of shoulder, 223

of wrist, 237

T of
INDEX.

U.

Ulna, 31
centers of ossification, 269
coronoid process of, fracture, 278
development, 269

Ulnar, 144, 111, 131, 135, 140, 141, 145, 159, 173, 177
branches, 147
course, 31
guide for ligation, 134
incision for ligation, 301
ligation, 311
collateral circulation, 311
structures involved, 311
line, 144, 122, 176, 308
relations, 147, 328, 329
deflection, 17
head of flexor sublimis digitorum m., 134
nerve, 91, 123, 151, 163, 76, 77, 87, 110, 115, 138, 128, 131, 136, 140, 141, 159, 173, 185, 194, 200, 381
branches, 151, 162
course, 38
cutaneous branches, 126
dorsal, 196, 97, 140, 141
palmar, 97
incision for stretching, 301
irritation, 314
line, 312, 122, 300
motor point, 40
operation to expose, 316, 317
relations, 123, 151, 162, 316, 317, 321, 328, 335
stretching, 312, 313
structures involved, 312, 313
trauma, 123
recurrent n., anterior, 147, 111, 140, 141, 145
anastomosis, 147
posterior, 147, 111, 140, 141, 145, 200
anastomosis, 147
vein, anterior, 126, 195, 100, 128
common, 100
posterior, 195, 100, 110, 128
Ulno-carpal ligaments, 237
Upper extremity, amputations, 279
anterior view, 40
arteries, ligation, 294
lines, 300
articulations, 17, 215
bones, development of, 266
dissection, 47

Upper extremity, divisions, 17
joints, 17, 215
landmarks, 17, 18
movements, 17
nerves, stretching, 311
posterior view, 41
surface markings, 17, 18

V.

Vaginal ligament of fingers, 167
Vagans n., 593
Varicosae aneurysm, 309, 295
Vasa aberrantia, 114
Vascularity of face, 511
Vein, angular, 470, 509
anterior jugular, 509
maxillary, 551, 509
temporal diploe, 571, 569
auricular, posterior, 509
axillary, 80, 62, 71, 76, 77
pressure upon, 81
relations, 316, 317
wounds, 57, 80
basilic, 104, 110, 111, 115, 118, 128
median, 103, 100, 110, 128
infusions into, 104
cephalic, 27, 103, 59, 70, 71, 76, 77, 100, 110, 128
median, 103, 100, 128
cerebral, superior, 573
çervical, deep, 403, 509
circumflex, posterior, 341
dep deep cervical, 403, 509
facial, 551
e external jugular, 509
line, 487
facial, 470, 508, 374, 474, 485, 509
arterial blood in, 511
communications, 511
course, 511
dep, 551
disease, 511
line, 487
transverse, 509
infra-orbital, 540
innominate, 509
intercostal, 425
internal jugular, 509
maxillary, 551, 509
jugal, anterior, 509
external, 509
line, 487
internal, 509
posterior, 509
lingual, 509
maxillary, anterior, 551, 509
internal, 551, 509
median, 126, 100, 128
basilic, 103, 100, 110, 128
infusion into, 104
deep, 100, 128
middle temporal, 509
thyroid, 509
occipital, 509

Veins, 57a, 57b, 57c, 57d, 57e, 57f, 57g, 57h, 57i, 57j, 57k, 57l, 57m, 57n, 57o, 57p, 57q, 57r, 57s, 57t, 57u, 57v, 57w, 57x, 57y, 57z

Vein, angular, 470, 509
anterior jugular, 509
maxillary, 551, 509
temporal diploe, 571, 569
auricular, posterior, 509
axillary, 80, 62, 71, 76, 77
pressure upon, 81
relations, 316, 317
wounds, 57, 80
basilic, 104, 110, 111, 115, 118, 128
median, 103, 100, 110, 128
infusions into, 104
cephalic, 27, 103, 59, 70, 71, 76, 77, 100, 110, 128
median, 103, 100, 128
cerebral, superior, 573
çervical, deep, 403, 509
circumflex, posterior, 341
dep deep cervical, 403, 509
facial, 551
e external jugular, 509
line, 487
facial, 470, 508, 374, 474, 485, 509
arterial blood in, 511
communications, 511
course, 511
dep, 551
disease, 511
line, 487
transverse, 509
infra-orbital, 540
innominate, 509
intercostal, 425
internal jugular, 509
maxillary, 551, 509
jugal, anterior, 509
external, 509
line, 487
internal, 509
posterior, 509
lingual, 509
maxillary, anterior, 551, 509
internal, 551, 509
median, 126, 100, 128
basilic, 103, 100, 110, 128
infusion into, 104
deep, 100, 128
middle temporal, 509
thyroid, 509
occipital, 509
Vein, occipital diploic, 571, 569
radial, 126, 195, 100, 101, 128, 339
subclavian, 509
submental, 509
subscapular, 343
superficial temporal, 484, 509
superior thyroid, 509
supra-orbital, 509
supra-scapular, 509
temporal diploic, anterior, 571, 569
middle, 509
superficial, 484, 477, 509
temporo-maxillary, 485
thyroid, middle, 509
superior, 509
dorsi-spinal, 425
entrance of septic matter into, 81
frontal, 571, 509
diploic, 571, 569
fronto-sphenoid, 571, 569
ligation, 81
medulli-spinal, 437
meningeal, 599
meningo-rachidean, 427, 425
of arm, 103, 100
of eyelids, 519
of face, 509
of forearm, 100, 101
of Galen, 578
of hand, 195, 101
Veins of head, 509
of mammary gland, 57
of neck, 509
of pterygo-maxillary region, 551
of scalp, 470, 509
of spinal canal, 427
cord, 445
of upper extremity, 28
pterygoid plexus, 551
spinal, 425
Vena basis vertebrae, 427, 413, 425
comes of radial a., 128
Vena comites of acromio-thoracic a., 85
comes of brachial a., 22, 77, 113
Venesection, 104
Vertebra, dislocations, 424
fractures, 424, 449
spine of seventh cervical, 361
of sixth cervical, 356
of third sacral, 361
Vertebra, abscess in caries, 356
cervical, abscess, 356
diseases, 356
dorsal, abscess, 356
caries, 356
ligaments uniting bodies, 412
lumbar, abscess, 356
caries, 356
spines, 361
spines, 352, 356
thoracic, spines, 361
Vertebral aponeurosis, 394
column, 408, 406
ligaments, 412
fascia, 384, 373, 396
vein, 509
Vidian a., 548, 546
nerve, 562, 554, 559
Vincula accessorius, 168
Vincula of hand, 206

Viscera of abdomen, relations, 363
of thorax, relations, 363

W.
Walls of axilla, 64, 79
Wardrop’s method of treating aneurysm, 297, 295
Wilde’s incision, 455
Winged scapula, 222, 362
Wounds of axillary vein, 57, 80
depth of palmar arch, 180
of face, 511
of longitudinal sinus, superior, 583
of middle meningeal a., 598
of palmar arches, 180
of parotid gland, 522
of scalp, 466, 480
Wrisberg, ganglion, 200
nerve, 91, 103, 124
Wrist, 31
abcess, 32
furrows, 31
level, 31
Wrist-drop, 125, 277

Z.
Zygomatic arch, 460
fossa, 557
contents, 557
Zygomaticus major m., 500, 491
action, 501
insertion, 500
nerve supply, 501
origin, 500
minor m., 501, 491
action, 501
insertion, 501
nerve supply, 501
origin, 501