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The reader’s attention is called to the Glossary, printed at the 

end of Volume II. Schillinger sometimes uses conventional terms 

in special senses. It will facilitate the study of certain passages 

if the student bears in mind that explanations are available there. 

It is felt that no table of abbreviations is needed since the sig¬ 

nificance of each symbol (which sometimes recurs in varying 

senses in different parts of the book) is always made clear in 

its context. 
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PRELIMINARY REMARKS 

ON THE THEORY OF RHYTHM 

The Theory of Rhythm is the foundation of Schillinger’s system. But for 

him, rhythm is not simply a matter of time-rhythm, which is what is ordinarily 

meant by the term. Schillinger begins by applying rhythm to time durations, 

and then extends it to all other phases of composition—the way in which block- 

harmonies change, intervals in scales and melody, entrances of counterthemes 

in counterpoint, distribution of parts through a score, and other processes of 

composition. Schillinger’s statements are clear provided the reader takes the 

trouble to work them out, rather than merely read them. It must be borne in 

mind at this stage that the individual processes worked out in this book are 

all to be used in the actual composition of music. 

The Schillinger System of Musical Composition has the integrated construc¬ 

tion of a closely reasoned work of science or mathematics. Beginning with 

Book I, Theory of Rhythm, Schillinger successively presents techniques relating 

to the various phases of composition. Book II develops the Theory of Pilch 

Scales-, Book IV, Melody- Book V, Harmony, Book VI, Correlation of Melody 

and Harmony, Book VII, Counterpoint; etc. 

Mastery of the materials of any one of these books will provide the student 

with undreamed-of new resources. However, the Schillinger System places its 

emphasis on composition, that is, on the procedure for integrating elements and 

structures, and not on the detached and uncoordinated techniques. .The method 

for integrating the individual techniques is presented in Book XI, Theory of 

Composition, which is the crowning summit of this work, as the Theory of 

Rhythm is its foundation. 

It should be emphasized that study of the Theory of Rhythm is the pre¬ 

requisite to any real understanding of the entire work. Each of the succeeding 

books employs devices initially presented irr the Theory of Rhythm, so that the 

student who skips ahead in an effort to cover ground quickly will find it necessary 

to retrace his steps. Thereafter, each book in turn requires a thorough under- 

standing of preceding books. 

Readers who are interested in knowing how Schillinger came to devise the 

system of notation he employs are referred to Chapters 1 and 2 of Book IV 

Theory of Melody. In the first chapter Schillinger presents an engrossing analysis 

of the physical components of music. In the second chapter he traces the history 

of musical notation and demonstrates the inadequacy which caused him to 

search for a new and more exact system of notation. Both these chapters contain 

insights which will assist the reader in understanding details of the Schillinger 

system. (Ed.) 
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CHAPTER I 

NOTATION SYSTEM 

r"PHE CUSTOMARY method of musical notation, which is a product of the 
“trial and error” method, is inadequate for the analysis and study of rhyth¬ 

mic patterns. It offers no common basis for computations. The history of 
creative experience in music shows that even the greatest composers have been 
unnecessarily limited in their rhythmic patterns because they thought in terms 
of ordinary-musical notation.* 

The arrangement of time-durations, which constitutes the theory*of rhythm, 
may be studied through three parallel systems of notation: (1) numbers, (2) 
graphs, (3) musical notes. 

Understanding the nature of these group formations helps us to compose, 
to arrange any given musical material, and to play the most involved rhythmic 
patterns. 

Number values will be used in this system in their normal mathematical 
operations (such as the four actions—addition, subtraction, multiplication, and 
division—, raising to powers, extracting roots, permutations, etc.)** 

A. Graphing Music 

The graph method used in this system is the general method of graphs, 
t.e., a record of variation of special components, such as pitch or intensity in 
music, stocks in finance , diseases in medicine, etc., during a given time-period. 
In our theory of rhythm we shall deal with time only. The horizontal coordinate 
(known as abscissa) reads always from left to right. Here it will express time. 
The vertical coordinate (known as ordinate) will express the recurrence of a 
phase, i.e., the moment of attack. This graph method is a general method and 
therefore objective. 

Any wave motion records itself automatically. Let the pendulum of a clock 
swing uniformly over a strip of paper while the latter is being moved uniformly— 
and in a direction perpendicular to the movements of the pendulum itself. 

Such record will have approximately this appearance: 

'VV'VAj 
Figure 1. 

If. from experience outside the musical 
field, you already know how graphs are used, 
it will be sufficient to say at this point that 
(a) music can be graphed by allowing the 
lengths of a number of horizontal lines to 
*andfor the durations of tones, and causing 
the distance up or down (ordinate) to stand 
lof the pitch levels of the tones; and (b) when 
graphing duration only, as in these studies, the 
end of one duration and beginning of the next 

may be indicated by a ‘turn’ (phase change) 
in the line, as shown in Figure 47. (Ed.) 

••Although Schillinger makes much use of 
mathematics in this work, the reader is not 
presumed to be a student of mathematics. Each 
mathematical operation is carefully explained 
so that those who possess the most elementary 
knowledge of mathematics will not encounter 
difficulty either in understanding the text or in 
performing the necessary operations. (Ed.) 
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depending on the speed with which the strip of paper is moving. In case A 
(see Figure I) the speed is less than in case B. 

Similar configurations of curves of different degrees of complexity may 
be observed in the projected oscillograms of sound waves. The complexity of a 
wave depends upon the number of components in such a wave. The simplest 
wave has the form which is shown in Figure 1. All clock mechanisms produce 

such waves (pendulum, sewing machine, etc.). In frequencies which produce 
musical pitch, the simplest wave may be found in the sound of tuning forks 
and of the flute-stops of a pipe organ. 

_ The general form of the analysis of wave-motion is the Fourier method 
which Fourier developed in 1822' for the purpose of analyzing Aea/-waves. This 

method is very precise. It is used in all fields dealing with oscillatory phenomena. 
Yet it is a very complicated method to use for the purpose of analyzing the 
music of human performers. It takes about twelve hours to analyze a wave 
of thirty components. Machines known as harmonic analyzers have been de¬ 
vised. These machines perforin the work of an expert mathematician in about 
ten minutes without any possibility of error. They are used in various fields of 

physics and in meteorological departments, mainly to predict tidal variations. 

The simplest (i.e., one-component) wave of one period (recurrence group) 
has this appearance: 

The distances, a ct b and b a! a', are equal. These curves are phases of the wave. 

Two phases constitute a period. For the purpose of studying periodic groups 

and their recurrences, we shall use phases as units of measurement. In con¬ 
tinuous sequence they constitute the periodicity of phases. 

The distances, and a! are equal, and constitute amplitudes. The 
latter are physical expressions of intensity. 

We shall consider intensity in the study of durations in reference to accents 

only. The coincidence of phases of two different periodicities intensifies the 
attack. The recurrence of intensified attacks (“accents”) will constitute musical 
measures ("bars”). The reality of "bars” depends actually on the placement 
of attacks, not on the placement of bar lines on music paper. 

By assuming that the arrangement of durations does not necessitate the 
expression of amplitudes, we shall use rhythm graphs in the following form. 

Figure 3. 

X 0 T A T 1 0 X S Y S T E M 3 

Here the horizontal lines are a simplification of the general curve; they 
express time. The vertical segments express the moment of attack. In the 
following graphs the forms of attack will be constant, and the time durations 

will assume various values. 

B. Forms of Periodicity 

Continuous recurrence of a group constitutes periodicity. Periodicity in 

which all groups are identical constitutes uniform periodicity. The difference 

between various forms of uniforrp periodicity may be distinguished by the 

number of terms (places) in a recurring group. 
Groups with one term (a monom) constitute monomial periodicity. 

The algebraic expression for monomial periodicity is: 

ati + at2 -f at3 + . . . + atn 
where a is the recurring monom and where tj, t2 . • are the consecutive lime 
moments; a may assume different values. In the field of musical time durations 

these values are integers; a may equal 1, 2, 3, . . . n. 
When the forms of such periodicities are expressed in number-values, they 

have this appearance: 

1+1 + 1+1-f.... 
2 + 2 + 2 + 2 + . . . . 
3+3 + 3 +. 
n+n+n +. 

Their graph expression is- - 

n_nj~Lnj 
Figure 4. 

—where each rectilinear segment represents a time-unit expressed in some space 

unit (inches, centimeters, etc.). 
When a unit is defined, the respective values of units in different monomial 

periodicities will be: 

i +1 +1 +... 

2 + 2 + 2 + . . . 

3 + 3 + 3 + . . . 

Figure 6. 

Musical notation will serve as a final form into which number and graph 

expressions will be translated. 

Thus, if 1 represents J for 1 = J J, 2 —,J ,3 = J- , 4 = o.. , etc. 



CHAPTER 2 
INTERFERENCES OF PERIODICITIES 

* 
3 

INTERFERENCES OF PERIODICITIES 

T\TE ARE now concerned with what may technically be called the "genera- 
’’ tion of resultant rhythmic groups as produced by the interference of two 

synchronised monomial periodicities"—that is to say, the way in which one 
monomial periodicity (say, 3, 3, 3, 3) may be combined with another (say, 
4, 4, 4, 4) so as to produce still another rhythm. 

A periodicity consisting of greater number values will be denoted by the 
term, "major generator"; the smaller of the two will be called, "minor generator." 
The way in which we will express two synchronized generators producing one 

interference-group is a b.* The expression for the resultant of interference 

»*■ fa-i-b- 

A, Binary Synchronization 

To synchronize two monomial periodicities it is necessary: 
(1) to find the common product or common denominator (c.p. or c.d.) 
(2) to find complementary factors of both generators; the complementary 

factor of a is = b, and the complementary factor of b is § = a. 

After this is completed, it is necessary to draw a graph of both generators 
in their synchronization. To find the resultant (r), drop perpendiculars from all 
points of attack on both generators. The resultant is discovered by drawing 

lines through these points. The common product is then added to the diagram, 
and the number-values of the resultant are indicated. The entire diagram is 
then translated into musical notation. 

When a equals any nu,mber-oaluc, and b equals one, the resultant expresses 
a musical "bar," whether or not this bar-line would actually be drawn on music 
paper. Thus, a formula for a musical bar (or measure) is: 

T - ra-*-l 
(read: musical bar (T) is the resultant of a to one.) 

First Case 
2 -r 1 

Find the resultant, r2-*-i 
Common product (c.p.) 2x1 — 2 

Complementary factor of a f = 1 1(2) 

Complementary factor of b f = 2 2(1) 
a consists of two's 
b consists of one’s 

'Although Schillinger here and elsewhere 
uses the division sign to indicate the a and b 
relationship (a -§- b), it should be noted that 
Schillinger on other occasions uses a colon 
in place of the division sign (ah). 

Neither the colon nor the division sign is 
employed as in ordinary arithmetic. 4:3 means, 

in ordinary arithmetic, 4 divided by 3 or 
4/3—and 4 by 3 means the same. In Schil- 
linger’s use of these signs, neither a ratio nor 
division is meant. He meant interference. 
In arithmetic, 4:3<» V/s. In Schillinger, 4:3j= 

3 +1 4-2 4-2 + f +3 12 , x 
-jj—- 

Here is the operation expressed in numbers, in graph, and in musical notation: 

Numbers Graphs 

»+ I c.d. ru 

I a. n 

t + § b. (nJ 

i + 2 r. ru 

Figure 6. 

Music 2 ~ 

r r 
r 
r r 
r r 
r 

The resultant differs from b with respect to accent (which results from the 

coincidence of attacks of both generators). 
Musically, the first case establishes a bar in which the musical numerator 

is 2, i.e., f £, f. When the bar is \, £ = J ;when the bar is £, £ « J 

when the bar is £, £ = J\ 
Second Case 

3 -J- 1 
Find the resultant, r^-j-i . 

3x1—3 

1 (3) 

3 (1) 

Numbers Graphs Music 8 ~ 

1 + 5 + 1 
3 c.d. n_n r r r 

3 
3 a. i— r 
1 1 
3 + 3 + 1 

3 b. hr r r r 
1 1 
3 + 3 + 1 

3 r. Ki- 
>■ 

r r r 
8 8 c.p. i— r 

Figure 7 
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In this case, using a and b we hear the resultant, i.eM three uniform durations, 
with the accent on the first. This produces all bars with musical numerator 
three, i. e., f, £, f. 

§ °* || J' If J* I 
2 r r r 17 r r r 18 ll_t 1 

Figure 8. 

The importance of this procedure lies in the fact that even the most noted 
composers of today do not seem to know that to express a bar before a non 

uniform group is offered is to represent the scheme of uniformity with respect to 

the periodicity of accents. This means that an accent should not be forced but 
should result from superimposition of a on h. 

When it comes to the application of higher numerators—such as 5, 7, or ! 1_ 
the entire music becomes incomprehensible to the average listener, and the 

composer is the one to blame. When it comes to the shifting of accents which 
are not correctly expressed (i.e., through the use of a and b), the performance 
is never adequate; the performer suffers (for example, hear Stokowski in Stra¬ 
vinsky s Rites of Spring), and the listener wonders what it is all about. 

Non-uniform rhythmic resultants occur when b ^ 1. Through the procedure 
described above, one may obtain aU the rhythmic patterns of the past, present 

and future, including all the possible rhythms of the Orient or of the primitives. 

0
5
1
3
5
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3-5-2 
Find the resultant, r3-*-2 

3x2 = 6 

2 (3) 

3 (2) 

Numbers Graphs 

l + J + l + i + l + l c.d.ruuu 
§ + ? 
6^6 

* + * + § 
6 + 6 ^ 6 

2 + 1x1 + ? 
6 + 6 + 6 + 6 

a ^b. pLj-Tl 

r. HiH—i 

Music 

r r r r r r 

r r r 
r r r r 

B. Grouping 

c.p. » 

Figure iO. 

Three forms of grouping are available.* 
(1) Grouping by c.p. In this case, c.p.= 6, which may express musical 

quarters or eighths. 

r r r r r r c_c_r c_c_r 
r r r r 

f r r r r f r Pi r 
r r r r r p p r 
o- r 

Figure li. 

Six may also express six units in $ or f time, then: 

r r r r r r uj-rj-i 
r r r r r u r 

tr r r ? r r r 
r r r r r c_r r 

r 
Figure 12, 

*The technique and theory of grouping are described in detail in (. ha pier .t. (Ed.) 
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(2) Superimposition of a. a = 3. In order to get the reality of such 
superimposition, c.p. must be excluded and b becomes merely an optional 
component. 

r r r 
r 
r f 
r r 

r r r c__c_r lc_t 
r | f ^ 

ir p 
r 

> r ) 'P r ] 
r r r p P r 

Figure 13. 

(3) Superimposition of b. b= 2; c.p. is excluded; a becomes optional. 

r r r r J r r 
! a tr" ' > r > ) 

4 r r r 
r r r r 

Figure 14. 

4-5-3 

Find the resultant, r4-f3 

3 (4) 

4 (3) 

Graphs Music 

nJiJTjT-TLru rrrrrrrrrrrr 
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X- K superimposition of c.p. 
X 

r r j 
! CJLf £T 

l_j*l/ tr 

r 
Figure 16. 

X _ 1 superimposition of a. 
12 = J 

Figure 17. 

superimposition of b. 

r r r 
i ir 
4 r 

Figure 18. 

, . thes^ diagrams represent the natural nucleus of a musical score * in 

Wf lch c-d' units are arpeggio or obligato figures, a and b are chords, r rhythms 
° the theme, and c.p. sustained tones (“pedal point"). The resultants have 
1 h? following characteristics: 

hchiliinljcf ,t0 Ktr,CSu the th^t th-?, Polype of a musical score, but—ns he 
seiucncc a what h* "? tf?ls ,w,1! sh°w much later- they actually arc the 
means L! , ot”CI sentences); that is, he liases of scoring (Ed.) 

U,S ,,0, «n,v that these |Kitterns could be 
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(1) recurrence 
(2) balance (in r4-i-3: 2 + 2) 
(3) contrasts (in ^*3: 3 + 1) 
(4) inversion, through this axis of symmetry (center): 

3 + 1+ 2 + 24-1+3 
4 - -► 

Thus, esthetic efficiency {harmony of form) is a product of physical ef¬ 

ficiency. 
All rhythmic patterns in music are either complete or incomplete resultants. 

Take, for example, a figure ■} f tf f ; it is ra-^2* Take C f'pf f ; it is two-thirds 

•of the r44-3- 
When all the resultants up to a = 9 have been found, one can obtain all 

the patterns of the past and present, and, to some extent, of the future. 
In making your own diagrams, make them on graph paper, eliminating 

the c.d. units; they are the units of the cross sections.* 
All the necessary generators for practical purposes are:** 

3-f-2 

4 4- 3 
5- 5-2 

6- 7-5 

5-5-3 5-5-4 

7 -5- 2 7-5-3 7-5-4 7-5-5 7-5-6 

8-4-3 8-1-5 8-5-7 

9-7-2 9-5-4 9-5-5 9-5-7 

Figure 19 

9 4-8 

When c.p. is greater than IS, use a and b superimposition only. 
When the numbers get large, a musical eighth ( Ji) becomes the most 

practical musical denominator. All the reducible fractions are excluded from 

the above chart, for they give recurrences of the previous cases. For example, 

6-7-4 would simply give 3-7-2 twice. 
The a and b components present a clear idea of how “cross-rhythms” should 

be performed. Beating a and b with both hands, listen to the resultant, i.e., 
playing3against2,play one-two,one,one,one-two(2 + 1 + 1+ 2 = jJ}j ), 

alternating hands. 

•In the foregoing, Schillinger has given an 
extremely rigorous (as the logicians say) state¬ 
ment of the case so as to satisfy the most 
exacting demands of mathematicians and 
other scientists. It may be helpful to state the 
process in another, and less rigorous, way— 
for the benefit of those who are not directly 
interested in the scientific aspects of the 
matter. The process is this: (1) take a piece 
of graph paper, and regard each square from 
left to right as some unit in time, whether it be 
a sixteenth note, an eighth note, or what not; 
(2) mark off the larger of the two generators 
in a fashion similar to that seen in Figure 10 
or Figure 47, that is, breaking the line—if 
the major generator be “4”—every four units; 

(3) then mark off the smaller generator until 
the two “come out even”; (4) then mark off 
the resultant, by making a line which breaks 
wherever either (or both) of the other two 
lines breaks. This can be done very rapidly, 
and the process is best learned by actually 
carrying it out. Schillinger generally used 
graph paper with twelve squares to the inch. 

(Ed.) 

••When Schillinger presents a list of this 
land, it is his intention that the student should 
work out all of these instances for himself. 
He planned the present manuscript so as to 
have it serve the double function of a workbook 
and theoretical study. (Ed.) 

v 

Let me add a few words on primitive rhythm: the true “primitive” rhyth 
(such as the rhythm used by some African cannibalistic tribes) is a combination 
various monomial periodicities in time-continuity. 

For example: 

2 + 2 + . . . 
3 +3 + . . . 

4 + 4 + . . . etc. 

These, when combined in sequence, produce such rhythmic patterns as: 

(2 + 2) + 1 + (1 + 1 + 1) + (i + i + i + i) + . . , = | 

i f f I ° If ? r lr r r r I. 
figure 20. 

E V
 



CHAPTER 3 

THE TECHNIQUES OF GROUPING 

TLXAVING SEEN how two monomial periodicities produce a resultant, we 
A A have now to consider the manner in which these patterns may be grouped. 
There are three fundamental forms of grouping of a + b. 

(1) Grouping by the product (by ab); 

(2) Grouping by the major generator (by a); 
(3) Grouping by the minor generator (by b). 

In order to group m elements by n, it is necessary to divide m by n. Thus group¬ 

ing by ab is the quotient of & 

As in the case of binary synchronization the duration of the entire score 
equals ab. The formula for grouping by ab is: 

a - T (i) 
i.e.f grouping by ab produces one T with abt. 

Example: 

3 + 2 S | = T, one measure with 6t. 

The 6t can be represented in musical notation as any measure with 6 single 
units. For instance, f- time, where t = , or J time, where t — J , or § time, 
where t = M 

r r o* 

LU UJ uuu r r r r r r 
1 r r I Mc/r1 If f 

r Plr r r r r r r r 
r P P r r L/r r r r r 

Figure Zi. 

Grouping by a: — = bT (2) 

In grouping by a, ab must be excluded from the score, as the presence of 
the latter neutralizes one of the accents, which as a result makes it sound like 
one T. 

3 + 2 y m } = 2T. i.e., two measures with 3t. 

[12] 
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r r r r r r 
3 r r 
4 (r r r f ) 

r r r r 
Figure 22. 

When grouped by a, b becomes an optional component, causing an effect 
known as syncopation. 

Grouping by b: ^ = aT (3) 

Exclude ab from the score and assign a as an optional component. 

3 + 2 T = f = 3T, i.e., three measures with 2t. 

r j_|r Mr r 
i(f 'r r 'r ) 
4 r r r 

r r r r 
Figure 23. 

It is practical to score all the 19 cases of binary synchronization by ab, 
by a, and by b, with the exception of cases in which ab is too great to be used 

as one T. The latter consideration is merely a concession to musical habits. 

The following table includes all the necessary scores. The reason that some 
of the forms of T, like or Jgt, are not in common use is merely due to the 
lack of adequate rhythmic patterns for their representation. 



Figure 24. 

CHAPTER 4 

THE TECHNIQUES OF FRACTIONING 

THE FIRST process by which rhythmic resultants are generated—the process 
just explained in the foregoing—is not entirely satisfactory for all musical 

purposes; it is too "rich” in its variety for all uses, and one may feel the need 
for a higher degree of uniformity which would complement this variety. Thus 
the second process by which rhythmic resultants may be generated is now offered 

with this purpose in mind. 

Groups arrived at by means of this second process will be known as rhythmic 

resultants with fractioning around the axis of symmetry. 

Symbols: a + b (underlined) and ra^-b 

The process of synchronization is: 

(1) Take the product of a by a, i.e., a2 (read: “a square”), a becomes its 

own complementary factor. 

(2) Use a as a complementary factor of b, i.e., b appears a times, 

(3) The minor generator completes itself before the major generator. Call 

the first group of the minor generator bi (the first b). Start the second b 

(b2) at the beginning of the second phase of a. Start the third b (b$) 

at the beginning of the third phase of a, when present. This proce¬ 
dure is continued until both generators complete at the same time, 

bi, b2» b3> • • • always appear a times. 

To find the total number of b groups this formula is used: 

\ Nb 888 a — b ■+■ 1 1 i.e., the number 

of b groups equals a minus b plus 1. 

Figure 25* 

Example: 

3-7-2 find r3-*.2 

3 X 3 - 3? = 9 

3 (3) 
3 (2) 

N2 = 3 - 2 + 1 =2, i.e., b! and b2 

[15] 
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h nJTXLRJl -ft). .(i) 
* j-!_!-1 ■ 3>3 . .f . f ♦ I 

_ ! ; ; 2 2 2 

\ ! V-H I i ~ 3x2 k* = 9 + g- + gi 

bs : j | j !■ |-j I - 3x2 ba = ^ + g "g 

t HiijiH !=! + M 2, i, 1,1,1 1 2 

r=9 + 9 + 9 + 9 + 9+ 9 + 9 

-t 
figure 26. 

^rrrrrrrrr 
a f f j?* 

b* r r r 
b, r r r 
r r^r r r r r r 
a* (=’• f'4"’ "''[»• 

figure 27. 

Fundamental Grouping by a2 or a only 

Grouping by a2 

?“T 
i-g i,±= h JL-m 

y rfTG 0~T 

»LTJ LLf CJW 
a r r r 

t b,r Pi r _ 
b- r p p r 
r r. p lc-t p r 
»* r r 

figure 28. 

-- 
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Grouping by a 

--=a T Exclude a1 from the score. 

a = 
9 

r r r 
3 S' 
4 fr r' 

r t 

1 _ 1 J 9 om 
a~ 9 • > 3 ~3T 

r r r r r r 
r r 

> r 
r r"- > r . 
r r r r r 

Figure 29. 

Grouping by b of the resultants with fractioning serves the purpose of pro¬ 
ducing syncopated rhythms. In such cases the resultant and the bar do not 

c ose simultaneously in the first run of the resultant. Therefore, the resultant 
should be repeated from the point where it stops. 

Just when the resultant and the bar come out even may be found in the 
lollowing manner: 

o 

kl 
Figure 30. 

qIwa , l Q staads for the Quotient which indicates the number of bars. It 

timeTrhA 8 a rfmamd?1r; The denominator of the remainder indicates how many 

alone. ^ rGSU tant W,li have to run- For the b grouping, the resultant is used 

b X Q = bQ 

Figure 31. 

Example: (1) 

a* _ 

b ~ f = 4£. 4^ indicates the number of hars. 2 indicates the number of 
groups of r. 2 (4|) = 9. 



-H
«s

> 
®

 

Example: (2) 

4 v3 Find r4-j-3 

42 = 16 

4 (4) 
4 (3) 

N3 = 4- 3 + l= 2 

I 

1 

hrnijijrnjijajij rrrrrrrrrrrrrrrr 
o o o o 

r r r r 
r r r r 

r rr rrrrr rr 

the techniques of FRACTION IN(• 

Grouping by a1 

3-4 1 
16 
i= i 
-in •1 

uu w ^ 
|na)r r r r 

1 = 4 (®) L—/c_r~'itr_ 
-=♦(&) ci—re—r tr 

tf 
a /• 

Grouping by a 

Figure 34. 

f=4T j f6=J 

r r r r |r r r r |r r r r r r r r 

4 rr n r J r , 
r r r r 

r r r r r f r r 
Figure 35. 

Grouping by b 

16_,1 
3 ~ 53 

3 (5|> 16 

r r 
r r 

5 
5| 

Figure 36 (continued). 

5| 
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CHAPTER 5 

COMPOSITION OF GROUPS BY PAIRS 

HESE TECHNIQUES of obtaining resultants may be extended further so 

as to evolve processes by which we may compose rhythmic resultants in pairs. 

In the ordinary exposition of a musical theme, it is customary to state the 

theme twice in such a way that for the first time the theme does not sound 

entirely completed, while for the second time it is brought to a completion. As 

composers of the past (as well as composers of the present) do not know how 

to do it, they usually resort to variations of the cadence harmonically. But it 
remains a pure problem of rhythm nevertheless. 

Composers have also been confronted with the problems of expansion and 

contraction in the two adjacent groups. Moving from a long to a short group 

is what we mean by contraction; the opposite is expansion. 

These procedures were performed crudely even by well-reputed composers, 

or instance, L. van Beethoven in his piano sonata, No. 1, in the first movement 

a he end of exposition, states a two-bar group three times. On the third state¬ 

ment, he makes an expansion by merely holding the chord through the whole 

ar (a whole note), thus adding one more bar. In his piano sonata, No 7 (in 

the beginning of the finale) he has a four-bar group. There are many rests in 

this group, and the rests are injected a priori with the idea of taking them out 

atterwards. Thus he makes a three-bar group out of a four-bar group. Even 

is crude form of contraction was rarely attempted by Beethoven in his long 

”ere' we sha11 Pfesent a general method of balancing, expanding, and con- 

of 2 Pair °f adujaCent 8rouPs> no matter what the rhythmic constitution 
oi such groups may be. 

As the resultants which have identical generators have a great deal in 

common, such performance gives the utmost esthetic satisfaction. 

(A) Balance n , , 
H = balance 

® * ra4-b4- ra-t-b-f- a(a—b) 

Figure 37. 

„e ™Lab.0Vi! T”S ‘T in ?rder t0 balance two resultants with identical 

ftoT a reSUltan‘ °f ° t0 b‘ with Phoning, add the resultant of 
and add a times o minus b. Grouping for such pairs is through a only. 

Example; 

B = ri±j+ r3 + 2+ 3(3-2) - [ (2 + 1) + (1 + 1 + 1) + (1 + 2) ] + 
[ (2 + 1) + (1 + 2) + 3 ] 

If r Ir r r lr r 

Figure 38. 
[21] 

r r I r r I r I 
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B = r4-s-3-(- r4-j-3+ 4(4—3) = [ (3 + 1) + (2 + 1 + 1) + 
(1 + 1 + 2) + (1 + 3) J + [ (3 -M) + (2 + 2) + (1 + 3) + 4]. 

i r r |r rr |m |rr |r r |r r |rr | ° I 

Figure 99. 

Balance does not seem natural when a > 2b, a > 3b, i.e., when a is greater 
than 2b or greater than 3b. Yet it may be accomplished through a general 

procedure. 

(1) Take raj-b 

(2) Take ra-j-b as many times as it enters (as divisor) into a2. 
(3) Add one total duration which equals the difference between a2 and 

2ab, a2 and 3ab, etc. 

Ba>mb = ra-H)+ mra-fr-b + (a* ~ mab) 

Figure 40. 

Example: 
5-4-2 5>2(2) 

(1) rs4-2 m (2 + 2 + 1) + (1 + 1 + 1 + 1 +1) + (* + 1 + 1 + 1 4* 1) 

' + (1 +1 + 1 + 1 4* 1) + (1 + 2 + 2) = 25 

(2) »~2* 
(3) 25 - 20 *= 5 

B = rs-j-z + rsH-2 4- rs-i-2 4* 5 [ (2 + 2 + 1) 

+ (14-1+H-14-1) + (l+l+l+l+l) + (l+l+l+l+l) 
+ (1+2+2) ] + l (2+2+1) + (1+2+2) ] + [ (2+2 + 1) 
+ (1+2+2)]+ 5 

! rr r|rrrrr|rrrrr|rrrrr|rr r|rrr |rrr |r r r|r r r| °11| 

Figure 41. 

(B) Expansion E — expansion 

E — ra-*-b4" ra-rb Grouping by a only. 

23 



CHAPTER 6 

UTILIZATION OF THREE OR MORE GENERATORS 

TT IS CLEAR that just as rhythmic groups may be developed by the use of 
two generators, so, too, may they be based on the use of three—or more than 

three generators. In such a case, the selection of the third generator becomes 
important. 

It happens that all^generaiors pertaining to one family of rhythm belong to 
the same series of number-values* Such series are the series of growth; they control 
not only music and the arts in general, but also the proportions of the human 
body, as well as various forms of growth in nature. Homs, antlers, cockleshells, 

maple leaves, sunflower seeds and many other natural developments are con¬ 
trolled by the series of growth. Mathematically, one can produce an infinite 
number of types of the series of growth, and an infinite number of series of each 
type. 

The series referring to the developments mentioned above constitute one 
specific type of summation series. In this type of summation series, every third 

number-value is the sum of the two preceding number-values. For instance, 
if in -some series, numbers 2 and 3 occur, then the next number is 5, i.e., 2 -f 3. 
The best known of all series of this type is: 

L 2, 3, S, 8, 13, 21, 34, 55, 89 . . . 

For example, the spiral tangent to a maple leaf grows through 90-degree 
arcs and each consecutive radius of each arc follows this very series. Formation 

of the seeds in a sunflower follows the same series. Professor Church of Oxford 
University devoted his life to this problem. He found that only slight deviations 

may be found and then in only two cases out of a thousand, the deviations 
being caused by exceptionally unfavorable climatic conditions. 

An important portrait painter of New York City, Wilford S. Conrow, 

devoted many years of research in order to find out how this series works in 
relation to the human body. He found an overwhelming amount of material 

in the ancient Greek theories of proportions. Conrow’s deductions are that it 
is this particular series that makes the human body beautiful to us. 

I have found in the field of music that each style (or family) of rhythm 
evolves through the series of such types. Here are all the series that are useful 
for musical purposes; 

I. 1,2,3,5,8,13. 

II. 1,3,4,7,11,18,. ... 
III. 1,4,5,9,14,23,. . . . 

As previously mentioned, all rhythmic groups (or patterns) of one style 

are the resultants of the generators of the same series. For example, if a certain 
rhythmic group is identified with r3-^-2. then groups of the same style will be 
produced by r5+3 or r5^3^2* 

iJT" re”ons' Schillinger does not significance in esthetics. His fuller statement 
•ei,t,!f case aurrounding is contained in his ‘Mathematical Basis of 

this statement, which is a statement of crucial the Arts,' which is to be published shortly. (Ed ) 
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The following are the important and practical combinations of generators 
to be worked out: 

SERIES I. 2*34-5 3*5*8 
SERIES II. 3*4*7 
SERIES III 4*5*9 

A. The Technique of Synchronization 

In order to synchronize three or more generators, it is necessary first to 
find their common product and their complementary factors. 

Let us take 2*3*5 
The product is 2 X 3 X 5 = 30 

The complementary factors are the quotients of the product by a generator. 
Thus, Af- = 15 means that 15 is a complementary factor of 2. 

Therefore: 15 (2) 
10 (3) 

6(5) 

This method offers two resultants (r and r') at a time, one serving as a 
theme, the other as a countertheme. Generators produce r, and the comple¬ 
mentary factors produce r'. 

2*3*5 

2x3x5 = 30 
30 (1) 

15(2) 

10(3) 

6(5) 

■■■■■■■■■■■■■a 
■■■■■■■■■■■■■■ 
■■■■■■■■■■■■■■ 
■■■■■■■■■■■■■a 
■■■■■■■■»■■■■ 
■■■■■■■■Baaaaa mmuummmm 

dOoddbi 

!iiiissssss5:sss5ssa:ssssssssss !■■■■■■ 
■■■■■■■■■■■I 

iiiiiii 
mmmmuum 

«■■■■«■■■■■■■■■ ■mu 
■ISSS™1"1■■■■■■■«■■■■ 

Figure 47. 

The rule of grouping is: group by any generator or any of the complementary 
factors. In the case of * 3 * 5, grouping is available through 2, 3, 5, 6, 10, 15, 

1-e ‘ 111 *. ¥• 
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Grouped through f, r' appears as follows: 

r I r pan r ppr rppr rppr uspr 
r‘8 r Or r r r p?- r 

Figure 48. 

It can be seen lrom this example that no more rhythmically suitable 

countertheme can be devised. The theme makes three recurrences while the 
countertheme makes continuous changes in much longer values. The listener 
has the opportunity to hear both themes together. 

All resultants from three or more generators have these recurrences and 

variations as their chief characteristics. 

CHAPTER 7 

RESULTANTS APPLIED TO INSTRUMENTAL FORMS 

"V\7‘HEN WE speak of time rhythm we are referring to the periodicity of at> 

v * tacks, that is, the intervals of time at which the attacks occur. 

A. Instrumental Rhythm 

Instrumental rhythm is made up of the number of places of attack; for 
example, in beating two differently pitched kettle drums in sequence, we are 
dealing with two places of attack. 

Synchronizations of these two types of rhythm—i.e., time rhythm and 

instrumental rhythm—are subject to the same laws of synchronization and 
interference as the time periodicity previously discussed.* 

When the number of places in an instrumental group does not coincide 
with the number of terms in a time group, then a common denominator will 
define the number of time groups—and the number of instrumental groups— 

until their recurrence. For example, if we use two differently tuned kettle drums 

on r3-i-2, the entire figure will close after the first group is over because the 
number of places in the instrumental group is two (kettle drums) and the number 

of terms in the time group is four (4 + 2 « 2). This means that while the 
instrumental group appears twice, the rhythmic resultant will appear once. 

r3-r 2 

Figure 49. 

Taking the same case of the two kettle drums for r3-f-2, we get a totally 

different resultant. The number of attacks in the instrumental group remains 
the same (2). The number of terms in the rhythmic resultant is 7 (2 + 1 + 1 + 
1 -f 1 4* 1 -f- 2). 7X2 = 14. Seven has a complementary factor 2, and 2 has a 
complementary factor 7. The kettle drum 2-attack figure will aTppear 7 times, 
while the rhythmic resultant appears twice. 

•Here we see the first of what will come to is another (that is, the pattern according to 
® great many examples of the way in which which the sounds are produced, regardless of 

bchuhnger’s theory of rhythm goes much which instruments are producing these sounds). 
Hu**" t^ian *he simple question of time Schillinger here discusses the application of his 

rhythm. Note that Schillinger here states that theory not only to the rhythm of the sounds 
instrumental rhythm is one thing (that is, the produced, but also to the allocation of parts 
pattern according to which instruments enter among various instruments. (Ed.) 
or drop out of the ensemble) and'time rhythm 

[27] 
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1*3-2 

Figure SO, 

This principle may be carried out to any desired degree of complexity, 
depending on the common denominator between the number of terms in a rhyth¬ 

mic group and the number of attacks in an instrumental group. The difference 
between two kettle drums and any melody or any instrumental form of harmony 
(accompaniment) with respect to this calculation is merely a quantitative dif¬ 
ference. 

Let us take a motif consisting of four different pitches, (for example:c,d, e, f); 
such sequence of pitches is merely one of the possible forms of melody. But 
superimposing r3+2 we obtain one group without recurrence because the number 
of pitches (intonation attacks), and the number of terms in the rhythmic re¬ 
sultant (time attacks), are equal (4 4-4 = 1). Taking the same four notes 

of the melody and superimposing r3+2, we get 7 X 4 = 28. The rhythmic 

group having 7 attacks acquires the complementary factor 4, i.e., it will run 4 

times until its own recurrence, while the melody having 4 attacks will acquire 
the complementary factor 7, i.e., it will run 7 times until its own recurrence will 
coincide with the recurrence of the rhythmic resultant. 

Figure Si. 

This technique makes it possible to run a very simple motif practically to 
infinity, as the duration of continuous variability depends solely on a common 
denominator. A simple example of rhythmic continuity through instrumental 
interference may be found in many arrangements of fox-trots. The figure of 
6 uniform attacks (two false triplets) placed in a common time measure (=$-) 

produces an interference of 8 4- 6. 84-6 reduces to 4 4- 3. Six acquires the 
complementary factor 4, and 8 acquires the complementary factor 3, i.e., the 
instrumental figure with 6 attacks runs 4 times in the course of 3 f measures. 

Figure SB, 
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The principles of rhythmic (time) and instrumental interference have been 
known since time immemorial. They constitute one of the most striking char¬ 
acteristics in the composition of rhythmic continuity as it exists in the music 
of the Orient as well as through the entire African continent. This tendency 
is almost as fundamental as the superimposition of a major generator on any 
uniform group—as for example, the imaginary grouping of the attacks of a 
ticking clock by 2, 3, 4, or any other simple number we can think of. 

B. Applying the Principles of Interference to Harmony 

The principles of interference of rhythmic and instrumental groups, when 
applied to harmony, produce the most effective forms of accompaniment. They 
make it possible, as well, to correlate a number of accompaniments simultaneously. 

At this point, the illustrations of harmony are restricted to three of the 
simplest instrumental forms. However, in the later part of the course, 

etails of the instrumental forms of harmony will be discussed. Here we will cite: 

(1) The two-attack instrumental figure (as in the polka). The first attack 

is the detached bass of harmony. The second attack includes all the 
remaining upper parts of a chord. 

(2) The four-attack instrumental figure (as in the fox-trot). The first 

attack is the lower bass. The second attack, the upper part of the 

chord. The third attack is another detached bass. The fourth attack 
the upper part of a chord, 

(3) The six-attack instrumental figure (as in the rhumba). The first attack 
is the lower detached bass. The second attack is the upper part of 

the chord. The third attack is the middle detached bass. The fourth 

attack is the upper part of the chord. The fifth attack is the upper 
detached bass. The skth attack is the upper part of the chord. 

(2) 

Figure 53. 

with the UDoer rhnSC ^ompamment ngure is merely (1) above, 
habanera fiPP h ^ havmg two attacks instead of one. The old tango and 

gures are like (2), except that the last attack is made on the lower bass 



30 THEORY OF RHYTHM 

The following diagrams illustrate the continuous run of these instrumental 
forms of harmony with various ampler rhythmic resultants, all used on one 
chord: 

3-r2 

figure 54 (continued). 
Figure 54 (continued). 
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Figure 54 {concluded). 

One may also compose other instrumental forms of harmony with as many 

as 16 attacks—such as an alternation of the four different notes in the bass, 

with the upper part of the chord doubled in two octaves: 

Figure 55. 

A still greater number of attacks in an instrumental figure may be produced 
by the common technique of arpeggio. Technically, any longer motif presents 

the same problem, except that its pitch commonly has a more limited range. 
When one time-group is distributed through the different places of attack, 

different individual parts become the resultants of interference between the time 
and the instrumental groups. For example,- if we have a figure of 4 places, as 

referred to in Item (2), page 29, and superimpose a time group, 2 +■ 1 +• 1 

(3 attacks), we obtain through the common denominator 12, 2 different in¬ 
strumental resultants. One is the sequence of attacks on chords; the other, the 
sequence of attacks in the bass, when all the bass attacks are tied over. The 

upper part produces the resultant 2 (2 +- 3 + 3) and the bass, 2 (3 +- 3 -f 2). 
This is a striking example of transformation of one type of rhythm into another 
—a result of the phenomenon of instrumental and time interference. 

The 2 +1 +1 is a traditional classical figure, and, as expressed in the 
following musical example, consists of a quarter and two eighths. Yet the result 
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sounds like a rhumba. This is due to the neiv resultant which appears as a 
sequence of the attacks of the bass notes. 

Four attacks 2 + 1+1 (three attacks) 

4x3= 12 attacks 

2 (2+3 + 3) 

[Rhumba ] 

2 (3 + 3+2) 

Figure 56. 

The preceding technical items may also be treated in combination. The 
following example represents the application of two generators and their re¬ 

sultants, combined with the instrumental interference. The accompaniment 

represents the minor generator (2). The sustained chords represent the major 

generator (5). The melody represents the resultant (5 4- 2). In addition, the 

whole score is carried out through an alien measure grouping, While the entire 

rhythmic score would occupy 4 bars in £ time, it takes 5 bars in £' time. This 

example illustrates* the possibility of introducing various rhythmic resultants 
into music which is supposed to be written in common time. 

pjisS® «a*«ple in Figure 57 is of more than 
way in because it foreshadows the 
mienfr.H h ^ fu orchestral scores of unprc- 

riehness and complexity are de¬ 

veloped logically and organically from the 
rhvthmic raw materials now being discussed in 
this section. (Ed.) 
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CHAPTER 8 

ItteTI? -n tui'r * 
COORDINATION OF TIME STRUCTURES 

MOTION—that is, changeability in time—is the most important intrinsic 

property of music. Different cultures of different geographical and his¬ 

torical localities have developed many types and forms of intonation. The latter 
varies greatly in tuning, in quantity of pitches employed, in quantity of simul¬ 

taneous parts, and in the ways of treating them. 
The types are as diversified as drum-beats, instrumental and vocal monody 

(one part music), organum, discantus, counterpoint, harmony, combinations of 
melody and harmony, combinations of counterpoint and harmony, different 

forms of coupled voices, simultaneous combinations of several harmonies, and 
many others. Any of these types—as well as any combinations of them— 
constitute the different musical cultures. In each case, musical culture crystal¬ 

lizes itself into a definite combination of types and forms of intonation. The 

latter crystallize into habits and traditions. 
For example, people belonging ‘to a harmonic musical culture want every 

melody harmonized. But people belonging to a monodic musical culture are 

disturbed by the very presence of harmony. Music of one culture may be music 
(meaningful sound) to the members of that culture; but the very same music 
may be noise (meaningless sound) to the members of another. The function¬ 

ality of music is comparable to a great extent to that of a language. 
Nevertheless, oiMorms of music have one fundamental property in common: 

organized time. The plasticity of the temporal structure of music, as expressed 

through its attacks and durations, defines the quality of music. Different types 
and forms of intonation—as well as different types of musical instruments— 

come and go like the fashions, while the everlasting strife for temporal plasticity 

remains a symbol of the “eternal” in music. 
The temporal structure of music, usually known as rhythm, pertains to two 

directions: simultaneity and continuity. The rhythm of simultaneity is a form of 

coordination among the different components (parts). The rhythm of continuity 
is a form of coordination of the successive moments of one component (part). 

People of our civilization have developed the power of reasoning at the 
price of losing many of the instincts of primitive man. Europeans have never 
possessed the “instinct of rhythm” with which the Africans are endowed. So- 

called European “classical music” has never attained the ideal it strived for, 
that ideal being: the utmost plasticity of the temporal organization. When 

J. S. Bach, for example, tried to develop a coordinated independence of simul¬ 
taneous parts, he succeeded in producing only a resultant which is uniformity.* 

We find evidence of the same failures in Mozart and Beethoven. But a score 

in which the several coordinated parts produce, together, a resultant which 

>— • 
♦That is to say, when the separate rhythms of scores, and develops a method of scoring, so 

of the separate parts of a Bach score are that the separate parts, while satisfactory 
“added up,” the result tends to be simple rhythmically by themselves, all “add up” to 
uniformity. Schillinger suggests the desirability a new rhythm which is hot uniformity. (Ed.) 

[34] 
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has a distinct pattern—has been a “lost art” of the aboriginal African drum¬ 

mers. The’age of this art can probably be counted in tens of thousands of years I 

T-oday in the United States, owing to the transplantation of Africans to this 
continent, there is a renaissance of rhythm. Habits form quickly—and the 
instinct of rhythm in the present American generation surpasses anything 

known throughout European history. Yet our professional “coordinators of 
rhythm,” specifically in the field of dance music, are slaves to, rather than 
masters of, rhythm. There is plenty of evidence that the urge for coordination 
of the whole through individualized parts is growing. The so-called “pyramids” 
(sustained arpeggio produced by successive entrances of several instruments) 
is but an incompetent attempt to solve the same problem. 

Fortunately, we do not have to feel discouraged or moan over this “lost 
art.” The power of reasoning offers us a complete scientific solution. 

This problem can be formulated as the distribution of a duration-group 
through instrumental and attack-groups. 

The entire technique consists of five successive operations with respect to 
the following: 

(1) The number of individual parts in a score; 

(2) The quantity of attacks appearing with each individual part in suc¬ 
cession ; 

(3) The rhythmic patterns for each individual part; 

(4) The coordination of all parts (which become the resultants of instru¬ 

mental interference) into a form which, in turn, results in a specified 
rhythmic pattern (the resultant of interference of all parts); and 

(5) The application of such scores to any type of musical measures (bars). 
Any part of such a score can be treated as melody, coupled melody, block- 

harmony, harmony, instrumental figuration—or as a purely percussive (drum) 
part. Aside from the temporal structure of the score, the practical uses of this 

technique in intonation depend on the composer's skill in the respective fields 
concerned, i.e., melody, harmony, counterpoint and orchestration. 

Distribution of a Duration-Group (T) through Instrumental (i) 
and Attack (a) groups. 

Notation 
pH number of places in the instrumental group, 
pla number of places in the attack-group. 
aa number of attacks in the attack-group. 

aT number of attacks in the duration-group. 
Pi- the final number of places. 

A the synchronized attack-group (the number of attacks synchronized with 
the number of places). 

A the final attack group (number of attacks synchronized with the duration- 
group). 

T the original duration-group, 

T the synchronized duration-group, 
the final duration-group, 

the number of final duration-groups. 
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Procedures: 

(1) Interference between the number of places in the instrumental group (pli) 

and the number of places in the attack-group (pla). 

pT ^ Hi! pla 
pla’ pli (pla) 

(2) The product of the number of attacks in the attack group (aa) by the 
complementary factor to the number of places in the attack-group (pli 

after reduction). 
A « aa* pli 

(3) Interference between the synchronized attack-group (A) and the number 

of attacks in the original duration-group (ax). A, _ L - aj-plj 

ay ax 

(4) The product of the original duration-group (T) by the complementary 

factor to its number of attacks (A'). 

T' = T*A' = ^'aa‘p^ 
ax 

(5) Interference between the synchronized duration-group (T') and the final 

duration-group (T"). 
T 

‘ l 't'lt 

A. Synchronization of an Attack-Group (a) with a Duration-Group (T). 

Distribution of attacks of an attack-group (aa) through the number of attacks 

of a duration-group (ax). 
First Cose: ^ 

ax 
A = ax 
r= t 

Example: 

aa = 4a; T = r3+2 “ 6t; ax = 4a 
A — 4a 

T' =6t 

T=rcrr 

Figure SB. 

Second Case: ^ 

a-p 

A = a^«-3a 

T' = T*aa 
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Second Case: T' 
1 

Example: 
Nr- = T' 

T - 6t; T" - 5t 
N5t = 6 

Figure 62. 

Third Case: Tf ^ T, i.e., a reducible fraction 
TV/ O' 

1 *« 
Nr “ t> i 

Example: 
V - 6t; T" - 4t 

f =4 
N4t “ 3 

T"= 

Example: 

aa = 5a 

Figure 63. 

T = rs-f-2 — 10t; ax = 6a 

* Si 
Figure 64. 

equivalent 
(3) When T" ~ f, = 25T 

a) i sm 
(2) 6 attacks are equivalent to lOt; lOt X 5 = 50t 

Figure 65 (continued). 

m
il
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Figure 65 (concluded). 

C. Synchronization of an Instrumental Group (pli) with an Attack- 

Group (pla). 

Example: 

pli => 4; pla = 3; aa = 3+2+3 = 8; T = r5H-2 =10t; 6a 

0) blit] (3) ¥=^ 
(2) 8 X 4 = 32 (4) ^ 

(5) T" = 8t; = 20T" 

Figure 66. 



theory of rhythm 

Example; ^ 

PH " 3: Pla "• " *+*+*+3-10; T = Is±} = I6t. 10a 

0) f-1 
(2) 101 = 10 
(5) T" = 8t; - 2T' 

(3) «-l 
(4) 16*1=16 

Figure 67. 

Example: 

pli = 6; pla = 8; aa = re^.a ±= 20* T — f 
a 5t4 J - r4^-3 = 16t; 10a T" = 8t 

• S’ M;.VS «' £■**-• 
(5) ^ = 12T" } — 16t-6 = 96t 

(See Fig. 73, p. 43 for an example based, on [his formula) 

Example of composition of the result-, „t „r ■ 
e resu|tant of instrumental interference. 

pli = pla = 2 

_Forni of distribution: 5+3 

Figure 68. 

(1) f-1 
(2) 2 is an equivalent of 5+3 = 8 
(3) Duration-group: T = r5*2 = i0t 

« «J;i ” ‘ 
(5) WhenT#' = |l-i|Lt.«,5T,/ 

Preliminary Scoring 

Final Scoring 

Figure 69. 

Example of composition of the resultant of instrumental interference. 

pli = 3 pla -X ^ 

Form of distribution: 8+3+5 +2 

CD f-1 

(2) 4 is an equivalent of 8+3+5+2=18 

„ . 18X1 = 18 
W Duration group: rS4-2-lOt ^=3 3(6) 

(4) 10t X 3 = 30t aT - 6 

(5) When T" - f 4* - 1ST" 

Figure 71 (continued). 
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Final Scoring 

Figure 72 (continued). 

COORDINATION OF TIME STRUCTURES 





CHAPTER 9 

. >:„ HOMOGENEOUS SIMULTANEITY 

AND CONTINUITY (VARIATIONS) 

HTHE PRECEDING discussions show us that all rhythmic groups or rhythmic 
patterns are necessarily either the resultants of interferences or portions 

of such resultants. 

A figure such as 2+1+1 may be conceived as one of the elementary rhythmic 
patterns in } time. Yet it is possible, with this method of analysis, to assign 
it directly to a definite place in a definite resultant—the second bar of 

The longer patterns, such as the resultants produced by higher number-values 
or by more than two generators, possess enough variation in themselves. 

Musical memory does not emphasize a group of 20 or more bars as one 
indivisible pattern. Therefore, the recurrence of such pattern seems to be less 

monotonous than the recurrence of a short pattern. Short patterns obviously 
call for variations. There are many outstanding compositions in which direct 
recurrence of a short pattern is used throughout the entire composition—for 

example, the first movement of Beethoven’s symphony No. 5; Chopin’s waltz 
No. 7, the second theme. In such compositions, rhythmic monotony is usually 

compensated for by the variety of devices used on some other components-r- 
it may be the dynamic, the harmonic, or the melodic composition of a piece 
that makes this music sound interesting. The best method by which to+ietect 
the effect of the purely rhythmic patterns is to isolate them from all other com¬ 

ponents, i.e., to take a fragment of a composition, or the entire composition, 
and to perform the rhythm of it in a percussive manner. 

The musical components of rhythm include durations, rests, accents, split- 
unit groups and groups in general. The inherent variability of /any of these 

components of the time rhythm depends solely on their quantitative form, i.e.f 
whether there are two or three, or more, elements involved in the pattern sub- 

jected to variations—for example, two elements, two durations, two forms of 
accent, as well as binary combinations of rests with durations, or durations 

with accents. The variability of groups follows the general principles of per¬ 
mutations. 

A. General and Circular Permutations 

There are two fundamental forms of permutations: first, general permuta¬ 
tions; second, circular permutations (displacement). The quantity of general 

permutations is the product of all integers from unity up to the number express¬ 
ing the quantity of the elements in a group. For example, the general number 

of permutations produced by 5 elements equals the product of 1 X 2 X 3 X 4 
X 5, i.e., 120. The number of circular permutations equals the number of 

elemrate in a group. Thus, five elements produce five circular permutations. 

When an extremely large amount of material is used, general permutations 
become very practical. But in cases where limitations are imposed by a certain 

(46] 
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type of esthetic necessity, circular permutations may solve the problem better 
than a vague selection from the entire number of general permutations. 

In the following exposition, a bi-coordinate method will be applied to the 
composition of continuity. A linear sequence of the modified versions of one 

pattern produces the time coordinate (continuity). A correlation of the modified 
patterns produces the coordinate of simultaneity (or pitch). In other words, 

all modified forms of the original pattern may grow through the bi-coordinate 
system, i.e., they appear one after another in different parts, thus producing 
compensatory balance. 

In terms of music the above simply means that a score may be evolved with 
a continuous variation of the original pattern following through the different 
parts. 

Variations 

2 Elements 

Table of Permutations: 

ab ba 2 permutations 

Examples of application: 

(1) Durations: Binomial 2 + 1 a =* 2; b = 1 

1(2+1) +(1 + 2) j j J J 
(1+2) +(2 + 1) rf5 r r 

Figure 76. 

Binomial 5+3 a = 5; b = 3 

(5 + 3)+ (3 + 5) J J-JrJ 
(3 + 5)+ (5 + 3) rw (M5f 

Figure 77. 

(2) Rests: [indicated with a circle around the number]: 

Binomial 1+1 a = (?); b =» 1 

(©+i) + (i+©) l J j t 
(i + ©)+(© + i) " r i i r 

Figure 78. 

Binomial 2 + 1 

(® + 1) + (2 + ©) 
(2 + ©)+((2>+1) 

1* j J i 
r i ur 

Figure 79. 



Figure 82 (continued) 
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(5+ 3) + (6+3) 

(5 + t)+ (T+S) 

J JiJ. JJU- 
_y'7 * tru 

r pr Or 
* * T r pn 

Figure 82 (concluded). 

The additional component may emphasize the entire duration of the ac¬ 
cented attack, as in the previous example, or be considerably shorter (just to 
single out the moment of attack). 

Example: 

Binomial 2 + 1 

J J J J 

m 11 r 
or 

pill l l yp 
Figure 88. 

poJ“ns of rests maY be combined with variations of the previous com- 

(4) Split-Unit groups 

Binomial 2 -r 2 a = 1 + 1 
b ? 2 

nj in 
r u cir 

Figure 84. 

When durations are non-uniform, either value may be split in a binomial 

5+3 a = 3 + 2 b = 3 

U312)+3]+ C3 + (3+2)] Jjinj j_.r] j J 

[3+(3+2)J + [f3 + 2)+3] ' 

Figure 85. 
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5+3 a = 5 b = 2 + 1 

[5+(2+lfl+[(2+1) +5J _-T3JT3 J nj 
[(2+1) + 5]+[5+ (2+1)3 = r Zft~' 

Figure 86. 

(5) Groups In General 

Any rhythmic group may become an element and be permuted with its 
converse. 

»= J JDIJ1J I b= J1J |J 1 
-a-1_fe_I--1-2- 

j J] j]j jij i n ni i n i n m 
err r cr r cr err r cr err cjt r 
-5-J-i 1-S-1 i 

Figure 87. 

* Song: “Pennies from Heaven”** 

J j J. J)J JJJ J J lo 

rfr r rT° r" pr rlrpr 
Figure 88. 

J. J J JJ JJJ JJ. JJJ JJ- J- J J JJ 
rrr rr r r r rr r r r rr rrr rr 

Figure 89, 

•Schiffinger’a study of musical styles and chooses illustrative materials frequently from 
the development of music took him from the popular songs. (Ed.) 
earliest forms of recorded sound to con- ***Copyrightl936 bySantly-joy.Inc., New York, 
temporary popular American song. With an U.S.A. Reprinted by permission of the Publishers, 
unusual catholicity of interest, Schillinger 

Figure 93. 
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Examples of Application: 

(1) Durations: 
Trinomial 2 + 1 + l;a = 2; b = 1 

r rr rr r rrr 
rr r rrr r rr 
rrr r rr rr r 

figure Of, 

Trinomial from rg^-3 3 4-3 + 2 
a » 3; b = 2 

(3+34-2) + (3+2+3) + (2+3+3) f’ft |* fCTClT r PiT? 
(3+2+3)+(2+3+3) ^ (3+3+2) ftftff rT'ft ftfr r 
(2+3+3) + (3+3+2) + (3+2+3) I r rcr? I refr r I fttct? I 

Figure OS. 

Trinomial from 14+3 3 + 1+2 

a = 3;b = l;c = 2 

(a+b+c) + (a+c+b) + (c+a+b) + (b+a+c) + (b+c+a) + (c+b+a) 

I rpr IrTplrfrclprlr Iprr Irpri 
figure 06. 

Using circular permutations of this continuity, we obtain the following 
simultaneity: 

r pr r r p r p? p pr pr pr r r 3 r 
r r p r pr p prsr pr r r pr r pr 
r pr p pr>r pr r r pr r pr r r p 
pr pr pr r r pr r pr r r p r pr p 
pr r r pr r pr r- r p r p? p Pr pr 
r pr- r pr r- r p r p? p pr pr pr r 

figure 07. 

(2+1+1)+(l+2+l) + (1+1+2) 

(1+2+1)+ (1+1+2)+ (2+1 + 1) 

(1+1+2)+ (2+1+1)+(1+2+1) 
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(2) Rests: 

Trinomial 1+1+1 a = ©; b = 1 

* r r r * r r r * 
r * r r r * * r r 
r r * * r r r * r 

figure 98. 

Trinomial 2 + 1+1 

urr r *r 
r tr r r* 
r r* urr 

figure 99. 

(3) Accents: 

> 
Trinomial 1+1+1 a = 1; b = 1 

figure 100. 

r n 
urr 
r *rl 

(@+1 + 1)+(2+®+1) + (2+1+©) 

(2+®+1)+(2+1+0)+ (@+1+1) 

(2+1+®)+(@+i+i)+ ( 2+®+l) 

(®+1+1)+(1+®+1) + (1 + 1+®) 

(1+©+1)+(1+1+®)+ (®+i+i) 

(l+1+©)+(®+1+1)+ (1+0+1) 
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Trinomial 2 + 1+1 

r r r r r r r r r 
r * x r * * * * r 
r r r r r r r r r 
* * r X * * i r r $ X 
r r r r r r r r r 
* \ x r r * * * * r * 

Figure 101. 

Each group (with its additional component) of shifting accents may be 

used individually. Simultaneous application of all groups requires instruments 
of a different tone-quality for each group. 

(4) Split-Unit Groups: 

Trinomial 2+2+2 a = l+ l;b = 2 

lt r r r Lrr r r u 
r Lrr r r lt UP P 
r r u up r P UP 

Figure 103. 

Trinomial 4 + 1+ 3 a*4;b*l;c«2 + l 

f pr p r pptppp p [4+i+(2.i)]++(2.i).ij+[<2.i>.4.o 

tr rtrrpr p r pr p [4+(2.im>d2M).4.o+em.(2.d3 
rpr pr prpr rcrB2+1 >+4+iii+Dt+i+<2+1 o+&+(2+1 )*ij 

Figure 109. 
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(5) Groups in general: 

a “ 2 + 1 + 1; b — 1+2+1;. c — 1+1+2 

r V r r r‘ r r r°r r ‘r r r r r r r” r 
b c a c b a 

rr r rrr r rr rrr rr r r rr 
c a b b a c 

rrr r rr rr r rr r r rr rrr 
c a b b a e 

rrr r rr rr r rr r r rr rrr 
a b c a c b 

r rr rr r rrr r rr rrr rr r 
b « a c b a 

rr r rrr r rr rrr rr r r rr 
b c a c b a 

rr r rrr r rr rrr rr r r rr 
« a b b a c 

rrr r rr rr r rr r r rr rrr 
a b o a c b 

r rr rr r rrr r rr rrr rr r 
Figure 101. 

Song: “Pennies from Heaven"* 

I a_ jj c 

" J Vw iJ^J J U- ' 
,r ^ ,nr r r °_I r- p r r 

r r r r r r' rrr rrr 
Figure 105. 

‘Copyright IW6 l>ySan,l»-Jaj .Inc. Nnv York, U.S.A. Reprinted by permission of the Publishers. 
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Assuming that any of the permutations is an original group, each of the 
above groups may be limited to.four circular permutations. 

Example: 

Figure 110- 

Examples of application: 

(1) Durations: 

(a) Ail four elements different. 

Quadrinomial from ^-*.4; 4 + 1 + 3 -f 2 

a = 4;b = l;c = 3;d = 2 

(4+1+3+2) + (4 + 1+2+3) + (4+2+1+3) + (2+4+1+3) + 

+ (4+3+1+2) + (4+3+2 + 1) + (4+2+3 + 1) + (2+4+3+1) + 

+ (3+4+1+2) + (3+4+2+1) + (3+2+4+1) + (2+3+4+1) + 
+ (1+4+3+2) + (1+4+2+3) + (1+2+4+3) + (2 + 1+4+3) + 

+ (1+3+4+2) + (1+3+2+4) + (1+2+3+4) + (2 + 1+3+4) + 

+ (3+l+4f 2) + (3+1+2+4) + (3+2+1+4) + (2+3+1+4) 

This 24-group continuity produces a 24-part simultaneity in 24 bars of 

time. 
By limiting the original group (4+1+3+2) to circular clockwise permuta¬ 

tions, we obtain 4 parts in 4 bars of time. 

(b) Two elements identical. 

Quadrinomial from ^.*.3; 3 + 1+ 2+ 2 
a=2;b = 3;c = l 

Form: b + c + a + a 

Starting with the third permutation of the corresponding table, we obtain: 

(3+1+2+2) + (1+2+2+3) + (2+2 + 1+3) + (2+1+3+2) + 
+ (1+3+2+2) + (3+2+2+1) + (2+3+2 + 1) + (3+2 + 1+2) + 
+ (2+1+2+3) + (1+2+3+2) + (2+2+3+1) + (2+3+1+2) 

This 12-group continuity produces a 12-part simultaneity in 12 bars of f 

time or in 24 bars of f time. 

(c) Two pairs identical. 

Quadrinomial r3^-21 2 + 1 + 1 + 2 
a = 2; b - 1 
Form: a + b + b + a 

Starting with the second permutation of the corresponding table, we obtain: 

(2 + 1 + 1+2) + (1 + 1 +2 +2) + (1+2+2 + 1) + (2 + 1 +2+1) + 
+ (1 +2 + 1+2) + (2+2 + 1+lV 
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This 6-group continuity produces a 6-part simultaneity in 6 bars of £ time 
or in 12 bare of £ time (1 « J ). Clockwise circular permutations give 4 parts 
in 4 bars of £ time or 4 parts in 8 bare of £ time (1 =* J). 

(d) Three elements identical. 

Quadrinomial; 3 + 1 + 1 + 1 
a = 1; b = 3 
Form: b + a + a + a 

Starting with the fourth permutation of the corresponding table we obtain: 

_ (3+1+1+1) + (1+1+1 +3) + (1+1 +3+1) + (1+3+1+1) 

This 4-group continuity produces a 4-part simultaneity in 4 bars of £ time 
or m 8 bars of £ time. 

Assigning different symbols to the same group we obtain the form a + b+b 
+ b. 

Then: (a+b+b+b) + (b+a+b+b) + (b+b+a+b) + (b+b+b+a) 

This produces a continuity of perfect musical quality: 

I r Irrr irrTrrrirrrTr rlrrrlr l 
Figure 111. 

Similar modification of the symbols assigned is possible with any group 
containing identical terms. 

(2) Rests: 

Quadrinomial: 1 + 1 + 1 + 1 
a a®: b <= 1 

(®+l+l+l) + (l+®+l+l) + (l+i+®+i) + (i+i+1+(i)) 
(l+CD+i+i) + (i+i+(1)4.1) + (1+1+1+0) + (0+i+j+i) 
(1+1+0+1) + (1+1+1+0) 4. (0+i +1 +1) + (1 +0+1+1) 
(1+1+1+®) + (®+i+i+i) + (l+0+i+i) + (i+i+0+1) 

* r r r 
r \ r r 
r r i r 
r r r * 

r * r r 
r r * r 
r r r * 
irrr 

r r * r 
r r r x 
* r r r 
r * r r 

r r r * 
* r r r 
r 1 r r 
r r * r 

Figure 112. 
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(3) Accents: 

Quadrinomial: 1 + 1 + 1 + 1 
> 

a = 1; b = 1 

r r r r r r r r r r r r r r r r 
r * * * * r it i; * r * it it it r 
r r r r r r r r r r r r r r r r 
t r * * * * r i i it r r it * * 
r r r r r r r r r r r r r r r r 
* * r * t * r r i it * r it it 

r r r r r r r r r r r r r r r r 
* * 1 r r * * it r * it i; * r 1 

Figure 113. 

Analogous permutations of accents may be devised in non-uniform groups. 

<4) Split-unit groups: 

Quadrinomial: 2 + 2 + 2 + 2 
a = 1 + i; b = 2 

err r r 
r err r 
r r err 
r r r er 

r err r 
r r err 
r r r er 
err r r 

r r err 
r r r er 
err r r 
r err r 

r r r er 
err r r 
r err r 
r r err 

Analogous permutations of rests may be devised in non-uniform groups. 
Figure 114. 
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Analogous permutations may be devised in non-uniform groups originally 
consisting of four places. 

Example: rS4-4 «4 + l + 3 + 2 

Either of the numbers may be split into a group: 

(a) 4 = 2+2 (2+2) +1+3+2 
4 =s 2+1 +1 (2+1+1) +1+3+2 
4 - 1+2+1 (1+2+1) +1+3+2 
4 = 1+1+2 (1+1+2) +1+3+2 
4 - l+l+l+l (l+l+l+l) + 1+3+2 

(b) 1 ~i+* 4+(^-+|-)+3+2 

(c) 3 * 2+1 4+1+(2+1)+2 
3 - 1+2 4+l+(l+2) +2 
3 = 1+1+1 4+1+(1+1+1)+2 

(d) 2 = 1+1 4+l+3+(l+l) 

Any of these versions may be used. Each version contains 4 circular and 
24 general permutations. 

(6) Groups in general: 

• -X1J J J 
"-J n.i i 
■ -J J JTJ 
*-j j j n 

figure US, 

This group produces the following simultaneity and continuity: 

Simultaneity—4 parts. 

Continuity through circular permutations—16 bars. 

Continuity through general permutations—96 bars. 

The original 4 bars take the appearance of the example in (4) [split-unit 
groups]. 

HOMOGENEOUS SIMULTANEITY AND CONTINUITY 61 

Any rhythmic resultant placed in 4 bars may constitute such a group. 

For example: 

ri±_3 KrouPed by a in | time: 

r r r r r r r r 

r r r 
c 

r r r 
d 

r r 

r r r 
d 

r r 

r r 
i a 

r r 
b 

r r r r 
figure 116. 

f r r 
c 

r r r 

The number of variations is the same as in the preceding group. 

A group consisting of 4 elements may be produced from any rhythmic 
resultant, providing a non-uniform distribution is applied: 

For example: ^-5.3 grouped by b in f time: 

If" ir r 1 r ir r \ r \ 
' ^-—1 7 1-1 --1 

a bed 

or 1 

I f” If Mr 1 r r I r i 
—' b 

or 1 1 

I f I r r 1 r i r r l r i 

r If r | r 1 r r if i 
C 

figure 117. 
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Example from the popular song, Pennies From Heaven.* When necessary 
a tie between the notes may be omitted, though it is not necessary if the same 
group repeats itself. 

bod 

r pr r r pr rrr r f *"*ss 
O 

• b c d a 

r pr r f r r f "N 
o r pr r 

_e . d a b 

rrr r f O r pr r r pr 
d a b _c 

o r pr r r pr rrr rf 
Figure ilB. 

You can see what ext:- ordinary variety may be secured by a group as simple 
as this through this variation method.** 

As the general vdocity of musical time (tempo) is most essential in establish- 

ing one or another characteristic, many of the preceding examples, although 
similar w “umbers, produce musical continuities as remote from each other in 
character as Handel is remote from the Cuban rhumba. 

_4,-uf!r,^p!l?“gr0l,p:(®t1+1+1) +o+®+'+i)+d+i+®+i) + 
-^1 -f-1 +1+Q)) being written and performed as largo in \ time. 

lUrrr lr*rr |rr*r Irr r* | as compared with: 

'’USUIS 
Ltf’cnr 

Figure H9. 

tarttr in the tempo of a fast rhumba. 

•Copyright 1936 bySantly-Joy, Inc., New York, U.S.A. Snprinttd by pemriwion of the Publinhem. 

••The tables are worked out in detail on 
these and other pages not only for the sake 
01 clarity; it is also a way of famishing the 
practical composer with ready-made cal- 
culatKms so that each pattern need not be 

re'calci^ted ^Jeneyer it ia needed in actual 
composition. The time-saving way is to refer 
to the tables in this book, although a composer 
should also know how to calculate them afresh 
for himself, if necessary. (Ed.) 

chapter 10 

GENERALIZATION OF VARIATION TECHNIQUES 

A. Permutations of the Higher Order. 

TN order to increase the quantity of material evolving through the variation 
method from the original group, the method of permutations of a higher order 

may be used. The original element or group produces variations which in turn 
become the elements of the next order. The quantity of elements in the next 

successive order equals the square of the number of the elements of the preced¬ 
ing order. If the original number of elements in a group ia 3, there will be 9 
elements on the second order, 27 on the third, etc., through circular permuta¬ 
tions. If the original number of elements in a group is 3, and general permuta¬ 

tions are used, this will give 6 elements in the second order, 720 in the third 
order., etc. 

Indicating the original elements as a of the first order (aj), b of the first 
order (bj) . . . and permuting them, the elements of the following order, which 

represent a group of the elements of the preceding order, are acquired. The 

technique of evolving the elements of the following order acquires this ap¬ 
pearance: 

ai + hi = a2 
bi + at = b2 

a2 + b2 « a3 

b2 + a2 = b3 

an—l + bn_[ = an 

bn-i+ an-i = bn 

Figure 120. 

This device is particularly important when one wishes to evolve a large 
quantity of material from the original group, or when the number of elements 

in the original group is exceedingly small. If the procedure of the permutations 

carried out through the sixth order concerned only 2 elements in a group, we 
would obtain ultimately only 26 = 64 elements. 

Music of animated motion .often contains a much greater quantity of rhyth- 
mic elements (durations, rests, etc.). For example, take an average waltz. In 

ordinary printing we get at least 4 bars to a line, and 5 lines to a page. In music 
moving in eighth notes for 3 pages, we would get 360 durations 

163] 
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Example: 

Application of the Permutations 

of the Higher Orders to the 

Original Group. 

at bi bi »t 
at = J, bt=J3 

lr cricrr itrr ir critrr ir trlr trierr l 

Moving for 8 mare bare, i.e., carrying out the permutations of the 4th 
order to their completion, we obtain 16 bars containing great variety as com¬ 

pared to the usual continuous recurrence. This device is particularly useful 
when the character of music must be retained for considerably longer time 
than the original rhythmic group permits. Instead of making continuous re¬ 
petitions of the original group, or recurrences of the larger groups, it is possible 
with this device to go on continuously for an indefinite period of time. 

In musical backgrounds for motion picture photoplays, when the scene 
devetops m a definite locality—associated with definite rhythmic forms of ex- 

pre«aon, it may be desirable to extend this homogeneous rhythmic character 
to 10 or 15 minutes. In the case of a “Cuban'* scene, rhumba rhythms are con¬ 

sidered characteristic of the locality. The audience is distracted from action 
on the screen by the musical background when a definite dance composition is 
played repeatedly. This annoys the audience and never helps to bring out the 

dramatic plot On the contrary, it produces conflicts with the plot. A neutral 
background, being homogeneous and yet continuously varied, will serve the 
purpose much better. 

Permutations of the higher orders based on the original group with 3 ele- 
mente(a,f b,, c,) offer the following combinations by 2: a, + bj, a, + c„ b, + Cl. 

lhese are the tluee posable alternatives when 2 elements out of 3 are used. 

The2 elements form a group of 3, following the regulations described in the 
preceding paragraph concerning the higher orders of the 2 elements. 
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The original group containing 3 elements has only one combination by 3: 

follows- + C* ThC °rder Permutations on the 3 elements appear as 

ai bj -f- Ci = a2 

ai 4* Cj 4- bj = b2 
ci + a3 •+■ bj = c2 

bi + a, + cj = d2 

hi 4- Cj 4- ai = e2 
ci + hi -f ai = f2 

o k Ti*?e ? eIements of the second order produce, in turn, combinations by 
2, by 3, by 4, by a and by 6. 

Combinations by 2: 

*2 + b2 b2 + c2 c2 + d2 d2 -f e2 e2 + U 

a2 4* c2 b2 + d2 c2 + e2 d2 + f2 
a2 4- d2 b2 + e2 c2 4- f2 
az 4- e2 b2 4- f2 
az 4* f2 

The total number of cases: 15 X 2 =30 

Combinations by 3: 

a2 4* b2 + c2 a2 + c2 4- d2 a2 + d2 + e2 a2 4- e2 4> f2 
a2 4- b2 -f d2 a2 + c2 + e2 a2 + d2 4* f2 
a2 + b2 4- e2 a2 4- c2 4- f2 
a2 4- b2 4* f2 

b2 4- c2 4- d2 b2 4- d2 4- e2 b2 4- e2 4- f2 
b2 + c2 + e2 b2 4- d2 + f2 
b2 4- c2 4- f2 

c2 4- d2 4- e2 c2 4- e2 + f2 
c2 4- d2 -f f2 

da + e2 4- f2 

The total number of cases: 20 X 6 = 120 

Combinations by 4: 

a2 + b2 4 c2 + d2 a2 4- c2 4- d2 4- e2 a2 + d2 4- e* 4- f2 
a2 4- b2 4 c2 4- e2 a2 4- c2 + d2 4" f2 
a2 4- b2 4- c2 4- f2 

a2 4 b2 4 d2 4 e2 a2 4- c2 + e2 4- f2 
a2 4- b2 -f d2 + f2 

a2 4 b2 4 e2 4* f2 

b2 + c2 + d, + e2 b2 + d2 + e2 + f2 
b2 + c2 + d2 + f2 

c2 + d2 4- e2 4 f2 
lotnl number of cases: 15 X 24 = 360 
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Combinations by 5; 

a* *t* bt 4* c* 4 d* -f e* a3 -f b* 4* d2 + e2 4 U a2 4 c2 4* d2 4 e2 4 f2 

a* 4* bt 4- c3 4- dj 4 fj 
a* 4- bj 4* c* 4* e3 4* f* 

bi 4- Cj 4 dj 4 e8 4* U 
Total number of cases: 6 X 120 = 720 

Combinations by 6: 

a* 4- bt *4 cj 4- d* 4- e* 4 f» 
Total number of cases: 1 X 720 = 720 

All the recurring elements arc eliminated from these charts, which may be 
consulted for coefficients of recurrence. For example, a trinomial combination 
from 2 elements, a* and bi, with a coefficient 2 for the first element becomes 2ai 4 
bi- This is a trinomial with 2 identical elements, and is subjected to circular per¬ 

mutations only. Smilar cases occur with 4 elements having 2 identical terms, 
2 identical pairs or 3 identical terms. Similar cases occurring with 5 and 6 ele¬ 
ments may contain 2, 3 and more identical elements. They will be treated as 
coefficients of recurrence. 

Example: 
Trinomial of the Third Order 

bi ©i »i Ci bi 

Irru'lrur errr Irrtrlorr Irtrr l 
1-1”-1 

a» b* L-.—. 

®i *1 bj 

err r Irrtrlrerr 

a3 
bj at c4 

r err ir r crlerr r 
n 1 

da 
a k3 

, bi e, a, e, b, a. 

Ir err lerr r Ir r u err r Ir err Ir r er 
«a 

_h_ 
figure 122. 

When the quantities exceed the necessary amount, one can limit the number 

of variations by reducing diem to circular permutations only. The illustrations 
above are applicable to rests, accents and other group formations. 

A NY rhythmic group may be adapted to the processes of growth in simul- 

taneity and continuity. There are three fundamental procedures, varying 

with regard to the quantity of material to be evolved. The first process gives the 
minimum quantity; the second, the intermediate; and the third, the maximum 

quantity. Select them in accordance with the requirements of each specific case. 

(1) We may produce elements from a given rhythmic group by means of splitting 
the group through the simplest divisor. For example, the group (grouped 

by 4) represents a 4-bar continuity in ^ time. 4 may be divided by 2 and 

thus we obtain two groups: ai comprising the first two bars, and bj compris¬ 
ing the second two bars. This gives us an 8-bar, 2-part continuity, i.e., the 

quantity of the original material is doubled both in simultaneity' and con¬ 

tinuity. 

^_ b2 

J. J j jj j jj jj. j jj jj. j. j j jj 
rrr IT r r r rr r r r rr rrr rr 

b a a 2 

Figure 123. 

Wha group is not divisible by 2, like ^4.3 (grouped by 5), it may 

become divisible by 3. In this case it produces 3 bars in ■§• or any other quin¬ 
tuple time—the first bar being ai, the second bi and the third ci. 

(2) We may produce elements from a given rhythmic group by means of splitting 

it through individual bars. For example, in ^4.3 grouped in 4 bars, each 

individual bar becomes an element. The first is ai, the second blt the third 
Cj, and the fourth dj. This splitting process produces a 16-bar continuity- 
in 4 parts—i.e., both simultaneity and continuity of the original group 

become quadrupled. 

ai 
r r 

bi 
rrr 

ci 
rrr 

di 
rr 

bi ci di ai ci di ai bi di bi ci 
w 

r rr 
ci 

rrr 
d, 

rr 
% 
r r 

ci <*1 at bi di ai bi ci ai bl ci di 
ei 

rrr 
di 
rr 

ai 
r r 

b, 

r rr 
at bi ci ai bi ei dt bi C1 di ai 

d, 
rr 

ai 
r r 

b. 
rrr 

ci 
rrr 

bi ct di bi ci di ai ci di ai bi 
Figure 124. 

[67] 
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This continuity is the result of circular permutations. Using general per¬ 
mutations for this group, and splitting it in this particular fashion, we obtain 
4 bars in 4 parts with 24 different variations, i.e., 96 bars in 4 parts. In a case 
in which the simplest divisor corresponds to the splitting by individual bars, 
as in the above-mentioned case of rs+3, this becomes the only possible 
procedure. 

Any bar splitting will ultimately give a score in which the number of 
parts equals the number of bars, and the number of bars equals the number 
of circular or general permutations available for such number. For example, 

takin^ r8-h5 and having it grouped in 8 bare, we obtain 8-part simultaneity 

in 64-bar continuity through circular permutations, and 322,560 bar con¬ 
tinuity through general permutations as the total number of permutations 
of 8 elements equals 40,320. 

(3) We may produce elements from a given rhythmic group by means of splitting 
the group through the individual attacks (terms). For example, if we take 

the group T4+3» we obtain 10 individual terms. These 10 terms are subjected 

to growth in simultaneity and continuity. The original group arranged in 
4 bare of the | time produces a 10-part simultaneity. These 4 bars evolve 

into a 40-bar continuity (4 X 10). Thus the total original score has 40 
bars in 10 parts. 

ri± 2 3 1 
a, b, 

2 1 
C| dj 

l i »' f 

l l 
et f, 

l 

gi 
2 hi l 3 

it 

r r r rr rrr rr 
r r rr rrr rr r 

r rr rrr rr r r 
rr rrr rr r r r 

r rrr rr r r r r 
rrr rr r r r rr 
rr rr r r r rr r 
r rr r r r rr rr 

rr r r r rr rrr 
r r r r rr rrr r 
Figure 125 (continued). 
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r r r r r r r r r r 
r r r r r r r^ "r f f r r- 
r r r r r r r r r- r 
r r r r r r r^ r r r r r 
r r r r r r r r r r r r 
r r r r r r r^_ r s. r r 
r r r r r^ "r r r r r r r 
r r r^ r r" r r r r r r r 
r r r r r r r r r r 
r r "r r r^ rr ’ r r r r r 

Figure 125(concluded). 

While in this case there is a coincidence oi the figure 1 + 2 + 1, the number 
of parts moving simultaneously obscures it entirely to the human ear. This 

40-bar, 10-part score produces 10 elements of 4 bars each. 10 elements give 

3,628,800 permutations, which give a total of 145,152,000 bars in 10 parts. 
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CHAPTER 12 

DISTRIBUTIVE POWERS 

A. Continuity of Harmonic Contrasts 

THE PROBLEM of producing contrasts in a rhythmic continuity concerns 

the two fundamental methods of evolving rhythm: one, the patterns generated 

through the common denominator and constituting rhythmic continuity within 

musical measures (£); and too, the patterns of the measures themselves growing 

into a complete form expressing the rhythm of measures and of groups of meas¬ 
ures. The first form of continuity is called fractional continuity; the second, 

factorial continuity* 

While rhythm evolves within musical measures, musical measures them¬ 

selves also evolve their own rhythm. The correlation of the two in time sequence 
will be incorporated into the series of factorial-fractional continuity. Homogeneous 

series of factorial-fractional continuity are power-series. The original value (*) 

.represents the determinant of a series. Powers express the evolution of a number 
through its own continuous factoring. Algebraic treatment of the power processes 
is quantitative and-being applied-does not bring the solution of esthetic 

problems. Esthetic problems are essentially the problems of distribution and 
coordination, and not problems of mere quantity. The process of evolving any 
initial ratio through its own factoring lies within the field of distributive powers. 

The distributive powers organize not only the value but also the quantity of the 

values harmonically. Any binomial under distributive powers becomes a quadri- 

nomial on the square (2s = 4). It becomes a group of 8 terms on the cube; a 

trinomial becomes a polynomial with 9 terms on the square (3 *)••■■ 
It happens to be the fact that the art of music, with regard to its rhythm, has 
not yet exceeded the series with the | determinant. In the later exposition of 

the evolution of rhythmic families, this subject will be treated in detail. 

•This is an idea fundamental to Schil- 
linger’s system. He does not regard what is 
ordinarily called “musical form’ —i.e., the 
organization of the entire composition by 
“phrases," etc.—as something separate from 
the rhythms of the measures themselves. 
Rather, he regards the two — fractional 
(rhythms within the measure) and factorial 
(rhythms of the measures)—as two aspects of 
the same central situation. (Ed.) 

♦♦For example, the algebraic square of a + b 
is: a* + 2ab + b*. But the distributive square 
would be a* + ab + ab + b*. In other words, 
the magnitudes are distributed rather than 
frying grouped after coefficients. The use by 
Schfflinger of distributive powers is one of the 
most extraordinary aspects of his system; these 
are used as well in other arts, especially in 
the spatial arts. (Ed.) 

D 1ST R I BIT I VIC POWERS 

The following is a survey of the series which have been employed to date 

x 
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lV- • • 

x 
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• • -rS-* • • 
9 . . ■ 9. , . 81... 
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8. 

27. 

64. 
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Kach of the series whose determinants are indicated above represents centuries, 

sometimes millennia, of musical evolution. The most fam'h^ 0 “' 

with the determinant 2. The f series represents our own musl“l ov l “t”n' 

known to us as an important and glorious period of musical history, but it ctr 

ta"nh does not appear very inventive from the viewpomt of object,ve analysis 

VTe * se es has in fact, caused more damage to the evolut.on of our mus.cal 

Llturo than it has helped the development of our culture-with respect to 

rhythm. The number-values found on the right side of the 

the constant growth of factorial groups (measures and them ntult.ples Th 

left side represents the formation of rhythm.c patterns withm each consecut.ve 

“he real reason for our musical civilisation’s being so elementary is the 

svatem of notation evolved in Europe during recent centuries Just a feu 

hunTed vearfago, the very idea of recording rhythm inyelativc durations 

seemed to be quite revolutionary (Mensural system). Even in our own day our 

Xls teach 'that a whole note consists of two half-notes, and the - hal - 

notes consist of four quarter notes, etc. But why mention « « ™ 
an ordinary process of arithmetical divis.on by two? The habit of tlunk,ng 

in two’s and their multiples has retarded the development of our mus.cal c.vd,na¬ 

tion to such an extent that the rhythms used on the African continent, 

thirty thousand years ago, seem to us to be quite exetmg even todaj . The 

general field of classical music deals with d,vis,on by two and multiplication by 

two. All classical rhythmic patterns are based on halfs quarters, eights. . 

teenths, etc. Measures accumulate through the same multip es^ 

Measure-groups (known as "phrases' ) appear in 2 s, 4 s 8 s, etc. Hie 

efficiency of the accepted system of musical notation, was sufficiently discussed 

at the beginning of this theory.* When a symbol called a quarter-note appears 

in musical writing, such a quarter-note does not necessarily represent a quarter 

of anything, it mat be a half, a third, a fifth, or any other fraction. 
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Classical music developed very little efficiency in the f series. The right side is 
entirely untouched, because when we find 3-bar phrases in such music, it is 
usually a 4-bar or 2-bar phrase-modified by means of expansion or contraction. 
The left side of the £ series is somewhat better developed. There are bars with 
three beats (f time), there are bare with nine beats (f time), and there are even a 
few rare cases when fj appears as a musical measure, as in some works of J. S. 
Bach. If music has been developed so consistently up to the seventh power on 

the determinant f, why should it not develop with the same consistency on any 
other determinant in use? Why has the f- series reached only its cube, and that 
only on very rare occasions? Why has it not developed beyond the first power 
on the factorial side? The answer is obvious: it is the system of musical notation 
attached to the f- determinant that has caused this conservatism. 

Racial and national instincts in music, in contrast to acquired musical 
theories, work with much greater consistency although evolution by this means 

often requires centuries. Some of the American Indians, for example, exhibited 
such a degree of consistency with regard to the $ series. Their evolution did 
not reach high powers, yet these Indians are uniformly consistent as to both 
the factorial and fractional side. They use the first, the second, and the third 
powers of the above-mentioned series—see the musical example in Helen Roberts' 
book, Form in Primitive Music, page 39.* 

The £ series, being a multiple of the $ determinant, does not exhibit strik¬ 
ingly new characteristics. We find such music frequently in many compositions. 

Groups Iike4 + 1 + 1+1-M may be found in any music entitled “March” 

0 J&). The accumulation of bars in groups of 4 and 16 is also quite common. 

Classical music of the past evolving from the series with the f determinant, 
deviating from the natural consistency of powers, resorts to simplification. The 
common case of music written in f time is not a quarter-note split into a triplet 
of eighths but into two eighths. This means that £, instead of being multiplied 
by ^ and becoming £, is multiplied by £ and becomes £. This is typical of a 
hybrid resulting from unintentional simplification. The eighth in f time more 

frequently becomes J9 , and not M as it should. 

This tendency toward simplification is philosophically puzzling. We must 
ask: is this number 2 an unavoidable condition in evolving any series, as in the 
multiplication of spermatozoa, microbes and lower organisms? Or is the deter- 

rim^fidtkn?38 ^ “ h may 8em at fir8t’ merely “h™* 35 an outlet f°r 

If the former were true, one could not find any pure folk music with any 
other form of fractional development than that achieved through the deter¬ 
minant 2. Yet the music of Hindustan, very old and very traditional, uses a 

great many triplets representing a split-unit group of one beat in f time (J = J72) 

This shows that die £ determinant, which is characteristic of many old Asfetic 
civilizations, acquires its amplified fractioning through the f series, i.e., i x£ = 15. 
The f senes, ,n addition to being characteristic of Hindustan, is also character¬ 
istic of Java, Bali and Siam, whence it moved westward influencing Afghanistan. 
Persia, Arabia and Russia. 

•American Library of Musicology, 1932. 

The present state of development of the £ series is still very elementary. 

Five-bar groups are as rare as the quintuplets in £ time ( ^= )• If is 

difficult now to make a definite statement on the origin of the £ series. It may 

have been influenced by the forms of poetical rhythm known as pentameter; 
and it may have been influenced by the very same factors that influenced the 

formation of a pentacle in starfish. 

The £ series, being a multiple of f by £, is a typical European hybrid. It 
may be found throughout the southern coast of Europe, and especially in Por¬ 
tugal, Spain and Italy. Most of the barcarolles of the last-mentioned are written 

in f time. 

The £ series is also of eastern origin. In its trans-Asiatic travel it has crossed 
the Ural mountains and reached central Russia (Borodine, Rimsky-Korsakov). 

The £ series is of African origin and is the most popular in dance music 
in the United States today. These patterns undoubtedly penetrated through 

the imported Negro slaves, as the patterns are common in South America, 

Puerto Rico, Cuba and the United States. In ancient times, these rhythms 

traveled northward and reached Arabia. During the late Middle Ages they 
got as far as North Russia and slowed down their pace, in the literal sense of 
the word. Folk music in the region of the White Sea and the Arctic Ocean on 

the north coast of European Russia has patterns identical with the Cuban 

rhumba of today; but the absolute velocity of the rhumba is doubled as compared 

with Russian music. This means that by taking a rhumba and slowing it down 

exactly twice, you will get the rhythms of North Russia, constructed in -f time 

and even with the same duration values (f- = £-f- •§••+■ £). To make such music 

sound like a real rhumba, it would simply be necessary to transcribe it into 

a different pitch-scale. 

The application of this method of series leads me to the conclusion that a 

consistent form of what is known as “jazz” is music which must be written in £ 
time, having £ as a common denominator and 8-bar phrases accumulating by 

eighths. The standard form of popular song usually includes a 32-bar chorus. 
The perfect structure is achieved when the chorus comprises a unit of factorial 
continuity and consists of 64 bars (82)—see Cheek to Cheek, and other 64-bar 

choruses. 

The £ series is now in the making. There are some symptoms of it disclosing 

itself through different channels of musical time, one being the Viennese waltz 
and the other, the fox-trot. Today we have a hybrid of the old £ series and the 

coming £ series, which bears the trade-name of “swing.” 

A complete analysis of the phenomenon known as "swing,” so prominent 
today, will be given at the end of the rhythm theory. It is a hybrid trying to 

crystallize itself through the intuitive efforts of musicians into the pure style 
of the £ series. 

There are no difficulties in the wav of producing any type of pure or hybrid 
series, because an\ of the series-determinants may become either major or 

minor generators of the rhythmic resultants, and may be incorporated in many 
ways Any doubts as to the construction of a perfect 5-bar phrase may be dis- 



74 THEORY OF RHYTHM 

solved by the utilization of the devices previously offered, such as 
grouped by 6; r^+s grouped by 6, etc. 

The above survey of the series of factorial and fractional continuity shows 

that these series belong to the category of power series. Since each number in 
any of these series represents a monomial, further-evolution of the monomial 

into a polynomial will express the more developed patterns of factorial and 
fractional continuity. The latter, like the original, are subjected to powers. 

The method of distributive powers offers a solution for producing harmonic 

contrasts developed from the original polynomial ratio. This solves the rhythmic 
problem of composing counterthemes to any theme, whether the contrast appears 
in simultaneity (counterpart) or continuity (sequence). The law of distributive 
powers is a common esthetic law of proportionate distribution of harmonic 
contrasts. 

B. Composition of Rhythmic Counterthemes by Means of Distributive 

Powers 

1. Square of a Binomial 

Formula: (a) Factorial: (a+b)2 = a2 + ab + ab + b3 

(b) Fractional: (^ +'If b') ’ = 

a1 , .ab i ab , b2 
(a +b)* (a+b)’ *** (a +b)2 "f" (a +b)2 

To obtain the distributive second power of a binomial, it is necessary to 
multiply the first term of a binomial by itself, then by the second term; then 
the second term by the first, then the second by the second. 

Formula for Synchronization: 
(a) Factorial: S = a(a+b) + b(a+b) 

(b) Fractional: S = ~ • (f±£) • (f^g) 

To synchronize the initial binomial with its distributive square, it is neces¬ 
sary to multiply the first term by the sum of the binomial, then the second 
term by the sum of the binomial. 

Example: 

Series J Factorial binomials: 2 + 1 and 1+2 

Fractional binomials: 4+4 and | + f 

(4 + 4)* = £ + f + } + 4 (squaring) 
4 (f +4) = f + 4 (synchronization) 

(4 + f)J- 4 + f + f + 4 (squaring) 
4(4+4) =4 + 4 (synchronization) 

The initial binomials synchronized with their distributive squares represent 
the themes. The distributive squares represent the counterthemes. 

The proportion ^ = p produces harmonic contrast, and gives esthetic 

satisfaction as to both simultaneity and continuity. 

distributive powers 

Here is a graph and the musical notation of the entire score: 

9 
S f 

njT_n_n_ri 
nr r P 
r X 
pr r pr. 
r r 

Figure 126, 

The same score may be expressed in f time. 

1 r r r 
r r r r r r r r r 

_ 'r r r r 
r >• _ Lr 
p r r r 

If r T 

Figure 127. 

+ f and i + f + 4 + 4 »n continuity 

1 r r l H r r t 
Figure 128. 

Musical intuition in some cases approximates these harmonic groups. Here 

is a musical pattern which is the nearest approximation to the case above: 

fr uu 
Figure 129. 

instead of 4 + 2 + 2 + 1. 

As the numbers grow, it becomes practical to find the resultants of inter¬ 

ference between the initial binomials (synchronized with their squares) and the 
resultants of the distributive squares. Having these resultants available, such 
power groups may later be utilized in scoring (when more than one orchestral 
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part is desirable), and the resultants of such groups may be used when one part 
must express the same rhythm. 

In addition to this, it is important to supplement the score by ra+b where 

a is the determinant of a series. For example, in the foregoing case the deter¬ 

minant is 3; therefore 1*3+2 may be added to the score. 

Here is a complete graph and musical notation of the power groups, their 
resultants and ra-f.fr- 

3* =*9 mm^ 
(2 + l)» ;; . 

.tutlftlf 
::::: r "pr : p 

3(2+1) 

0+2)* 
r r* 

.pr r pr 
30+2) ::::: r r 

r 
pr tur p 

444444 r* r r ri+i ::::: p puspr 

JHgure 130. 

Chart of the binomials for squaring and synchronization: 

12+1 13+1 |3+2 4+1 * 5+1 
1+2 1+3 2+3 1+4 1+5 

14+3 5+2 6+1 |S+3 7+1 t 5+4 7+2 8+1 
3+4 2+5 1+6 3+5 1+7 4+5 2+7 1+8 

Factorial groups of rhythm build the entire continuity in terms of bars, 

while fractional groups build the bars in terms of duration-units (attacks). 

II. Square of a Trinomial 

Formula: (a +b+c)1 * (a* + ab + ac) + 

+ (ab + b* + be) + (ac + be + c#). 

The distributive square of a trinomial is the sum of the products of a by 
itself, of a by 6, of a by c, of b by a, of b by itself, of b by c, of c by a, of c by b 
and of c by itself. 

The number of terms in a distributive square of any polynomial equals 
tine square of this number. Thus, a binomial gives 4 terms (22 = 4), a trinomial 
gives 9 terms (3* = 9), etc. The denominator of all terms in the distributive 

power-groups equals the quantitative square of the sum. In a trinomial it equals 

(a+b+c)*, like (3 + 2 4* !)* - 36. 

In order to synchronize any initial polynomial with its distributive square, 

it is necessary to find the products of each term by the sum of the polynomial. 
For example, to synchronize a trinomial with its distributive square: 

a (a+b+c) , b # (a +b +c) . c . (a 4-b +c) 

a+b+c * (a+b+c) a+b+c * (a+b+c) a+b+c (a+b+c) 

Series: •£- 

J + i+i i + i+1 i+i+f 
($ + i + i)2 = (A + A + A) + (A + A + A) + (A + A + A) 

i(f + i + i) = A + A + A 
(i + f + i)2 = (A + A + A) + (A + A + A) + (A + A + A) 

t(i + f + i) = A + A + A 
(i + i + i)2 = (A + A + A) + (A + A + A) + (A + A + A) 

i(i+i+f) = A + A + A . 
A J> _ 

t±±A 

r e_r i_l* • m~r 
r r r 
llj'p r p IS—1 

r r r 
6£J* L£f C_T r 
r r r 

njTjijTjxrajTTLi 

Figure 131. 

Tiie same score may be expressed in four bars in -f-, assuming -fa = J 
The above computation can be made in integers, i.e., using the numerators only. 

As in the case of binomials, it is desirable to supplement this score by the 

first and second power resultants and the ra+b. 

Here is the entire score: 

42 = 16 

16 (1) 

(2 + 1+1)? 

4(2 + 1 +1) 

(1+2 + 1)* 
40+2 + 1) 

(1 + 1+2)* 
4(1+ 1+2) 

r* 

r 

r«+3 

tLUU&XUUUlX 
r u 
r r r 
ILJP f p ILJ 
r r r 
feLT us lj r 
r r r 

r r r r 
tr 

Figure i32. 
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It is interesting to note that in this particular case, i.e., 2 + 1+1 and 
1 + 1 +2, classical composers found intuitively the exact distributive squares. 
As you can see from this score, they could not find the square of 1 + 2 + 1. 
This figure, i.e., (1 + 2 + 1) + (2 + 4 + 2) + (i + 2 + 1), or assuming fa = 

j>).i tr pr r ir r pr p i is very practical for the tango. 

Chart of Trinomials 

2+1+1 2+2+1 3+1+1 4+1+1 
£ 1+2+1 $ 2+1+2 1+3+1 f 1+4+1 

1+1+2 1+2+2 1+1+3 1+1+4 

3+3+1 2+2+3 5+1+1 3+3+2 6+1 + 1 
i 3+1+3 2+3+2 1+5+1 | 3+2+3 1+6+1 

1+3+3 3+2+2 1+1+5 2+3+3 1 + 1+6 

4+4+1 2+2+5 7+1+1 
t 4+1+4 2+5+2 1+7+1 

1+4+4 5+2+2 1+1+7 

The reason for selecting these particular trinomials will be given later when 
we discuss the evolution of style in rhythm. 

III. Generalisation of the Square 

(Any Polynomial) 
Formula: 

(a + b + c + ... + m)1 = (a* + ab + ac + ... + am) + 
+ (ab + bJ + be + ... + bm) + (ac + be + c* + ... + cm) + 
+ ... + ) am + bm + cm + ... + m2) 

The following graphs and scores on quintinomials of the f series should 
be worked out. 

2+1+2+1+2 
2+1+2+2+1 
2+2 + 1 + 2 + 1 

1+2+1+2+2 
1+2+2+1+2 

The following is an illustration of the first one: 

(2+1+2+1+2)* = (4+2+4+2+4) + (2+1+2+1+2) + (4+2+4+2+4) + 
+ (2+1+2+1 +2) + (4+2+4+2+4) 

Synchronization: 

8(2+1 +2+1+2) = 16 + 8 + 16 + 8 + 16 

Assuming fa f 

figure 133. 
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This is the square of the real “hot" rhythms and it has the utmost plasticity. 

Nobody realizes, liscening to this, that the eight bars are over. 
Any bar of treated as f will give a perfect countertheme for 8 bars. Take, 

for example, the song used earlier, Pennies from Heaven.* The first bar (it 

may be any bar) is J- J^J J , i.e., 3 + 1 + 2 + 2. It is now squared in order 

to obtain a countertheme for the first eight bars. 
(3+ 1+ 2+2)2 = (9+ 3+ 6 + 6) +(3 +1+2+2) + 

+ (6 + 2+ 4 +4)+ (6 + 2+ 4 +4) 

Theme: T' Pf SiTT0 HUT T'PP ^(7?° 

°"rcrr nr r rprr r r r r r r rr 
figure 134. 

IV. Cube of a Binomial 

Cubes produce a new degree of harmonic contrasts. Distributive cubes 

serve as a new countertheme to the groups of the first and the second power 

with which they will be synchronized. Cubes are related to squares as the squares 

are related to the first powers. The number of terms in a distributive binomial 
of the third power equals 23. The recurrence of the central binomial is an in¬ 

variant of a distributive binomial of the third power. 
To obtain the distributive third power of binomials, multiply the distri¬ 

butive second power binomial by the first term of the first power binomial, 

then by the second term of the first power binomial, and add the products in 

the same sequence. 

Formula: 

(a+b)3 = a(a2 + ab + ab + b2) + b(a2 + ab + ab + b2) = 

= a3 + a2b + a2b + ab2 + a2b + ab2 + ab2 + b 

The denominator is the quantitative cube of the sum. 
To synchronize the distributive square with the distributive cube, it is 

necessary to multiply each term of the square by the sum of the first power 

binomial. . , 
To synchronize the first power binomial with its distributive cube, it is 

necessary to multiply each term of the first power binomial by the square of 

the sum of the binomial. 

(2 + l)3 = 2(4 + 2 + 2 + 1) + (4 + 2 + 2 + 1) = 
= (8+ 4+ 4 + 2) +(4+ 2 + 2 + 1) =27 

•Copyright 1936 by Santly-Joy, Inc., New York, U.S.A. Reprinted by permission of the 

publishers. 
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Synchronization of the square with the cube: 

3(4 + 2 + 2 + !) » 12+ 6+ 6 + 3 = 27 

Synchronization of the first power with the cube: 

9(2 + 1) » 18 + 9 - 27 

V. Cube of a Trinomial 

The procedure remains the same, i.e., each term of second power groups 
must be multiplied consecutively by each term of the first power groups, and 
the products added in sequence. 

1+2 gives the converse of these groups. Assuming fa = h 
we obtain 3 bars in ■§• time. 

r 'fa r fa >• r 
tHUSZll zisums mm cir 
r_j'£ >' r pr fapr r p 
r r r r r r 
r fa Y r r >• 
pr r pr r pr fa 'pCr 
rl r r r r r 
r r r fa Y Y ' 

r of tne cube pr r p? p r pr pr !prpr r p 
r of the square r r r r r r r 
r of the original r r r >■ r Y 
r 8-f 2 (synchronized) r r r r r r r• 

Figure 135. 

secon^d^T^^ harm°nically “ntra8tin* ^ Using the first, the 
second and the third power groups in sequence, we obtain a harmonically grow¬ 
ing animation. > s 

As cubes become relatively great number-values, it is practical to limit 
them for musical purposes by the value 3. Thus, the only practical binomials 
oTc- 

»n f in | in £ 

2 + 1 3 + 1 3+2 

1 +2 1+3 2+3 

The previous second power resultants can be easily 
multiplied by the corresponding determinants. 

synchronized, being 

Formula: 

(a + b + c)8 = a[ (a2 + ab + ac) + (ab + b2 + be) + (ac + be + c2) ] + 
+ b[ (a2 + ab + ac) + (ab + b2 + be) + (ac + be + cz) ] + 

+ c[ (a2 + ab + ac) + (ab + b2 + be) + (ac + be + c2) ] - 
= (a3 + a2b + a2c + a2b + ab2 + abc + a2c + abc + ac2) + 
+ (a2b + ab2 + abc + ab2 + b3 + b2c + abc + b2c + be2) + 
+ (a2c + abc + ac2 + abc + b2c + be2 + ac2 + be2 + c3). 

The denominator equals the quantitative sum of the trinomial cubed. 
Synchronization of the first and the second power trinomials with the dis¬ 

tributive third power trinomial must be performed by consecutive multiplication 
of each term of the first power trinomial by the square of the sum of its terms 

—and for synchronization of the square—by the sum of its terms. 

Example: 

(2 + 1 + l)s - 2[ (4 + 2 + 2) + (2 + 1 + 1) + (2 + 1 + 1) ] + 

+ [ (4 + 2 + 2) + (2 + 1 + 1) + (2 + 1 + 1) ] = 

+ [ (4 + 2 + 2) + (2 + 1 + 1) + (2 + 1 + 1) ] + 

+ [ (4 + 2 + 2) + (2 + 1 + 1) + (2 + 1 + 1) ]. 

Synchronization of the square: 

+ (8 + 4 + 4)+ (8+4+4).+ ( } ( + +8j + 

Synchronization of the first power: 

16(2 + 1 + 1) = 32 + 16 + 16 

Assuming fa = 

J iJ j jij n J J1JHJ73 j nmm 
o r r r r r r r r 
o JO o o 

Figure 136. 
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VI. Generalisation of the Cube 

(Any Polynomial) 

To obtain the distributive cube of any group (polynomial) it is necessary 
to obtain the distributive square first, and multiply all its terms by the terms 
of the first power polynomial consecutively; then add the products in sequence. 

Formula: 

(a + b -f c -f ... + m)* » a[ (a2 4- ab + ac + ... + am) + 

+ (ab + b1 + be + ... + bm) + 

4- (ac + be -f c* + .. - + cm) + ... 
... + b[ (a* + ab + ac + ... + am) + 

4- (ab + ba + be + - -. + bm) + 

+ (ac + be + cl + ... + cm) ] + ... 
... 4- c[ (a* + ab + ac + ... + am) + 

+ (ab + bs + be + ... + bm) + 
-f (ac + be + c* + ... -f cm) ] + ... 

... + m[ (a* + ab + ac + -.. + am) + 

4- (ab + b* + be + ... + bin) + 

-f (ac 4* be + c* + ... 4- cm) j... 

Synchronisation must be obtained in the manner previously described, i.e., 
through consecutive multiplication by the square of the sum, or by the sum 
respectively. 

One bar in | will give an entire countertheme of 64 bars. Charts and scores 
should be made on the following quinlinomtals; 

2 4-1 4-2 4- 1 4-2 

2 + 1 4-2 4-2 4-1 
2+2+1+2+1 

14*2 + 1+ 2 + 2 
1+2+2+1+2 
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VI1. Generalisation of All Powers 

(Any polynomial to any power) 

When further development of contrasting parts is desirable, powers higher 
than the cube may be used. In practical application they will concern mostly 
small groups and small number-values. 

The procedure remains the same. To obtain the distributive n- power of 
any group, it is necessary to obtain the distributive n — 1 power of the same 
group, multiply each term of such group by the terms of the first power group 
consecutively, and then add the products in sequence. 

If G stands for a group, this may be expressed through the formula: 

Gn= G(Gn_1) with distribution. 

To synchronize the first power group with the n- power group, it is neces¬ 
sary to multiply each term of the first power group by the quantitative n — 1 

power of the same group. To synchronize the second power group with the n- 
power group, it is necessary to multiply each term of the second power group 
by the quantitative n — 2 power of the same group, etc. 

All permutations in the power groups must be pei formed through the terms 
of the preceding power. 

Example: 
a b 

, § T" 
r* p r r p 
i-1-1 

Example: 

o J J JJJ JJJ J JJ JJ]JJ] jjj jjjj n 
o o o o r r o r r 

_u° ° _ O 

Example: 

o jj jjj jjj jjj JJ3JJ3 jjj 
° p ° o O j? j3 O |9j2 

d e f h i 

Figure 137 
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CHAPTER 13 

EVOLUTION OF RHYTHM STYLES (FAMILIES) 

Wl MAY note that uniform groups, as well as non-uniform groups, generate 
various resultants. Whereas synchronized monomial periodicities generate 

symmetric polynomial resultants, distribution within any T (the determinant 
of a series) produces binomials or trinomials characteristic of all resultants where 

such T is a major generator. . _ , 
Taking all or some of the possible binomials of a certain T and synchronizing 

them with their converses, trinomial resultants may be obtained. Through syn¬ 

chronizing all permutations of such trinomial resultants (of one series), quinti- 
nomials are obtained. The resultants of quintinomials and their permutation- 

groups produce groups with nine terms. 
This is a normal serial development as observed in various phenomena 

(for instance, in crystal formation). 

Formula: ____ 

in= 2ntn_i~ 1 

The number of terms in the n^ interference-group equals the product of 

the number of terms in the n-1* interference-group by 2, minus 1. 

Example: 
The first interference-group 

The second “ 

The third 
The fourth “ 

The fifth 

ij = 2 
ia « (2X2) - 1 - 3 

i, = (2X3) -1=5 
14 = (2X5) — 1 = 9 
15 = (2X9)-1=17 

With the limit 9 as a determinant of a series, the maximum non-uniform * 

resultants are quintinomials. Uniform resultants follow the maximum non- 
uniform resultants. The greater the number-value of a determinant, the more 
interference-groups it produces. While die determinant 3 produces only one 
non-uniform interference-group, 9 produces three non-uniform interference- 

groups. 
All the conseculivp interference-groups generated by one determinant constitute 

the evolution of all rhythmic patterns in the corresponding family (style). 
This makes it possible to predict all future rhythmic patterns of one family 

as well as to trace the origin of more involved rhythms. 
As previously mentioned, the original (binomial) interference-groups may 

be obtained directly from a determinant. For example, the distribution of a 

determinant 5.gives 3 4* 2 and 4 + 1, awl their permutations. These binomials 
are the first and the last binomials of the resultants obtained from two uniform 
monomial generators in which the determinant of a series is a major generator (a). 

Therefore, 3 + 2 are the first two terms of a resultant where a = 5; 4 + 1 

are the last two terms of a resultant where a = 5. 

[841 

EVOLUTION OF RHYTHM STYLES (FAMILIES) 

In order to trace the origin of a binomial with respect to two uniform gen¬ 

erators, it is necessary to take the greater number-value of the binomial and to 

assign it as a minor generator (b). The sum of the binomial is the major generator. 

Example: 

J is a given binomial. 

Find the determinant of the series. 
5+3 = 8 The determinant is § 

Find the a and b generators. 
b = 5 a = 5 + 3 = 8 

The binomial represents the first two terms of rs+s- 

Existing music often works on more than one determinant, thus producing 

various hybrids. It is very easy to trace the origin of any rhythmic hybrid, as 

such groups which are alien to the family are indicated in musical notation 
by the numbers. For instance, the triplets in -j- time; the duplets in f time, etc. 

Leaving theories aside for the moment, I believe that the actual cause of 
any new interference-binomial appearing in the world is the urge toward un¬ 

balancing, that is, the centrifugal tendency. 
In the light of such a hypothesis, the origin of the “Charleston" 5 + 3 

binomial may be explained as a tendency to disturb the balance of f- + \ in or 

i + ^ in f. 
Chronologically, the more unbalanced binomials (such as $• + f) appear 

later than the balanced ones (such as f + f), regardless of their structural 

complexity. While 5 + 3 has been known in the American dance-music for 

some time, 1+7 appeared as a prominent pattern only with the song, “Organ 

Grinder’s Swing." 
The prediction of new rhythmic families to come is based on the principle 

of the growth-through-power series. 
So far we have had, during the entire range of recorded history, the evolution 

of § into its second power f, and into its third power f. Most probably f will 

take its place in the near future as the second power of §. The series, $ is an 

exhausted European hybrid, being the product of 2 X 3. The •§- and If series 
are Oriental series of old origin. They may become fashionable for a while in 

the Western musical world. 
Thus, the series of factorial-fractional continuity express the evolutionary 

forms in the two-coordinate system. 

A. “Swing" Music 

The following is an analysis of the phenomenon known as “swing music" 
—it is an analysis of “swing” as it is performed, not as it is written out on paper. 

In view of the fact that triplets of eighths in common time are very prominent 
in this type of playing, particular attention must be given to the value 3, its 
multiples and its powers. Knowing from the previous analysis that § is the most 

probable candidate for the new style, 1 have studied all the “waltz-like" phe¬ 
nomena which have appeared during the last few decades. The utmost plasticity 
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of the Viennese type of waltz (such as the waltz from Rosenkavalier by Richard 

Strauss) is due to this figure: 

jfprTr'prTrpr | 
Figure 138. 

The above is 3 + 1+ 5 + 14-5-1-1 + 2 etc., where the characteristic 

grouping is one appearing between the two fives. 

The trinomial 4 +1 + 4 can be found in the second interference group 

in the {• series. Here again (as in the case of powers) is the intuitive approximation 
of the correct patterns. The waltz pattern is “trying to evolve” into its second- 
power. The idea of unity between the two greater number-values is right, but 

the number-values are only approximately correct. 

There are other hybrids which are characteristic of Viennese waltzes. For 

example, a hybrid between f- and £ series: 3 + 1 coming from -f- series and 

placed into $ series (£ time). 

ffPfTtrr'pl 
Figure 139. 

Most jazz (“Charleston Rhythm”) is a hybrid between f and $ series. 

Examine the following: 

* 

§ till LilsUhs 
r pT rrp r r prr 

Figure 140. 

And so, too, with all patterns of % series put into f time. 
The original binomial of this style is most characteristic of Viennese waltzes: 

£ J J1 I Jw I 
4 5 1 1 5 1 I 

Also the trinomial I 

of f series: 1 + 1+4 fLTf |CJf 
Figure 141. 

See “Rosenkavalier” 
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5+1, being placed into f time, produces: 

I mtrrTTcirrHt; <*=■ 
Figure 142. 

An approach to the -J family from another angle is “swing.” The founda¬ 

tion of the latter is the fox-trot in triplets. Rhythms of -f- and $ are modified 
on a basis of -J-f or and j (in triplets) musically. 

The common denominator units are the eighths. 

r J77 JT3 JI3 JT3 
8 3 3 3 

Figure 143. 

Through syncopation tendencies, plus the series binomial, wc obtain all 

the possible patterns of “swing.” 
The original patterns: 

$ J J>J JlJ i)J and $J>J J)J ilj J)J 
4 «—£—a lLj i—■t-J t.,.?, i u.4Lj 

Figure 144. 

The syncopated patterns: 

“*r, plf r, fpr l ■ r ; r r r r I 
« ° 1 i_j p , q i ■ ° i i_a-» i-SL-1 

“ * [ifL/Ljr\_f| 

<nLL IL IL IL 1 

* LL !LJ IL lLJ 1 

111* il u r'~'yj’Trj «• 
Figure 145. 

The characteristic values are: 

2, i.e., or J (an eighth tied to an eighth, or a quarter). 

3, i.e., i_J^ or (a quarter tied to an eighth, or an eighth tied to a quarter). 

4, i.e., J J (a quarter tied to a quarter). 
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Often some of these number-values appear as rests. 

... to n0te that’ even in ba"dS such as Benny Goodman’s, 
all orchestral parts am mrtften either in the * series patterns or f series patterns 
but are then translated into “swing" while being played. 

Figure 145, line 4, is the first true pattern of a f series trinomial (4 + 1+4). 

This pattern, with greater consistency, would appear as in line 4a. The number- 

C?TCt^Ut,th? f0Up unit is wronS* lt “ applied in the wrong type 
of measure, instead of f. * 

in T^US’ r®/*11866 ^,at ^ the Viennese waltz and the fox-trot are engaged, 
m a struggle for crystallization of the f family. 

All rhythmic interference groups have as the only alternatives in their 
evolution; ttlAer to evolve the higher powers of the same patterns, or to evolve into 
the higher powers of the same determinant. 

as fonowsentire Pr°CeSS °f the eVolution 0f rhythmic families may be expressed 

rl . 
r* . 

- - Pri . . 
. . Pra . . 

. SPrj . 

. SPr3 . 
- - ii 
. . i2 

rT • 
rl . 

- - Pr? . . 
. . Pri . . 

. SPr? . 
. SPrJ . 

. . ii 

. . i2 

A. . . Pr? . . • SPr? . • •’ i? 

A. * - PrS • SPr“ ■’ •* « 

r—is the resultant 

P—Permutations 

S—Synchronization 
i—Interference 

Continuous dotted line represents uniformity. 

, ,Th®?rst re8U*tant (ri) Produces its permutations (Pr,) which form the 
hret interference-group; these being synchronized (SPr,) produce the first in¬ 

terference. The resultant of this interference is the second resultant (r2), etc. 
he following graphs should be converted into musical notation; 
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CHAPTER 14 

RHYTHMS OF VARIABLE VELOCITIES 

'THE only constant velocity known in the physical world is that of light. 
By introducing constant velocities into the art forms we try to simplify 

the scheme of surrounding phenomena. But different forms of progressive, 
variable speed are also well known to us—through biological growth, through 
gravity, through different series of acceleration and different ratios of acceleration. 

The ratios of acceleration through gravity grow rapidly. Series like the 
natural harmonic series reveal a much greater gradually in their rates of ac¬ 

celeration. The urge for freedom in a musical performance often reveals itself 
by the speeding up or slowing down of a certain passage written out in musical 
notation as a uniform group. The increase and the decrease of speed may be, 
however, merely two reciprocals of the same series. 

Rhythms based on constant velocities are either continuous repetitions of 
Jh® terms of a monomial periodicity, or of several monomial or binomial per¬ 
iodicities synchronized. But rhythms based on variable velocities or progressions 
are single terms belonging to different periodicities. 

in the following list of different mathematical series, the series of gravity 
lms been eliminated as it is too "intense” for esthetic purposes. The simpler 
the ratios of acceleration, the more obvious the forms of acceleration will appear 
tothe listener of music. Such is the case of doubling or quadrupling the original 
speed. In all three forms of representation—number, graph and music—there 
is a constant speed which reveals various forms of acceleration through the 

actual number-values. Music expressed in such a way may be performed or 
conducted in a constant tempo—counting out all the durations exactly as they 
are represented by the number-values. 

Here is a list of various series of acceleration: 
(1) Natural Harmonic Series. 

1, 2,3, 4, 5, 6, 7, 3, 9 . . . . 

(2) Arithmetical Progressions. 
+ a constant 

+ 2 — 1, 3,5, 7, 9 . . . . 

+ 3 - 1,4, 7,10,13 . . . 

(3) Geometrical Progressions. 
Xn 

X 2 - 1, 2, 4, 8, 16 ... . 
X 3 - 1, 3, 9, 27 ... . 

X 2 - 3, 6, 12, 24, 48 ... . 

X 3 -2,6,18,54. . . . 

(4) Power Series. 

0th power 
2, 4, 8,16, 32 ... . 
3, 9, 27, 81 ... . 

5,25,125. . . . 

[90] 

(5) Summation Series. 

If 2, 3, 5, 8, 13, 21 ... . 
1,3,4,7,11,18 .... 
1,4, 5, 9, 14, 23 ... . 

(6) Arithmetical Progressions with Variable Differences. 
1+I, 2+2, 4+s, 7+‘, 11+', 16+', 22+7. 

(7) Prime Number Series. 

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 . . . . 

. * —--— —vduca wiunn eacn given 
senes. For instance, in the first series, the ratio between the second and the 
first value is 2-5- 1, while the ratio between the sixth and the seventh number- 

values is 7 -r 6. Therefore, when a greater speed of acceleration is desired, 
Jt is advisable to take a number-value considerably higher than unity. This 

concerns mostly the type of series that grow with greater speed, such as arith¬ 
metical progressions. 

Although any series may be used for carrying out different types of ac¬ 
celerando and rallentando, the most suitable are those belonging to a given 

rhythmic family. For example, to obtain a proper type of “accel. rail.” in the 

f series (“Charleston” family), we should use the most suitable series, which 

is the first summation series—for all the number-values of this series represent 

generators of the -f series. Likewise, for any music written in the ■£• series, such 

as marches, polonaises, mazurkas, etc.,we shall have the most appropriate “accel. 
rail. ^ expressed through the second summation series. Similarly, music in the 
t senes requires the third summation series for its “accel. rail.” 

In many cases the freedom of the performer leads to the use of numbers 
alum to the series in which a given piece of music is composed; this causes an 

obvious dissatisfaction and many listeners—with a natural sense of rhythm— 

teel that something is wrong but cannot explain the cause of such rhythmic 

irregularity. Speeding up and slowing down is a natural tendency in much folk 

music. Some of the most striking examples may be found in Hungarian music 
Csee Liszt s Second Hungarian Rhapsody) and music of gypsies in various coun¬ 
tries. 

The technique of variable speeds becomes extremely important in dealing 

with stage productions, compositions for the dance, and especially film music. 

In film music, the animation technique in particular requires absolute 
precision of timing. In illustrating a “chase,” one has to time the corresponding 
music m such a fashion that the whole period of acceleration will be limited to 

a definite portion of time, with the precision of -fe of a second (the duration 
or a single shot in a film synchronized with sound). In some instances of de¬ 

scriptive music, especially those dealing with the speeding up and slowing down 

of mechanisms, similar precision adds a great deal to the esthetic effects This 
method permits the use of the “accel. and rail.” of the same rate and’series 

as counter-rhythms, as well as the resultants of their interference (we shall call 
tnem tne resultants of acceleration). 
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Thus, we acquire four fundamental forms to be used as material *for ac¬ 
celeration groups: 

(1) Increasing velocity (accelerando). 
(2) Decreasing velocity (rallentando). 

(3) The two [ (1) and (2) velocities] combined. 
(4) The resultant of acceleration. 

Forms (1) and (2) may be used for the introductions and conclusions (codas); 
forms (3) and (4)—for the climaxes. 

In either case it is more practical to find the decreasing velocity (increasing 
number-values) first, as it is more practical to have a definite initial number- 
value. 

For example, if we use the natural harmonic series and start with unity, 
we find a practical stopping point at 8, because 1 + 2. + 3 + 4 + 5 + 6 + 7 + 
+ 8 = 36. The sum must be in a simple relation to the multiples of the 

group-unit (measure). The value 36 offers a number of possibilities. Four-and- 
a-half of £ time (in eighths); nine bars in time (in quarters); four bars of •§- 

time (in eighths); six bars in § time (in eighths); twelve bars in time (in quar¬ 
ters). 

Using the first summation series for accelerando in the f- family, we obtain 
a practical value of 32 by summing up 14-2+3+5+8 +13. This offers 

exactly four bars of J- time, and in music of eight-bar groups, the ratio becomes 
very simple (•} = •$). 

A. Acceleration in Uniform Groups. 

Examples: 

12 3, 
enrprp" 8 --- 

^ 4 5^ 
rr r v'jr 6 

7 S _ /-N 
err 

; i- 

8 o 

r r r Ttfr err r rr tstf- 
12 a- 

- prpl 
2 2 6^- 

fr r r rl rrcrn 
5 o 

S. ** 
rtrr r 

2 3--. 2-. 1 
r r uu 

Figure 147. 

12 8 6 

J>J J>J J 18 jjij 

> err 

18 

J- ju o 

8 2 l 

r r tin 
12 8 5 _2 6 2 6 3 2 1 

p r fr m rr uzsfl rr ifzfr1 
S ^ 

\r r c-tc-t 
Figure 148. 
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B. Acceleration in Non-Uniform Groups. 

The technique of progressive addition to the original number-value now 

becomes an addition of respective values to the terms of the original group. 

Here is an example of progressive addition through natural harmonic series: 

The original group: 3 + 1+2 
(3 + 1 + 2) + (6 + 2 + 4) + (9 + 3 + 6) + . . . 

& 
8 

Figure 149. 

Thus, the 3 + 1+2 group appears with the coefficients which are the terms 

of a certain series (natural series in this case). 

(3+1+2) = 6 

2 (3 + 1 + 2) =12 
3 (3 + 1+2) =18 

C. Rubato. 

"Rubato” is the process of unbalancing a balanced binomial, or the process 

of balancing an unbalanced binomial. In terms of quantities, the first process 

increases the complexity of an original ratio; the second—decreases the complexity 
of an original ratio. 

The process of unbalancing a balanced binomial must be carried out by 

means of a unit of deviation. This unit of deviation, supposedly an infinitesimal- 
(in the calculus, dx) becomes a rational fraction in the field of musical rhythm. 

The most satisfactory results are produced by means of a standard unit of de¬ 

viation, which is defined in this theory as {, i.e., the unit of a series of fractional 

continuity. We shall call it % (the Greek letter, tau). 

Formula for a standard unit of deviation: 

Example J: 

Take the second theme of Chopin’s Valse in minor. All bars of this 

theme have the following construction: f Lf LT ZS • Many performers 

play the first bar of this theme like this: C-f tS . Let us see what 

causes the transformation of J"3 , i.e., 2 + 2 into JT3 , i.e., 3 + 1. The way 

this binomial is written makes it f- + f-. In this case we have \ series, where 

f Therefore, the process of unbalancing the original binomial (j'+jf) 

may' be expressed as follows: 

(t + *)+ (f - = (f + i) + (f -■£•)= f + i, which means JTJ . 

r pr | r |r pr 1 r^fr r | r 
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Example II. 

Take any fox-trot where you find * j j h, the printed copies. In a per- 

tamanea you hear it as JJiJ. or J. bj . Lat us follow the previous procedure. - 

V'Vr half n°tfa “ “ time belong in reality to the | series. They 
must be expressed =i+f In this case t = *. By adding* to the first 
term and subtracting from the second we obtain (4 -f- £) 4- (A _ A) _ s , 3 

and |“+|h eXampIeB the process of mibalancing may be reversed?i.e., * +f 

The process of balancing an unbalanced binomial is a typical case of the 

ratio simplification as we find it in "swing" performance. Write [V i„ ‘ time 

ana the awingstem ’ will play if^jlin the same * time. The same thing hap^ 

r”8wtes Ee written accompaniment of broken octaves 

“ PUyed * ■ -d the upper pa" 
*£££ “ Charleston." The ratio 3 + 1 becomes 2 + 1, which is closer 

and^£dIentando.0ther ^ * "rUbat°” **** *" Sma“ grOUpS of “celerando 

D. Fermata (Hold). 

There are two types of fermata; the two may seem to have an entmdv 

bl* “ "**** difference is purely quantitative. 

the W 41,6 °f a faU 8top- !t » c°mraonly used at 
e ^ “d- at n,0ment of a climax, or before a 

preciL7ornLOUMlnUw? * “ j8 *«t *» make it a simple multiple of the 
Preoedmg or the foUowmg values, or the sum of the preceding group of uniform 

* An example of transcription of a fennata of the first type: 

♦ rr |rr |rr |rr |° |° 
figure iso. 

^ “S *—*> ^oh*. By as- 

trzr sr+ ra maitipk 
♦r r |r r |r r |r r I - 

figure i5i. 
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Obviously, this gives the utmost satisfaction. 

The second type of fermata is a temporary delay. The method of creating 
simple ratios i's most effective in transcribing this type of fermata. Here is a 
transcription of the following example: 

* I ° I 
Figure 162. 

By isolating the group preceding the fermata we obtain £ f\; by isolating 

the group with a fermata we obtain § ££ 

Now the entire group appears as follows: 

f CtU 11 CL/ l ? ° I 
Figure iSS. 

This being transcribed into number-values gives: 

(!i + A) + (A- + ■&) + a 
The first bar is related to the second bar as 3 -f-1 because £ =£; £ -*-£ 

Simplifying the ratio 3 1 into 2 -4- 1, we obtain the following musical 

measures: £ + f• Making the first duration in the second bar (the fermata) 
longer, we obtain a binomial f- + i, or in musical notation: 

r p If 
Figure 164. 

This procedure makes the absolute value of the fermata note increase in 
a very subtle way, longer than the original duration. Here are the numbers 
from the musical transcription: 

(«+*) + (*+*)+« 

By comparing the original and the transcription, it is easy to see that the 
fermata note (which originally was -^) became thus gaining 

The rhythm of variable velocities presents a fascinating field for study 
and exploration. The very thought that various rhythmic groups may speed 
up and slow down at various rates, appearing and disappearing, is overwhelming. 

This idea stimulates one’s imagination towards the complex harmony of 
the universe, where different celestial bodies (comets, stars, planets, satellites) 
coexist in harmony of variable velocities.* 

theorv oPhlthm SK???? Schill[n«er/s whatsoever, may be derived. And these “ail 
°Jf VP!"’ he ft1 owe<i next by the possible” rhythms have been grouped into 

reader ml pitC?“i?esAlthough the casual related families, sub-families and "styles,’' so 
soeeifir»^yvn-0t be,ent,rely aware of it, the that what is an infinity of rhythms may be 
w£ehvttfi5niqUeL havc now b^€n 6et forth rapidly and practically utilized in the actual 
wuerepy all possible rnytnms, ot any nature composition of music. (Ed.) 
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CHAPTER 1 

PITCH SCALES AND EQUAL TEMPERAMENT 

PRELIMINARY REMARKS 

ON THE THEORY OF PITCH-SCALES 

Just as the first book developed the theory and practice of rhythms, which 

tuations in time, so does the present portion of the Schillinger system 

develop the theory and practice of that other basic factor in music, pitch. The 

theory of pitch-scales concerns pitch considered in continuity, i.e„ one tone 

sounding after another. When pitch is considered in simultaneity, i.e„ tones 

: .B« img at the same time, questions of harmony and counterpoint are involved. 

■Hiese are discussed in Inter sections of the entire Work. Schillinger approaches 

the Pitch question as, first, a problem in primary selective systems-^r tuning; 

then, as a problem of abstracting from all the tones made available by the tuning 

8y8tem th"’e which are to be used in any composition. These 

sets of tones, caller pitch-scales or—more commonly—just "scales,” furnish 

raw material for both melody and harmony. (Ed.) 

T^HE INTONATION units and the intervals between them constitute the 
elements of the pitch-scales. The intonation units are named pitch-units (p) 

in the following exposition, and the intervals between the pitch-units are called 
pitch-intervals (i). 

A pitch-scale is a sequence of pitch-units following in consecutive order 
(increasing or decreasing frequency). The number of pitch-units in scales, con¬ 
structed within the equal temperament of twelve, ranges from 1 to 144. Families 
of pitch-scales, as well as families of time-scales (rhythm), serve as esthetic 
material for racial, national and local expressions. 

The subject of this portion of my theory consists of the following items: 

(1) Construction of melodic forms from pitch-scales; 

(2) Modification of melodic forms; 

(3) Composition of melodic continuity; 

(4) Deduction of harmonic forms from pitch-scales. 

All pitch-scales may be classified into the following four groups: 

Group One: One root-tone. Range limit = 11. 

Group Two: One root-tone. Range over 12. 

Group Three: More than one root-tone. Range = 12. 

Group Four: More than one root-tone. Ranges: 24, 36, 60, 132. 

The number values here express the number of semitone units which will serve 
as standard units for measuring pitch within the equal temperament of 12.* 

A few additional words of explanation may 
be useful here. Pitch is, of course, a question 
°k ^retluenc',es of the sound waves, i.e., 
the number of vibrations per second. In order 
to produce music, it is first necessary to de¬ 
termine which particular frequencies will be 
used as points of reference. We take this for 
granted now, but working it out was a subject 
of much theoretical struggle oVer the centuries, 
rrom the set of all possible frequencies (in this 
ca*e, all audible frequencies), it was thus neces¬ 
sary to select a smaller set which becomes a 
primary selective system. 

In equal temperament tuning, the 12 ‘'tones" 
comprising the system are c, c sharp, d, d sharp, 
c. *, f sharp, g, g sharp, a, a sharp, b—followed 

by another c, the latter c being one octave high¬ 
er than the former (one octave higher means 
that the frequency is exactly doubled). The 
Hatted tones are considered in equal tempera¬ 
ment to be identical to (that is, enharmonic* of) 
the sharped tones. 

How are these twelve basic tones tuned, that 
is, what are their frequency ratios? They are 
related in the following manner: if we construct 
a series of the twelfth root of 2, in such a 
fashion that the root remains 12 while the 

wer of 2 increases from zero to 12, we will 
ve a series which corresponds to the actual 

frequencies of equal temperament tuning. Note 
that the first term is 1, for the zero power of 
2 is 1 and the 12th root of 1 is also 1. Here 

1100} 
[101] 
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A»d^w"sss,l„“sry.''1s rs ?"•"* <*■** »• 
ratio of frequencies, i,e 2 i- thA «» * «Y*’ Two expresses the octave 

uniform rattas JS. one ocUve. ^ numb*r °f the 
the logarithms to the base *** ,nte*Ters when they express 

jgfa 

2A X^A ° X 
C C# D D# E F F# 

2* 2* 2A 2» 2« 2» 
JL P* A. A# B c 
J he frequencia are logarithmically related 
as the term* of the ab^serieTar? rSJJd 
In reality, as Schilling jZTmSt 

*** a* !east two additional mat- 
^rfn^J?ePi!Il-IIUnd: (1) music as actually 
SuSSS a railch hi«her varie‘y of 
BST A €?u^ temperament system 

S&T'WSr ftrrars 
fluidity °f intonation 

SPthe^J?n^P?”,?af1,,B actual curves. as 
“scwha* « popularly called' 
in^hS" tnJES?- ln VI^in performances, or 
n hot trumpet intonations. (Ed.) 

CHAPTER 2 

GROUP OF PITCH-SCALES 

“Diatonic” and Related Scales 

JN THE FOLLOWING discussion, all the scales are constructed from c- they 

foratheCi^e^lsaCCOrdmg t0 **“ nUmber °f pitch‘units and the number-valu^ 

In each case the full number of technical possibilities is described. 

A. One-unit Scales. Zero Intervals. 

[The number of scales: one.] 

Scales with one constant pitch-unit constitute the so-called "monotone” 
music and may actually be found among the primitives. 

, The ,nat'Ves 0ft80u^ern Patagonia (Tierra del Fuego) have one pitch-unit 
scale and are not famdiar w.th any other form of musical intonation This 

music has been recorded on dictaphone cylinders by Erich von Hornbos- 
Berlin University, and the records are—or were—located in the phonogram’ 
archive of the Psychological Institute of Berlin University. One copyists 

foHte lIckT NeW Sch0°‘ in New York Cit>'- music compensates 
or its lack of variety in intonation by the variety of its rhythm. 

Music of our civilization quite frequently deals with one pitch-unit scales 

oa^"CeS are ‘1^ fOU"d -n 9ustained tones (pedal points) and many rhythmic 
passages executed by individual instruments, such as rhythmic trumpet paLages 

oftke Pr0Ced“re P088ibk WitH SUCh SCa'eS is: ”***>**> 

Scale .-0; Time-Rhythm = ^4-3 

Figure 1, 

B. Two-unit Scales. One Interval. 

(The number of scales: eleven.] 

Table of Intervals 

Scale 1 2 3 4 5 6 7 8 9 10 11 

Interval c-db c-d c~eb c-e c-f c-f# c-g c-ab Cr-ai c-bb c-b 

[103] 



FIRST GROUP OF PITCH-SCALES 105 
104 theory of pitch-scales 

... _ _ . . Technical procedures: 
(1) Definition of the number of melodic forms. 
W Combinations of melodic forms. 

(4) md0dic formt hrough permutations. 
(4) Coefficients <>f recurrence of the melodic forms. 
w Supenmposition of the time-rhythm. 

with ^the ^nTs2lmel0diC **“* ^ COmbinatio" *■» latter is possible 

(2) The melodic forms are: a< 4- h. an a k i . , 

piteh-unite. Thus the two forms become a, and £ ^Sety ^ "* the 

pcrm^doZTl^:^ f°r “y !f “ bV -eans of 

fonns';t * 

“d ^ 
3ai +bjor Saj -f- 3b)etc.; 

or 3a.+b, + 2a,+2b, + a, + 3b, 
or 4a, + b, + 3a, + 2b, etc. 

and f0rmB int° *P- bars 
ordinary divenrity of effects. pitch-unit, one may achieve an extra- 

Seale: 5; Melodic Form: 2a, + b, 

figure 2, 

selected °f *»"**» « ^e 

jt t •, «r 
Rhythm: *44.3; Measure: J 

figures. 

Figure 4. 

C. Three-unit Scales. Two Intervals. 

{The number of scales: 55.] 

Table of Intervals 

1+1 2+1 3+1 4+1 5+1 6+1 7+1 8+1 9+1 10+1 
1+2 2+2 3+2 4+2 5+2 6+2 7+2 8+2 9+2 
1+3 2+3 3+3 4+3 5+3 6+3 7+3 8+3 
1+4 2+4 3+4 4+4 5+4 6+4 7+4 
1+5 2+5 3+5 4+5 5+5 6+5 
1+6 2+6 3+6 4+6 5+6 
1+7 2+7 3+7 4+7 
1+8 2+8 3+8 
1+9 2+9 
1+10 * 

Material: 

(1) The number of melodic forms - 6. 
ai 4- bi + C| = a2 
ai + ci + b) = b2 

cj + aj + bj = c2 
bj + aj -f- Cj = d2 

bj + Cj + aj = e2 

Ci + bj + aj = f 

(2) Combinations of melodic forms. 
(a) Combinations by two: 

a2 + b2 b2 + c2 c2 + d2 d2 + e2 
a2 + c2 b2 + d2 c2 + e2 d2 + f2 
a2 + d. b2 + e2 c2 + f2 
a2 + ^2 b2 -r fa 
a2 4- f2 

e2 4- f2 
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Each combination has two permutations. The number of cases: 
15 X 2 = 30. 

(b) Combinations by three: 

(a) two places identical: 

aa 4 aa 4 b* 
-Total number: 15 -f 15 = 30 

at 4 b* 4 b* Three permutations each. 

The number of cases: 30 X 3 = 90. 

(?) all three places different: 
ai 4- bi 4- Ci aa 4 Ci 4 da *a 4 d2 4 e* a2 4 e2 4 f2 
a2 4- bi 4- di ai 4 Ci 4 ea a2 4 d2 4 f2 
ai 4* bj 4- ea 

aa 4 bi 4* fi 
aa 4 Ca 4 fa 

bi 4 ci 4 di bi 4 dj 4 Ca ba 4 ea 4 f2 
bi 4 ci 4 ei 

hi 4 ci 4 fi 
ba 4 da 4 fa 

ci 4 di 4 «i 
ci 4 di 4 fi 

ci 4 ea 4 fa 

di 4 ©i 4 fa 

Twenty combinations, six permutations each. The number of 
20 X 6 - 120. 

cases: 

(c) Combinations by four: 

(a) Three identical places: 
a* 4* a* 4 aa 4 b* 

- Total number: 15 4 15 « 30. 
a* + bj + ba + bs Four permutations inch. 

The number of cases: 30 X 4 ■= 120. 

($) All four places different. 

a2 4 b2 4 c2 4 d2 
aa 4 b2 4 c2 4 e2 
a2 4 b2 4 c2 4 fa 

a2 4 c2 4 d2 4 e2 
a2 4 C2 4 d2 4- f2 

a2 4 d2 4 e2 4 f2 

b2 4 c2 4 d2 4 e2 

b2 4 c2 4 d2 4 f2 

b2 4 d2 4 e2 4 U 

c2 4- d2 4- e2 4* f2 

a2 4 b2 4 d2 4 e2 
a2 4" b2 4“ do 4* fa 

a2 4“ c2 4- e2 4- f2 

b2 4 c2 4 e2 4 f2 

a2 4 b2 4 e2 4 f2 

Fifteen combinations, 24 permutations each. The number of cases: 

15 X 24 = 360. 
(d) Combinations by five may contain four, three or two identical places, 

or two identical pairs. As the material begins to grow to enormous 

quantities, this exposition will be limited by referring to the combina¬ 

tions with five different places. 

a2 4 b2 4 c2 4 d2 4 e2 a2 4- b2 4- c2 4- e2 4- U 
a2 4- b2 4- c2 4- d2 4- f2 

a2 4 b2 4 d2 4 e2 4 f2 

a2 4- c2 4* d2 4* e2 4~ f2 

b2 4 c2 4 d2 4 e2 4 f2 
Six combinations, 120 permutations each. The number of cases: 

6 X 120 — 720. 
(e) One combination by six: 

a2 4 b2 4 c2 4 d2 4 e2 4 f2 
720 permutations. 

The number of cases: 1 X 720 = 720. 

($) Two identical pairs: 

aj 4* aj -f- b2 -+• b* Total number = 15. 

Six permutations each. 
The number of cases: 15 X 6 = 90. 

(T) Two identical places: 

* aa 4* a2 4- b2 4- ca 

Total number: 20 X 3 = 60 
ai 4* ba 4- b* 4" Ci 

w Twelve permutations each, 
a* *f b* 4* Ci 4- Ci 

The number of cases: 60 X 12 = 720. 

(3) Continuity of melodic forms through permutations. 

Circular permutations can be used as well. They give the best combinations 

by the number of elements, 

ai 4~ bj 4* ci = a2 
bi 4- Ci + ai = b2 Three melodic forms 

ci 4- a! 4- bi = c2 
Combinations by 2: 

a2 4- b2 b2 4~ c2 
a2 4- c2 

Three combinations, 2 permutations each. Total: 3X2=6. 

Combinations by 3 : 

a2 4” b2 -f- c2 
One combination, 6 permutations. Total: 1X6=6. 
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(4) Coefficients of recurrence of the melodic forms. 

Figure S. 

(5) Superimposition of time-rhythm. 
Melodic Form: 3aa + «» + 2c*; Rhythm: r4^3 

Measure: £ 

FIRST GROUP OF PITCH-SCALES 

D. Four-unit Scales. Three Intervals. 

[The number of scales: 165.] 
Table of Intervals 

1+1+1 2+2+1 3+3+1 4+4+1 5+5+1 

1+1+2 2 + 1+2 3+1+3 4+1+4 5 + 1+5 

1+2+1 1+2+2 1+3+3 1+4+4 1+5+5 

2+1 + 1 2+2+2 3+3+2 4+4+2 

1+1+3 2+2+3 3+2+3 4+2+4 

1+3+1 2+3+2 2+3+3 2+4+4 

3+1 + 1 3+2+2 3+3+3 4+4+3 

1+1+4 2+2+4 3+3+4 4+3+4 

1+4+1 2+4+2 3+4+3 3+4+4 

4+1+1 4+2+2 4+3+3 

1+1+5 2+2+5 3+3+5 

1+5+1 2+5+2 3+5+3 

5+1+1 5+2+2 5+3+3 

1 + 1+6 2+2+6 

1+6+1 2+6+2 

6+1+1 6+2+2 

1+1+7 2+2+7 

1+7+1 2+7+2 

7+1+1 7+2+2 

1+1+8 
1+8 + 1 

8+1+1 

1+1+9 

1+9+1 

9+1+1 

1+2+3 1+2+4 1+2+5 1+2+6 1+2+7 1+2+8 

1+3+2 1+4+2 1+5+2 1+6+2 1+7+2 1+8+2 

3+1+2 4+1+2 5+1+2 6+1+2 7 + 1+2 8+1+2 

2+1+3 2+1+4 2 + 1+5 2+1+6 2 + 1+7 2+1+8 

2+3+1 2+4+1 2+5 + 1 2+6+1 2+7 + 1 2+8+1 

3+2+1 4+2+1 5+2+1 6+2+1 7+2 + 1 8+2 + 1 

1+3+4 1+3+5 1+3+6 1+3+7 

1+4+3 1+5+3 1+6+3 1+7+3 

4+1+3 5 + 1+3 6+1+3 7+1+3 

3 + 1+4 3+1+5 3+1+6 3+1+7 

3+4+1 3+5+1 3+6+1 3+7+1 

4+3+1 5+3+1 6+3+1 7+3+1 

1+4+5 1+4+6 

1+5+4 1+6+4 
5+1+4 6+1+4 

4 + 1+5 4+1+6 

4+5 + 1 4+6+1 
5+4+1 6+4+1 



figure 7. 
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The following is an illustration of this procedure. [George Gershwin’s The 
Man I Lave, first four bars of the refrain.]* 

a b abac abac a b ab a c abac 

Figure 8. 

aonear' ,f°Ur ”0tifs haVe .the f°rm a* ( = a< + b. + c), i.e., the sequence of 
appearance of the pitch-units is a2 despite the recurrences. The scale is obviously 

the hmmony502116' ^ ^ bar tHe SCaIe shifts its root-tone, following 

The next step is the modification of the second, the third and the fourth 
oars, using b2, c2 and d2 respectively, and preserving the original form of re¬ 
currence. 

The melody then acquires the following appearance: 

ababac acab c a c a c b babe 

a* b* c* 5 1 

Figure 9. 

a thfrh«m^ed ™,tifs’ be‘"E placed in any °f the parts of harmony, produce 
"fin bd' C , ‘ may comPared with the original neutral scalewise 

nn-in in Gershwin’s own version. 

E. Scales of Seven Units 

h^JeChn,CalPr0CfedUreS similar t0 the forego'nK are possible with the scales 

ZSXZSZZiZt-*- * —» -—-a — 
a. lS n° need t0 have comPlete charts of all 2,048 scales of this group 
as all the necessary procedures will be generalized in the succeeding pages 

serv^h"”',r1C? C°ftitUte the musical lan8ua£e of our civilization and 
W . m k * T °f harm0ny' There are 462 seven unit scales, but only a 
few will be offered in the following description. 

“tetrachords ”d mln°r constructed from four-unit scales known as 

“niting two tetrachords separated by the interval 2, one can produce 

tion of Tv,3"6 Tln°r S With the repeated Upper tonic- This f°™ of presenta- 
"mainr’ H matefjal helps to emphasize the different structures of so-called 
maj°r and minor scales. 

♦Copyright 1924 by Harms, Inc. New York, N. Y. Used by permission of the Publisher*. 
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The three fundamental tetrachords are: 
Major (M) = 2 -f 2 + 1 
Minor I (mj) « 2 -f 1 +2 
Minor II (m,) = 1 + 2 -f 2 

Ih addition to these tetrachords, European music of the last few centuries 
also uses the tetrachord coming from the Mohammedan East (Arabia, Persia). 
This is a tetrachord which penetrated into Europe partly through the Crusaders 

and partly through the immediate influence of the Turks upon the Balkans 
It still prevails in the southern part of Europe (Jugoslavia, Hungary, Rumania). 
It can be found in the music of Franz Liszt, Ludwig van Beethoven and man> 

other composers. We shall call it the harmonic tetrachord (h). Its structurt 
is: 1 + 3 + 1. 

All major and minor scales are classified according to musical tradition 
into: 

(1) Natural 
(2) Harmonic 
(3) Melodic 

1 melody may be based on one unaltered scale, hybrids appear quite 
frequently. There is no law or reason for playing the melodic minor upward— 

and the natural minor downward, the way many instrumentalists do. As long 
as one intends to use hybrids, any hybrids may be used. 

Major 
Upward Downward 

natural harmonic 
natural melodic 
harmonic natural 
harmonic melodic 
melodic natural 
melodic 

Analogous hybrids exist in the minor group. 
harmonic 

Major 

M+2 + M 

M+2+h 

M -f- 2 + m* 

Table of Scales 
Minor 

Natural 

®i + 2 + nij 
Harmonic 

Melodic 
-f 2 -f h 

mi + 2 + M 

« 

Figure 10 (concluded) ~ 

Comparing the two groups one finds that all lower parts of the major groups 
are M; all lower parts of the minor groups are m^-all connections in all groups 
are 2; the natural scales in both groups have individual upper tetrachords; the 

upper tetrachords are in common for all harmonic scales; the melodic scales 

in both groups have individual upper tetrachords; the upper tetrachords in the 
natural and melodic scales exchange their structures, being, in the natural scales 
2+2+1 for the major, and 1+2-F2 for the minor; in the melodic scales, 1+2+2 
for the major, and 2+2+1 for the minor. 

Here are a few more scales in common use. 

Neapolitan Minor; m2 + 2 -F h 

h 

t 

Figure *2. 

Hungarian Major or “Blue”; 3 + 1+ 2-F1-F2-F1+2 

Figure IS. 
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Persian or Doable Harmonic Scale: h -f- 2 + h 

2 

figure 14, 

major. 
. The S°-Called “^clesiastic modes” may be regarded as derived from natural 

-feChni<?“e °f scale derivation, as well as the evolution of scales 
within the families, will be explained in the succeeding pages. 

CHAPTER 3 

EVOLUTION OF PITCH-SCALE STYLES 

TWITCH-SCALES, like time-scales (rhythms), are subject to serial develop¬ 

ment. The number-values express pitch intervals. Each scale with two 
pitch-units and one interval becomes a generator of its family. Splitting the 

number-value expressing the interval into a binomial, we acquire a three-unit 
scale with two intervals. The modified forms of the binomial interval fall into 

synchronization and produce a resultant scale with four units and three intervals. 
The modified forms of the trinomial interval fall into synchronization and pro¬ 
duce a resultant scale with six units and five intervals. The modified forms of 

the quintinomial interval fall into synchronization and produce a resultant 
scale with ten units and nine intervals. 

A. Relating Pitch-Scales through the Identity of Intervals 

All scales identified by the original interval, or the consequent resultants, belong 
to one family. This is the process of relating pitch-scales through the identity 
of intervals. 

Example: 

Two-unit scale. Interval = 5 = c — f 

(a) 5=3 + 2= c— eb — f 
5 =2+3 = c-d -f 

This interference group produces the resultant trinomial = 
= 2-f-l+2=c — d — eb — f 

2 + 2 + 1 = c — d — e — f 

1+2+2 = c — db — eb — f 

The following quintinomial (the resultant of the second interference-group) is 

uniformity, i.e., = l + l+ l+ l+ l= c-db-di,-eb-eb-f 
Uniformity, being neutral, belongs to all families (as the last interference) and 
does not possess any distinctive characteristics. 

(b) 5=4 + 1 = c - e - f 

5 = l+ 4 = c — db—f 

The resultant of this interference-group = 
= 1+3 + 1 = c— db—e—f 

1 + 1 +- 3 = c — db — db} — f 
3 + 1+1 ~ c — d$ •— e — f 

The following quintinomial is neutral. 
Example: 

Trinomial: 

4 + 4 + 3= c- e- g£-b 

4+3+4=c-e-g-b 
3 + 4 + 4 = c — et» — g — b 

[115] 
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Thfcraultantqv;itinomial of 4+4 + 3 with permutations, equals: 

l + it!t? + 35BC“db~e-f-al»~b 
3 - 1 + 3 + 3 -j- i “c—d# — e—e — ail — h 

l+3 + 3 + l+3=c-dt-e-e-^Ib 
3 +3 + 1+3 + 1 = c-eb-f#-g-a#_b 

The resultant nine-term polynomial equals: 

l+l+l+2+l+1+2+l+1 -= c-db-db-eb_f _8#_?S_^u 
1+1+2+1+1+2+i+j+f =c-c#-d -e -f -(tits* ~J* 
l+2+1+1+2+l+i+i+i = c-db-eb-eh-f -fb fu uh 
2+l+l+2+l+l+l+1+1 c_d _5_f J * * 
i+i+2+i+i+,+,+1+2=c-<#-d 

-»«—i* .1 
a homogeneous melodic continuity. * one family, i.e., which provide 

of -3S££ music of different de— 

di^S^r^r" fr0m ?T °De CT0lve kernes of 

B. R^LATtNC fttCH-SCAU* THROUGH THE lUENTITV OF PzTCH-ONZTS 

Another device through which scales nf t~ *1 , 
process of circular permutations of the nitrh „ t m?y. ^ evolved » ^ 

do (zero displacement) Th deridriJ' , *“ ?ngmal scale te indicated as 
tims of ,e8ulti"K fr°n ocular permuta- 

d. (the a, rndXCe^ ^wt TT (t"* ^ '•Uplacemen^ scale), 
resulting from the original sc s I.' Jhe nu”ber of displacement scales 
minus one. “ equa,a the n'J™ber of units in the original, 

There aro S units in the c - d - e - g - a scale. 
*^dE 5 — 1 e* 4 v 
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Here is a chart of derivative scales: 

d0 c-d-e-g-a 

di d-e-g-a-c 
dj e — g — a — c—d 
dj g-a-c—d—e 

d4 a-c-d-e-g 

As can be seen from the above chart, each of the derivative scales has a different 
group of intervals. 

The following chart represents the transposition of these scales to the tonic c. 
d0 c — d— e — g — a 

dj c—d — f —• g — bb 
dj c — eb — f — ab — bb 
d, c — d — f — g —a 

di c — eb ~ f — g — bb 

Scales derived from permutations of the intervals are different from scales 
derived from permutations of the pilch-units, though there are some coincidences. 
Original scale: 

c-d-e-g-a = 2-f2+3+2 

Permutation of the Intervals: 

c—d —e—g — a 

2 2 3 2 

c 

2 
d 

2 
e f# 

2 
a 

3 

c eb { g a 
3 2 2 2 

c d f g a 
2 3 2 2 

Only the last scale in this group coincides with one in the preceding group (d8). 

Using either form of producing derivative scales of the same family, one 
can evolve a melodic continuity. Other devices previously presented, such as 

permutations of pitch-units in the scales following as one group, combinations 

° 8UC^ melodic forms, coefficients of recurrence and superimposition of time- 
rhythm, can be used in the composition of continuity. 

The following examples offer illustrative comparisons of the application of 
these different devices. 

The original scale: 

do dopo 
Melodic forms derived from circular permutations: 

Pt Ps_ps P4 

Figure i5. (continued). 
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C. Evolving Pitch-Scales through the Method of Summation 

There are two methods of evolving scales each with a different number 
of units but belonging to the same family. 

The first method was described as the method of interference, as applied 
to the number-values expressing intervals. Through this method we can evolve 

scales with a greater number of units than in the original one. When a scale 
with many units is the original scale, the simpler derivative scales may be evolved 
through reversal of the first procedure, i.e., through summing up the number- 
values expressing intervals. For example, if the original scale is: 2 + 2 + 1 + 

+ 2 + 2 + 1, i.e., c — d—e — f—g—a — bb, simpler scales may be evolved 
in the following ways: 

(2+2) + l+2+2 + l = 4+1+2+2 + 1 = c — e — f — g—a — bb 
2+(2 + 1)+2+2+1 = 2+3+2+2 + 1 -c-d-f-g-a-bb 
2+2+(1^+2) +2 + 1 = 2+2+3+2 + 1 = c—d—e—g—a — bb 

2+2+1+(2+2)+ 1 - 2+2+1+4+1 = c- d- e- f- a-bb 

2+2 + 1 +2+(2 + l) = 2+2 + 1+2+3 = c- d- e- f- g-bb 

(2+2+l)+2+2 + l = 5+2+2+1 = c — f — g — a — bb 

2+ (2 + 1+2)+2+1 = 2+5+2+1 = c- d- g- a-bb 
2+2+(l+2+2)+l = 2+2+5+1 = c — d — e — a — bb 

2+2+1+(2+2+1) - 2+2 + 1 +5 = c- d- e- f-bb 

(2+2+l+2)+2+l = 7+2+1 = c — g — a — bb 

2+(2+l+2+2)+l = 2+7 + 1 = c — d — a — bb 
2 +2+(1 +2+2+1) = 2+2+6 = c — d—e — bb 

(2+2 + 1 +2+2)+l = 9+1 = c - a - bb 
2+(2 + l +2+2 + 1) = 2+8 = c — d — bb 

(2 +2+1)+(2+2+1) = 5+5 = c - f - bb 
etc. 

D. Evolving Pitch-Scales through the Selection of Intervals 

The second method consists of taking a smaller group of intervals or units 
from the original scale in the sequence of their appearance. 

(a) We may evolve partial scales through selecting pitch-units from the original 
scale. 

The Original scale: 

c — d — e — f — g — a — bb 
Partial six-unit scales: 

c — d — e-f — g — a 

d—e — f—g—a — bb 
Partial jive-unit scales: 
c—d—e—f—g 
d —e — f — g — a 

e—f — g—a — bb 
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Partial four-unit scales: 
c—d — e — f 
d - e - f - g 

e — f — g — a 

f — g - a - bb 

Partial three-unit scales; 

c - d — e 
d — e — £ 

e — f — g 

£ - g - a 
g - a - b|> 

Partial two-unit scales: 

c — d 

d — e 
e — f 

f ~g 
g —a 

a — bb 

(b) We may evolve partial scales through selecting intervals from 
scale, and in the sequence of their appearance. 

the original 

The original scale: 

2 + 2 + 1 + 2 + 2 + 1 

Partial Scales: 

2+2+1+2+2 

2+2 + 1+2 
2 +-1 +- 2 +- 2 

1+2+2+1> 

2 + 2 + 1 
2 + 1+2 

1+2+2 
(2 + 2 + 1) 

c — d 

c — d 
— e — f — g — a 
- eb - f - g - ab 

c-d - e -f-g 

c—d — eb — f — g 

c — db — eb — £ — gb 

c — d — e - f 

c — d — eb — f 

c — db — eb — f 

2 + 2 
2 + 1 

1 +2 
(2 + 2) 

- t -u.-i . <* + D 
Scales with identical structures are omitted (numbers in parentheses!. 

c—d — e 

c-d - eb 

c — db — eb 

E. Historical Development of Scales 

Analysis of historic material in the field of melody reveals that the laws 

of identity described above (pitch, interval) develop intuitively with different 
races and civilizations. 

Primitive American Indian music, such as that of the Canadian Stony 

Indians in Alberta already cited, has two 3-unit scales, both belonging to the 

same family through identity of intervals (3 + 2 and 2 + 3). The ancient Greeks 

had their fundamental tetrachord (4-unit scale) 2 + 2 + 1. They called it a 

“Lydian” tetrachord. Through their own procedures, which were quite different 

from the procedures described in this theory, they found two other fundamental 

tctrachords: the “Phrygian” (2 + 1 + 2), and the “Dorian” (1 + 2 + 2). This 

. is another case of evolving scales through interval identity. Ancient China used 

a scale which has still survived and which is used throughout Asia among the 

Mongols. It is usually known as a “pentatonir” scale. Naturally, this is only 

one of the large number of the “pentatonic”—i.e., 5-unit-scales. The con¬ 

struction of this scale is 2 + 2 + 3 + 2. Another scale used by the Chinese 

has the construction, 2 + 3 + 2 + 2. 

I t is interesting to note, also, that the last-mentioned two scales have fre¬ 

quently been employed in many American popular songs in the course of the 
last two decades. 

What is still more important is that the Americans have developed in¬ 

tuitively and perhaps even through the channels of harmony—two other scales 

used together with the two Chinese scales and incorporated into the same musical 

continuity. These scales have been described in the preceding text, and possess 
the following structures: 

2 + 2 + 2 + 3 and 3 + 2 + 2 + 2 

c—d—e — f$ — a c — eb—f — g—a 

A similar analysis of the more developed scales, such as the 7-unit scales 

of our major and minor groups, and the Greek and the Ecclesiastic modes, 

reveals that musical intuition, with the investment of centuries of experience, 

has led to the evolution of scale families through a proper channel. 

Through our method of analysis, we find that the so-called “Ecclesiastic 

modes,” i.e., scales used during the Middle Ages in Europe, are displacement 

scales of the natural major. Natural major was known as the Ionian mode; di 

was known as the Dorian mode; d2 was known as the Phrygian mode; d3 was 

known as the Lydian mode; d< was known as the Mixolydian mode; d5 was known 

as the Aeolian mode; and da was the Locrian or Hypo-Phrygian mode. These 

scales all conform to one family through the identity of their pitch-units. 

There are two different systems of terminology which conflict with each 

other in relation to the above-mentioned scales (modes). The one offered here 

is the medieval terminology used by musicians. The other is the ancient Greek 
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terminology used by historians only with reference to the ancient Greek music. 

When such discrepancies occur as the Ecclesiastic Dorian mode being called 

the Greek Phrygian, the explanation is quite apparent—that when Greek 

manuscripts were studied during the Middle Ages many things were misin¬ 

terpreted, and this change of the names is merely due to misunderstanding of 
the Greek terms. 

\ 

Taking advantage of the fact that the whole European culture of music is 

an outcome of circular pitch displacement in the natural major or Ionian mode, 

this evolution can be continued from any other forms of major and minor, thus 

yielding 21 more displacement-scales: 7 from harmonic major; 7 from harmonic 

minor; and 7 from melodic major. Upon comparison of the major and the minor 

natural scales, it may be observed that the natural minor is the d$ of the natural 

major, and the melodic minor is the dj of the melodic major. 

As it follows from the previous text, all the pitch-displacement scales may 

be transposed to the same pitch-axis (key note). When we apply this method 

to natural major scale and its derivative modes, this entire group appears in 

different normal key signatures. Starting the natural major (Ionian) scale onNc» 

the key signature is zero. Starting the Dorian (di) on c places this music in the 

key of Bb major, to which the two flats (bb and eb) belong. The Phrygian mode 

(ds) starting on c acquires the four normal flats pertaining to Ab major. The 

Lydian mode (dj) acquires one sharp pertaining to G major. The Mixolydian 

mode (d«) acquires one flat pertaining to F major. The Aeolian mode (d5) ac¬ 

quires three flats pertaining to Eb major. The Locrian mode (da) acquires five 
flats pertaining to Db major. 

All the displacement scales derivative from the natural major (through 

which my system of key signatures, not commonly in use, has been evolved) 

may be automatically transposed to one axis, in which the different displacement 

scales will have the same name for their pitch-units, but differ in their key signa¬ 

tures. If the great composers of the past had known anything about this procedure 

(i.e., that the same music can acquire different characteristics without loss of 

any of its ingredients and without distortion of any of its components), they 
would have overcome difficulties in finding the proper type of chords, their 
progressions and the forms of voice leading—all of which was one of the most 
difficult tasks they faced in their intuitive attempts at modal writing. Their 

difficulty was not only in finding the proper chord relations, but also in finding 
all the chords belonging to any one of the displacement scales. 

Rimsky-Korsakov, who is considered one of the best composers in modal 
writing, is helpless enough when he tries to find the proper chord progressions 
for such modes as Dorian, or Mixolydian, but he becomes entirely helpless when 

he attempts to modulate through various modes. The first problem is merely 
a problem of automatic key signature adjustment; the second will be explained 
in the next chapter. 

TABLE OF MODAL TRANSPOSITIONS 

Original 

Key 

Derivative 

Scale (Mode) 

Derivative 
Key 

Relative 

Signature 

c Dorian d i Bb 2b 

c Phrygian d2 Ab 4b 

c Lydian d3 G 1# 

c Mixolydian d< F lb 

c Aeolian d5 Eb 3b 

j c Locrian da Db 5b 

Figure 16. 

The above signature variations are relative to their original keys. All the 

additional sharps mean the addition of sharps to the naturals, and the addition 
of naturals to the flats. AH the additional flats mean the addition of flats to the 

naturals, and the addition of the naturals to the sharps. 

For example, if one desires to play music written in the key of A major 

directly in Phrygian mode, and A major contains three sharps in its key signature 

(f#, c#* g#), translation into the Phrygian mode will require the addition of four 

flats, i.e., the cancellation of the three sharps into naturals and the addition of 

one flat (bb). Music originally written in the key of natural C minor (Aeolian), 

to be played in Mixolydian scale, requires cancellation of eb and ab. 0 minor 
is d6 in the key of Eb major. Eb major has three flats in its key signature (bb, 

eb, ab). The Mixolydian mode starting on c belongs to F major, which has one 

flat in its key signature (bb). The difference between the Aeolian of Eb major, 
and the Mixolydian of F major excludes the two above-mentioned flats from 

the key signature. This explains how through a more complicated procedure 

one can perform modal transpositions automatically. 

There is room in this description to present one illustration of the inadequate 

modal manipulations of the composers of the past—manipulations considered 

to be acceptable only by reason -of the present level of musical competence. 

For a classical example, take a record or the music of the Song of the Viking 
from Rimsky-Korsakov’s opera, Sadko. Play it first as it is written by the com¬ 

poser; then cancel all the accidentals. The two versions should be compared, 
and the component scales analyzed. It will be sufficient to take the first refrain 

where modulation returns it to the original Dorian d (C major). 
As musical key signatures in their customary form refer only to the natural 

scales, all other alterations of pitch appear as accidentals. Therefore, automatic 
modal transposition refers only to the Ionian scale and its derivatives. But if 
the musical world faced the fact squarely, it would agree that most key signatures 

are a pure myth; that there is scarcely a piece of music which really evolves 

in a natural scale throughout; that scales change and are modified, and so does 

the key-axis. Then all could agree that the application of real key signatures 

would solve the problem of universal automatic transposition which is possible 

now only for the natural scales. For example, if one would like to play music 
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minor’;t wouid 

lum^th gb. This is true of one of the attempts to explain music written by 

CHAPTER 4 

MELODIC MODULATION AND VARIABLE PITCH AXES 

O™ SENSORY orientation—with respect to static and kinetic forms—is 
based on our general associative orientation. The prerequisite of the latter 

is memory. Real or imaginary guiding lines help us to apprehend, to analyze 

to study and to construct different forms. In geometry, we use the coordinates’ 
the bisector, the directrix, the radius-vector; in astronomy, we use the geodetics 

(equatorechpta);,n painting, design and sculpture, we apply geometrical lines 
and centers (the coordinates, the medians, the area boundaries, the center of 
gravity, the harmonic [rhythmic] center). 

When it comes to music, we must all confess that previously accented 
musical “theories” do not provide us with such luxuries. Musical notation does 

not suggest any quantitative or directional data. Fortunately for the art of 

music and for musicians, our general associative orientation is not obscured 
by our own acquired musical education. 

A. Primary Axis 

tha™le? we ut0.a me1ody we hear and identify (owing to our memory) 
that pitch-unit which is more predominant. Our auditory centers register the 
quantity of attacks and durations on various sound-wave frequents which 

constitute a certain melody. Then our memory sums them up, thus producing 

Hne (whid ““ * ^stared graphically)—theprimaryaxi^of 

entire (P'A0 ^ defined “ the maximum of an 
firs! L y " cany P°rtl0n °f “■ TWs means that' when we hear only the 
we h measures of a certain melody, the axis may be one pitch-unit, but when 

re!nri t ,he firSt,el8:ht measures of the same melody, it may be another. We 

? °Ur5e Ve aS t*me flows- 14 is very noticeable that while we move 
away from certain nearby objects, the center of scenery modulates-as for 

ample, on the ferry-boat trip from Manhattan to Staten Island. 

■ P;A' °f a meIody is *6 root-tone (the tonic) of a real scale. If a melodv 
■s wntten in the standard signature of three flats (bb, eb, ab), it may be in any 
of the displacement scales of the natural Eb Major. If the P.A. of such melodv 

“f the“ 14 ,s acase of Phrygian g scale. Only through associations with har- 
ony may we think of eb being a root-tone under such circumstances. But any 

scatefromTVe 7 T be harmonized hy the chords of any other derivative 
it< v f tHe ia,me d«' Thus’ the anmber of axis-relations between a melody and 

incfodtoTrf ‘qUtS‘he/SUare lhf numb* of derivative scales (from one d„ and 
cludmg do). Therefore, any of the five-unit scales offers 25 axis-relations 

een melody and harmony. Any seven-unit scale offers 49. A melody in do 
may be accompanied by harmony in d„, d„ d, . . .A me'ody in dm' t 
accompanied by harmony in d„, d„ d, . , . etc. y 

lusj 
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discussion in time-con^ Whidl wilI.be considered in this 

they will be considered b the th^ ^ T °“ “* t0 another>* ^er 
(counterpoint)* and correlation of .siniu,.t““us correlation of melodier 

hannony a, hJonT^on 0f 

B. The Key-Axis 

Whc*t harmony is absent th*» PA i j • 

term “modal”in the following das^tion ^ ^ key'axis- Thc 
“tonal” pertains to pitch-units. “Unimodal” m PertH? *?, tnifrvals> the term 

the scale remains the same “Pnlvtw^ i»» e^S .m 1<^entlca* mode,” i.e., 
scale vanes. “UnitonaT means J”®?”8 “ modes,” i.e., the 

the same. “Polytonal” means “in differ^ t 1,e” the kcy remains 

Modulations^ bT^or^J** key “ 
scale-structure, and modulations from i y fto ^ ^thout a change in the 

a different struck ?££ ** 

C. Four Forms op Axis-Relations: 

(1) Uni tonal — Unimodal U_U 

(2) Umtonal — Polymodal U - P 
(3) Polytonal — Unimodal p_u 

(4) Polytonal — Polymodal P — p 

modulation t*2, ^,rm3' " ~ U W represents the 

and a scale includes: 1) introduction of the oitel prtJ“s! f “•abhshing a key 

desirable sequence; 2) movZnt nf /h ol a “lec^d scale in any 

the tonic—P. A.) into PA ■ and 3) th^ ■*"“ (pitch‘units adjacent to 
Time: (rj^) * Rte’h 2 +)2 + predominance of P.A. 

1- Melodic continuity (circular permutations of the scale): 

figure 18. 

•See Book VII. 
•See Book VI. 
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Unit a, whose durations sum up to 7, forms the P.A. of this melody. This 

shows that any pitch-unit of a scale may become a P.A. U-P (2) represents 

modulations on scales derived from one common d0. Such modulations may be 

achieved through one procedure: transposition of the melody into any derivative 

The key-axis of the scale in figure 18 is c, while the P.A. of the melody is a. 

The key-axis of d, scale is d, while the P.A. of the melody becomes r. The key- 

axis of d2 scale is e while the P.A. of the melody becomes d, etc. 

The following is the original melody together with its transposed versions 
to all the other axes: 

figure iff. 

These five different axes become elements of continuity. Five elempnt* 

P«^,120 PCrmUtati°nS- Any °f 120 be used TortZL 
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figure 20, 

The entire continuity of alll20 forms would extend to 5,400 measures (45 X 120). 

entire ^ M*nature8 (wh,ch remain constant every time for the 

330 nUmber 0f 15088,1216 C0mp0siti0ns by 

of P " U (,f’ represente » mOTe fonn of variation 
in ^ c**?1 ** aome of ^ P^h-units are not in common 

tare ofT (the Preceding and the following keys). The struc¬ 
ture of the scale remains the same. 

and L~T l4) r!pre8ent8 a ” whi<* both the hejHuis and the scale vary, 
and the piiek-untis art, sal entirely in common. 

frnn,™ ii5) T* (4lempha8i2e modulations as they are usually known, i.e 
rae k^r to another, with or without modification of the scale structure. 

Wlhen these axis-relations concern seven-unit scales, some of the Ditch 

T?™ be“"e'» the combinations by seven, tab from twelve 
!,*"/ ^ mth more or less uniform distribution, have some elements in 

TT^'ZT1 F "S* and ’mtanl * Mai°r have four units 
^ ommon. c, d, f. g. Pitch-umts which are written differently, but sound the 
same (enharmomcs), must be considered identical 

unitsm0dUlatiOn8Lfrom natural C Major to harmonic f# minor, four 

a’ * d- S ( *«• &*1» Pitch-units, being 

“T"* y^' n0t have any t0nes ia «”«• Such 
key^dH -* +a3 +b2 “ c - d - f ~ K and an identical scale from an s 
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In the older civilizations, where the number of units in a scale is restricted 

to a very few, modulations exist in the (1) and (2) type of the axis relations 

only. Types (3) and (4) are unknown. To make such scales practical for type 
(3) and, (4) modulations, the themes must already be modulating through type (2). 

This increases the number of pitch-units in a theme and produces potential 
common tones. 

The technique of transition from one key-axis to another for types (3) 

and (4) consists of three different devices, each having a different esthetic value: 
(a) common units 

(b) chromatic alterations 

(c) identical motifs 

D. Modulating through Common Units 

In order to modulate through common units, it is necessary: 

(1) to detect the pitch-units which are in common between the preceding and 

the following key. 

(2) to produce motifs on common units long enough to eliminate the po¬ 

tential discrepancy between units of the preceding and the following 

key that are not in common (i.e., long enough to let the memory forget 

the possible discrepancy). The motifs are melodic forms with time 

rhythm superimposed. It is best to take rhythm material from the 
theme. 

The theory of planning variable key-axes will be fully explained in the 

Special Theory of*Harmony.* For the present, it is best to modulate into any 
key-axis which is identical with one of the pitch-units of the original scale. 

, v C ~ d _ 6 g ~ a iS the originaI scaIe' the best modulations are to 
the keys of d, e, g and a. The corresponding scales assume the following ao- 
pearances: F 

Key of c = c — d — e — g - a 

Key of d = d — e - f# - a - b 

Key of e = e — f# -g# - b - c# 

Key of g = g — a -b-d-e 

Key of a = a — b - c# - e - f# 

I he sequence of different keys in one melodic continuity composes the 

possible permutations. For contrast, use as adjacent keys those which have 

lewer units in common; for similarity, do the contrary. In the case above, with 

the following planning—Key c - Key g - Key e - Key a-similarity is ob- 

med by modulating between the first two keys, extreme contrast between the 

second and the third keys, and much less contrast between the last two keys. 

The following is an example of modulatory continuity obtained through 

e application of common units. It is desirable not to show the axis of the follow- 

I?® *n *be course of modulation. The reasons for this will appear later in 
the Theory of Melody** 

* See Book V. **See Book IV. 
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modulation 
Theme; Key of E 

modulation 

Figure 2i. 

Modulation through common units is the most subtle of ail modulatory 

devices. A question may arise as to how long a modulation should be. The only 
ansro to this question is: long enough to let the listener forget the potential 

pitch-discrepancy of the adjacent keys. The example given above illustrates a 

reasonable average. The length of modulation depends on the absolute velocity 

(tempo) of miwc, as well as on the audience for which the music is written. 

h* bnger.for ** conservative listener and shorter for the advanced one. 

At tl* ptesent tune there are many listeners who object to any modulatory 

transition from key to key; instead, they prefer to go there directly. Some 

modem composers object to the very phenomenon of the axis. 

E. Modulating through Chromatic Alteration 

If die common-unit method of transition is regarded as the process of dodging 

the conflicts (as in diplomacy) then the chromatic alteration method of transition 

w entirely bold; it takes advantage of the possible conflict and goes about it 
directly (as in war). 

In order to modulate through chromatic alterations, it is necessary: 

(1) to find the units that are not in common but have identical musical 
names (like c - c#). 

(2) to perform one or more chromatic operations with such units. A single 

chromatic operation consists of demonstrating the preceding and the 
fouowmg units in reasonably long durations with their following into the 

next unit bearing a different musical name (like c — c# — d or c — cb — 

bb). In the case of more than one chromatic operation, it is necessary 

to proceed immediately with the other intended chromatic operations and 

to use the third term of a chromatic group in the last group only. 

Example: 

From natural C Major to natural Eb Major. Units not in common: b — 

bb; e — eb; a — ab. 

One operation: b - bb — ab; e — eb - d; a — ab — g. 

More than one operation: b — bb — e — eb — a — ab — g. 
' "i t—..i 

Modulatory Continuity Obtained Through the 

Application of Chromatic Alterations: 

(Theme: from the preceding example of modulation 

through common units; key-sequence: C — E). 

Theme; Key of C 

Figure 22. 

F. Modulating through Identical Motifs 

The identical-motif method of transition is the process of imitating appear¬ 

ances and is like adapting oneself to a surrounding medium which constantly 

varies (as in mimicry; compare with the behavior of a chameleon). It is the most 

obvious and the most commonly used of all three methods of transition. 

In order to modulate through identical motifs, it is necessary: 

(1) to select a motif from the theme which immediately precedes the 
modulation. 

(2) to construct another motif identical or similar in appearance and to 

adapt it to the signature of the succeeding key. The second motif may 

consist of the pitch-unit bearing the same musical names as the first 

motif, or it may be located in the adjacent lower or higher position. 
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^s^as^i^rssss'.ss 
Key sequence: C - E -G - A. 

Theme: Key of C 
identical 

t motifs , 
■ modulation 

figure 23. 

CHAPTER 5 

PITCH-SCALES: THE SECOND GROUP 

Scales in Expansion 

THE second group of pitch-scales emphasizes scales produced from one con- 

stant pitch-unit, and exceeding the range of one octave. These scales do not 

necessary conform to two- or three-octave range. The range may be more 

than one and less than two octaves; more than two and less than three, etc. 

A. Methods of Tonal Expansion 

Scales constituting this group may be obtained by means of tonal expansion 

(expansion of invariant pitch-units through rearrangement of their mutual 
positions) of the scales of the first group. 

The first expansion (E.) of a scale may be obtained through circular per- 
mutation over one pitch-unit of the original scale. 

number^ *** tW° CaSeS‘ firSt’ When ^ number of units in a scale »s an odd 

Example: 
Scale: c-d—e-f-g 

Circular arrangement: 

Second, when the number of units is even. Then, through the same form 

nlm™oUmitl0n TtT " * add-on to Te ormal omission of the respective number of units. 

Example: 

Scale: c-d—e-f — g-b 
Circular arrangement: 
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Scale: c—d—e—f—g—a 

Circular arrangement: 

The first expansion: c—e—g—d—f — a 

With the increase of the number of units omitted between the selected 
units, further expansions may be obtained. The total number of tonal expansions 

of one scale equals the number of units therein minus one. 

N* = NP - 1 

This includes the original scale. 

A scale that cannot be contracted in a given system of tuning will be con¬ 
sidered as being in the zero expansion (E0). 

All further expansions will be EJf EJf . . . . En, where the subnumeral 

represents the number of units omitted between the number of units selected 
in circular permutation. 

The process of tonal expansion is applicable to any melodic form—a scale 

being merely a special case of melodic form. Different expansions of a melody 

provide means for variation as well as for composition of melodic continuity. 

The technique of transcribing a melody from one expansion into another con¬ 
sists in finding the scale in both expansions, in enumerating all the units in 

consecutive order from the root-tone (scale axis) in both scales, and in translat¬ 

ing units of one melody into the units of another through the identical numbers. 

The octave adjustment (range) for compounding continuity out of different 

expansions must be performed by placing the root-tone (the axis from which 

expansions have beat obtained) of all the expansions on the same pitch level. 
With the adjustment, fragmentary melodies in different expansions become 

elements of one intonation-group, and as such, are permutable in time con¬ 

tinuity. 

Examples of Tonal Expansions 

Chinese Scale 

Et IV* 
IV v ' 

m S sx 
—y—*-A j—i—_U- 

tF" ° °-11 L-to—..lLsr2- 4»> 

The last case (melodic minor) is particularly interesting, as it illustrates 

how music written in the 17th or 18th century can be transformed directly 

into the style of Debussy or Ravel by means of Ej; how music written by Handel 

or Bach may be converted into the style of Scriabine’s Poem of Ecstasy by means 

of Ej. 

This device of tonal expansion is the device for modernization of the music 

of the past. If the music of the present were written consistently, following its 

own tendency in any of the expansions, it could be contracted back into E0. 

Thus, two styles three centuries apart could be compared under the same co¬ 

efficients of expansion. This device gives the critics of music something to think 

about. One cannot really draw any comparisons between music of the present 

and music written two or three centuries ago because they exist in different 

states of expansion. 
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B. Translation of Melody Into Various Expansions 

Melody is a special type of scale. When a melody contains, among others, 
the adjacent musical names (musical seconds), it may be considered part of 
a complete 7-unit scale (containing all musical names). The following melody 
may be considered part of a natural major scale with the root-tone on c. In such 
a case the expansion must be performed from c as the axis of expansion. This 
melody is formed on both sides of the axis and the same pattern will remain in 
all expansions. 

Melody Scale 

_ Different expansions of the same melody produce melodic continuity in 
similar forms, evolving in different ranges. They are permutable in time con-, 
tmuity. 

The following is an example of melodic continuity produced by different 
expansions. 

The original setting: 

PITCH-SCALES: THE SECOND GROUP 

Continuity produced by circular permutations: 

As presented in the foregoing example, this device may be employed to 
produce studies for a solo instrument and is particularly suitable for instruments 
with wide ranges, such as the violin, clarinet and French horn. In order to obtain 

more expressive melodies, time-rhythm must be superimposed on the melodic 

continuity. The interference between the number of units in a melodic layout 
and a rhythmic group often results in a complete solo composition of consider¬ 
able length. By playing this type of melody in different modal transpositions, 

one may obtain a number of compositions, each distinctly different in character, 
and each esthetically equivalent to the original. 

Examples of the tendency toward tonal expansion resulting from purely 
intuitive processes may be found extensively in the works of modern composers. 
For example, Prokofiev in his Song, Opus 27, No. 2 for voice and piano, has a 

melody evolving mostly in the E2, while the accompaniment is a hybrid of E2, 
E3, and E0. The last two bars on the first page reveal E0 in the melody, Ej in 

the right hand of the piano accompaniment. These forms are hybrid and na¬ 
turally produce various deviations from the pure style. In No. 3 of the same 

Opus, the vocal part is a hybrid between E0 and Ej while the right hand of the 
piano accompaniment is consistently carried out in Ej, and the left hand in Ea. 

C. Variable Pitch Axes (Modulation) 

All techniques with regard to changes of scale structure or key signature 

are applicable to the second group of scales as well. Modal transpositions as 
well as modulations can be carried out in any form of tonal expansion, providing 
that the expansion remains constant in the two portions of melodic continuity 
connected by any form of modulatory transition. 

It is unsatisfactory to vary expansion in the two portions of melodic con¬ 
tinuity belonging to two different axes with modulatory transitions between 
them. Therefore, all the variations of E must be performed from one axis. The 
entire scheme of modulatory continuity, including expansions, may appear as 
follows: 

Key I E0 + Key I Ei + Mod. + 
+ Key II Ej -1- Key II Ej + Mod. -f- 
+ Key HI E2 + Key Ill E, -f 

+ Key III E0 +. 

Figure 26, 
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In a melodic continuity evolving from one thematic melody, this device 
becomes invaluable as it introduces variety into unity. It eliminates the neces¬ 
sity of having several melodies as different themes in one composition. One or 

two subjects are enough to evolve a diversified melodic continuity when tonal 
expansions and modulations are used. This form of composition may be applied 
on a limited scale for the purpose of arranging music where the “fill-in” groups are 

to appear as imitations of a preceding motif in one or another tonal expansion. 

There are many popular melodies which are intuitively written in the first 
expansion. For example, Without a Song, You Hit the Spot, and others. Note 

also Debussy's La fiUe aux cheveux de lin. Such themes present the possibility 

of reversing the whole procedure, i.e., tonal contraction of the original theme. 
Vincent Youmans' Without a Song* starts on c in the key of F (F is the axis and 
being in the Ei is the third degree of Ei). The same melody, being rewritten into 

E# and translated into the corresponding degrees, acquired a new musical ap¬ 
pearance that can be utilized wherever thematic motifs are desired. 11 may serve 

as an introduction or provide the interludes between the portions of thematic 
continuity/ The processes of expanding and contracting music often lead to 

startling discoveries. For example, in the case of Without a Song, this melody 
when translated into Eo has a great deal in common with the theme by Rimski - 
Korsakov from his opera Coq d'Or commonly known as Hymn to the Sun. 

Contraction: Eo 
mmn iy um+i n n m in cn ii yp yjj 

JX) 11 J'JTJ j i 'i jtti 11 inn etc. 

Figure 28. 

D. Technique of Modulation in Scales of the Second Group 

As transition from key to key—based on chromatic alteration—does not 
offer any definite procedure for tonal expansion' and may lead to pitch-units 

alien to both the preceding and the succeeding key, it has to be eliminated. 
Thus, the two available devices are: 

1. The common tones. 

2. The identical motifs. 

tjk* Prof®1? °f tonal contraction, as de- 
smbcd hy Schillinger, is most easily executed 
m the fouowmg manner. The first expansion 
(Ej) of the scale of F has the following notes: 
-aH^eg-bh-d-f. These are numbered from 1 to 
i. The mo expansion (Ep) of the scale of F— 
i-g-a-bb-c-d-e-f—is likewise numbered from 
I,to 8- Now, we take the notes of Vincent 
Youmans song Without A Son* and number 
them according to their position in the ex¬ 

panded stale. To discover the tonal contrac¬ 
tion of this melody, we simply substitute the 
notes of the contracted scale corresponding to 
these numbers. When this has been done to 
Without .4 Song, the notes of the opening bars 
change as follows: c-c-e-e-c-c-a-a-f become 
a-a-bb-bb-a-a-g-e-f, etc. The latter will, of 
course, be readily identified with the theme of 
Hymn to the Sun. (Ed.) 

As previously stated, both the preceding and the succeeding key have the same 
coefficient of expansion (whatever it is). The common tones can be easily 
found. For any given pair of keys, these common tones are invariant in any 

given scale, since tonal expansion does not alter the original pitch-units but 

merely arranges them in a new fashion. It is important, however, to realize 
that any usage of such common tones for a transition from one key axis to an¬ 

other must be carried out within the type of intervals inherent in the selected 

tonal expansion. For example, in the major or minor diatonic scales, the first 
expansion intervals are 3rds, 5ths, 7ths, 9ths, etc. There are no 2nds or 4ths in 
the same octave. One should refrain from using 2nds when they are really 9ths. 
This concerns all the intervals 

Here is an example of melodic continuity modulating through common 
tones. 

Figure 29 (continued), 
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Theme; Key of C 
identical motifs 

r 
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The two forms of modulation may be combined in the same melodic con¬ 
tinuity. 

In order to translate melodic continuity which already contains modula¬ 
tions based on common tones or identical motifs, it is necessary to introduce 
the principle of common degrees, as the corresponding degrees of one expansion 

do not correspond to the respective degrees of another. For example, e in the 
key of c is the second degree of Ej, and~the same e is the third degree of E0, and 
the same e is the fourth degree of E2. Naturally when a certain tone does not 
correspond to itself in one key, by reason of the different arrangements produced 
by different expansions, it will not correspond in the same relation to any other 

key. Take f, which is the fourth degree of the key of C in E0, and the fifth degree 
of the key of Bb in the same expansion; the note f in the key of C is the sixth 

degree of the Ei and the same note is the third degree in the key of Bb in the 

same expansion; the note f in the key of C on E2 is the second degree while the 
same note in the key of Bb in the corresponding expansion is the seventh degree. 

Modulatory continuity must be translated into any other expansion by 
means of common degrees. A new pitch-unit representing the identical degrees 

of the original expansion must be used directly in place of the corresponding 
pitch-unit of the same expansion. For example, if the modulation in E0 was 

carried out from the key of C to Bb, through the common tone f~~f being the 
fourth degree of the first and the fifth degree of the second key—it would change 
its pitch-units in such a way that the identity of degrees, i.e., IV = V, would 
be preserved. 

The fourth degree of the key of C in the first expansion is b while the fifth 
degree of the key of Bb in Ei is c. Therefore, the transition must take place 

through these two pitch-units placed in immediate sequence. The corresponding 

modulation in E2 will take the following form: the fourth degree of the key of 
C in E2 is e while the fifth degree in the key of Bb in E2 is g. The immediate 

sequence from e to g constitutes the transition. In this case, g following e must 
be placed one-tenth above e as this is the proper placement of a third in E*. 

Key of C IV = V Key of Bb 

E„ f - f 
Ei b — c 
E2 e - g 

Figure 30. 
Figured 31 (continued) 
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The identity of motifs m the process of modulating through the different 
forms of expansions, has dual significance. Firstly, it permits modulation through 

common tones, yet preserves the identity of the melodic material. This effect 

was illustrated above with reference to identical motif modulation. Secondly, 
through direct changes of key signatures in the adjacent identical motifs, one 

may achieve arpeggio-like modulatory progressions. To the listener’s ear, the 
latter will appear as the customary modulations moving through arpeggio chords 

_ab°I& exafnpk* a group of three identical motifs gradually becomes 
odihed through variation of the hey signatures from zero signature (key of C) 

through one-flat signature (key of F) to a two-flat signature calling for rb and d|> 

(which would permit the motif's being interpreted as fitting into the key of har¬ 
monic b b minor, which in its full form has four flats). 

The whole field of tonal expansion technique is suggestive of harmony, and 
ere ore presents more elaborate forms of arpeggio-making than the usual har¬ 

monic arpeggio. 

This device may be successfully utilized when the effect of forming of 
growing or of decreasing has to be expressed through a thematically homo¬ 
geneous melodic form. These effects—when combined with corresponding dy¬ 

namic treatment—suggest any mechanical form associated with spiral develop¬ 
ment, i.e., forming, increasing in size, or becoming louder on the one hand 

and moving away, decreasing in size, or fading out on the other. Motion picture 
backgrounds offer a very fertile field for the application of such devices. 



CHAPTER 6 

SYMMETRIC DISTRIBUTION OF PITCH-UNITS 

THF prob'et of *■“ symmetric distribution of sequences within a given 
acoustical range of a simple ratio is not new. Musical cultures of the Orient 

-such as the Javanese, Siamese, Balinese, and Arabian-attempted to produce 
such symmetries in their systems of tuning. They were not mathematically 
equipped to solve this problem in its general form, i.e., by means of logarithms, 
but they intentionally sought to distribute the pitch relations of an octave into 
five and seven uniform intervals, or to produce more complex forms of periodicity 
of pitch, such as in the Arabian scale introduced in the 7th century A D The 

Utter Offers from the Javanese and Siamese scales. The first two are sym¬ 

metrica! systems of tuning (primary selective systems), while the Arabian is a 
scale constructed within a given tuning system (secondary selective system) 

tv AnS!”t aVl lZatl0n8 were fluted by the properties of prime numbers. 
This perhaps explains why they used a symmetric breaking-up of an octave into 
such numbers as 5 and 7. The actual motivation behind the use of these partic- 
ular numbers may be an inclination which results from the primeval pentadic 

and heptadic forms of symmetry. The creation by nature of lower forms of 

animal life i forms of pentagonal symmetry and snow-flakes in hexagonal 
symmetry, is merely an outcome of electro-chemical processes which may also 
take pUce in our bram-functioning as well as in the general evolution of species 

for Iff!!* 'l- “u reaSOn' 0r “natural “dilation” in the human ear, 

nte^r^ rL^L.°5taVe ,nt0,hePtadiC °r pentadic 5ymmet™ relations, 
tervals thus produced do not conform to a simple acoustical ratio. Habit and 

dTtrfJT “tportant factors in the development of artist taste than is 
the perfection of the structural constitution of the raw material. Listening to 

Javanese, Siamese or Balinese music—authentically recorded from the original 

"TSlZ*™ *““* accustomed to it in a very short time. * 

culture* w^6 T^ * tUni"g ^metry in Oriental musical 
htod ':hg,0Ua a“d 9ymbollc considerations, the apparent reasons be- 
hmdAesr-twi now in use » the civilised world are acoustical considerations. 

unbi^sST *“ E nU8'fading- They « "0t true “ light of 
ofZlr 't!C^y8,S' The r“I reaSOn for die evolution from the system 

pared toT' ?7 u VT “ ^ °f die number 12 asrom 
7' ,We'5 “d, 7 are Pnmc numbers, i.e., they may be divided 

(2 l utT V UIUty “nly' the number 12 has additional divisors, 
XT' ’ 6): T“ next number would have one more divisor is 60, i e no 
other number between 12 and 59 exhibits greater versatility with resoect to 

*he Bub'8y9tems d>an does the number 12 itself. Being a United 
cry p^t'cable for the solution of many problems of musical 

A °! ,VereatUity “ die prime numbers, will, respect to 
unrng becomes apjwent after a .continuous experience of listening to Javanese 

sKs■ i-*- 
riMl 
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When a composer like Debussy begins to use the symmetry of 6 (whole- 

tone scale) consistently, his music becomes monotonous—despite the abundant 
use of various devices. Using 6 instead of 12 makes the system lose one divisor ; 
the loss of this one divisor makes such music considerably more monotonous 
to our ear. 

All the above-mentioned systems of symmetry are evolved within the range 
of a ratio of 2 + 1, which, being the simplest ratio, produces the effect of greatest 
likeness to our ear. Musical experience considers this likeness so great that all 
the tones of such ratio bear identical musical names. With the further evolution 

of pitch discrimination, this likeness may become assigned to ratios of somewhat 
greater complexity, such as 3 + 2, 5 4, etc. Then it will be possible to evolve 
the primary selective systems on the basis of symmetry within such ratios. 

Generalizing this idea (symmetric splitting into uniform ratios) we can 
express it in a formula:* S = 

5 
Thus^the system of Javanese music is a special case of symmetry in which 

S = V2; Siamese, in which 5 = ^/2: anc^ the European so-called “equal tem¬ 

perament,” S = y/2 • 'Hie latter was developed by Andreas Worckmeislcr »n 
1691. 

The need for such a system in Europe in the 17th century was created by 

the desire to produce greater versatility of the pitch axes. The limited key re¬ 
lations satisfactory to the community at that time were compensated for by the 
acoustical perfection of the system then in use. This system, known as “mean 

temperament,” was a bi-coordinate acoustical system of tuning. The two ratios 

were 3+2 and 5 + 4, one giving a so-called "perfect 5lh,” and the other, a 

so-called “major 3rd”—and between the two coordinate systems developed from 
these two ratios, compromises were reached. 

While in full agreement with the requirements of the Church—as well as 

with the simpler natural phenomena, this system gave the utmost satisfaction 
with regard to the consonant quality of harmony. The ideal of early homo- 

phonic music was consonant quality of a few chords rather than versatility of 

harmony at the price of an acoustical compromise. The technical expediency 
of the new system won, and the entire cultural inheritance of the preceding 
century’s vocal music was automatically transplanted to the new system to which 
the instruments were tuned, even at the time of J. S. Bach. 

J. S. Bach was the first composer to take advantage of the key versatility 
offered by the new system. Variation of key relations was used by him with 

the boldness of a catalogue rather than in the form of harmonious continuity 

Each prelude and fugue is in a different key in place of a greater variety of kev 
modulations within a single composition. 

Musical culture, the stronghold of which was consonance, had eventually 

to give up its way in favor of the harmonic versatility offered by the new system. 

Simple harmonic forms used in music of the period preceding equal temperament 

lost their acoustical perfection in the new system to such an extent that at later 

times treatises were written trying to explain the reason why certain simple 

of °12 6trUCtUreS and Ch°rd Pr°£ressions were “false” in the equal temperament 

*See footnotes on pages 101*2. 
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possibilities J'T ‘° T“’ " intuitivel> ' nature and the 
gtSrr y We are deaKne ■ith hybrids produced 

> music—the sources of which go centuries back—and by forms derived from 

equal temperament. The intuitive start on the new track was due noTto any 
discnmination in favor of symmetry, but rather to the consequences of a habit 
formed in the early 16th century. For the interval of an au^ented 4th which 

occurs between steps 11 and V of the “Neapolitan” minor site, was the actual 

ThTsUinte^a|Cwh ht0nhah!y mSuenced music to this particular direction, 
his interval which exhibits the symmetry 0/ 2 within one octave (-v/?) is at the 

same time the simplest form of symmetry within the system.* 

rw The firat !*»»» of this evolution of harmonic forms produced the v/T 
(Wagner), and the V2 (Liszt). While Wagner operated on the <Tl with 4 + 3 
structures (major triad),, he attempted and failed in the application of the ^ 

using the structure 3 + 4 (minor triad). Liszt used the on 4 + 3 structures 
exclusively; it took a few decades until the 3 + 4 structures on the same roots 
came into existence with Rimsky-Korsakov 

forms^fThe^r^T * ^*° ,mel0diC fonnS' “ we" as harmonic *•» ^^izszzt-szfxsi r,;‘lv:s' 
ITfc °* post'W**ne,“" trera written by Ruyttn 

All the group forms of symmetry within the Wl are the derivatives fsuh 

~0f thB ,ayste Various combinations of the various sub-roo( of the ' 
V2 Produce various forms of group symmetry-such as binomSs^rinlilt 
ynd0”^ef““phcated polynomials. At the banning of the 20th century the 

— The° ^mmetryf becomes apparent (as in Rimsky-Korsakov’s 
isOqDOr). The influence of symmetry on chord structures as well as on chord 
progressions begins to flourish with Debussy and Ravel. 

, 'rT ,8t™c‘ure* comprising five and more functions (such as 9th chords 
and 11^ ior*) take the plat* of the more archaic triads and 7* chords 

prefos ^T“tl choThi8 °f triads' ^ussy 

kno^t^Si/T plteZtvl °f ^ be'0n? t0 ■the ** °f wnting 
related thigh ££ 

become autonomous tonahties. Such simultaneous superimposition of sym 

to ,the footnote on 
* 101-2, the symmetry of 2 is mathemat- 

the m«h simpler than- 

perament. ine ratio senes for symmkry m / 

" 'W?*? ® factional powers): 2$. 2* 
2i- In the first term, the aero power of 2 is l' 

fiSlt^?‘S? * 1 b H* tbe tfcW and nnal term, the square root of two squared is. 

of coume. simply 2 The middle term is the 
iy analogous to—and much simpler than— lt fit8f tiie symmetry of 12 
■ynunetay of 12 characteristic oUqvStm. -ft? h squJ7 root.of ? to the first power 
ament The ratio series for symmetry of 2 5 ri£?2IL“ which is the middle term 

SyjS? «*■ described in the footnote 
“If1 samt Procedure may be 
of^Ed? t0 C0V6r the symmetry of 3. of 4, 
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metrically related keys may be observed in homophonic as well as polyphonic 
writing. 

The first intentional superimposition of chords belonging to two symmetrical 
roots of the octave occurred in Stravinsky’s Petrouchka. The maximum saturation 
caused by symmetric superimposition derives from the simultaneous composition 
oF all the roots of the octave. Equal temperament of 12 is the complete expression 

of the symmetry of 12 in one octave. The sub-systems of this general symmetry 
are: the sub-systems derived from Wi as a ratio unit; the ; the j/~i; and the 
V2» the latter being the simplest form of octave symmetry. 



CHAPTER 7 

PITCH-SCALES: THE THIRD GROUP 

Symmetrical Scales 

' I lHE THIRD group of pitch-scales is made up of those scales derived from 

**• various roots of the number 2—the square (second) root, the cube (third) 
root, die fourth root, the sixth, and the twelfth roots. 

^ The first table bpkny shows the manner in which the interval between one 
tone (s^y., and1 ijEs octave may!be divided into twelve symmetric parts, thus 

producing a 12-tonic system; the second table shows the same octave sym¬ 
metrically split into six tonics; the third, division into four symmetric tonics; 
the fourth, division into three tonics; the fifth, into two tonics.* 

A. Table of Symmetric Systems Within *sfl. 

(1) 
T, T, T, T4 Tb T# T7 T, T, Tj0 Tn T„ 

i Kn <n vn* vs v? w 
C C# D Eb E F F# G Ab A Bb B 

(2) 
Tt T, T, T4 Tt T8 Ti 

1 <Tl V2 <Ti' 4^2* 2 
C D E Fft Ab Bb C1 

(3) 
T, Tj T, T4 Tj 
1 \fl Vl \/l% 2 
G Eb F# A C1 
(4) * • • 

Tt T,. Tt T, 

1 </l #2* 2. 

C E Ab Cf' 

Ti f, Tj * " 

1 V2 2 
C Ff C1 

T, 
2 

C1 

The capital ‘TV* in.the preceding table represent the corresponding tonics 
(axis-points of the corresponding symmetric systems). These tonics serve as root 

tones of the structures evolving in simultaneity and continuity. 
The first such evolution (in simultaneity) produces chord structures. The 

second (in continuity) produces the individual pitch-scales of one compound 

symmetric scale and also the progression of roots for the chord sequence. 

These symmetric scales and the symmetric constitute one of the most brilliant theoretical 
harmony derived therefrom are of the utmost and practical discoveries of the Schillinger 
importance in modern and future music; they System. (Ed.) 

[148] 
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One-Unit 

Figure 33 (continued) 

PITCH-SCALES: THE THIRD GROUP 

Two-Unit 



152 THEORY OF PITCH-SCALES 

12 Tonics 

Figure 83 (concluded). 

The scale on \/2 with four-units in each sectional scale of the structure 
2 + 1+2 was known to the Arabs in the 7th century A.D. Their conception 
of the structural scheme was: a large step and a small step. Thus, they had ob¬ 
tained a binomial periodicity which, in its nearest approximation to our tuning 

system, produces 4(2+1), and the derivative of it, 4(1+2). 
This scale came into existence in our music through the realization of V2 

and <Tl as influenced by harmonic structures. It results automatically from a 
continuous chain of the simple chord-structures following the above-mentioned 
roots. We find portions of it as far back as the music of Bellini. s 

No composer until Rimsky-Koreakov was aware of this by-product of har¬ 

mony. It is evidenced in his operas, Kascht * and Mlada. 
Wagner used the scale on \^2 with three-unit sectional scales (2+1) in his 

prelude to Parsifal. Naturally, neither of these composers was conscious of the 

symmetric systems as such. 
Arabians called their 4(2+1) scale a “string of pearls’* (Zer ef Kend), draw¬ 

ing an analogy between the alternation of large and small beads in a string of 

pearte and the large and small steps between the pitch-units of the scale. 
Further study of this and other symmetric scales as by-products of chord 

progressions will be found in the Special Theory of Harmony.* 

C. Composition of Melodic Continuity in the Third Group 

The Third Group of scales offers the following possibilities for composition 

of melodic continuity: 
Scales with Two Tonics: 

Total number equals 32. 

1- Unit sectional scales on two tonics produce l3 equals 1 melodic form. Total 
number of scales 1. 

2- Unit sectional scales on two tonics produce 23 equals 4 melodic forms. Total 

number of scales 5. 

3- Unit sectional scales on two tonics produce 62 equals 36 melodic forms. Total 

number of scales 10. 
4- Unit sectional scales on two tonics produce 243 equals 576 melodic forms. 

Total number of scales 10. 
5- Unit sectional scales on two tonics produce 1203 equals 14,400 melodic forms. 

Total number of scales 5. 
6- Unit sectional scales on two tonics produce 7203 equals 518,400 melodic forms. 

Total number of scales 1. 

•See Book V. 
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Scales with Three Tonics: 
Total number equals 8. 

1- Unit sectional scales on three tonics produce l3 equals 1 melodic form. Total 
number of scales 1. 

2- Unit sectional scales on three tonics produce 23 equals 8 melodic forms. Total 
number of scales 3. 

3- Unit sectional scales on three tonics produce 63 equals 216 melodic forms. 
Total number of scales 3. 

4- Unit sectional scales on three tonics produce 243 equals 13,824 melodic forms. 
Total number of scales 1. 

Scales with Four Tonics: 
Total number equals 4. 

1- Unit sectional scales on four tonics produce l4 equals 1 melodic form. Total 
number of scales 1. 

2- Unit sectional scales on four tonics produce 24 equals 16 melodic forms. Total 
number of scales 2. 

3- Unit sectional scales on four tonics produce 64 equals 1,296 melodic forms. 
Total number of scales 1. 

Scales with Six Tonics: 

Total number equals 2. 

1- Unit sectional scales on six tonics produce 1® equals 1 melodic form. Total 
number of scales 1. 

2- Unit sectional scales on six tonics produce 2® equals 64 melodic forms. Total 
number of scales 1. 

Scales with Twelve Tonics: 
Total number equals 1. 

1-Unit sectional scales on twelve tonics produce l12 equals 1 melodic form. 
Total number of scales 1. 

Scales of the roots, the exponents of which arc multiples of the original 

roots, give coincidences in the corresponding symmetric points. Thus the scales 
built through the coincide with some of the scales built on the where the 
sectional scales move through the points coinciding with the points of the v^. 

If the two tonics are c and f#, then all sectional scales which include eb and a 

coincide with the four tonics having identical c — eb — f# — a as their roots. 
The technique of evolving a continuity in symmetric scales must be carried 

out through sectional scales used either in their complete form or in parts. The 
complete utilization of the sectional scales follows the methods of circular or 

general permutations of melodic forms, application of the coefficients of re¬ 
currence of melodic forms, superimposition of time rhythm on melodic form, 
etc. When some of the sectional scales, or all of the sectional scales, are used 

in parts, a definite rhythmic procedure must be established. The method of 
elimination of pitch-units must follow with a system of circular permutations 
or any other pre-arranged method of distribution. 
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Example of composition of melodic continuity from 
a scale of the third group: 
cj- d - f - f#_- g# - b 

Through circular permutations we obtain: 

.c-d-f - g#-b~f# - f-c-d - f#-g#-b - d-f-c - b-f#-g# 
1. 1 *— ■ ■ t..i I..— .i.t.... ___i 

Using 1-unit at a time on the second tonic and all three units on the 
tonic, and applying the method of circular permutations, we obtain: 

c—d—f — f# — d—f—c — g# — f-c-d — b 

Scale: 

Example of Melodic Continuity: 

Melodic form through circular permutations 

Figure 94. 

Rhythm of durations: 3(2 + 1) + (2 -j- 1)J 

r nr pr r pi Melody: 18 attacks 
Durations: 6 attacks 

Interference: = 3 

Continuity: 

Melodic forms 

Durations 
Figure 99. 

CHAPTER 8 

PITCH SCALES: THE FOURTH GROUP 

Symmetrical Scales of More Than One Octave in Range 

rT'HE FOURTH group of pitch-scales is based on the following roots: v^, 

V^8, V~32, V 2048- The ranges of these systems are, respectively: 2 oc¬ 
taves (3 tonics); 3 octaves (4 tonics); 5 octaves (6 tonics); 11 octaves (12 tonics). 

(1) 
Tt T2 Ts T2 

i vi vi* 4 
C Ab E C1 

Read the tones upward; the C1 is two octaves above the C. 

(2) 
T, T2 T8 T4 T, 

i Vi Vi Vs3 8 
c A F# Eb C1 
The C1 is three octaves above C. 

(3) 
Ti Jj % T^ T^ T6 Ti 

1 ^32 V32 V 32 V322 VJi* 32 
C Bb Ab F£ E D C1 
The C1 is five octaves above C. 

(4) 

T1 „ T* fl Ta_ Tl„ T^_ Te_ T7 T, T9 
\ V2Q48 V/2048 V2048 ^2048 V/20485 V2048 ^20487 ^2048® 
C B Bb A Ab G F E 

Tie Tjj T12 Ti 

V2048s V2048s V/2048u 2048 

Eb D Db C1 
The C1 is eleven octaves above C. 

All sectional scales of the fourth group starting from their symmetrical 

points have identical construction. The number of scales is limited by the in¬ 
terval between the two adjacent symmetrical roots. 

The Fourth Group 

The number The complete 
The interval 
between the 

The Iimit-ran| 

of sectional 
of roots range roots scales 

3 24 8 7 
4 36 9 8 
6 60 10 9 

12 132 11 10 ' 

[ 155] 
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The tonality of all scales of the fourth group may be discovered by utilizing 
all combinations by 2, 3 . . . for each sectional scale until it fills out the sec¬ 
tional limit-range. 

The total number of scales of the fourth group amounts to two thousand. 
Here are a few illustrations: 

The Fourth Group of Pitch Scales 

Excerpts from Complete Table 

THREE TONICS 
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SIX TONICS 
Te ♦ 

TWELVE TONICS 

figure -KS (continued). 

i iw
 s 
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etc. 
Figure 36 (concluded) 

The definition of the quantity of melodic forms in the fourth group is based 
on the same method of computation as in the third group. The general number 
of melodic forms available from any symmetric scale equals the number of per¬ 

mutations of the units of the sectional scale to the power expressing the number 
of roots (tonics). 

n»« (ui r 
A numeral with an exclamation mark on its right represents the product 

o! all integers from 1 to such numeral value, i.e., 5! equals 1X2X3X4X5— 

= 120. For example, the number of melodic forms in a 5-unit sectional scale 
on four tomes equals 207,360,000 melodic forms ((5!)4 = 1204 = 207,360,000]. 

A. Melodic Continuity in Scales of the Fourth Group 

Composition of melodic continuity from the scales of the fourth group may 
originate from the three forms of settings: 

(1) The original scale 

(2) The first contraction 
(3) The final contraction 

The procedure from the setting; (1) is the usual procedure as described for 
the scales of the third group. 

The second setting can be obtained in the following way; first, construct 
t e sectional scale on the first tonic; then the sectional scale above it on the tonic 

nearest in pitch to the first tonic; then the sectional scale below it on the tonic 
nearest in pitch to the first tonic. When the number of tonics is even, the further 

addition of the remaining sectional scales may be either above or below the first 

omc. This always offers two forms of distribution for the second setting. For 
example, take a 4-unit sectional scale on four tonics like c-d - f- g_a_ 

b d e~f# — gtf — b — c# — d# — e# — g$ — a#. Centering the first 

tonic and surrounding it by the nearest tonics, we obtain the following setting 
o» type (2): b 

- d# - e# - g* - a# 
-c-d-f-g- 

a — b — d — e 

Figure 37 
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Adding to this the remaining tonic (f#), we may place it either above or below: 

(a) 

a—b — d—e — 

(b) 

-$~g#-b-c# 

—c—d—f—g— 

- d# - e# - g# - afc 
-c-d-f-g- 

— a — b-d-e- 

Figure 38 

The second setting is always an overlapping one. There are definite con¬ 
tractions corresponding to each system of tonics. Scales on three tonics in their 

first contraction emphasize the range of 15 semitones. Scales on four tonics 
m their first contraction emphasize the range of 17 semitones. Scales on 6 tonics 
m their first contraction emphasize the range of 21 semitones. Scales on 1Z 
tonics in their first contraction emphasize the range of 22 semitones. 

• final contraction (3) generally produces a complete chromatic scale 
with the same range as the first contraction when the distribution of tonics must 
be preserved. The pitch-units of the sectional scales become rest tones and all 

the intermediate tones become auxiliary. Each sectional scale consists of direc- 
tumol units. Rest tones may move into the auxiliary tones, but their return to 

the rest tones is required. Otherwise, the auxiliary tones become passing notes 
between the rest tones. 

•n In ^ following example of the final contraction on the scale previously 
UluBtrated, the black notes indicate the tones to be used as passing or auxiliary, 
and the white notes indicate the rest ton®, i.e., the original pitch-units of the 
sectional scale m their original sequence. 

Figure 89. 

. The A™1 contrition of symmetrical scales, though it produces a chromatic 
scale, ts different from a chromatic scale used on a basis of atonality, where all 

tonal centers are completely eliminated. Composition of melodic continuity from 

melodic forms obtained through either of the melodic settings of the scales of 
the fourth group follows the same principle as the composition of melodic con¬ 
tinuity in the third group of scales. 

Hybrid forms of melodic continuity in the fourth group of scales may be 

derived by the application of mixed settings,.i.e., different states of contraction 
he rest following the usual methods of variation of melodic forms. 

PITCH-SCALES: THE FOURTH GROUP 

Examples of Composition of Melodic Continuity 
from Scales of the Fourth Group 

The First Contraction 

Continuity from the First Contraction 

Fimro —»\ 
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»" i 

Rhythm: (2+1+1)8; 64= J1 

m-tf rr ir rr if rr ifirrcrir rr if^p 
Continuity from the Original Setting (without Permutations) 

4--"'til... ,r& rf iyTfl‘,|jr'i1^ 
• C. a £ ~ 

etc. 

The First Contraction Melodic Form (Circular Permutations) 

Continuity from the First Contraction 

ffT ft fif i r ijjpprp- r.mft, I 

Figure 40 (continued). 
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The First Contraction 

\ H | =ftg--f-6 I. 

Melodic Form 

Rhythm: 3(2 + 1) + (2+1)2 

Continuity from the First Contraction (Circular Permutations) 

The procedure of composing melodic continuity from sectional scales of 
the symmetric system may also be reversed for the purpose of evolving symmetric 

continuity from a given motif. A root-tone of such motif corresponds to a root- 
tone of the symmetric sectional scale. The selection of the system of symmetry 

is left to the composer’s discretion. * However, the choice of such system may well 
be suggested by the harmonic structure of the original composition. 

Almost any music contains some symmetric chord-progressions, at least 
m a fragmentary form. For example, in the repertory of popular songs, vou 

hnd as a characteristic progression (often the beginning of the chorus) the 4/2, 
^ee such songs as Night and Day, Everything I Have Is Yours, and High on a 

tndy Hill which uses v;2; In such cases, the above form of symmetry would 

be the one most organically related to the whole harmonic constitution of the 
chorus. 

14 hy varying the rhythm of such motifs, it is possible to build different kinds 
0 cadenzas'* which may be used in the introductory section or in transitions. 
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The following illustration exemplifies an application derived from a well- 
known motif: 

GEORGE GERSHWIN’S I Got Rhythm* 

Four Tonic Setting (without Permutations) 

Figure H. 

B. Directional Units 

A scale which contains directional units may appear in all of its three settings. 
The directional units consist of the original tones of a sectional scale and of the 

tones of the allied sectional scales. The tones of the original sectional scale may 
be surrounded on both sides by the tones of the allied sectional scales. In such 

a case, a system of upper and lower auxiliary tones to the same tones of the 
original sectional scale is possible. In some cases, the units from the allied 

sectional scales appear once between the tones of the original sectional scale— 

and in some cases twice. In other cases, the lower one serves as the upper auxiliary 
tone to the preceding tone of the original sectional scale, and the upper one as 

the lower auxiliary tone to the following tone of the original scale. 
A directional unit consists of a tone of the original sectional scale together 

with any of the auxiliary tones leading into it. When permutations are used, 

such a directional unit does not change its own form, i.e., if the original direc¬ 
tional unit consists of a lower auxiliary tone leading into the tone of the original 
sectional scale, this particular form of sequence of the directional unit must be 

preserved. Permutations refer to different directional units only. 

•Copyright 1930by New World Music Corp., New York, N. Y., Harms, Inc., Sole Selling 
Agents, Used by penmnum of the Publishes. 
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Figure 42, which follows, contains examples of this technique. The arrows 
indicate the direction taken by the auxiliary tone as it moves into the original 
tone. The letters indicate directional units. 

The Original Scale 

Assignment of Directional Units in the Contracted Setting 

The Number of Melodic Forms: 27 = 128 

Figure 42. 

By selecting coefficients of recurrence for certain directional groups (as 
shown in the Theory of Rhythm, Book I) and superimposing the rhythm of dura¬ 

tions. we may obtain a different type of melodic continuity from that presented 

in previous examples evolved from the scales of the Fourth Group. 
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When such melodies are harmonized, the original tones of the sectional 
scale become rest tones of a chord (chordal functions), and the auxiliary tones 
become the elements of melodic figuration. 

Melodic Form: a + 2c *f d -f 2g 

Time rhythm: r^j^-with circular permutations 

Continuity: 

l_~^ ' % 1 Ti ' % 

Time rhythm: 

Figure 43 (continued). 
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Continuity; 

fa, 5 i i T+, yT+ ^ + T' + T> + + a, + T, + T, + t,) + 

Figure 48 (concluded). 

»'*ftcrwrESSrs “'• ■? * - 
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MELODY-HARMONY RELATIONSHIPS IN SYMMETRIC SYSTEMS 

^JHORDS, or “harmony”, and pitch-scales are interrelated. There is sufficient 
evidence tha^simultaneous pitch aggregations (groups which usually are 

called chords'’^are tonal expansions of the corresponding pitch scales.* Such 
expansions produce an acoustically more suitable form of distribution of pitch- 
units. Wider intervals are characteristic of the lower groups of harmonics and 
our ear accepts narrow intervals more easily in the higher frequencies. 

Certain groups produce an unsatisfactory effect merely because of their 
low pitch placement. Our hearing is not capable of discriminating simultaneous 
groups of pitch when their position is so low in frequency that the corresponding 

fundamental tone of the series cannot be heard in reality, i.e., when it would 
be below 30 cycles per second. It is easy to verify this phenomenon by simply 
placing such intervals as thirds, which are supposed to be “consonant," in an 

unusually low register. Yet when even the most “dissonant” intervals are located 
according to the series of harmonics, our hearing accepts them as consonant 

intervals. For example, the c of the large octave sounding simultaneously with 
the c# of the second octave on the scale of harmonics are the fundamental and 

the 17th harmonics. In this case the correspondence to the actual intonation 
of harmonics is so close that the effect is definitely consonant to our ear. It may 
be easily verified through placing any melody in such parallel couplings. 

The process of building harmonic groups (chords) is a process of redistribut¬ 
ing pitch-unite so that the latter are spread through a greater tonal range. As 

many scales in symmetric systems of pitch appear in already wide interval- 
distribution, many of these scales sound like chords when played simultaneously. 

Any simultaneous combinations of pitch-unite of such scales or of their sectional 
scales produce chords of varying complexity and therefore of varying tension 
(the degree of dissonant quality). 

The following figure is an illustration of a scale belonging to the fourth 
group and based on die symmetry of 3 tonics (-v^, i = 4). 

*This chapter introduces matters having to 
do with harmony, and it should therefore he 
noted that the complete development of the 
theory of harmony occurs at a later point in the 
tot. When all the tones of any scale are sound¬ 
ed simultaneously, the resulting sound pro- 
v*y®8 the raw material for harmonization of 
petodK: forms in that scale. But such a sound¬ 
ing of all tones at once 1b acoustically dissonant, 

i® the case of scales of comparatively 
few tones. Therefore, the- scale is subjected 

to the first expansion, Ei, in order to locate the 
tones in a manner that will yield better acoustic 
results. The result of the expansion is the 
master-structure denoted by the Greek letter, 
sigma. From this total master-structure, sec¬ 
tions are taken to provide the raw material for 
specific groups {“chords”). But this approach, 
although fundamental to all harmony, does 
not constitute the entire Schillinger theory of 
harmony which is very much more extensive 
than this chapter would indicate. (Ed.) 

[168] 

2 (sigma) indicates the compound chord which emphasizes all the pitch 
units of the scale, whether such chord appears as a scale in its original setting 
or in any of the tonal expansions. 

The original setting of the above scale appears in the form of the follow¬ 
ing 2: 

w 
Figure 45. 

From this compound harmonic group, smaller groups may be devised of 
different degrees of complexity and classified on the basis of the number of 

component units. Starting each time with the succeeding pitch-unit of the original 
sea e-setting, harmonic groups for all degrees of the scale are obtained. Berne 
classified on the basis of the number of pitch-units, they become: diads, triads 
tetrads, pentads, or hexads—for this particular scale consists of 6 units (3 tonics' 
2-umt scales). 

Tfe T one can produce perfect forms 

firm 77 COntlnu,tj' ?hrou&h the application of consecutive pitch-units in the 
o harmonic groups of the different degrees of tension. In order to ner- 

Piteh unks ofUrlly aS “V°ice4eading”' *is necessarY to find the 
erour C r SuCC?amg gr°Up 38 ^ appear in relation t0 th* preceding 

rwv ?fr°£ps * ulfferent degrees of tension'as treated later in the SP^ 
Dositinn Harmony ’ *}ave many forms of transformations constituting their 

one of thpand VO,.Ce‘leadla&- thls case the Principle of nearest tones is merely 
the special cases of such transformations. 

*See Book V and IX. 
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Harmonic Continuity of JDiads: 

through 1“0wi"5 *hich is the fundamental tone for each of such diads and 

kvJuf * °f.th“ aame constant fundamental tone in the bass, a 
hybrid form of harmony is obtained (2p var. 1 const.) 

Hybrid Three-Part Harmony 

MELODY-HARMONY RELATIONSHIP IN SYMMETRIC SYSTEMS 17, 

the slme p"ndpnii‘eXamPle of *** evolved through 

Harmonic Continuity of Tetrads: 

Through analogous addition 
harmony thereof is obtained (4p 

of a constant fundamental, 
var. -f- 1 const.) 

a hybrid 5-part 

Hybrid Five-Part Harmony: 

Likewise, a continuity of triads may be devised. 

Harmonic Continuity of Triads: 

figure 49. 

By adding a constant fundamental to 3-part harmony, a hybrid 4-oart 
harmony is obtained. (3p var. + 1 const.) part 

Hybrid Four-Part Harmony: 

respcctivel^y'^hTtfugi^^thif^addbio^oTthe^constantn/' d ^ heXada 
Part is obtained, thus nroducine „ * ... . fundamental an additional part is Obtained rw ' a . " c°nstant iundament 

var. -}- 1 const.) 

Harmonic Continuity of Pentads: 

be too "extreme'’tfnr°nant ^arai«eristics may 
taste.. sSKL b"t hardly for all, 
Q Mncrci method !ShS .dev^loPinK. however, 
t0 be aDoSl t. o h‘ch m th,s happens 
by sigma) ShL ,ma!ter'S-UCture (denoted 
«nethKa°vf HnS?.’ ?Xacti>' th« 
lowcr tension If *!? , • ®tructures much 
ressioni t desir« to produce prog- 

• > . 'vmch seem less extreme.’* For 

the first expansion, Elf of G melodicminw-— 

elf -b Stadinf^TP “ " 
master-structure happens to be ^ver/'W 
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Harmonic Continuity of Hexads: 

Figure Si. 

In addition to harmonic possibilities as the by-products of symmetric sys¬ 
tems! of pitch, there is a method of harmonization of melody and melodization of 
harmony, based on the different relations of tension with respect to tonics used 
in melody and harmony. The word “tension” refers both to the harmonic group, 
with respect to its dissonant quality, and to the relationship which exists between 
melody and harmony. 

In the following text, M will signify a sectional scale or a melodic form 

derived therefrom. H will express a harmonic group (chord structure) built on 
the pitch-units of one or more sectional scales (treated as total groups). 

Different forms of relations between M and H produce different degrees 
of tension. The minimum tension occurs when M and H have identical groups 

(like h = Tj). The increase of tension depends upon the remoteness of the 

T s expressing M and H. The system of tension relations is symmetrical, i.e., it 
follows the arrangement of the tonics: Tj is followed by T3, T2 is followed bv T* 
. . . . T„ is followed by Tj. 

The relationship between g may be constant (with specified degrees of ten¬ 

sion) or variable (with specified range of tension). The variable range of tension 
is subject to distributive processes assuming centrifugal or centripetal form. 

Forms are centrifugal when moving from the center to periphery, arid centri¬ 

petal when moving from periphery to the center. With regard to a scale of ten¬ 
sion, a centrifugal forni means movement from medium tension to low tension, 

and then to high tension, and then to low tension. Centripetal form means from 

high tension to low tension, and then to medium tension, or from low tension 
to high tension, and then to medium tension. 
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SYMMETRIC SYSTEMS OF PITCH 5 RELATIONS 

M .p M __ m M /p 
H ~ 1 I* H - ill H — A3 

2M _ T,+Tj 2M T,+T, 

« ~ Tj ! H — T, * 

_M __ T| 

M _rjs 

H “ An 

(2)f 

2H Tj+Tj' 2H Tj-f-T* 

3M Ti+Ta+T, 

H “ fj ; 

3H — Ti+Tj+T,' 

2M _ Tn-t+Tn 2M Tn+T! 

H ~ > H ~ Tt 

(« a 
M _ T M T, 
2H Tn-j+Tn» 2H~Tn+T, 

(4) f 
3M_Tn-g-f-Tn-j-f-Tn 3M_Tn-i+Tn+Ti # 3M_Tn+in-ij 
H ~ Ti ' H ~ Tj » H T, 

(5) 1 
M Tt . M Ti . M T, 
JR ~ Tn-i+Tn-j+Tn- 3H ~ Tn-j+Tn+T, ’ 3H “Tn-f-Tj+T, 

(6)f 
_T,+T,+Ti-}-(-Tn. aM T*+T*t» ••+Tn+Ti. nM T*-f- * •+Tn+Tj+Tj 

H Ti > H “ Tj » H ~ TT” » 
nM Tn+Ta4-Ta4-Ta+... 
H ~ Ti 

Wa 
M Ti „ M T, _ M Ti 
nH Ti+T*+TaH--fTn’ nH ““Ts+T!+- • -+Tn+Tt' nH ~T,+-•-t-Tn+Ti+Tj! 
M T, 
nlf - Tn+Ti-f-Tj+Tj-f- •. 

mS 
aM Tl+TaH-t-Ta 
bH~T,+Tj+--*+Tb 

Figure 55 

The lower forms of tension pertain to music which corresponds chrono¬ 

logically to the earlier forms of § relations. Such music is typical of Scarlatti, 

Haydn, Mozart, etc. The higher forms of tension lead to modernity of effect. 

The actual musical effect depends on the original structure of the sectional 
scales and their compound sonority from all symmetrical points simultaneously. 

Many of the scales in their h = ff relation produce the effect of moderately 

modem music in the way it sounds to the listener today. It belongs to the type 
of music in which the tension is analogous to that of Chausson, Debussy, Ravel, 

early Stravinsky, etc. Further forms of tension are characteristic of the later 
Stravinsky, of Casella, Malipiero, Auric, Poulenc, Milhaud, etc. 

By using the multiple-tonic system, such as six or twelve tonics, still higher 
tensions than those mentioned above can be obtained. 

As it follows from the table, the emphasis of more than one group of M 

against one group of H, and vice-versa, may include different degrees of tension 
as a constant characteristic of style. In the esthetic sense such a method offers 

a moderation of the extremities. Thus, any symmetrical scale offers a multiplicity 
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of styles where each individual style is an outcome of the forms of setting of the 
original scale as well as the specifications of “ relations. 

In the following examples, melodies from the 2-unit sectional scales are pro¬ 
duced from two melodic forms (a* + b»). Constant T appears in various degrees 
of tension, occurring between melody and harmony. 

In the first example, the melody emphasizes the pitch-units of the cor¬ 
responding harmonic group only. 

In the second example the 2-unit melody group is displaced one phase 
upward, i.e., it emphasizes the second unit of the first sectional scale and the 
first unit of the second sectional scale. 

figure 56. 

The constant degrees of tension acting within the restricted limits of sec¬ 
tional scales represent different degrees of tension between melody and har¬ 

mony, according to the table of § relations set forth on page 173. 

Melodic form is realized through the same structure as in 
example. 

the preceding 
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H T4 
TjL, Ti 
T* T3 

-f- Fp=f= 
& 1— 

to- 

F- 1...— 

-6- 

mm Vtt -Lei- 

W- 

Figure 57. 
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As previously stated, when the original setting of a symmetrical scale is 
not acoustically acceptable, its sectional scales must undergo tonal expansions 

in order to acquire the acoustical appearance of harmonic groups. For example, 
take a scale of the fourth group with 4-unit sectional scales on 4 tonics (^2, 
i = 2+3+2). 

Through Ei, harmonic groups may be obtained on all 4 tonics. Here are 
the chord structures (S) obtained through tonal expansion of the sectional 
scales. 

T1E1 T*Ei T3E1 T4Bi 
« 9 g » - u. ■- """ It 

a , 11 
-T- 

jo_A 

1^ —— 

~ mjm j 

figure Sit. 

These tetrads produce the following form of harmonic continuity when 

voice-leading is obtained through the same principle (moving to the nearest 
tone). 

figure SO. 

By establishing various relations of tension between melody and harmony, 
different forms of accompanied melody may be devised. 
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figure 61. 

(■connnued) 
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M _ Tt+Tj ^ T3+T8 Tj+T4 , Ti+Ti 
H‘ T, T4 + T, +-fr 

Figure 61 {concluded). 

In this procedure, the removal of harmony from melody produces the same 
effect of increasing tension as does the removal of melody from harmony. The 

entire scale may thus be harmonized in two fundamental ways: when a chord 

is constant and the sectional scale varies, and when the sectional scale is constant 
and the chord varies. 

The following example illustrates the combination of both procedures, i.e., 
the first sectional scale is accompanied by all chords; then the second sectional 
scale is accompanied by all chords, etc. 

The reversal of this procedure is applicable to various phases of arranging 
and composing music. An illustration might be taken from George Gershwin’s 
song, I Got Rhythm. As a possible form of introduction, the first two bars of 
melody represent the original two-bar motif; the following three two-bar motifs 
represent circular permutations of the original motif on the setting. The 

original harmony is left for accompaniment which naturally undergoes, under 

such conditions, one of the procedures described in § relations. In this partic¬ 

ular example, the degree of tension between melody and harmony is constant. 

This method is applicable in many ways and potentially includes an incon¬ 
ceivable amount of music, as the number of scales consists of two thousand, 
and practically every scale gives an infinite number of melodies and a great 
number of relations. 

Figure 62. 
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CHAPTER 1 

GEOMETRICAL INVERSIONS 

MUSIC in any equal temperament, when it is recorded graphically in rec¬ 

tangular projection, expresses the equivalent of musical notation in equal 

temperament. Such a geometrical projection of music is expressed on a plane, 

and as such is subject to quadrant rotation of the plane through three dimen¬ 

sional space. Rotation may be either clockwise or counterclockwise.* 

The conception of time, which is based on the common denominator and 

not on the logarithmic series, implies two possible positions: (1) the original, 

under zero degrees to the field of vision (parallel to the eyes); (2) the 180° position 

derived from the first one through rotation around the ordinate axis. Such an 

ordinate axis is either the starting or the ending limit of the vertical cross-section 

of the graph (duration limits). If the original (zero degree position) is conceived 

as a forward motion of music in time continuity, then the respective variation 

of it (180° position) is the backward motion of the original, when the ordinate 

is the ending limit in time.** 

The logarithmic contraction of time corresponds to the logarithmic con¬ 

traction of space on the graph—and if our music were not bound to a common 

denominator system of measurement, it would be possible to apply such pro¬ 

jection practically. This same form of variation has been known in visual art 

since about 1533 A.D., in skillful paintings made by German and Italian artists. 

They are based on the principle of angle-perspective and have to be looked at 

(that is, held at an angle) from right to left, instead of under the zero angle 

to the field of vision. 

It may be helpful to add at this point the 
following: geometric inversion of music con¬ 
sists of “a” of the original form of the music, to 
start with: then, as the “b" inversion, the same 
thing backwards-, as the "c" inversion, the 
original but backwards and upside down-, as 
the “d” version, forwards and' upside down. 
(Ed.) 

**When you turn a left-hand page of this 
book as you normally do, you are revolving 

it through 180° around—what may be con¬ 
ceived as—its “ordinate" axis. Now if the page 
were transparent and there was reading matter 
on only one side, you would find—after you 
turned the page—that the material at the right 
side would then be at the left side: that is, 
you would be reading it backwards. This is 
position © of geometrical inversion. See part 
A of figure 4. (Ed.) 
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German School, 16th Century; Charles V, 1533* 

Figure 1. 

Mailer, 16th Century: St. Anthony of Padua • 

Figure 2. 

•Connery of Museum of Modem Art. exhibited iu ft*** Ar, Dodo and Surrey. ,,37. 
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By revolving the second posi’tion of a musical graph through the abscissa 
(which becomes the axis of rotation) 180° in a clockwise direction, we obtain 

the third position of the original. The axis of rotation must represent a pi (pitch¬ 

time) maximum and the direction of the third position is backwards upside- 
down of the original, and forward upside-down' of the second position.* Further 
180° clockwise rotation of the third position about its ordinate produces the 
fourth position, which is the backwards of the third position, the backwards 
upside-down of the second position and the forward upside-down of the orig¬ 
inal.** The respective four positions will be expressed in the following ex¬ 
position through (§), ©, © and 

o 
o- 
!-*• 
s 

a> 

•*-» 
cl 

.5 
*5 u 
O 

Figure 3. 

stn^C9nt!uUe, from the P°int at which we 
stopped m the footnote on page 185, imagine 

waardy0Yn0U d tlirin Lhe trtnsParent page down- 
sro, .4 OUi_woulci then he revolving it 180° 
around-^-what may be conceived as—its “ab- 
US ?*“• Th,e wading matter would appear 
pside down and backwards with reierence to 

cs original position on the left-hand page 

inv.^!LihCCth,rri poAsiu'°" © 01 pcomeiricai 
nversions. See part A of ngure 4. (Ed.) 

Continuing with the illustration ol the 
previous footnote, imagine that you could now 
turn our transparent page back toward the 
front cover. The reading matter would 
then appear upside .down and forwards with 
reference to the original left-hand page, posi¬ 
tion (a). It would appear backwards with 
regard to position ©—and upside down and 
bacKwards .with regard to position (E). See 
part A of figure 4. (Ed.) 
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Theme: 

figures. Musical representation of Figure 7. 

193 
geometrical inversions 

, ™s m^.tho.^ 0f 8eom«ricaI inversion, when applied to the composition of 
melod.c continuity, offers much greater versatility—yet preserves the unity more 

than any composer in the past was able to achieve. For example, by comparing 

he*rm’lri’h °f J, S‘ ®ach wlth the foll°wing illustrations, the full range of what 
he could have done by using the method of geometrical inversions becomes clear. 

nf In,Inventlon N°- from his Two-Part Inventions, during the first 8 bars 

the HniadmgtV1Ce fPPe- Part after the theme ends)' the first 2 bars ^11 into 
e triple repetition of an insignificant melodic pattern lasting one and one-half 

times longer than the entire theme. 

Figure 9. J. S. Bach, Two-Part Inventions, Bo. 8. 

recurrence thf,method ^metrical “version (even with a compromise of the 

c™tim,itv °nglna P°Slt,0n)' We °btain the f0ll0"'in^ version of ‘hematic 

Figure 10. Inversion of J. S. Bach, 
Two-Part Inventions, No. 8 {continued). 
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®+@+®+© 

K^unt0- **P*n*ion. qfd.S.Sach, Tyro-tart Invention, No. 8 (concluded). 

In another case, that of Fugue No. 8 from Bach’s Wdl-Tcmpcred Clavichord 
Volume I, if we compare the first 12 bars of the original with the version evolved 

-'..lit this same theme by means of geometrical inversion, we cannot fail to see the 
esthetic advantage of this method of composition over the more casual one 
derived partly from dogmatic and partly from intuitive channels. 

figure 11. J.S.Back, Vot. 1, Fugue VIE. 

®+© + © + @ 

Figure 12. J. S. Bach, Well-Tempered Clavichord, Vol. 1, Fugue VIII. 

In some cases geometrical inversions of music give new and often more 

interesting character to the original. When a composer feels dissatisfied with 

his theme, he may try out some of the inversions—and he may possibly find them 

more suitable for his purpose, discarding the original. Such was the case when 

George Gershwin* wrote a theme for his opera Porgy and Bess, where position (c) 

was used instead of the original which was not as expressive and lacked the 

character of the latter version. 

*In the Musical Courier of Nov. 1, 1940 the theorist for four and a half years.” Porgy 
Leonard Liebling, editor, wrote: “After George and Bess, which took Gershwin more than two 
Gershwin had written over 700 songs, he felt years of work under his teacher’s supervision, 
at *he .e”d of his inventive resources and went was composed according to the Schillinger 
to Schillinger for advice and studv. He must System. (Ed.) 
have valued botu, tor he remained a pupil of 



'* VARIATIOXS 0F MUSIC BY MEA*s OP geometrical projection 

new tTSr £"££££ *' — f * - ~ — throws 

Reometri^lTions. For example beC°me m°re 3P' 
combined with certain rhythmic form. P * harmonlc mi"or scale 

r* ^J2Tsr^r,"rrL""n,f ■ 4~ 
m lts position © reveals a dedHoHIv u • “ 1 theme of the finale 

able in its original form. This analysis Chan*Cter which ia not as notice- 

theme has a more archaic character than the ^ * .■ * P?8l^0n ® of the same 
with that of Joseph Haydn. * °nglna1, hnkin? Beethoven’s music 
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In composing continuity through geometrical inversions, it is important 

to attend to the rhythmic structure of time elements in the original theme 

According to the principles of this theory, whenever rhythmic groups assume 

natural lorms ne., have an axis of symmetry, the quality of the melody will 

not be debased in the © and © positions of the original, and the rhythmic 

resultants as well as the permutation-groups are reversible. 

While the principle of inversion does not interfere in any way with the 

intonation, it may produce undesirable, lasting durations which become exag¬ 

gerated when the forward and backward moving positions are adjacent. If the 

original has a long duration at the end and position © follows immediately, 

this duration will be doubled. In such a case a rhythmic readjustment is desirable 

and the elimination of one of the long durations becomes necessary'. Complete 

e munation of the final points having excessive durations mav produce, in some 

cases, even a more satisfactory melodic continuity, as in the example below, 
line melody is taken from Figure 4). 

®+(B>+©+@ 

Figure 14. Adjusting rhythms in geometric inversion. 

tinuhv thronaL ‘° pUn ” advance the ““Potion of melodic con- 
nuily through combining geometrical inversions of the original material with 

positions!'0 Sr°UP Pre'SeleCted for the coeffidents of recurrence of the different 

Rhythm of Coefficients: rt+s 
Geometrical Positions: ®, *0, © 

Continuity: 3 ® + @ + 2 © + 2 ® + 0) + 3 © 

m The ac‘ua‘ technique of transcribing music from one position to another 

l DiJcTt °Ut *n tKr? ffferent WayS- The Student ma>' take his choice 
' P mVerted POSiti°nS fr°m *he gml>h into musical 

2. Direct transcription from a complete manifold of chromatic tables re 
Dresentincy fSs oo\ _... ~ L Ltlu,es re¬ presenting (§) and 0 positions for all the 12 axes. 

Figure IS. Manifold qf chromatic tables for ©and 
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3. Step by step (melodic) transcription from the original. 

The unconscious urge toward geometrical inversions was actually realized 
in music of the past through those backward and contrary motions of the original 

pattern which may be found in abundance in the works of the contrapuntalists 
of the 16th, 17th and 18th centuries. As they did not do it geometrically but 

tonally they often misinterpreted the tonal structure of a theme appearing in 
an upside-down position. They tried to preserve the tonal unity instead of 
preserving the original pattern. Besides these thematic inversions of melodies 

e£den<* . the tendency toward unconscious geometrical inversions may be 
observed in the juxtaposition of major and minor as the psychological poles. In 
reality, the commonly used harmonic minor is simply an erroneous geometrical 

inversion of the natural major scale. The correct position @) of the natural 

major scale is the Phrygian scale and not the harmonic minor. The difference 
appears m the 2d and 7th degrees of that scale. 

figure i8. Inversion af natural major. 

figure i7. Inversion of harmonic minor. 

figure IS. Inversion of Mixolydian. 

GEOMETRICAL INVERSIONS 

figure 21. Inversion produces an axis of symmetry. 

Thus, we see that the "psychological major” of the harmonic minor is an 
entirely new scale, figure 17; that the "psychological minor” of the Mixolydian 

scale is the Aeolian scale, figure 18; that the "psychological major” of the melodic 
minor scale is d4 of the melodic major scale, figure 19; that the psychological 
minor of the Hungarian major scale is not the Hungarian minor scale but a 

new scale, figure 20; that some of the scales being inverted through their axis 

ol inversion produce an axis of symmetry, i.e., their compensating scales are 
identical in structure with the original scale, i.e., ® figure 21. 

The -transcription of polyphonic continuity into different geometrical in¬ 
versions must be performed from the pitch-axis of inversion in such a way that 
not only individual counterparts but also their mutual pitch relations are in¬ 
erted accordingly. For example, if the pitch-axis of inversion is g and the theme 

enters on d, the same melody will start on c in position 0—seven semitones in 

e opposite direction from the axis of inversion as compared with the seven 
semitones of the original direction. In the following excerpt from a fugue, the 

erne starts on d and the reply on g; g being the axis of inversion sets the theme 

n e starting point c and the reply on the starting point g (the invariant of 
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© 

figure U. J.S.Bueh, WM-Ttmpmd Clavichord, Fol. t. Fugue XTI. 

tn 'ft* Of,PSych0!°Eical contrasts, to which I have referred with regard 

moToL^I|P reJV Ch0rd 8trUCtUrea ^ their Progressions as well. The “rrn ^+>> .?* its ^ 
=?constant (the inrriant °f *->. <= i«oJK£rB 

ZTl lf comparative chart of positions ® and ® of the chords 
commonly known as triads [S(5)J and 7th chords [S(7)J 

© 

■Figure 23. @ and @ petitions of the triads. 

“verting chords as well as scales in order to find the n5v 

t KSK ,;particularly useful in— —» * dJilzx 
? 0r Progression may be. It also provides an exact 

the latter ar/cnti^T31*?* structures and progressions in those cases in which 
latter arc enhrely unknown-and the trial and error method does not bring 
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any satisfactory result. For example, the reciprocal of the structure in the 
following example may sound quite surprising—yet the above chart shows that 
position ® does not distort the original structure but merely changes its position. 

Figure 24. 

From all this, it is easy to see that not only an individual melody or a group 
of melodies (counterpoint), but also a melody with harmonic accompaniment, 
may be transcribed via various geometrical inversions. The melody of the 
earlier example is offered here with an accompaniment of harmony and its in¬ 
version into position ®. 

Figure 25. 

Geometrically, a melody appearing above harmony in the original appears 
eow harmony in position @) . It may also be rewritten, without any damage 

0 music, by being placed above the harmony. 

The technique of transcribing any harmonic continuity into different geo¬ 
metrical positions can be greatly simplified by using the method of enumeration 
oj each voice of the harmony. Each voice becomes a melody and it is only neces¬ 
sary to know the entire chord, (i.e., the starting-points of such melodies) forthe 
s arting-point, after which all voices may be transcribed horizontally (as mel¬ 
odies). 
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The following chart represents 24 original forms of distribution of the 

starting chord (according to the 24 permutations of 4 elements), for the har¬ 

monic continuity offered in the preceding figures 26 and 27. When the starting 
chnrri hn<s the _ .*/v . » 

of each version also becomes different. 
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Figure 28. Twenty-four original forms of distribution of starting chord. 
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204 VARIATIONS OF MUSIC BY MEANS OF GEOMETRICAL PROJECTION 
GEOMETRICAL INVERSIONS 205 

Figure 30 takes the following form when connecting tones are added: 

Another form of contrasting harmonic continuity derived from the same 
material may be evolved through consecutive progressions from chord to chord, 
emphasizing every three chords for one geometrical position. 

[® + ® + ®]® + |® + ©+ ®]<2) + 
+ 1® + ® + ®]® + [® + ®+@]®+ . , . 

Figure SO. Contrasting harmonic continuity. 

a a ThC tW? prece?in& forms oi harmonic continuity are satisfactory only when 
different orchestration or different registration is applied to each individual group 
of inversion. When it is.desirable to get a mixture of different geometrical posi¬ 
tions forming one harmonic continuity and containing contrasts, then even 
movement of transition to a new geometrical position must be readjusted with 
regard to voice-leading. It may be accomplished by those students who are not 
as yet familiar with the theory of harmony by connecting the two adjacent chords 

belonging to two different geometrical positions through their nearest tones. Thus, 
Figure 29 takes the following appearance: 

Figure 32. Adding nearest tones to connect adjacent chords of different georne - 

trical positions. 

It is possible to create compositions of harmonic continuity from any original 
chord-progression, where different geometrical positions may appear in any de¬ 

sirable order and with any desirable coefficients of recurrence. In order to obtain 
a clear presentation of the scheme of progressions, it is necessary to take the 

entire progression in position (a) and to enumerate all chords in the order of 
their appearance. In order to enumerate the same progression in position (5), 

it is necessary to start the numbers reading backward. The next step is to 

enumerate the entire position ® of the chord progression starting at the begin¬ 

ning, and position © starting at the end, proceeding backwards. 

I — 
© ® ® ® ® ® ® © ® © ® © 

©-© ®®-®®®@®®®@© 
5?—W kn-,t \f o -.+ir ..rv -bos-O' vS>:_^n 

Sj 

^ T-. , 

Figure S3. @ (D © and @ enumerated. 
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figure 35 {continued) 
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Figure 35. Adjusting harmonic continuity of Figure 34 through voice leading 
(concluded). 

In its final form as above, such a continuity may be assigned to a homo¬ 
geneous orchestration or registration. 



chapter 2 

GEOMETRICAL EXPANSIONS 

XJTAVING DISCUSSED the technique of geometrical inversions, we may now 
consider an additional set of techniques, those leading to geometrical ex¬ 

pansions' Tonal expansions, as distinct from geometrical expansions, were dis- 
' cussed in the Theory of Pitch-Scales, Book II.* 

On an ordinary graph, the unit of measurement is equivalent to -fa of an 
inch, and it represents, in this system of notation, the standard pitch-unit, i.e., 
Wl (a semitone). Such units are expressible in arithmetical integers as loga¬ 
rithms to the base of KTi* Thus, a semitone consists of one unit, a whole tone 
of two units, etc., along the ordinate. 

A melodic graph may be translated into different absolute pitch values by 
substituting different coefficients for the original p. 

* 

To translate a musical graph into v^2 we would simply use double units 
on the ordinate for the original angle units, while preserving all the other rela¬ 
tions within a given melodic continuity. In this case, p = 2p, By using greater 

coefficients such as 3, 4, 5, 6 or 7 (^, Vi. Vl. V''?), we obtain the 
respective units for the pitch intervals. 

This form of projection is known as an optical projection through extension 
of the ordinate. It is one of the natural tendencies in visual arts. When artists 
attempt to produce a distortion (variation) of the original proportions, they are 

unconsciously attempting to achieve one or another form of geometrical pro¬ 
jection. 

These variations, when executed geometrically and in accordance with 

optics, give a greater amount of esthetic satisfaction because they are more 
natural. 

On the next page you will find an example of the translation of one system 
of proportions into another, as applied to linear design. 

*Schillinger describes various methods of obtained by circular permutation in which 
tonal _ expansion m Chapter S of Book 11, alternate units are skipped. In geometrical 
pp. 133-7. In tonal expansion, as contrasted expansion, however, the original pitch-units 
with geometrical expansion, the original pitch- are not retained. The process, as the student 
units are not altered; they are merely rear- will learn, is one of extending the semitone to 
ranged. In the first tonal expansion (E|) of a full tone, or more. Thus, c—~d—e—f—g would 
c d c- f g, for example, these pitch-units become c—e—gji—a#—d. The unit of measure- 
reappear in the following order: c—e*—g—d—f. ment may be extended so that p, instead of 
The student will recall that this new form is equalling 2p, equals 3p, 4p, 5p, etc. (Ed.) 
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Figure 36. Translating one system of proportions into another. 

In the illustration above, the same configuration is presented under different 

coordinate ratios. The technique of such translation consists of producing a 

network on the original drawing (with as many units as is desirable with regard 

to precision) and then transcribing this network into a differently proportioned 

area, preserving the same number of lines on both coordinates of the network. 

Then all points of the drawing acquire their respective positions in the corres¬ 

ponding places of the network. 

Compare these geometrical projections with the distortions in these and 

other paintings by El Greco and Modigliani. 
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Figure 38. Modigliani. *• 

"Courtesy of The Metropolitan Museuutof A«. .-Collect™, Museum of Modern Art 
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As each coefficient of expansion is applied to music, the original is translated 
into a different style, a style often separated by centuries. It is sufficient to 

translate music written in the 18th century by the coefficient 2 in order to ob¬ 
tain music of greater consistency than an original of the early 20th century 

style. For example, a higher quality Debussy-like music may be derived by 
translation of Bach or Hafidel into the coefficient 2. 

The coefficient 3 is characteristic of any music based on v/2 (i.e., the “di¬ 
minished 7th” chord). Any high-quality piece of music of the past exhibits, 
under such projection, a greater versatility than any of the known samples that 

would stylistically correspond to it in the past. For the sake of comparing the 
intuitive patterns with the corresponding forms of geometrical projection, it is 
advisable to analyze such works as J. S. Bach’s Chromatic Fantasy and Fugue, 
Liszt’s B Minor Sonata, L. Van Beethoven’s Moonlight Sonata, first movement. 

The coefficient 4, being a multiple of 2, gives too many recurrences of the same 
pitch-units since it is actually confined to but 3 units in an octave. Naturally, 
such music is thereby deprived of flexibility. 

But the 5p expansion is characteristic of the modern school which utilizes 
the interval of the 4th—-such as Hindemith, Berg, Krenek, etc. Music corres¬ 

ponding to further expansions, such as 7p, has some resemblance to the music 
written by Anton von Webern. Drawing comparisons between the music of 
Chopin and Hindemith, under the same coefficient of expansion, i.e., either by 

expanding Chopin into the coefficient 5, or by contracting Hindemith into the 
coefficient 1, we find that the versatility of Chopin is much greater then that of 

Hindemith. Such a comparison may be made between any waltz of Chopin 

and the waltz written by Hindemith from his piano suite, 1922. 

Comparative study of music under various coefficients of expansion reveals 

that often we are more impressed by the raw material of intonation than by the 
actual quality of the composition. 

The opposite of this procedure of expansion of pitch is contraction of pitch. 
Any pitch interval-unit may be contracted twice, three times, etc., which is 

expressible in y/2, y/2, etc., providing that instruments with corresponding 
tuning are devised. Those esthetes who usually love to talk about the “economy 

of material” and “maximum of expression” will perhaps be delighted to learn 
that an entire 4-part fugue of Bach occupying a range of 3L octaves would re¬ 

quire only one whole tone if the pitch interval-unit were of a tone C'V^)- 

Applying the same principle to the contraction of the absolute time duration- 
unit, we could hear this fugue in a few seconds instead of several minutes! 

The natural pitch-scale, i.e., the series of harmonics, does not produce uni¬ 
form ratios but gives a natural logarithmic contraction. The intervals between 

the pitch-units decrease, while the absolute frequencies increase. This phe¬ 
nomenon is analogous to the perspective contraction in space as we see it. If 

music were devised on natural harmonic series, the relative group-coefficients of 
expansion and contraction could be used. But it seems that the natural harmonic 
series does not, in fact, provide any flexible material for musical intonation but 
merely for building up various tone qualities—for the fact is that a group of 

harmonics sounded at the same intensity produces one saturated unison rather 
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•See Book II. Figure 39. Time and pitch expansions {continued). 
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Figure 39. Time and pitch expansions 
(<concluded). 
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If pt represents the original, 2t and 3t produce the corresponding time ex¬ 
pansions. Likewise, 2p and 3p produce the corresponding pitch expansions. 
The expansion through two coordinates preserves the absolute form of the 
configuration, merely magnifying it (2p2t and 3t3p). 

It might seem at first that the ordinary enlargement or reduction of an 

original image—such as that effected by any natural optical projection (lantern 
slide projector, motion picture projector, magnifying glass, etc.)—does not 
change the appearance of the image. Yet when carried to an extreme, it does 
in fact transform the image to a great extent. For example, an ordinary close-up 
of a human head seen on the screen does not change our impression of the image. 
But when a human head is subjected to a several hundred power magnification, 
the original image is changed beyond recognition. A photograph of the skin 
surface of the human arm occupying only l/lOOth of a Bquare inch produces an 
image which is not easily associated with the human arm. 

Thus, the difference in the actual sound of music (like the magnification of 
Haydn into von Webern) is only quantitatively different from the enlarging of 

visual images. Even with coefficients as low as 5, a melody is transformed beyond 

recognition. But the magnification of visual images requires at least one- 
hundred power magnification in order to achieve a similar effect. 

It is interesting to note that bizarre effects of optical magnification are 
often due to the fact that such images are merely hypothetic and have no actual 
correspondences in the physical world of our planet. An image of a chicken can 
be magnified to the size of the Empire State building (for example, by being 
projected on an outdoor smoke screen), yet no real live chicken could exist on 
this planet even the size of an ostrich, because—as the volume grows in cubes— 
the legs of such a chicken could not support the weight of its body. 

The following chart represents pitch expansions of the melody: graphed 
in Figure 39. 

Figure 40. Fitch expansions of the melody of figure 39 

{concluded). 

For most purposes the lower coefficients are the most practical ones. 
Examples of geometrical expansion may be seen in the following excerpts from 
J. S. Bach: 

Invention IV 

Figure 41. Geometric, expansions of J. S. Bach s Two-Part Inventions. 
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Fugue I- Vol. I 

Fugue XV - Vol. 1 
P 

Figure V. Geometric expansions of J. S. Back’s Well-Tempered. Clavichord. 

Figure 43. More geometric expansions of J. S. Bach's1 Well-Tempered Clavichord. 

Different geometrical expansions may follow one another as elements in a 
continuity only when used in very short portions—in order to enable memory 

to retain the original pattern. When the ear accommodates itself to one coefficient 

of expansion for a considerable period of time, then a sudden change to a new 
coefficient produces such a surprising effect that the desirability of the use of the 

device in one continuity becomes questionable. For this effect is equivalent 
to a sudden change of style; it may be described as music beginning somewhat 
like Debussy, suddenly changing to Bach, and then again to Hindemith. Yet 

tests with various listeners show that in immediately following fragmentary 
sequences, the device sounds perfectly acceptable. 

Figure 44. Geometric expansions of George Gershwin's 111 Got Rhythm"*. [ 

‘Copyright 1930 by New World Music Corp., New York, N. Y., Harms Inc., Sole Selling 
agents. Used by permission of the Publishers. 
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Geometrical expansion of the harmony which accompanies melody expanded 
through the same coefficient (whether with readjusted range or not), must be 
performed from the pitch axis of the entire system (usually the root-tone). 

This translation of harmony may be accomplished either through transcription 
of a graph or through step by step translation from the original. One may also 

prepare in advance chromatic scales from the respective pitch axes where all 
the pitch-units may be found directly in the corresponding expansions. 

■Figure 47. Scale of pitch units and their corresponding expansions. 

Further expansions may be evolved in a similar way. When harmony is 
to be translated into a geometrical expansion, it is sufficient to find the first 
chord of its original setting and to proceed horizontally with each voice as 

melody, thus performing the voice-leading of the original. If after such transla- 

on the range seems to be too extreme for any instrumental applications, the 
above-described range-readjustment may be applied. 

Here is an example of a conventional harmonic continuity first translated 
mto 2p and then readjusted into two further contracted forms. In such a case, 

e extreme upper voice may become one of the inner voices by being placed 
°ne octave below. 
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Figure 49. 2p expansion of J.S. Book, Well-Tempered Clavichord. 
{concluded). 

All geometrical expansions are subject to geometrical inversions as well. 
A consistent musical continuity may be evolved through the variation of in¬ 

versions under the same coefficient of expansion. Thus the two methods of 

mathematical variation of music, based on geometrical projection, bring an 

effective solution to two very important technical problems: 

1. Composition of infinite melodic or harmonic continuity containing or¬ 

ganically related contrasts. 

2. Translation of music of one epoch into another, “modernization11 and 
“antiquation.” 
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CHAPTER 1 

INTRODUCTION 

TN ORDER successfully to produce anything out of given material, it is neces¬ 
sary to know the properties of such material as well as all the processes in¬ 

volved. Any material which is to be dealt with must consist of a number of 
components. Unless all the components required for structural realization are 
known, the result of such a procedure will be failure. The components of a 

structural process specify different individual procedures to be coordinated in 
the whole. 

There exists a great deal of scepticism as to the possibility of constructing 
musical melodies rationally—but no such scepticism exists as to the evolution 

of chord progressions. This is because it happens that the musical study of 
harmony is based on a quite developed tradition describing such procedures, 

while no workable theories of melodic composition have thus far been offered 
in the civilized world. 

Although we hear about such theories existing in Oriental civilizations, such 

as those of the ancient Hindus and the ancient Chinese, these theories are not 
available in any form other than the original and therefore are not accessible 

to anyone not familiar with the respective languages. I may say that there is 
no evidence among scientific musicological documents which would offer any 

positive proof of the existence of such theories. Perhaps, it is one of those "Ori¬ 

ental mysteries,” like the rejuvenation of an old person or the resurrection of 

someone buried alive. Naturally, we cannot use such methods—yet we are 

surrounded by the sceptical attitude of musicians brought up in the romantic 
traditions of the 18th and 19th centuries, and the intuitive approach to the 
art of musical composition.* To one associated with the method of engineering 

musical melodies, however, the possibility of such a creative process is beyond 

doubt. A buffalo is almost a zoological myth in Europe, but a common reality 

ln America. A zoologist dealing with some rare specimen on the African continent 
would have to face the same scepticism from people whose scientific criterion is 
‘seeing is believing.” 

A-j S’, scmilinger refers merely m passin 
tnts development in the history of ideas, it i 

xtreraely important to us. Living as we do ii 
years following the 19th century rise o 

manticism, we are heirs of the over-emphasi 
t th Ultl0n inspiration in the arts. Prio 
j* r1* romantic reaction, there was no jealou 
r*0t?my between the arts and sciences. Ii 

*’Juring the J?th and 18th centuries, th< 
... ° reasont in the arts was widely recognizet 
Plat a{:cePted- The romanticists revived th< 

conception of the artist as an inspirec 
TKaJ^an'> 9ie me ae spark o’ Nature's fire 

!earn>ng I desire,” chantec 
*ooert Burns, the Scotch romanticist. Thu 

false dichotomy between knowledge and in¬ 
spiration has persisted into our time. It has 
permeated the thinking of composers and the 
public to such an extent that a scientific ap¬ 
proach to the arts is sometimes condemned 
without thought or investigation. Neverthe¬ 
less, such an approach is grounded on the best 
experience of composers through the ages as 
well as on the most recent discoveries of modern 
psychology. Schillinger’s discoveries were 
made possible because he began with the idea 
that the arts could be rationalized and that the 
process of musical composition was subject, as 
ne demonstrates, to scientific analysis. (Ed.) 

[227] 
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3. Study of the properties of curves and of statistical records specifically 
(technology of events), 

4. Recording and analysis of the reflex patterns (respiratory, muscular, 

nervous, etc.) 

5. Study of the trajectorial curves evolving lineat design in the visual arts. 

6. Study of graphs expressing intuitive musical compositions in terms of 

pitch, time, intensity and tone quality. 
7. A comparative study of all the above-mentioned patterns. 

8. Deduction of a system of patterns to serve as stimuli of reaction of def¬ 

inite character and intensity. 

9. Development of a group of routines leading to efficient artistic creation 

and providing the testing criteria. 

10. Elaboration of a scientific theory of production of musical melodies. 

A. Semantics 

Music in general—and melody in particular—has been considered, since 

time immemorial, a supernatural, magical medium. Many great philosophers in 
different civilizations have given their attention and directed their thoughts 

toward this elusive phenomenon. The more definitions of music you know, the 

more you wonder what music really is. It seems to fall into the category of life 
itself. It seems to have too many “x’s" 

People did not know much about lightning even ten thousand years ago, 

and ten millennia make only a one-hundredth in the range of human evolution. 

We tend to ascribe supernatural powers to any phenomenon we cannot explain. 

Today, we are surrounded by things more miraculous than any of the products 

of ancient imagination—and when you think of the achievements of modern 

technique, it seems to be incredible that a toy—as simple as melody—should still 

remain in the category of the irrational. 

Following our method of analysis, however, we may assume that any phe¬ 
nomenon can be interpreted and reconstructed. To accomplish this, it is necessary 

to detect all the components and to determine the exact form of their correlation. 

There are two sides to the problem of melody: one deals with the sound 
wave itself and its physical components and with physiological reactions to it. 
The other deals with the structure of melody as a whole, and esthetic reactions 
to it. 

Further analysis will show this dualism is an illusion and is due to consider¬ 
able quantitative differences. The shore-line of North America, for example, 
tnay be measured in astronomical, or in topographical, or in microscopic values. 

The difference between melody from a physical or musical standpoint is a qtianti- 
talive difference. The differentials of the physical analysis become negligible 
values for purposes of musical ^esthetic) analysis. 

Melody is a complex phenomenon and may be analyzed from various stand¬ 
points. Physically, it can be measured and analyzed from an objective record, 

such as a sound track, a phonograph groove, an oscillogram or the like. Melody 
when recorded has the appearance of a curve. There are various families of 
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B. Semantics of Melody 

The fundamental semantic requirements are that melody must “make sense,” 
it must have (like words) associative power, i.e., it must be able to convey an 
idea or mood, to “exptess something.”* 

But these are also the requirements of language, and yet there is a distinct 
difference between word and melody as symbols of expression. The function of 
words is to express the concept of actuality, to find its verbal symbol. The function 
of melody is to express the structural scheme of actuality. Words have their 
origin in thought; melody has its origin in feeling, i.e., originally in the reflexes. 

Words generate concepts which may or may not stimulate feelings. Melody, on the 
contrary, stimulates feelings (emotions, moods) as spontaneous reactions, which 
may or may not generate concepts. Melody expresses actuality before the concept 

is formed for that actuality. This is why, in listening to a melody, one is satisfied 
with its expression to such an extent that the quest for the concept, “What 

does it actually express,” is never aroused. But, on the contrary, when a melody 
does not convey sufficient associative power (to stimulate reflexes, reactions or 

moods), then the listener looks for a verbal description of it, or, at least, for a 
title, a “label,” a concept. Melody is insufficient whenever it calls for a verbal 

explanation. When a word does not convince through its own associative power, 
or in order to increase the latter, one resorts to intonation and gestures. 

Words or melody may or may not be self-sufficient. Words that are not 
self-sufficient call for a specific form of intonation in order to acquire the neces¬ 
sary associative power. We may also state, reciprocally, that melody which is 

not self-sufficient as intonational form calls for word and often for a symbol in 

the form of a verbal concept. These two statements can be verified by simply 
studying the facts. 

Here we arrive at the idea that although, in their developed forms, both 

word and melody are self-sufficient—-in their early periods of formation they 
produce hybrid forms: an intonational form that calls for a concept—and a 
conceptual form that calls for intonation. 

Here are a few of many references. According to the statements of George 

Herzog, Columbia anthropologist who made some pertinent recordings and demon¬ 
strated the phonograms, there are certain Central African tribes whose verbal 

language is just such a hybrid. A word of the same etymological constitution 
(spelling) has at least ten different forms of intonation, each attributing a dif¬ 
ferent meaning to the word. In this case intonation is an idiomatic factor. 

In other cases, as in some instances of Chinese music,* melody or even the 
single units of a scale become symbolic of a concept—i.e., they assume the 
function of words. 

The Stony Indians of Alberta, Canada, try in their songs to express the 
sound of a brook, the murmur of leaves, etc. Yet as a descriptive means it is 

not self-sufficient; it calls at least for a title. This is a case in which melody is 
a ^d competitor of poetry. 

See Karl Stork, History of Music. (J.S.) 
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this meaning requires only one premise: biomechanical, physiological experience, 

combined with a highly developed sensory system. The requirement may be' satis¬ 
fied by any normal specimen of the higher' animal forms.* 

Though commonly unknown and generally repudiated when brought into 
a discussion, this fundamental form of musical semantics had already been 

known to Aristotle. Here is his definition: “Rhythms and melodious sequences 
are movements quite as much as they are actions.” This is the first historical 
instance of penetration into the true nature of musical language. 

The meaning of music evolves in terms of physico-physiologicai corres¬ 

pondences. These correspondences are quantitative and the quantities express 
form. This can be easily illustrated by the following example. 

A sound of constant frequency and intensity and made up of a simple wave 
affects the eardrum and the hearing centers of the brain as an excitor of a simple 
pattern. Such a pattern may be projected by various means so that its structure 

becomes apparent to another more developed, and therefore more critical organ 
of sensation, that of sight. The complexity of reaction (i.e., its form) is equivalent 

to,the complexity of the form of the excitor. The number of components in a 

wave affects a corresponding number of the arches of the inner car’s Corti's 
organ, putting them into oscillatory motion. If a sine wave has one component, 

it will affect only that arch which reacts on the frequency corresponding to that 

transmitted through the air medium in the form of periodic compressibns. When 
a wave of greater complexity affects the same organ, the reaction becomes more 
complicated. 

It is a known fact that the ear can be trained. Therefore, the pattern of 
reaction is equivalent to the pattern of excitation with various degrees of ap¬ 

proximation. All the components of sound work in similar patterns because 

these patterns are similar in all sensory experiences. Formation of the patterns 
is due to (1) configuration and (2) periodicity. The configuration may be simple 

or complicated in a mathematical sense, i.e., its simplicity or complexity can 

be expressed in terms of components and their relations. This emphasizes both 

frequency and intensity in a sound wave, as well as the character of sound which 
is the resultant of the relations of the two components. Periodicity defines the 

form of recurrence and may be also of different degrees of complexity—for 

example, the periodicity of recurring monomials as compared to the periodicity 
of permutable groups. 

Our physiological experience, combined with our awareness of that experience 
through our sensory and mental apparatus, makes it possible for us to under¬ 
stand the meaning of music in terms of “actions." Thus, regularity means 
stability, and simplicity means relaxation. Thus, the satisfied organism at rest 

,s comparable to simple harmonic motion. The loss of stability is caused by 
powerful excitors affecting the very existence of the organism. Sex and danger 

arc tbe excitors, and love and fear are the expressions of instability. 

J50m^.rc/lat,0,s ldeas 051 the meaninS ol ments with the pitch discrimination of dogs 
iusic in his Republic and Ivan Pavlov’s experi- in his Conditioned Reflexes. (j.S.) 
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D. Definition of Melody 

The summary definition of melody. 

(1) Physiological definition: Melody is an excitor existing in the form of a 

sound-wave which affects the organ of hearing. The latter being a re¬ 

ceiver and a transmitter transfers it to the biomechanical pattern-making 
center of the brain. 

(2) Semantic definition:. Melody is an expression of biomechanical experiences 
in the sound medium. 

(3) Musical definition: Melody is a variation of pitch in time, wherein pitch 

units follow a preselected scale of frequencies and express a relative stability 
of each individual unit. 

The summary definition of word: 

(1) Physiological definition: Word is an excitor existing in the form of a 

sound-wave which affects the organ of hearing. The latter, a receiver and 

a transmitter, transfers it to the concept-making center of the brain. 

(2) Semantic definition: Word is an abstraction of biomechanical experiences 

in the sound medium. “Poetic image" is a variation of the original bio¬ 
mechanical abstraction. 

(3) Musical {tonal) definition: Word is a variation of pitch in time, wherein 

pitch units express a relative instability of each individual unit and do 
not necessarily follow a preselected scale of frequencies. 

lt follows from these definitions: (1) that in symbolic notation (though 
different patterns are used)—printed letters or musical notes—both word and 
melody are identical; (2) a poem recited in a foreign or unknown language be¬ 
comes an undeveloped form of music. 



CHAPTER 2 

PRELIMINARY DISCUSSION OF NOTATION 

gEFORE ENTERING upon the subject of actual computation and construc¬ 

tion of melody, there are a number of questions surroumlinK nolalional 
systems that require clarification. 

A. History of Musical Notation 

The historical evolution of musical notation starts with alphabetical svstems 

of notation of mns,cal p,tch. We find this system in ancient Greek notation - 

Greek, utthied the characters of the alphabet to indicate intonations. For rhythm 

they used, among other devices, the rhythmic groups of poetry (i.e., the "font"). 

The second step in this evolution brought the use ai names-A.e., indications 

steia in'the T *7 °‘ W' *"d * this secoml 
the the Middle Ages. A number of hypotheses have fieeu advance,1 regarding 
the source of early medieval notation.* s 

Byzantine notation from the 10th century to the 15th century evolved a 
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ThrougSim wAT“ T” ” 1050) inVCntel the {o^ mt,sicai staff. 

^ 7 ab°Ut thC °rigin °f m°St °f present names of mu- 

fr0m a hymn t0 St Joh11’ which the students of 

higheTthe fimt ^ ^ 'r f1 * “ that cach linc "ukl sound one step 
Rher, the first s, llables of the lines of the hymn liecame names for six of the steps 

"* arcenl-signs may lie said to Ik the srairro of l he 
cording to another, from the S’ ekphonetic notation also. The kilter 
phonetic notation. But the most^S*?' dlf!, "P1 sfow the 8,ze,of the musical intervals, 
evidence points to the hypothesis and therefore was useful chiefly as a mnemonic 
notanon derived from the tronSisithin »UMC • A syst(i,u ?f "eumes originated in 
signs used for accentuation and^Imrf.?■!,!?!» 4HyzantLnc notation in the 10th century, hut 
(i.e., grammatical accent-signs) from the l!VSi.at fir?1 offcnH improvement over the 
text to the melody itself. These ekphonetic notation since it still denoted inter- 
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12-%) 

Hermannus Contractus, who died in 1054, offered a mixed system of Greek 
and Latin characters indicating, in terms of tones and semitones, ail the intervals 
of the octave except the augmented fourth and the major and minor seventh. 

Another important step in this evolution was the development of a system 
of notation of musical durations.** The first indications of musical duration 

represented only two relative durations (“long" and “breve”), to which others 

were soon added. The 13th century classified music into measured and un¬ 

measured music (musica mensurata and musica plana). The notation of rests also 
goes back to this early period. Ternary time-signatures originated in the 13th 
century, binary time-signatures in the 14th. 

Our present form of “white” musical notation goes as far back as the 15th 

century. The evolution of the chromatic signs now in use (sharps, double-sharps, 

flats, double-fiats and naturals) occupied eight centuries, from the 11th century 

to the 18th. Key signatures did not make frequent use of sharps or flats, except 
in the one-flat key signature, until the late 15th century. 

The system whereby we notate dynamics, attacks and phrasing in graphic 

symbols and words begins to appear gradually towards the end of the 16th cen¬ 

tury. This system of notation is seen in such indications as legato, staccato, 
portamento, crescendo, diminuendo, forte, piano. 

Indications of speed and character of motion in words (tempo) came into 

use (except for an isolated 16th-century example) in the early 17th century. 
Indications of this sort that are now common include largo, andante, niodcrato, 

allegro, presto. We also now have metronomic indications. For example: 

MM J = 96” means that by Maolzci’s metronome there will be 96 quarter notes 
per minute. 

Clefs had a gradual evolution from the days when one or more lines were 

used as part of a rudimentary form of staff notation, during which stage each line 
was preceded by a letter indicating the pitch. The F, C and G clefs, which are 

now standard, gradually evolved from the corresponding Latin characters. 

Observing the evolution of the notation systems of the past in different 

musical civilizations, we notice the casual character of this evolution. Through 

continuous trial-and-error attempts, certain forms were improved as compared 
to their original state; the forms grew more practical. The general trend of this 

miprovement lies in the direction of greater precision of notation. 

Karly forms of intonation dealt with large groups symbolized by one sign 
%v nch could be deciphered only by the performers familiar with the conditions 

nv.„, ’re' me.' fa- so1 aTKl la- (Vl is still used i: 
**yAi°LUntr,es ins.lcil<1 of D° ) 

lv»*n i?u8h various tentative methods ha< 
en designed to re-met-} the rhythmic ir 

definiteness of the neumes, possibly as early as 
the 8th century, it was not until shortly before 
1200 that rhythmic values were definitely 
established in notation. 
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The scientific system of recording known as nomography deals with different 

methods of graph notation. While various forms of recording events scientifically 
exist in all statistical fields, music continues its semi-happy existence in a state 
of affairs in which nothing can be too wrong—and nothing can be too right! 

Centuries of the isolation of music from science brought about this unfortunate 
and chaotic situation. It is about time to acknowledge the inefficiency of our 
system of musical notation and take a grown-up attitude towards a field whi/~L 
is now unfortunately a back-yard of human thought. 

B. Mathematical Notation, General Component 

1. Notation of Time. 

Measuring musical time from a minimum standard unit was known both 
to the Greeks (chrotios protos = primary time) and the Romans. For the reasons 

presented in the preceding section, this usual way of direct measurement adopted 
in various other fields did not survive in musical notation. 

Assuming that the shortest duration bf any given musical continuity is to 
be the standard unit of measurement, any degree of precision may be achieved. 
In terms of musical notation, this means that if musical continuity includes 

musical halves, quarters, eighths and sixteenths, one should then express all 

the durations as sixteenths. The standard unit of measurement is the common 

denominator of various durations occurring in one musical context. We shall 
express such a unit as “t”. When still greater subtlety is required, we shall 

use ‘V* (tau) to mean a unit of deviation. This symbol will be useful in ex¬ 

pressing somewhat unaccountable durations, such as individual grace-notes and 

groups of grace-notes. There also may be a need for applying - to various forms 

of unbalancing—groups customarily designated by means of so-called “rubato.” 
Every bar representing a group will always correspond to unity and will be ex¬ 
pressed through 

If we want to achieve musical performances that possess in reality the 
subtlety they claim to have, the expression of the bar would require the inclusion 
of t. The latter corresponds to the infinitesimal (dx) of the calculus. 

In the new system of notation every time value becomes a rational fraction, 
I e numerator of which expresses the period of duration, and the denominator 

of which expresses the standard unit of measurement (^). As problems of musi¬ 

cal duration involve not only the values but also their mutual position and 

istribution in time continuity, it is necessary to introduce a nomenclature which 

w1 also take care of the distributive characteristics of durations. For example: 
STi = 3 4-1 + 1 + 1. As the common denominator in this case is the 

va ues acquire the following expression: f + £ + i + £• If we wish to refer 
° the third terln of this group, such a quantitative indication is not entirely 

sufficient. The last three terms have uniform values, so they must acquire a 
special system of indications as to their place in the time continuity. As each 

I represents a term, the consecutive enumeration of such'terms will be ex¬ 
pressed by tj, t2 . . . tn to indicate their relative position, and the coefficients 
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directions produces an alternation of positives and negatives. For example, 

the progression c — cl — f — ff acquires the following notation: 2p + 3p + 2p. 

The figure c — f ~d - g - c has the following notation: 5p - 3p + 5p - 7p. 

As T expresses a time' group-unit in relation to t, which is the common 

denominator of the group, P expresses a pitch group-unit (pitch range; in re¬ 

lation to p, the standard unit of pitch measurement in a given primary selective 

system. 
Pitch ranges become important when they are treated as sections of the 

total range emphasis of a given musical continuity. In such a case, each pitch 

range corresponds to a certain axis, and the total value of the pitch units within 

one axis depends on the total value of all axes within the entire range. For 

example, if a melody evolves in a range of 15p (c — e‘!>) and three axes are 

required, then each axis will emphasize = 5P* *•<•’•» thc partial ranges of the 

total range will be Pj = 5p, P2 = 5p, Ps = 5p (c — f: f — lob, bb eb). 

3. Notation of intensity. 

In order to establish any system of notation for intensity, we must con¬ 

sider a fundamental fact basic to the psycho-physiological law of YVeber-Fcchner: 

that the intensity of reaction does not vary as the intensity of stimulus: for it 

grows with an increase of about 15 percent in relation to the physical intensity 

of the stimulus. For example, when we double the amplitude of a sound wave 

we obtain a reaction in the ear that is only 15 percent and not 100 percent greater. 

This means that the difference between very low and medium intensities 

appears to be much greater to our ear than does the difference between medium 

and high intensities. For instance, the difference between 5 and 40 decibels 

seems to be much greater to our ear than the difference between 40 and 75 

decibels. This, obviously, is one of the psycho-physiological limitations de¬ 

veloped for the protection of the species. 

In the future, with the apjxxirance of instruments performing music auto¬ 

matically, any precise mathematical specification will be possible and could 

be offered in any desirable type of physical correspondence. 

For the present, our system of notation has to be limited in exactly the 

same fashion as it is limited for the expression of durations and pitch. We have 

to establish a certain range of loudness, as conceived musically, (in a given epoch 

and locality), and assume the lowest degree of it as one unit of intensity. Thus, 

if we would like to establish three important points of intensity and enumerate 

them as it, b and i3, their resjx'ctive values of intensity will be i; 2i, 3i. b = 0i. 

The rests (periods of silence) will be expressed by io = 0i. These three degrees 

of intensity may correspond to piano, mezzo-forte and forte respectively. 

The method of denoting intensity by minimum units is more precise, for 

we can establish a scale of dynamic marks of greater subtlety and precision 

than by using the method which expresses all this in Italian words. Thus, a 

selective scale of 2 degrees of intensity (ij = i, b = 2i) may correspond to piano 
and forte. A scale of 3 degrees of intensity (b = i, b = 2i, i3 = 3i) may corres¬ 

pond to piano, mezzo-forte and forte. A scale of 5 degrees of intensity (b = i, 

b = 2i, i3 = 3i, b = 4i, b = 6i) may correspond to pianissimo, piano, .mezzo- 
forte, forte, fortissimo. 
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One may devise scales with many more degrees of intensity when the com¬ 
plexity of indications through i remains the same. If, however, we used the 
Italian words or their musical abbreviations, it would all become quite confusing 
The mam reason for this confusion is not only the quantity of words employed 
to indicate the various degrees of intensity, but the lack of an objective scale 
of intensity. For instance, it is very far from obvious just what relation of 
intensity meao-fortt has to pianissimo; but in the scale of 5 intensity units, it 
conveys purely quantitative i,= 3i through iI=i associations. 

3. Notation of Quality. 

Musical conception of tone quality emphasises physically such different 
“ harmomc saturation (density), duration of tone, form and intensity 

of attack, etc. In denoting quality we shall consider only the first factor A 

°^uPOnert WaW. “ the minimum Unfit of harmonic saturation-and the 
^ ty (Wlth Pr^omimmt 5th, 7th and 13th harmonics) is the maximum 

ohaciharmomc saturation, as it appears to our ear. The entire range em- 
phasiws qualities from the flute stops of an organ (“tibia clausa") up to pure 

S" (hire the English Horn”). The intermediate quality zone embraces 

bv^mpani qf ^ “ u ' and Vi0Un' Tone may also be illustrated 
by means of vowels: the minimum limit is “oo”, the maximum, “ee”, with the 
intermediate zone around “o” and “a”. 

and Bam*sy9tfm of notation as previously (time, pitch and intensity) 

Of n ^ro * ? °Ugh “q”' 0btain noth a different number 

relativ^ ha™1" T ’ 3 ■ = q’ and q* = q-can express 
elative harmonic ' tuiation in relation to the limits selected. A 3 unit scale 

co„s.stsofqL=q, q, _ 2q, q, = 3q. A 5 unit scale: q, = q, q2 - 2q, q, 

subiZ^rrrr mediarfor "**** °i ^ coior are the 
subject of my later discussion of the acoustical basis of orchestration. 

D. Relative and Absolute Standards 

in t0 ^ I"eth0d applied t0 *■“ differential deviations 
tlbhw ld .r' must ,!sed when »*** deviations from the es- 

bhshed scales of pitch, intensity and quality are to be handled. 

equations ** PICi?t ***** °f music' to deaJ with differential 
— * 'ft™ human “»«■ ^ their interpretation 
IS? fcmiUtion* t When greater subtlety of performance is 
required, the respective differential values for the time, pitch, intensity and 

aqnd ofym°ur,netJi“ di “d dq Th- the Jsting stare of music 
bv^san T’ • “"“P*0" of any rec°rding of a musical com- 

oral and HiffaL0* ”°tatlon“aI1 th"8 presupposes both scalewise (discon- 
I “d dlffere"^al (contmuous) constitution of music. For example, in a 

0f™d Hfi"JCrea* of mtensity on the piano, the physical reality of it is a group 
ntensified points with quick drops, with every succeeding attack greater than 

the preceding one and every attack having the characteristic of a constant form 
of fading (decrease of intensity). On the contrary, when they deal with pitch— 
which in ordinary musical notation is always discontinuous—the performers of 

our civilization as well as of the Oriental cultures, actually produce a differential 

curve of frequencies very often. 
The actual difference between Chinese singing and Hungarian violin playing 

is the quantitative difference of time that elapses between the stabilized pitch 
points of the scale—the time period is longer and the attack is stronger with 

the Chinese. Minute variations of tone quality are often beyond the control 
of a performer. Often even a very experienced performer, in trying to produce 
one tone quality, actually obtains another. How many unintentional harmonics 

break through on account of a wrong angle or wrong pressure of the bow over 
the strings in violin playing 1 How many performers on stringed bow instruments 

produce the jumping effect (saltando) instead of the intended smoothly repeated 
attacks (portamento) because of mere nervousness! The adoption of the mani¬ 

fold of mathematical resources for musical notation would seem ridiculous for 
the present when the requirements are so low that deviation from a proper set 

of time durations and proper intonation is a very common sin. 

All forms of musical notation must deal with the expression of relative 

quantities only. Absolute standards of pitch, intensity and quality vary during 

different epochs. Even the absolute speed of time is somewhat affected- The 
general tendency toward faster tempi, as compared with those used in the 17th 
century, becomes quite apparent. This is most probably influenced by the 

general acceleration of vehicular motion and general development of engineering 
technique. Many performers now interpret some of the classical music of the 

18th century and 19th century at much faster tempi than would have been 

desirable or even possible at the time this music was written. 

Pitch standards have also had a tendency to accelerate. At the time of Haydn 

and Mozart, a of the middle octave generally had 422 vibrations per second, while 

the concert tuning of the corresponding tone of today (“American concert pitch”) 

is 440.6, a change of more than one and a half semitones. These variations of 

frequencies, with regard to absolute pitch, are decided at various international 
conferences of acousticians and manufacturers of musical instruments. The 

application of pitch ranges also grows. Take, for example, the range of the violin, 

where g of the small octave being the lower limit, we notice a constant extension 

of the upper limit: it was c of the third octave during Beethoven’s time, e above 
it with the early Wagner, g# above it with the later Wagner, and b above it 

with Rimsky-Korsakov (as in Kitezh). 
One century produced a gain of one complete octave in extending the range 

of the violin. The desire to obtain greater tension effects leads to the employment 

of higher frequencies; it implies a growth of virtuosity in playing musical instru¬ 
ments. Paganini was about the only person in his time who was capable of 

playing some of his most difficult works for the violin. Nowadays, however, any 

capable student of a violin department in the conservatories is able to play 
them. Today in America, we witness an extraordinary virtuosity in extending 

the range of such instruments as trumpet and trombone; sometimes the gain is 

a whole octave beyond the standard range. 
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In the future, with the elimination of the living performer, the graph method 

will still be valid for use with automatically performing musical instruments. 
Curves of composition and curves of execution will then merge into one. 

The horizontal direction (the abscissa, read from left to right) expresses 
time in all graphs; the vertical direction (ordinate) expresses variation of some 

special component: pitch, intensity, quality. The graph method is an objective 
one and is therefore a general method. Any wave motion records itself auto¬ 

matically. 
The units on cross section paper to be used for a graph recording of music 

represent the standard units of measurement with respect to the units of pre¬ 

selected pitch, intensity and quality scales. The best graph paper to use is that 
ruled 12 x 12 per square inch; the reason for this is the versatility of the number 

12 with respect to divisibility and the definition of an octave of the equal tem¬ 

perament of twelve for the pitch. 
The scales referring to different components may be different in quantity. 

For example, a scale of pitch may conform to 7 units while the scale of intensity 
in the same music may conform to 3 units, and the scale of quality to 2 units. 

This will be reflected respectively in the complexity of the corresponding graphs. 
Grad’iality or suddenness of transition from one stabilized point to another 

is expressible by a definite degree of curvature. Variation of pitch in the asym¬ 
metric tuning system may be recorded on logarithmic graph paper. The logarith¬ 

mic contractions of abscissa and ordinate were described in BookThree.* Notation 
of pitch variation of actual violin playing assumes hyperbolic curvatures. The 

pitch-graphs of piano or organ are rectangular. 
The customary conception of melody in the Western World is based on 

a rectangular conception of pitch, i.e., all the sliding between the stabilized 

tempered pitch-points is left to the discrimination of the performer. Because of 

this fact, different styles of interpretation reveal different degrees of curvature 
of a melodic line. Continuous uniform sliding, without any stabilized pitch- 
points, may be observed in the sound of a siren or of a fire alarm signal; extreme 

abruptness (rectangular graph) is found on the piano or organ; intermediate 
forms (hyperbolic graph) are found on stringed bow instruments, woodwind 

instruments, in the human voice and in the space-control theremin. 
In the following exposition only rectangular graphs are used, as the different 

degrees of curvature refer to the performance and not to the composition of 
music; such curvatures are to be discussed in my theory of interpretation. 

One vertical segment on the graph paper expresses a unit in the correspond¬ 

ing equal temperament, a v^2 in th6 case the present-day system. The in¬ 
tensity curves may be used either as continuously sliding curves or as rectangular 

curves with the stabilized levels expressing definite predetermined degrees of 
intensity. The same refers to tone quality graphs: for those instruments which 

are capable of producing continuous quality variation and are controlled by a 
graduated scale (such as some of the electronic instruments), the graph is curvi¬ 
linear; but for those instruments capable only of abrupt (discontinuous) transi¬ 

tions, only a rectangular graph is necessary. 

•See pp. 211-2. 
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CHAPTER 3 

THE AXES OF MELODY 

W™nIHofth0"C'“tn °ftthe,f0re*0i^ discussion of the philosophy 

music, we now 1 °! ** notatio,,al P">b><=™ of al! 
melodies. pproac the actual technology of making 

axisWe “nCerned 6ret "*■> *"> «»ds of axes: primary axis and secondary 

A. Primary Axis op Melody 

Definition: Primary axis is a pitch-time maximum.* 

continmSlm fevy *“ melodic 
the pitch which hL theL^Lt nnmhT Tng “ then establish 

Our ear a„7 f nUmber Value 38 «* of the melody. 

continuity. When ZZ*TT 3pprehend music in of 

The dme vaiu«“i^rb^rT0n “"L00* We ^ ** new onc solving, 
with the sycturaJ^^L”to music varies 

signs of musical punctuation-^!? Re8tS' tie8’ accents* and other 
in .our consciousn” dl8SOaate ***~ °{ continuity 

tinui^X^^r therefore relative to the amount of con- 

in-the-malring within, let u“ ^ two se^ondTof ^,nh? ^ 03 melody- 

to a 

its *£?£%£££* Z2r 7lati°"3 °f a “*** “Oration to 
A melody without an axis seems “not^n pr?du<;f My musical reality, 

hensible structural constitution When som°e oft°gether’ to have no c°mpre- 
reject the idea of the primary axis fronSri i °Ur C°ntemporary composers 

a*S?£s*SvSt 

used in the analysis of music. As Schilling 

Sri™**®’ n?el?d,f Peking a clearly defim 
pnmary axis lack certain qualities; just * 

'** KrapidIy chanPn* ax< ST th? “ncept of the Primar 
axis is of practical value, and not merely 
vwbalism. Tins is true of all SchiUinger cor 
cepts, such as the secondary axes of melcxh 
forms of trajectorial motion, etc. (Ed.) 5 
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called ‘ atonality”, i.e., the neutral distribution of pitch units within a given 
tuning system in various arrangements in order to produce a melody, does not 

make any “musical”, i.e., organic, sense. Listeners usually object to such music 
and they are perfectly justified in doing so. 

Inasmuch as counting pitch units in their time continuity does not present 
any difficulties, no properly constructed melody will ever leave room for any 

doubt as to where its primary axis is located. In analyzing music on a geo¬ 
metrical basis, one comes across a number of inconsistencies even in the well- 
known themes of important composers of the past, if they had known the 

mechanical specifications of melody, their intentions would have been dearer 
both to themselves and to their listeners. Such partly deficient melodies create 
certain difficulties when analyzed. 

Another case—which may seem doubtful only at first (when a student has 
not acquired enough analytical experience)—is that in which the primary axis 
is variable, i.e., when a. melody, after being centered on a definite primary axis, 
deviates from it for a considerable period of time and establishes a new primary 

axis from which it may proceed further on in a similar fashion. Such a case 
involves modulation. As a winding plant, such as ivy, stretches from onc branch 

to another, winds around its coils—and, when it grows out the length of the 

respective branch, stretches to the new one, so in music an analogous case would 
be the use of modulation as an outcome of excessive tonal stability. 

In geometrical notation, primary axis is the abscissa itself, i.e., a continuous 
horizontal extension. The primary axis is the only axis which actually sounds. 
All the secondary axes merely represent directional lines. 

We shall analyze now the three characteristic types of melodic structures 
with respect to their primary axes. The three melodic themes are taken from 
Ludwig van Beethoven’s Piano Sonata No. 8. the Pathetique. 

B. Analysis of Three Examples 

1. The first 8-bar melody is the beginning of the First Allegro. The graph 

° lv!S rr]elody-asshown in figure 1 on the following page, has its primary axis 
1 ~ °catcd ori the third space in the treble, where it accumulates a total of 

■ A the other levels do not withstand the competition, as the greatest number 
a ue on t em does not exceed fit. Musical analysis does not provide such pre- 

Svui u-, CaSC °f this mclocly’ there wou,cl he three competing pitch levels: 
1 e c, t ird space c, and c on the second leger line. Geometrically the lower one 

accumulates fit and the upper one 4t, leaving the middle one (18t) without doubt, 
usically, all the three c’s arc the official tonics of the scale. According to the 

ey signature, the melody is written in c minor. Thus, Hie importance of the axis 
is greater than that of the tonic. 
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/_. LT/o'?1 8-bar.melody of the Second Movement of the same Sonata 
• ,5Ure i n Precedin8 page) serves as an illustration of modulation Thk 
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and^^tablLhn^n^f Y I068 nQt return t0 first level, modulation 
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represents an hypertrophied dim*? Th , ^ melody centered a™und it, 
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right, we would acquire the beginning of th/ r 8 **? eatlre Braph 4t t0 the 
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C. Secondary Axes 

Definition: Secondary axes are the directional axes with respect to the 
primary axis. 

1. The zero axis (0) 
2. The “a" axis (a) 
3. The “b” axis (b) 

4. The “c” axis (c) 
5. The “d” axis (d) 

The zero axis is the direction of motion along abscissa. The a axis is the 

ascending direction from the primary axis. The b axis is the descending direction 

toward the primary axis. The e axis is the ascending direction toward the primary 

axis. The d axis is the descending direction from the primary axis. The a, b, c 

and d axes are mutual geometrical inversions obtained by revolving the a axis 

through the quadrants around the ordinate and the abscissa in an 180° angle. 

Thus, b represents the backward motion of a; c the backward upside-down of a; 
d the forward upside-down of a. 

The zero axis represents an absolute balance. The balancing axes (leading 

toward balance) are b and c. The unbalancing axes (leading away from balance) 
are a and d. 

Figure 5. Balancing and unbalancing axes. 

The unbalancing axes are characteristic of beginnings. The balancing axes 

are characteristic of endings. The zero axis is characteristic of the beginning 

before the motion acquires inertia, or of the ending when all the inertia is ex¬ 

hausted. . 
Every melody represents a combination of different directions as expressed by 

01 a, b, c and d axes. Various combinations of axes produce various forms of 

melodic continuity. The unbalancing axes produce the effect of tension, the 

balancing axes produce the effect of release. As the zero level represents zero 

tensions, the increase of tension grows with the increase of distance from the 

primary axis. 
Composition of melodic continuity, with respect to pitch and time, may 

be based on monomial, binomial, trinomial and polynomial combinations of the 

secondary axes. 

D. Examples of Axial Combinations 

1. Monomials 
0+ . . . 

a + . . . 

b + • ■ • 

c + . . . 

d + • . . 

■ ■ ■■ ■ ■ ■ ■: ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ K 
E 1 ■ ■ B E 

mm ■ ■ ■ I i i 
mm ■ ■ 

■ 3 1 ■ ■ ■ ■ mm ■ ■ ■ ■ ft ■ ■ 
■ ■ ■ ■ ■ ■ i ■ u * ■ ■ ■ ■ ■ a s. as ■ ■ 
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■: ■ □ i ■ ■ ■ ■ ■ ■1 
!■ ■ ■ ■ ■ ■ 1 s s I ■ ■ ■ B mm 1 1 ■ :■ ■ ■ ■ ■ ■ ■ ■ 1 ■ ■ ■ 3 ■ ;■ ■ C ■ ■I 
■ ■ ■ ■ ■ ■ ■ Zt * a El ■ ■ ■ :■ s IIS! ■ m ■ ■ ■ ■ ■ I 
■ ■ ■ ■ ■ !■ ■ m ■ ■ ■ ■ ■ !■: ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 'I 

Figure 6. Monomial axial combinations. 

2. Binomial Combinations 
0 +a 

0 + b 

0 + c 

0 + d 

a •+- b 

a -f- c 

a +d 

b + c 

b + d 

c + d 

10 combinations, 2 permutations each. 

Total number of cases: 10 X 2 = 20. 
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3. Trinomial Combinations. Two 

0 + 0 + a 
0 + 0 + b 
0 + 0 + c 
0+0 + d 

identical terms. 

a + a+O 
a+a+b 
a + a + c 
a+a+d 

b+b+0 
b + b+a 
b + b + c 
b 4- b + d 

c + c+0 
c +c + a 
C+C + b 

c+c+d 

d + d + 0 
d +d +a 
d + d -f b 
d + d + c 

20 combinations, 3 permutations 
total number'qf cases: 20X3 = 

each. 
60. 

3 different terms: 

0 + a + b a + b + c 

0 + a + c a + b + d 

0 + a + d a + c + d 

0 + b + c b + c + d 

0 + b +d 

0 + c + d 

10 combinations, 6 permutations each. 
Total number of cases: 10 X 6 — 60. 

4. Quadrinomial Combinations 

4 places with 3 identical terms: 

o + o + 0 + a 
o + o + 0 + b 

o + o + 0 + c 
o + o + 0 + d 

a + a + a + 0 
a +a + a + b 
a + a + a + c 
a +a + a + d 

b + b + b + 0 
b +b + b + a 
b + b + b + c 
b + b + b + d 

c + c + c ■ + 0 

c 4- c + c + a 

c + c + c + b 

c + c + c + <? 

(icontinued) 
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d +d + d + 0 
d + d + d + a 

d + d *fd + b 

d +d + d + c 

20 combinations, 4 permutations each. 
Total number of cases: 20 X 4 « 80. 

4 Places with 2 identical pairs: 

O+0+a+a 
0 + 0 + b + b 

0 + 0 + c + c 
0+0+d+d 

a +a +b + b 
a + a + c + c 

a + a + d + d 

b + b + c + c 
b + b +d +d 

c +c + d +d 

10 combinations, 6 permutations each. 
Total number of cases: 10 X 6 = 60. 

4 Places with 2 identical terms: 

0 + 0 + a + b 
0 + a + a + b 
0 + a + b + b 

0 + 0 + a + c 
0 + a + a + c 
0 + a + c + c 

0 + 0 +.a +d 

0+a+a+d 

0+a+d+d 

a + a + b + c 

a + b + b + c 
a + b + c + c 

a+a+b+d 
a + b + b + d 

a + b + d + d 
b +b + c + d 

b + c + c + d 
b +c + d +d 

0 + 0 + b+c 
0 + b + b + c 
0 + b + c + c 

0 + 0 + b + d 

0 + b + b + d 

0 + b + d + d 

a + a + c + d 
a +c +c +d 

a + c + d + d 

30 combinations, 12 permutations each. 
Total number of cases: 30 X 12 = 360. 

0 + 0 + c + d 
0+c+c+d 

0+c + d +d 

4 different terms: 

0+a+b+c 0+b+c+d 
0 + a + b + d 
0 + a + c + d 

a + b + c + d 

5 combinations, 24 pern\utalions each. 
Total number of cases: 5 X 24 = 120. 
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Figure 9. Quadrinomial axial combinations. 

5. Quintinomial Combinations 

5 Places with 4 identical terms: 

0+0+0+0+a a+a+a+a+0 b+b+b+b+0 c+c+c+c+0 

0+0+0+0+b a+a+a+a+b b+b+b+b+a c+c+c+c+a 

0+0+0+0+c a+a+a+a+c b+b+b+b+c c+c+c+c+b 
0+0+0+0+d a+a+a+a+d b+b+b+b+d c+c+c+c+d 

d+d+d+d+0 
d+d+d+d+a 

d+d+d+d+b 

d +d +d +d +c 
20 combinations, 5 permutations each. 
Total number of cases: 20 X 5 = WO. 

5 places with 3 identical terms and 2 identical terms: 

0+0+0+a+a a+a+a+0+0 b+b+b+0+0 c+c+c+0+0 
0+0+0+b+b a+a+a+b+b b+b+b+a+a c+c+c+a+a 

0+0+0+c+c a+a+a+c+c b+b+b+c+c c+c+c+b+b 
0+0+0+d+d a+a+a+d+d b+b+b+d+d c+c+c+d+d 

d+d+d+0+0 

d+d+d+a+a 
d+d+d+b+b 

d +d +d +c +c 
20 combinations, 10 permutations each. 
Total number of cases: 20 X 10 = 200. 
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5 Places with 2 identical pairs: 

OHhO+a-fa-f-b 
O+O+b+b+a 
a-fa+b+b-fO 

0+0-ba-ba-fc 
O-fO+c+c-fa 
a-fa+c+C-fO 

O+O+a+a-f-d 

O+O-bd+d-ba 
a+a+d+d+O 

O-fO-bb+b-fc 
O+O+c+c+b 
b+b+c+c+O 

O+O+b-f-b+d 
O-bO-fd-fd-bb 

b-fb+d+d+0 

O-f-O-f-c+c+d 

0+0+d+d+c 
c+c+d+d+0 

a-fa+b-fb+c a-fa+c-bc-bd 
a+a-f-c+c+b a+a+d+d+c 

b+b+c+c-fa c+c+d-bd+a 

a+a-f-b-fb+d 
a-fa-fd -bd-bb 

b+b+d+d+a 

b+b*fc+c+d 

b-fb+d+d+c 
c+c+d-fd+b 

30 combinations, 30 permutations. 
Total number of cases: 30 X 30 = 900. 

5 Places with 2 identical terms: 
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5 different terms: 

O + a + b-fc+d 

1 combination, 120 permutations. 
Total number of cases: 1 X 120 = 120. 
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Figure 10. Quintinomial axial combinations. 

E. Selective Continuity of the Axial Combinations. 

In order to make a preferential selection of recurrence of the secondary 
axes in composing continuity, coefficients must be used. The following cases 
are possible. 

O-bO+a+b+c 
O-ba+a+b+c 

0+a*fb+b-fc 
O+a+b+c+c 

0+0+a+b+d 

a+a+b-f-c+d 

a-bb+b-bc-bd 
a-fb+c-f-c-f-d 

a+b-fc-f-d 4*d 

1. Monomial axis, monomial coefficient 

Example: 

2a; 3a; 5a; . . . 

0+a+a+b*fd p r” □ ! 

O+a+b+b+d z 7 z Z 7 \ z 7 7 7 7 
O-fa+b+d-bd 

0+0-f-b-fc-fd 

O+b+b+c+d 
04-b-bc-bc-bd 
0+b+c+d+d 

16 combinations, 60 permutations each. 
Total number of cases: 16X60 = 960. 

Figure 11. Monomial axis, monomial coefficient. 

2. Binomial axial combination, binomial coefficient. 

Binomial axial combination, quadrinomial coefficient. 

Binomial axial combination, polynomial group-coefficient with even 
number of terms. 
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Example: 

2a+ b; 3a + 2b; 2a + b + a + 2b; 3a + b + 2a + 2b + a + 3b 
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Figure 12. Binomial axial combinations. 

3. Trinomial axial combination, trinomial coefficient. 
Trinomial axial combination. Polynomial group-coefficient with the 

number of terms divisible by 3. 
Example: 

3a + b+c;3a+b + 2c + 2a + b + 3c 
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Zi 

j 

■ 
■ 
■ 

Figure 13. Trinomial axial combinations. 

*• «>mbination, quadrinomial coefficient. 
Quadrinomial axial combination. Polynomial group-coefficient with 

the number of terms divisible by 4. 

3a + b + 2c + 2d; 4a + b + 3c + 2d + 2a + 3b + c + 4d 
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Figure 14. Quadrinomial axial combinations. 

5. Quintinomial axial combination, quintinomial coefficient. 

Quintinomial axial combination. Polynomial coefficient with the 
number of terms divisible by 5. 

Example: 

5 (0) + a + 4b + 2c + 3d; 
5 (0) + a + 4b + 2c + 3d + 3 (0) + 2a + 4b + c + 5d. 

Figure 15. Quintinomial axial combinations. 

When the number of terms in a coefficient-group does not coincide with 
the number of terms in the axial-group, or does not offer common divisors, then 

interference between the number of places in both groups will occur. 

Example: 

Binomial axial combination: a + b 

Trinomial coefficient group: 3+24-1 
The product: 3X2=6 

The complementary factor: 2(3), 3(2) 
The resultant of interference: 3a + 2b + a + 3b + 2a + b 

F- Time Ratios of the Secondary Axes 

Various axial combinations assume various time ratios. Identical axial 

combinations produce an infinite variety of patterns through different time- 
ratios. A melody derived from one or another axial pattern is influenced in 
different degrees by the mutual relations of the balancing and unbalancing axes. 
An effect of gradual deviation from balance with quick return to balance is 
entirely changed when the time-ratio is inverted. Deviation from balance on one 
side of the primary axis produces a different degree of tension when the balancing 
axis appears on the opposite side of the primary axis than when each combina¬ 
tion occurs on one side ot the primary axis. With these facts in view, the selection 
of time coefficients for the secondary axes must be guided by the type of melody, 
with respect to its tranquility or lack of it. Detailed information on tension 
relations produced by means of axes will be presented at a later point. 
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Itwould be correct in most cases to assume a time group unit (T) to be 

-ondary ares. Naturaliy fny muijc thereof 

to IZZ lysTf 't^g. •*“ “ d6ar to “"-tomed 

to timHaSs* ^ ffluStrations of the axial combinations in relation 

1. Monomial Axial Combination 

‘HI I ill 
*a3T 4 a2T 4 aT 

Figure 16. Binomial lime-ratio. 

1 rn t 
•a2T 4 aT 

t i r i r , 
a3T + a2T 4 a2T^ 

Figure 17. Trinomial time-ratio. 
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Figure 18. Polynomial time-ratio. 
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2. Binomial Axial Combination 
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Figure 19. Binomial time-ratio. 
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Figure 20. Polynomial time-ratio with the number of terms divisible by 2 

Axes: a, b Time ratio: 3 -*• 2 -5- 1 
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Figure 21. Interference time-ratio. 
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4. Polynomial Axial Combination 

Polynomial time-ratio with the number of terms corresponding to the number 
of terms in the axial group or any multiple thereof. 

Axes: a, b, c, d Time ratio: 4 v 1 -5- 3 -5- '2 
a4T 4 bT +■ c3T 4 d2T 

Axes: a, b, c, d Time ratio: rs^.4 

a4T 4 bT 4 c3T 4 d2T 4 a2T 4 b3T 4 cT 4 d4T 

Figure 25. Polynomial time-ratio. 

The number of variations for each axial combination, with a selected time- 
ratio, depends on the number of terms in the axial group and the number of 
terms in the time-ratio. 

A monomial axial combination with a binomial tirrte-ratio produces 2 vari¬ 
ations: 

a2T + aT aT 4 a2T 
A monomial axial combination with trinomial time-ratio having 2 identical 
terms produces 3 variations: 

a2T 4 aT 4 aT 
aT + a2T 4 aT 
aT 4 aT + a2T 

^•/rm°n0miaI comfc>ination with trinomial time-ratio having all 3 terms 
different: 

a3T 4 a2T 4 aT 

a3T 4 aT 4 a2T 
aT 4 a3T 4 a2T 

a2T 4 a3T 4 aT 

a2T 4 aT 4 a3T 
aT 4 a2T 4 a3T 

A monomial axial combination with polynomial time-ratio produces a number 
0 variations equivalent to the number of permutations of terms in the time-ratio: 

a3T 4 aT 4 a2T 4 a2T 4 aT 4 a3T 
6 elements, 90 permutations. 



theory of melody 
266 

vanatio“BTl ^ ^ *“ **«*>■ The nu.ber of 

a2T + bT 
aT + b2T 
bT + a2T 
b2T + aT 

A binomial axial combination with .• 

of variations equivalent to the produc'd the n^K^T pr0d“';es a number 
axial group by the nu.be, of It ^ ^ 

a2T + bT + aT + b2T 

Generalization 

binati^d^r^fitTn^H °f ** any axial con,- 
of both groups. ’ pessary to synchronize the numbers of terms 

axialttJb^„0n^“' ThdeU„t0nT?r0T' !"? £ * ^ ** ^ 
forms of the f Ax be the synchronized 

pecnve groups. Then synchronization (S) occurs as follows- 

S = 2. 
, A* 

T r Ax <T> 
TK r • T Ax = T (Ax) 

of terTr^r^d^ri^0^ ^ 
in the synchronized axial group. ^ °P “ ^ »the totaI number of terms 

Let the number of permutations be P and p' rn , 
Then the final number of permutations (P") T°h nsPectxv* S^ap- 
of both groups in synchronization. ^ ^roduct °fthe Permutations 

P//-P.P/ 

Example: 

Binomial axial t • . . . 
_,. ~T Innomial time-ratio: 
combination ~ a + c 3+2 + 1 

Ax * 2 „ 
T 3 

Synchronization: 

S “I 
r =2(3) 
Ax = 3(2) 

S = 3a + 2c + a + 3c + 2a + c 
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T has 6 terms with three identical pairs, (two three's, two two’s and two 
ones). The number of permutations (P) in such a group equals: factorial six-(6!) 
divided by factorial two (2!), by factorial two (2!), by factorial two (2!). 

Ax has 6 terms with two groups of three identical elements (three a’s and three 
cs). The number of permutations (P’) in such a group equals: factorial six (6<) 
divided by factorial three (3!), by factorial three (31). 

P. = _720 _ 9n 
ri 3 13!“" 36 — 

The total number of permutations (P") equals P by Px. 

P" «= P • P' or 
P" = 90 * 20 = 1800 

Time ratios for the axial combinations must be selected according to rhythm 
families, (factorial continuity). In classical music of the 18th century type, the 
amily is f series. The binomial ratios of this family are 3 + 1 and 1 + 3. Any 

axial combination selected will assume such ratio when a binomial variation of 

time ( actorial periodicity) is required. For example, a trinomial axis, a, b, c, 

com ined with one of the above binomials produces the following combinations; 

a3T + bT + c3T + aT + b3T + cT 

The trinomials of this series are: 

2 + 1+1, 1+2 + 1, 1+1+2 

With the same selection of axes it would give: 

a2T + bT + cT 

Each of these cases offers a corresponding number of variations. 

Melody evolving in f series will assume the factorial forms of the f- series 

tinn>XamP e’m °rder t0 construct a trinomial axial combination for 8-bar con- 
3 ™ay ch?ose a, d, b combination of the axes and the time-ratio of 

This will result in: 

a3T + d3T + b2T 

se S ™etbod permits the construction of factorial continuity by means of the 

tion^f+h aX*CS W'th any desirable consistency of style. By conforming the selec- 
0f t , e Ume'ratios to one series of continuity, we achieve the utmost unity 

a Jiybrid style is required, any of the non-corresponding series may be 

tinuit-v* a- 4 CaSe w.ou}d be music evolved in f series in its fractional con- 
. and in -j- series in its factorial continuity.’" 

’Fractional and factorial continuity are discussed fully in Book I, Chapter 12. (Ed.) 
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G. Pitch Ratios of the Secondary Axes 

As T expresses a time group unit in relation to t, which is the common 

totalm^emnh 'nlPOrtanl when are treated as sections of the 
total range emphasis of a given musical continuity. In such a case each Ditch 

“ a^ !aul value of .ho piuh units whhin =5 ns--k„ - 
For ImolfifTeTnH1138 ‘ ** ~ ^ be taken. 
Jh oTthe 2Pst,,"T ^Ua‘S.I2p and 2 P'tch ^nges are required, 
will tu ^ 6. Diatonic scales not containing such intervals 

°“er the near« points to 6. For example, in major or minor scales the 
nearest points produce 7p or 5p, thus offering 2 pitch ranges. 

P. - 5 (c - f) 
P. = 7(f -c') 

or 

pi = 7 (c - g) 

Ps-Sfe-c') 

Any ^o^ZT’, J?1**'J*Ch *”«“ “ betWee" the tonics, 
tractedform ^ the fourth group, whether used in its original or con- 

of tomLsTor efm^ * nUn?berf °[ ^ ^ges corresponding to the number 

^ offers 3 ^^r16 * ** ^ ^ ^ 3 t0ni“ ia *■ «**»■ 

Pi = 8 (c — a!?) 
pt — 8 (ab — e') 

P* — 8 (ei — c") 

SSISK'- rh iZ average 0n "*i« and minor scaie is 
composers have a **“ USUa! blnonuals telng 5 + 7 or 7 + 5. Modern 

hZ1 pZ to Wnte mel0dies With “ ™°™ous pitch range emphasis In such cases P’s may include as many as lip. 

various Dt °"Tg 0eSC^0n °f Vari0UB axial combinations in relation to 
various pitch-ratios, we shall assume a uniform time-ratio. 

•See Book II, Chapters 5 and 8. (Ed.) 
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1. Monomial Axial Combinations 
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Figure 26. Binomial pitch-ratio. 
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Figure 27. Trinomial pitch-ratio. 

fl>l PKfl yji >1 ■] Pfl >s PCT3|I m 
■ ■ ■ S B fl 8 fl B fl fl fl fl fl B B B IB a ■ BB 
B ■ B fl B fl ■ fl fl B B B B ■ 
■ ■ n 81 B n B B fl B fl u IB n 8 B ■ 
■ ■ A A fl fl B 1 * A 

■ ■ B B B fl B B m B B fl 8 ■ 
■ fl B B B flfl ■ 

Figure 28. Polynomial pitch-ratio. 
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2. Binomial Axial Combination 

a2P 4- bP -f~ aP + bZP a3P 4- bP + a2P 4- b2P + aP -f b3P 
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Figure 30. Polynomial pitch-ratio. 

Axes: a, b Pitch-ratio: 3-5-2 4-1 

a3P + b2P 4- aP 4- b3P 4- a2P 4- bP 

H ■ HH ■ ■ ■ ■ ■ ■ 
urn II ■ ■ ■ ■ ■ ■! 

UN a V ■ ■ ■1 
m m a m fM * ■ HI 

II H ■ ■ ■ ■ m H ■ H 

Figure 31. Interference pitch-ratio. 

3. Trinomial Axial Combination 

Axes: a, b, d Pitch-ratio: 2 4-14-1 

a2P 4- bP 4- cP 
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Figure 32. Trinomial pitch-ratio with 2 identical terms. 

Axes: a, b, C Pitch-ratio: 3 4- 3 4-2 

a3P 4- b3P 4- c2P 

Figure 33. Trinomial pitch-ratio with 2 identical terms. 



272 

Axes: a, b, c 

THEORY OF MELODY 

Pitch-ratio: 3 -5- 2 -£• 1 

a3P + b2P + CP 

Axes: a, b, c 
Pitch-ratio: 4 ~ 1 4- 3 

a4P -f bP + c3P 

Figure 34. Trinomial pilch-ratio with 3 different terms. 

Axes:, a, b, c 
Pitch-ratio: T4+3 

a3P 4- bP -f c2P 4- a2P 4- bP -f- C3P 

Figure 35. Polynomial pitch-ratio with the number of terms 
divisible by 3. 
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4. Polynominal Axial Combination 

(a) Polynomial pitch-ratio with (1) the number of terms corresponding to the 
number of terms in the axial group, or (2) any multiple thereof. 

Axes: a, b, c, d Pitch-ratio: 4+1t3f2 

Axes: a, b, c, d Pitch-ratio: rs-j.4 

a4P 4* bP 4- c3P 4- d2P 4- a2P 4- b3P + cP 4- d4P 

Figure 36. Polynomial pitch-ratio. 
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(b) Polynomial pitch-ratio with a number of terms which does not correspond 
to the number of terms in the axial group (interference pitch-ratio). 

Axes: a, b Pitch-ratio: 3 4- 2 1 

a3P + b2P + aP 4- b3P + a2P + bP 

Figure 37. Polynomial pitch-ratio. 

The number of variations of each axial combination with a selected pitch- 
ratio depends on the number of termB in the axial group and the number of 
terms in the pitch-ratio. 

A monomial axial combination with a binomial pitch-ratio produces 2 varia¬ 
tions: 

a2P -f aP Var. aP 4- a2P 

A monomial axial combination with trinomial pitch-ratio having 2 identical 
terms produces 3 variations: 

a2P + aP -f-aP 
aP 4- a2P -f aP 

aP -f* aP -f a2P 

A monomial axial combination with trinomial pitch-ratio having all 3 terms 
different: 

a3P + a2P -f aP 
a3P 4- aP + a2P 

aP + a3P -f a2P 
a2P + a3P + aP 

a2P-f aP-f a3P 
aP -f a2P + a3P 

A monomial axial combination with polynomial pitch-ratio produces a number 
of variations equivalent to the number of permutations of terms in the pitch-ratio: 

a3P -f- aP + a2P + a2P -{- aP -f a3P 

6 elements, 90 permutations. 

A binomial axial combination with binomial pitch-ratio. The number of 
variations equals 2* = 4: 

a2P *f bP 
aP + b2P 

HP 4- a2P 
h2P + aP 

A binomial axial combination with polynomial pitch-ratio produces a number 
of variations equivalent to the product of the number of permutations in the 

axial group by the number of permutations in the pitch-ratio: 

a2P -f bP + aP + b2P 

Four terms with 2 identical pairs produce 6 permutations. In this case 

the axial group and the pitch-ratio have identical structure. 

The number of variations: 62 = 36. 
Computation of the total number of permutations for the synchronized 

axial combinations (axial groups) and the synchronized pitch-ratios (pitch-range 
groups) follows the same formulae as in the case of axial groups synchronized 

with duration groups. 
Pitch ratios for the axial combinations must be selected according to the 

total range to be emphasized and the type of pitch-scale to be used. 

H. Correlation of Time and Pitch Ratios of the Secondary Axes 

The correspondence of the number values expressing pitch and time-ratios 

of the secondary axes is entirely immaterial for reasons mentioned above, i.e., 
the different nature of the limitations pertaining to time and pitch in our sensory 

continuum. 
But the form of relations between time and pitch that is essential refers to 

different forms of correspondences between the two, with only a certain amount 

of influence on the actual ratios—and, in most cases, with no influence at all 

on the actual number values. The forms of correspondence are: 

(1) Parallel (direct) 

(2) Contrary (inverse) 
(3) Oblique (indirect) 

There are two forms of oblique correspondences: 

(a) circumstantial 

(b) intentional 

(1) Parallel Correspondences 

a2T2P 4- bTP aTP 4- b2T2P 

— — iz — — — — 
— — — 

— 

:z s — —■ 
— — 

— A \ 

Figure 38. Parallel Correspondences (continued). 
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a3T3P + b2T2P 4* cTP aTP -f- b2T2P + c3T3P 
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(2) Contrary Correspondences. 

aP2T 4- bT2P aT2P + bP2T 
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(3) Oblique Correspondences. 

(a) Circumstantial: when the axial combination has an uneven number of 

terms (this produces a coincidence of both coefficients on the middle 
term). 

aP3T 4- b2T2P 4- cT3P aT3P 4- b2T2P 4- cP3T 

Figure 40. Oblique correspondences. Circumstantial. 

(b) Intentional: when partial coincidence is desired regardless of the number 
of terms. 

Axes: abed 

T 4 1 3 2 
P 2 3 1 2 

a4T2P 4- bT3P 4- cP3T 4- d2T2P 

Figure 11. Oblique correspondences. Intentional. 
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The general effect of parallel correspondences is one which is expected; it 
may be associated with stability and common sense. The path of melody through 
time and pitch appears under the conventional mechanical conditions, i.e., the 
greater the pitch range to be covered, the greater the time required. The smaller 
the pitch range to be covered, the less the time required. 

The contrary correlation produces an effect of tension or surprise. It has 
an attractive and often dramatic quality. Greater pitch-ranges are achieved in 
shorter time (greater velocity) and smaller pitch-ranges are covered in a longer 
period of time (smaller velocity, resistance, delays). 

The oblique correlation produces intermediate effects offering more of the 
surprise element when the coefficients are different, and bringing it back to 
more conventional effects when there is such a coincidence. 

All the problems of the actual relationship of patterns through the character 
of reaction, resulting as a response to Buch patterns, are discussed in the follow¬ 
ing chapters. 

CHAPTER 4 

MELODY: CLIMAX AND RESISTANCE 

THE PROJECTION of melody is a mechanical trajectory. Its kinetic com¬ 
ponents are balance, impetus and inertia. Resistance produces impetus, 

leading either towards the climax, which is a pt (pitch-time) maximum with 

respect to the primary axis, or towards balance. The impetus is caused by resis¬ 
tance which results from rotation. The geometrical projection of rotation is a 

circle which extends itself in time projection into a cylindrical or spherical spiral, 
or ultimately (through time extension) into wave motion (plane projection). 

The kinetic result of rotary motion is centrifugal energy. The discharge of 

accumulated centrifugal energy is equivalent to a climax. A heavy object at¬ 
tached to a string and put into rotary motion about an axis-point develops 

considerable energy—enough to move it a long distance when detached from 

the string. 
Overcoming inertia increases mechanical efficiency (gain of kinetic energy). 

Any body set in motion acquires its ultimate possible speed in a certain period 
of time. The shorter the period from the moment of the application of the initial 

force (impetus) till the moment when the body acquires its ultimate speed, 

the greater is the mechanical efficiency of such motion. 
Motion is expressible in wave amplitudes; the projection of kinetic climax 

is the maximum amplitude. Inert matter does not acquire its maximum ampli¬ 

tude instantaneously when starting from balance just as the maximum cannot 
recede to balance (rest) instantaneously. This is true both of velocities (fre¬ 

quencies) and amplitudes. 
Mechanical experiences, whether instinctive or intentional, are known to 

all types of zoological species and are inherited and perfected in the course of 
evolution. A grown animal has a perfect judgment of distances, of directions, 

and of the amount of muscular energy necessary in leaps or flights, without any 

theoretical knowledge of the law of gravity or mechanics in general. There is 
no misjudgment in the monkey's flights from tree to tree; there is none for a 

gazelle leaping over a creek, or for an eagle falling on its prey. A certain amount 
of intentional mechanical efficiency and psycho-physiologic coordination is in¬ 

herent with every surviving species of the animal world. The relativity of the 
standards of mechanical efficiency corresponds to the relativity of reflexes, re¬ 

actions aitd judgments. 
The leap of a human being over a 14 foot rod was the highest achievement 

in the International Olympics for 1936, and this with the aid of a pole. The 

mechanical efficiency of an ordinary flea is fifty times greater. The leap of a 
human being over a rod SO feet high would seem supernatural, while the same 
kind of leap by a flea would be far below the standards of flea efficiency the 

flea leaps about one hundred times its own size. 

[279] 
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Standards of mechanical efficiency vary with ages and places, even among 
human beings. They also vary with different races as well as with different 
ages. The development of athletic qualities and forms of locomotion implies the 
raising of the requirements necessary for mechanical efficiency. 

The geometrical conception of mechanical and bio-mechanical trajectories 
necessitates the analysis of the corresponding trajectories of nervous impulses 

and muscular reactions. There are correspondences between the two, and the 
knowledge of such correspondences leads to scientific production of excitors 
capable of stimulating the intended reactions (in this case, esthetic excitors: 
music in general, or melody in particular). Simple reflexes and reactions project 
themselves into simple trajectorial patterns; on the other hand, excitors having 
the form of simple trajectories stimulate reactions of a corresponding simplicity. 
Likewise, this correspondence occurs with complex patterns. 

The intensity-interdependence between the excitor and the reaction was 
formulated in Weber’s and Fechner’s psycho-physiological law. Both as to 
configurations (patterns) and as to amplitudes (intensities), there are corres¬ 
pondences between the excitors and the reactions. Judgment based on me¬ 
chanical experience and mechanical orientation leads higher animals and human 

beings to certain expectations. In the case of an absolute correspondence between 
the realization of a mechanical process and the expectation, the resulting reaction 

is balance (normal satisfaction). A result above expectation stimulates the in¬ 
tensification of activity (positive reaction) and at its extreme, ecstasy. On the 

other hand, the result of a mechanical process which is below expectation stimu¬ 
lates passivity (negative reaction) and at its extreme, depression. The two op¬ 
posite poles of reactions, brought to their absolute limit, stimulate astonishment 
(irrational or zero reaction). 

Geometrical projection of a scale of psychological adjectives on a circum¬ 
ference produces the poles of the two rectangular coordinates (the diameters 
of the circle): 1. normal absurd; 2. depressing-—ecstatic. Producing four new 

poles on the intermediate arcs of the circumference through the addition of 
another pair of rectangular coordinates (under 45° to the original pair) we obtain 

nine poles altogether (including both 0° and 360°). These nine poles, through 
the application of the method of evolving concept series, become expressible 
in adjectives standing for the psychological categories. 

Scale of psychological categories as represented through geometrical projection 
on a circumference. (See Figure 41A on next page). 

0 ^ circumference is divided, by the poles of the coordinates, into 8 arcs, 
45 each. The geometrical poles correspond to the psychological poles. Arts 
represent the transition zones, and the poles—their absolute expression. 

Zero or 360° — abnormal 
90° — infranormal 

135° — subnormal 
45° — subnatural 

180° — normal 

270° — ultranormal 
315° — supernatural 

225° — supernormal 

Normal 

180° 

360° 
Abnormal 

Figure 41A. Scale of psychological categories. 

The zone around 0° or 360° stimulates astonishment (zero reaction or 

delayed reaction). The zone around 45° stimulates either pity or humor. The 
zone around 90° stimulates depression (pessimism). The zone around 135° 

stimulates the sense of lyricism (regret, melancholy, pleasant sadness, joyful 
sadness, controllable, self-imposed sadness; close to positive zone: joy of self- 

destruction, self-sacrifice.) The zone around 180° stimulates the sense of quiet 

contemplation, full psychological balance and satisfaction. The zone around 
225° stimulates the sense of heroism and admiration. The zone around 270° 
stimulates the sense of exaltation, ecstasy and worshipping. The zone around 
315° stimulates either the sense of the fantastic or the sense of fear (unfavorable 

surroundings, uncontrollable, unaccountable forces, fear for existence, struggle 
for survival). 

A discus thrower participating in the Olympics and reaching the previous 
year’s record would stimulate a reaction corresponding to 180° point. The 
actual reflexes of the spectators would be polite applause. Throwing beyond the 

expected range would stimulate a reaction corresponding to the zone between 
180° and 225°, culminating in ultimate ecstasy when it reached 270°—and this 

would be evidenced in the audience by shouting, stamping and whistling, the 
reactions increasing not only in intensity, but in quantity as well i.e., the 
maximum conceivable limit. The clapping reflexes would grow accordingly from 

180° to 270°. If the disc does not reach the range expected* the reaction would 
be disappointment, increasing toward 135° with the sympathetic spectators. 
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Wth the range reachmg only 90", it would lead ultimately toward depression 
The spectators w,ll not applaud when the effect of the disc throwing is near 

hT* -1 ,S "StT 10 “SUme ^ “rtain ^ouPs °l spectators, in¬ 
fluenced by their sympathy for opponents of the first discus thrower, would 

a^yt^To^PPOS,t8 reaCti°"8- Th** C°nSiderati0nS COVer 5emicircle 

th. rThe,‘°WerfZ?ne,°n tHe negative “*■ U" betw“° the 0° and 90°, stimulates 
* 0t the <*** of the discus thrower, it would amount 
to 5 of perhaps only a few yards from his position after a long and arduous 

deori^rfT f0r,the th.r0* the spectators see a husky, muscular athlete 
effiaenc>'- they unquestionably react to it as if the episode 

seemed decidedly humorous. 

On the positive side of the lower semicircle, between 315° and 360°, lies 
the zone of toe supernatural, where toe range of throw of a disc would be beyond 
rmy b»BSchanitol possibility. For example, if toe range of throw amounted 

wo wL In BUCh CaSeS the of a t™* or a supernatural force 
would be a necessary ingredient for toe logical comprehension of the pheno- 

^ usual reaction would be that of a smile or laughter moving toward 
astonishment in the direction of the zero point 

,1, ?e 36?J ?™,t When reached from the positive side would amount to the 
absurd raused by an impossible mechanical over-efficiency. Such would be the 
rasewhen the disc being thrown would never come back, would never fall any- 

Tf parity^6 gn>Und' bUt Van‘Sh “ interetellar space' thus overcoming the law 

m^lWhen|Kr0«!3-reaChe1 fr0m *he negative si*, it would mean an impossible 

ZTlmr T*, . *“ °f 3 thrOWer' !t would happen if the 
disc were to shp out of the athlete s hands before he actually threw it. 

thar “pre88in? a. mechanicaJly efficient kinetic process, whether 

inlll s w V a mU81Cal mel0dy> wm have mechanical fundamentals 
mjonunon. 4 pendulum cannot start instantaneously at its maximum amplitude; 

^raTditaJ ? pendulum cannot stop instantaneously from its maxi- 

^i bettor? f” l mel<>dy "H* ““tusponding effects in both cases 
Will be either supernatural or humorous. 

pressh^dw™ q“antitative specifications serving different purposes and ex- 

T^fv ^ I meChan,Cal e®ciency vary with times and places. 

°”e haS *° h”™ the style in which such 
av^ ° ^ can?ed out also beyond what specifications the entire 

kmetic process, whether efficient or not, will become meaningless. As standards 

^y, the coordinates on the circle described above change their absolute posi- 

or cou .tr^i ’ r ‘“If may m°Ve With *>“ “tit- system, either clockw.se 

!so“to t r W8 W°Uld aSSUme' Wlth to athletic standards, 
the . h Certa!" mechanical operations-when the achievement of 
toe succeedmg epoch increases toe quantitative value of normal, placing the 

what is 225° on our diagram, the opposite "role of the 
coordinate will occupy respectively the 45° position. 

Referring to music in general and melody in particular, we find that certain 
standards become old-fashioned and we begin to feel that although they may 

be charming yet they are entirely inadequate for the purposes of a more me¬ 
chanically efficient epoch. We feel it in every field concerned with motion,* i.e., 

mechanics. 
One has a humorous or a pitying reaction toward the 1900 “horseless car¬ 

riage”—and it becomes still more humorous when there is an accumulation of 

quantities of the symbols of inadequacy, such as the prerequisites of travel 
required by a horseless carriage: dusters, goggles, safety belts. We have exactly 

the same picture (i.e., if we are people representing our epoch rather than living 
anachronisms), in melodies composed by a Verdi or a Bellini; the mechanical 
efficiency is so low that it makes us smile, if not laugh. The same melodies 

stimulate entirely different reactions among octogenarians surviving in our epoch 
of 400 miles per hour. 

In order to achieve an efficient climax, it is necessary to accumulate energy 
that will be effectively discharged in such a climax. The means for accumulating 

energy, as was described above, are achieved through rotary motion developing 

centrifugal energy. Trajectories expressing musical pitches of various frequencies 

are heard by listeners in relation to the entire trajectory. It is possible not 
only to show the range of frequencies (such as a form of direct transition from 

one frequency to another), but also to show in what way this variation of fre¬ 

quency was achieved. 
The portion of a melodic trajectory leading toward the climax, without 

resistance preceding such a climax, does not produce any dramatic effect. It is 

resistance that makes the climax appear dramatic. A portion of melodic trajectory 
leading from a climax (maximum amplitude) towards balance (minimum ampli¬ 

tude) must be performed in accordance with natural mechanical laws, i.e., it 
must contain resistance before it reaches the balance (compare with pendulum). 

Inefficiency, or excess of the forms of resistance (rotary motion), leads to a 

mechanical abnormality. Abnormal melody stimulates the sense of dissatisfac¬ 

tion or humor. The forms of resistance leading toward climax acquire centrifugal 

form (increasing amplitude). The forms of resistance leading toward balance 
acquire centripetal form (decreasing amplitude). The relative period of rotary 

motion and amplitudes produces various forms and gradations of resistances. 
For example, the period of rotation may be long, with the amplitude remaining 

constant; or the period of rotation may be short with rapidly increasing ampli¬ 
tudes. The period of rotation may be short with correspondingly increasing 

amplitude. The duration of the rotary period may be in inverse proportion to 

the amplitude—and often the law of squares takes its place. 

The practical value of Schillinger’s work in 
correlating music and motion—sound and the 
mathematical laws of motion—appears in each 
section of his SyBtem. In Theory of Melody 
this correlation takes a most interesting form, 
and yields insights of inestimable value to 
the composer. The effort to relate psycho- 
logical categories and music is almost as old 
as music itself. But most such efforts have 
been impressionistic, critical and intuitive— 
and therefore so subjective as to be useless 
both to the composer and critic. Schillinger’s 

procedure in projecting a melody on a graph 
and correlating this melodic trajectory with 
the scale of psychological categories offers a 
scientific and objective approach to the prob¬ 
lem. With intelligent application composers 
now can unerringly evolve a melody to produce 
a given psychological effect. Music critics like¬ 
wise have an instrument—which does not 
depend on how they feel at a given concert— 
for judging the success of the composer’s 
effort, (Ed.) 
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A. Forms of Resistance Applied to Melodic Trajectories 

The corresponding forms of resistance as applied to melodic trajectories 
are: 

1. Repetition (correspondences: aiming, rotary motion with infinitesimal ampli¬ 
tudes, affirmation of the axiB level as a starting point). Musical form: repeated 
attacks of the same pitch discontinued by rests or following each other con¬ 
tinuously. 

Physical Form Musical Form 

Figure 42. Repetition as form of resistance. 

2. fiiia phase rotation (correspondences: preliminary contrary motion, initial 

8P™sb°a«l diving, baseball pitching tennis 
aavra, etc.) usual form: a movement or a group of movements in the 
direction opposite to die succeeding leap. 

Physical Form 

MELODY: CLIMAX AND RESISTANCE 

Figure 43. One phase rotation (concluded). 

This form often acquires more than one phase following in one 

which intensifies the resistance. 

Physical Form 
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FuU periodic rotation (one or more periods). 

Musical Form: mordents, trill, tied tremolo, gruppetto. 

Physical Form 
Musical Form 
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Variable amplitude (correspondences: gyroscope, spiral motion, tornado, 
expansion, contraction). Musical form: expanding and contracting, simple 
and compound motion. 

Whereas the preceding forms of resistance require only one of the secondary 
axes, the variable amplitude rotation requires a simultaneous combination 
of two or three secondary axes. In this case the axis leading towards 

climax or balance will be considered fundamental and the other axes_ 
complementary. 

Simultaneous combinations of two axes: 
(a) Centrifugal (expanding): 

A- A. A. A. 
o’ a’ o > d > 

Physical Form Musical Form 

Aesu. a... u 
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Figure 4Q. Centrifugal combination of two axes. 
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(b) Centripetal (contracting) 
k. o. -E. . 
o» b* o» c * 

Physical Form Musical Form 

Simultaneous combinations of three axes: 

(a) Centrifugal (expanding): 

a-s-O-J-djd+O + a 
(b) Centripetal (contracting): 

b-s-0-5-c;c-5-0-5-b 
Physical Form Musical Form 

a 0 -f- d 

Figure 47. Centripetal combination of two axes. 
Figure 48. Simultaneous combination of three axes {continued). 



fHEORY OF MELODY 

***** **' Sim'**™>us combination of three axes {concluded). 

effect^where0RAJba ^S^tational^eld?16 affectS 161181011 gravity 
parallel secondary axes TW. ! * W)’ reaistance ^ also result from two 

above or below the fundamenj'^^^efefof ^ 
parallel axes is that of an extended trui^r ?T, ”? ? through a pair of 

inB 2e s^tr: . r rising »d^^gasce„d- 
points (ascending or descending) OV“g around alternate>y progressing 

I I I I f I } Physical Form ~"f \.i—i—i— 

SB"M88SBBBI855i 

Musical Form 

mrnrjm^mmmmmmZZSZS Biisaa 
95559ssuhhi 

■"=*■1188888888888 

Figure 49. Two parallel secondary axes f. (continued) . 

Figure 49. Two parallel secondary axes L- {concluded). 
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■Siii888i8i388i=»g=^"—— 



293 THEORY OF MELODY 

Physical Farm 

Figure 50, Two parallel secondary axes ~ {concluded). 
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Figure 53. Two parallel secondary axes 

The 1,2 and 3 forms of resistance produce the respective degrees of resistance. 

When more than one form is used in successive portions of melodic continuity, 
they must follow one another in increasing degrees. The opposite arrangement 

is mechanically inefficient and therefore produces an effect of weakness. 
Resistances lead either toward climax or toward balance. 
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-- THEORY of melody 

B. Distribution op Climaxes in Melodic Continuity 

/ 9 ' 

The distribution of climaxes in melodic continuity must be arranged with 
respect to the total duration of such continuity. The relative intensity of climaxes 
depends on both time and .pitch ratios leading toward the respective climaxes. 
A natural tendency is the expansion of pitch and the contraction of time. These 
two components mutually compensate each other. 

The climactic gain between the two adjacent climaxes takes place when: 

1. The pitch-ratio is increasing and the time-ratio is constant; 
2. The time-ratio is decreasing and the pitch-ratio is constant.. 

The climactic pin reaches its mechanical maximuni when both forms are com¬ 
bined (tacreastng pitch-ratio and decreasing time-ratio). 

It is practical to save the last effect for the main climax of the entire melodic 
continuity; use it only when the extreme of exuberance has to be attained. 

As a decreasing time-ratioris characteristic of continuity with a group of 
climaxes, rhythmic material which would appropriately distribute the climaxes 
must belong to the decreasing series of growth, such as the summation or power 

senes: S?al!er numberjjalues and in inverse correlation serve as material for 
tne distribution of the pitch ratios for a group of successive climaxes. 

This description refers to a trajectory moving towards the main climax 
and must be inverted for a trajectory moving in the opposite direction. 

—' • TJ—~ r~r- ■ .- 
- • ■ •' .... • 

• -->r * 

CHAPTER 5 

SUPERIMPOSITION OF PITCH AND TIME ON THE AXES 

"V\ THAT IS called “beauty” is the resultant of harmonic relations. In order 
to obtain a “beautiful” (esthetically efficient) melody, it is necessary to 

establish harmonic relations between its factorial and its fractional rhythms. 

This may be achieved by means of a homogeneous series of factorial-fractional 
continuities. 

Rhythm of time durations occurring within the bars must belong to the same 

series as rhythm of the secondary axes. Naturally, there are hybrid melodies in 
which fractional and factorial rhythm belong to different series; a homogeneous 

series is merely an expression of stylistic consistency. 

Melodies with structural consistency may be found in nearly every folklore, 

as well as in the works of composers who synthesized and crystallized the efforts 
of their predecessors. Beethoven crystallized the melodic style of the “Viennese” 

school, which at its time was a revolt against counterpoint and polyphonic 
writing. Bach, in his melodic themes, (in many cases with an odd number of 
bars), crystallized the efforts of several centuries. 

Different styles have different evolutionary velocities. “Jazz” has a very 

high one, like some specimens of Alpine flora with a very short life-span; jazz 

has already crystallized its homogeneity. Examples are numerous and may be 
found more in "swing" playing than in the printed copies of the songs. 

After the series has been selected, the actual composition of the fractional 
continuity may be accomplished in two ways: 

(1) by using the resultants or the power groups, 

(2) by composing freely from the monomials, binomials, trinomials and 
quintinomials of a given family. 

Here is an example of composing fractional continuity in ■§■ series: 

Suppose we have a trinomial of the secondary axes, a2T 4- bT + cT. In 
this case, 4T » 16t. To satisfy 16t we may use r4-f-3, or or any of 

the variations, i.e., the permutations or the resultants. 

A free composition according to (2) may give results identical with some 
of the variations. 

The groups of the -J- series are: 

monomial ... 4 

binomials . . . 3 + 1 and 1 + 3 

trinomials 2 + 1 + 1, 1+2 + 1 and 1 + 1+ 2 
the uniform quadrinomial . . 1 + 1 + 1 + 1 

[299] 
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i , ,HaV’;T^eCided 0n5I'a8 (3+1> + (2+l+D. bT as 1+1+2 and cT as 
1+3, we obtain 1-4+3. By selecting freely various recurrences of the same bi¬ 

nomial, like 3+1, we obtain: a2T - (3+1) + (3+1), bT = 3+1, cT - 3 + 1 

or v^o^ iwurrraas of the same trinomial with Yariations like: a2T = (2+1+1) 
• r . . cT = 1+1+2, we obtain groups that are not 
identical with the resultants or the power groups. 

When a climax is desired, the maximum time value must be placed at the 
corresponding point of a secondary axis (in a at the end, in b at the beginning 

on T*iD d atthe «»<*)• For instance, if a climax is desired 
it 2 ™ be the last term of a rhythmic group of this axis. In the f series 

a2T «* (2+1+1) + (1+3) 

or (2+1+1) + (1+1+2) 

or (2+1+1) + 4, and the like. 

To superimpose a fractional rhythmic group on a factorial group of the 

*epointe of attack “3 pitch:; 

. . k* “ ®3ume *^at,a ^ouP of secondary axes has been constructed with no 
P^culsf '“S^tbrnic (tuning) system. Placing the pre-selected 

P abT.th® ““ and doping perpendiculars from the points 
attack, we accomplish the distribution of the points of attack (which become 

fe moments of attack) along the pitch trajectory of a hypothetic tuning system. 

a2T + bT+cT= (2+1+1) + (1+1+2) + (1+2+1) + (i+3) 

Thus, the intersections of dotted lines with secondary axes are the moments of 

attack on this pitch trajectory. 
Here we arrive at the following definition of melody: melody is the resultant 

trajectory of the axis-group moving through the points of attack. Melody, in the 
academic sense, i.e., with sudden pitch variations within a tuning system, is a 
rectangular trajectory. Melody, in the Oriental conception as well as in any 
musical actuality, is a curvilinear trajectory, i.e., contains a certain amount of 
pitch-sliding. We shall deal with composition of a melody in the academic sense, 
as our musical culture leaves the bending of a rectangular trajectory to the 

instrumental performer. 
As the secondary axes form triangles (with respect to the primary axis), 

two forms of rectangular motion through the points of attack are possible: 

(1) ascribed (sine phases). 

(2) inscribed (cosine phases). 

Although in composing melody a free choice of the two may take place, 
in balancing melody at its end on b or c axes, the ascribed motion produces an 

incomplete (i.e., unbalanced) cadence, while the inscribed motion produces a 

complete (i.e., balanced) one. The first one is a device for deviating from balance, 

i.e., for accumulating tension, a stimulus for the new recapitulation. 
Examples of rectangular trajectories evolved through the axes of the previ¬ 

ous example: 

HI ■ mi 
■ 

j i i 
i ; 

! 
1 

! 

\ 
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• 

Figure 57. Ascribed motion. 
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Figure 58. Inscribed motion. 

Potmtiai melodies are totally different as to their pitch pr< 
ETesaona rhe usual, commonplace composition of pairs varies wit- msf ;?'t 

8ither inscrib«i ascribed, but must t 

A. SopEWMPosmoN OF Pitch-Rhythm (Pitch-Scale) on the Seconpary Axe: 

spaJS^I»tilnf^rtere:JS,(dcra^0n8> When KEometricaI|y projected produa 

^tem“th^T(r!enB,0n8tk Umf°rm time scaIes Pr*mary selectiv, 

secondary selective syst^s (^tL^/es)!* *'’ ,S eq“al “ ° ** beCOme 

base of “Ur tUning sy8tem P™duce logarithms to thi 
TZilVJrZ; ■ Chr°mati£ Kale is the primary selective system 
alom l Geometncal projection of such a scale is uniformity 

rf "y P>h-SCale Within “* tuning system is a 
(l-e".aLd”Vltive of *>“ primary selective system), 

inscribed form of P>teh-time trajectory moving in either ascribed or 

ri£h taJffTJf ™?°* ^r°U? ?* *** ***«<*■ of time (abscissa) and 
rimplitl^ o ” selective systems), is structurally the 
simplest form of melody, i.e., a chromatic scale in uniform rhythm. 

Here we arrive at the following definition of melody: melody is a pitch-time 
trajectory resulting from the intersection of the points of intonation (pitch-units) 
with the points of attack (time-points) in a specified axis-system. 

When the geometrical points of intersection do not coincide with the pitch- 
units of a scale, pitch-units nearest to the coincidence-points must be used. 

Let us superimpose an Aeolian scale (2 +1+2 + 2 + 1+2) on the axis-group 

illustrated in the preceding example. Let us assume a2P +bP + cP, i.e., a 
parallel PT correlation. And let P = 5, which in this case gives a symmetric 
distribution. Further, let pitch c be the primary axis. Then a2P extends from 
c to 6b, bP from / to c, and cP from g to c. 

Here is the final construction of the axis group: 
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Figure 59. Scheme of the points of geometrical intersection. 

This diagram produces a slight deviation from the description given in the 
text, because of the fact that the scale is so small that it gives deviations. How¬ 
ever, this is not essential, as further adjustments follow the scale.- 

The next step is to adjust the points of intersection to the Aeolian scale. 
Let us analyze point by point. 

, L ^e first point of intersection is c, the nearest pitch-unit to the second 
point of intersection on the Aeolian scale is d. Next, we select eb as the nearest 

to the third intersection-point. The fourth falls exactly on /. The fifth falls 
on /# which is not in the scale. In this case either the repetition of /, or g is 
available. The next point is nearest to g. Through ascribed motion the entire axis 
a w°uld start on d and end on 6b- 

As in inscribed motion, pitch-levels move toward the points of intersection; 
t e first pitch-unit on b- axis will be either/or eb, as the geometrical intersection 
coincides with e\. The next intersection-point is nearer to d. In order to com- 
P ete b- axis through inscribed motion, it will be necessary to consider c as the 

.ast intersection point. C- axis through the inscribed motion gives points of 
intersection at ab and c. 

We shall reconstruct now the axis-group with respect to the Aeolian scale, 
as just described, and draw an inscribed trajectory. This trajectory is the most 
e ementary form of an actual melody. 
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a chart of combinations: 
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melod^tev;;*^0118 aU*ether' *** obte’™K an actual melody, sc 
and ^ S Variation' tonal and, geometrical expLsi 
and uveraons. For instance, the same melody in a “blue" scale wouldlour 

Figure 6i. Same melody in a “blue* scale,, 

Or in a Chinese (24-3+2+2) scale (through translation of the correspond¬ 
ing degrees): 

# J 'XUi. 
Figure 62. Same melody in a Chinese scale. 

Here an allowance has to be made on the first note of the last bar, as the VI 
does not exist in the Chinese scale (the last degree of the scale, i.e., V, which k 
a substituted). 

B. Forms of Trajectorial Motion 

The trajectory obtained above was called “the most elementary form of an 
actual melody” because its form of motion is simple harmonic (i.e., motion within 

the scale). As noted earlier, such a melody cannot be too expressive or dramatic. 

In order to obtain an expressive melody, it is necessary to build resistances. This 

cannot be realized without introducing more complex forms of motion. 

We shall present now all the trajectorial forms with respect to the zero axis. 
(1) Sin (sine) motion with constant amplitude: 

Figure 63. 

(2) Cos (cosine) motion with constant amplitude: 

Figure 64. 

(3) Combined sin + cos motion with constant amplitude: 

Figure 65. 

(4) Combined cos + sin motion with constant amplitude: 

Figure 66. 
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01) Cos. motion as (7): 

(12) Cos motion as (8)-: 

Figure 7iS. 

Figure 74. 

(13) Combined sin + cos motion with combined amplitude as (5): 

Figure 75. 

(14) Combined sin + cos motion with combined amplitude as (6): 

Figure 76. 

15) Combined sin -f- cos motion with combined amplitude as (7): 

Figure 77. 

(16) Combined sin ■+• cos motion with combined amplitude as (8): 

Figure 71 
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(17) Combined cos 4- sin motion with combined amplitude as (13): 

Figure 79. 

(18) Combined cos -f sin motion with combined amplitude as (14); 

Figure SO. 

(19) Combined cos + sin motion with combined amplitude as (15): 

Figure Si. 

(20) Combined cos + sin motion with combined amplitude as (16): 

Figure 82. 

m SZT* '■”nri0a!’^e merdy variation8 of the two original forms, i. 

of the inLLm^,^Jd5 °* ** “ “d decreasing ampUtude is ® 

MolL“^w]1r1°Pn2n- °f thfe traiectorial forms may be obtained throu, 
/ w6 °°effiaent8 of recurrence of the sin, the cos and the grow 

Figure 88. 

geometric **T^ reference is to the second position i 
tnvenaon with regard to the S^etnc mYeraion: the backward inversio 
III. (Ed.) onguial. See Book with regard to the original. See Book III. (Ed, 
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The same case on increasing amplitude: 

All these forms being transformed into rectangular trajectories, with respect 
to a definite intonation (tuning) system, become actual intonation-groups, i.e., 
melodic forms. For example, a gruppetto is sin 4- cos with constant amplitude. 

Including the zero of pitch variation, (absolute zero-axis trajectory), we 
have the following forms of trajectorial motion: 

(1) constant pitch trajectories (repetition on extension). 
(2) sin or cos trajectories (one phase motion). 

(3) combined trajectories (full period motion or rotation). 

Application of various trajectorial forms to a, b, c and d axes gives the 
following correspondences: All the sin of 0 remain sin on all other axes. All 

the cos of 0 remain cos on all other axes. All the combined forms of 0 with respect 
to sin, cos and the constancy of amplitude remain respectively the same on all 

other axes. Zero axis is the only one to be heard. The rest are merely hypo¬ 
thetic lines. 

Here are examples of the corresponding translations of a curvilinear sin 
trajectory into rectangular trajectories of the 0, a, b, c and d axes: 

Figure 85. Translation of a curvilinear sin trajectory into rectangular trajectories. 
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Translations of the cos trajectory: 
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Figure 86. Translation of cos trajectory into rectangular trajectories. 

Translations of the combined trajectory: 

Translation of the combined trajectory: 

Figure 87. (&) Without continuous tangency. 

Figure 87. (a) may be called revolving trajectories. 

Figure 87». (b) may be called crossing trajectories. 

Deviation of a rectangular trajectory from its corresponding axis signifies 

inconsistency and lowers the esthetic value of a melody. 
An esthetically efficient melody must display, besides consistency, a variety 

of the forms of motion. 
When a trajectory is controlled by the two simultaneous axes (fundamental 

and complementary), the points of attack may fall on either axis according to 

the form of alternation. 

Example: 

Figure 88. Trajectory controlled by two simultaneous axes. 
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The form of alternation is subject to distribution, i.e.f rhythm. 

An example of analysis of the trajectorial motion in J. S. Back's Two-Part 
Invention, No. 8: 

Figure 89. Trajectorial motion in Bach's Two-Part Invention, Bo. 8. 

This trajectory has a primary axis defined by its first, last and two inter¬ 

mediate attacks. The group of the secondary axes is: f + b. The pitch and time 

ratios are uniform, ie., fPT + bPT. The first attack of b is a climax. The form 

of motion on - is sin motion with increasing, (centrifugal), amplitude. The 

alternation of the points of attack on the two conjugated axes is uniform. The 
form of motion on b is combined (sin + cos) and has a constant amplitude, 
t is ascribed with respect to b. The effect of revolving due to the combined 

torm Produces a resistance and delays the balance. This melody would lose 

most of its esthetic value if the o-axis were eliminated (loss of resistance moving 
toward the climax), and the b-axis were to have one-phase motion. 

At this point it would be very advisable for the reader to make a thorough 
analysis ofthe outstanding, as well as of the deficient, themes taken from existing 
music. This procedure must follow all sections of the theory of melody. A precise 
statement must be made on each item regarding the form and measurement. 

Although a theme of any dimension (duration) may be constructed to full 
satisfaction, it is more practical in most cases to compose continuity out of a 

short original structure. Memory is very limited and the latter will produce 
an effect of greater unity. 

After having acquired enough experience in analysis, one may start com¬ 
posing melodies according to this theory. Success depends upon thorough 
knowledge of all the preceding material—and the ability to think! 

CHAPTER 6 

COMPOSITION OF MELODIC CONTINUITY 

WHEN MELODIES are constructed, i.e., plotted, according to the tech¬ 
niques described in earlier chapters of this discussion of the theory of 

melody, the melodies will be found to have such properties as render them 

susceptible to the following treatments and techniques: 

1. Permutability of the secondary axes with their respective melodies in time 

continuity. 
2. Permutability of the individual pitch-units (preferably through circular per¬ 

mutations) pertaining to one individual secondary axis. 

3. Geometrical convertibility of the entire melody. 
4. Geometrical convertibility of portions of melody pertaining to the individual 

secondary axes or any groups thereof. 
5. Tonal expansion of the entire melody. 
6. Tonal expansion of portions of melody pertaining to any individual secondary 

axis or portions thereof. In this case different axes may appear with different 

coefficients of expansion. 
7. Combined variations of geometrical inversions and tonal expansions applied 

to the entire melody. 
8. Combined application of geometrical inversions and tonal expansions applied 

to the portions of melody pertaining to individual secondary axes or any 
combinations thereof. In this care different coefficients of expansion may be 

combined with different geometrical inversions. 

Consequently, melodic continuity may be composed through any of the 

above-mentioned forms of variation or any combination thereof. 
Here is an example of the quantitative development of melodic continuity 

from the original theme: 
Let us take a trinomial axial combination, a, b, c. Each of the individual 

axes has four geometrical inversions. Thus, the number of combinations of the 

three axes that may be used in identical or different geometrical inversions 
equals 4* = 64. This number refers to one constant E. If any of the individual 
axes appears in three forms of tonal expansion, the entire quantity will be 64* *= 

* 262,144. 
The following is a method of indicating a secondary axis where the geo¬ 

metrical positions and the coefficients of expansion are specified. For example, 
an axis a in position (c) in the second expansion (E2) may be expressed like this: 

a©Es 

A trinomial axial-combination consisting of a, b and c axes, with specified 
time and pitch ratios, and the geometrical positions and coefficients of expansion, 

[313] 
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assumes the following appearance: 

Time ratios: 2 -f- 1 -f l 
Pitch ratios: 1 -f 2 -f 3 

Geometrical positions: (a), 0 

Coefficients of expansion: E0, Es, Ei 
aP2T®E0 + bT2P(gyEs + cTSP^, 

pitch-mrite>(intoiation)'MtweUmFor^^n0lI ^ “Lal°"e’ b« ** 

a^Ejda 

displacement i!ppSfd' the set!uence <* the different 

different ^^Sttbutio? assume 
within the fat «T2ST£ T7’ '* ”ay Start With *»* first phase 

third phase within the third axis t" i*3" the Second ™a’ with the 
or any'of L ^”of gr0wth “ ^ f0“°W a rhyth"> °f -y resultant 

(a) da + di -f- di *f d* dx -f- d» 
(b) do + da + d* + d» + du -f- . . . . 

JrES* JSfk'.S «* —J 
w''“?iCrl5Ersm.'wlf‘ ««*—»•*—- 
material does/ P 0rgan,C COnbnu,t>' «t of original thematic 

££££ t counterpoint written to a 

periodicity: the them, egulari^appears k dSfelLt ^ on "f0™ factorial 
music moving. erent voices and that keeps the 

of ^(fTan^uX0Slr8; COntinUity.iS 0" a composition 

Of 4 4 4 or 8 + 8 bare. Next comL the^th^ df,fferent endings' consisting 

!nvo^t“ °f -—rrcentrs.,e> ai+b+ 

used a «o^fr:nttrinr *■*> ] S * 
VoL II, The WeU-Tembered g^ora^.tncf1 Progressions (see Fugue V, 

overlapping (stretto between the th ^ a u1S d&Se’ ** meant t^at a greater 
ceeding announcement In IWth!? * reply) occurred with each suc- 
uP of the Beeth°VenScaae’ ^ meant a continuous breaking 

serief W f0rmS °f C°ntinUity' <in «J* P»t), are rigidly attached to the # 

Hbre^Serheb“ ^,ij,ty:CCgrdi,r "**■ - ■0Pe-tic 
skilful at it, hiB musical continuity suffered ereath^ 1 althoush he was huitc 

greatly from this syntactic dominance. 
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Wagner’s faults were then adopted as virtues by Scriabine and by others. Literary 

influence, together with linguistic, logic and syntactic (propositional) technique 
were the factors that delayed, if they did not prevent, the sound development of 
the forms of musical continuity.* 

Forms of musical continuity are purely quantitative and pertain to motion. 
They are biomechanical, i.e., they are forms of growth. When they grow normal¬ 
ly, they survive better. It is like pure Darwinism: the struggle for existence, 
the survival of the fittest. A star-fish is not “just a pretty pentagon” but an 
organic forn evolved through the necessity of efficient functioning. 

Many an unpretentious melody is appealing, i.e., estheticaiiy efficient, due 
to the fact that within the eight-bar structure certain processes evolve in a very 
consistent manner. It happens quite often that the efficiency of structure is 
greater in smaller portions and smaller in greater portions. 

These bio-mechanical forms are primarily concerned with three basic factors : 

(1) Symmetric development, i.e., the axis-inversion. 
(2) The ratio of growth, such as summation. 

(3) Movement with respect to tension and release resulting jn balance, i.e., 
an arithmetical or a geometrical mean. 

Growth along the axis of symmetry (compare the case of the human body 
with its growth ‘along the spinal cord) is a continuity formed by geometrical 
inversions of the original structure or of its portions (melody) along the primary 

axis. The regularity of recurrence of the different inversions is subjected to 
rhythm. Pitch expansions (tonal and geometrical), combined with their geo¬ 
metrical inversions, may be used as components of musical continuity. 

The most fluent form of continuity results from symmetric growth along 
the time-axis. This is the most complete form of continuity as it exemplifies 

birth, growth, maturity, decline and death—all in one process. To accomplish 
this in melody it is necessary to split the original structure into a number of 

elements (such as bars or secondary axes), to show these elements in their gradual 
addition, and then in their gradual subtraction. 

Suppose we have a three-har structure and split it into a, b, c elements, 
radual addition of the elements will give: a + ab + abc. Gradual subtraction 

o t e elements will give: abc + be + c. The combination of the two forms 
oiters the time-axis on abc. The entire continuity will be this: 

a + ab + abc -f be + c 
Examples: 

The original structure split into three elements: 

a b c 

Oxfrd mus‘c xn, *h,e t^at 1S< music P°S!nK as an unsatisfactory kind 
reads• ‘‘Prr.^21 ° Mttsic, \ °T. 6, page 3, which of poetry.” (J.S.) 

aas. Program music is a curious hybrid, 
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Continuity composed through the time-axis. 

ab 

figure 91*. 

as t»^rSbt“s^^Pertain to‘he Pr" PrOCedure’ “ well 
As an exaZ“o/IXXX? u 1 T nUmber °find™dual attacks, 

the time axis, let us take an eiVht hJ°Uf * firSt summation senes based on 

. + >b + .b, + art.+**iIh + d + ,sl + Jk +h 

The entire structure moves across itself thrm.trv, 
goes on. 18611 ttlrou?b its own axis, while time 

The next point is obvious. Using the same series for the x of ♦>. 
axes, we obtain: senes tor the T of the secondary 

T+2T + 3T+5T + 8T+5T+3T + 2T+T 
whatever axis (o, a, b, c or d) each term may represent 

SetoX'T PVn“ attad“ be found in 
Your Shoe* for instance. "g Y Arthur ^°^nston One, Two, Button 

figure 92 

Z KZKzft.j+<+«+u, 
structures, each containing the ni.mh» T ^ are four distinct sub- 

carried out with abXte precision. ° n0teS m this Ocular summation, 

tiJ1 “ imPOrfaDt "0t 40 C°nfu* **“ **»» ojauacks with the rkythm of dura- 

> “ay secure a great dXrfwriet ^ fleiable’ and with a Uttle initiative one 

of attacks^ 7+ft l?? Ym' ** find the following scheme 
where the centtal tZm£L ^ f°™ °f 3 + 6 + 9 + 6 + 3, 

th antral term becomes an axis of time symmeb^ + 6 9' A‘ **“ 831116 tim6’ 

•Cop^kt by Sw.Uy.Jo,, tan. New Y„rt city Used by pern^n. 
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With respect to tension and release, movement resulting in balance may 
refer to factorial or fractional time-rhythm as well as to the rhythm of the 
number of individual attacks. Use of the arithmetical mean is the most common 
device in this case. 

An arithmetical mean is the quotient of the division of the sum b}r the number 
of elements. With two elements, a and b for example, it equals Musical 
intuition has a certain amount of precision, and in some cases these arithmetical 
means come out with a very good approximation. For example, in the first 
3£ bar structure of the song Stormy Weather, the first sub-structure has three 
attacks, the second has seven, and the third has four. The exact number for the 
last sub-structure would be — 5, not 4. This is a very good approximation, 
for there is only 20 percent of error; yet you get a greater satisfaction by adding 

one more attack. Try it by making a triplet out of the two eighths at the begin¬ 
ning of the third bar. 

This procedure is analogous mechanically to underbalancing-overbalancing¬ 
balancing; or to overbalancing-underbalancing-balancing. 

The following graphs and music serve as examples of composition of melodic 
continuity. Each example given is a complete musical composition written for 
an unaccompanied instrument. This art has been greatly neglected today. In 
the 17th and 18th centuries, composers possessed enough technique to accomplish 

such tasks. J. S. Bach wrote many outstanding works, even sonatas, for violin 
or viola da gamba alone. Today only a very few high-ranking composers— 
such as Paul Hindemith (Suite for Viola alone) or Wallingford Riegger, an Amer¬ 

ican, (Suite for Flute alone, in four movements)—have dared to write a whole 
opus for an unaccompanied instrument. 

The three compositions I offer here are constructed from the scales of the 
first group. Each graph represents a theme originally plotted. Musical examples 
are complete compositions developed by means of variation. 

The notation is as follows: 

M—the entire melody 

a, b, c, d—portions of melody pertaining to the respective axes 
a» b1 c> d' 
r> f’ 7’ 7 

or 

7’ F’ 7> 7 —parallel binary axes 

©, ©, —geometrical positions of M or of the respective axes 

P°. Pi* p2, • • -—permutations of pitch-units of M or of the respective axes 

Eo, Ei, E2, ...—tonal expansions of M or of the respective axes 

In this form of notation, each original melody (the theme of the composition) 
appears as M® p0E0. 

It is advisable to be conservative in planning a complete melodic continuity, 
as application of too many variations at a time (i.e., p, E and the geometrical 
positions) may increase the complexity of the entire composition beyond the 
listener's grasp. 
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CHAPTER 7 

ADDITIONAL MELODIC TECHNIQUES 

IN,™IS chapte': } have grouped a number of brief discussions of other facets 
of the process of building melodies, facets which will be of use to the practical 

composer. ^ 

making ***** ** qUe8tion of Ae use of symmetric scales in melody- 

A. Use of Symmetric Scales 

first !lninter^als betwe«n ^e tonics in all settings (i.e., the original, the 

the J^ fT !ud^ e fina COnCraCtion' the fitter being an equivalent of 
Jl” B)0't.the th,rd determine the pitch-ranges. The first tonic cor- 
responds to the primary axis. 

secondary "axes!" ““ ^ COntraction’ we aC(!uire *<■ overlapping of the 

the correspondence of the secondary axes takes place in 

the l°Wef SeCti°n “ the C axis of ^ adjacent upper section. 
he °WertS<f,JOn 13 the dw-,;f the upper- The c-axis of the lower 

section is the a-axis of the section below the lower section. The d-axis of the 
lower section is the b-axis of the section below the lower section. 

Considering this it is practical to conceive the axial group in such an ar¬ 
rangement that the first tonic is flanked by other tonics (still referring to the 
original setting). This permits a unified reading of the axes. 
For example: 

Figure 97. Surrounding first tonic with other tonics. 

[322] 
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For the same reason it is practical to surround the first tonic by other tonics 

(making the first tonic a primary axis) in the settings of the first contraction. 
For example: 

- ¥ ~ “ 9 9 9 ■ ■ 9 9 9 ■ 9 9 ■: 9: 9 9 9 9 9 
■ m ■ ■ ■ 9 9 S3 9 S 9 9 9 9 9 9 m 9 9 9 ■ ■ 9 SI 13 B 9 9 i □ 
mu B ■ ■ ■ ■ ■ ■ 9 ■ 9 SI ■ □ 9 ■ 91 9 91 m 9 G ■1 

CD ■ U ■ ■ 
a 

P \ r .S 

E ■ ■ 9 ■ 9 § 9 ■ ■ 9 m ■ 9 9 Si m ■ 9 ■ ■1 
i S ■ ■ □ 9 13 9 ■ 9 9 9 9 ■ 9 9 ■ ■ 9 ■ 9 9 ■ 

Eii ¥ 9 7 L .... 
r 

i HUS 9 
h- 
/ cl pL n relation to E rorj 

m u m B ■ ■ ■ 9! E 9 ■ 9 9 ■ 9 9 9 19 91 eg r 
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Figure 99. Geometric projection of preceding figure (continued). 



324 THEORY OF MELODY 

F
ig

u
re

 9
9
. 

G
eo

m
et

ri
c 

p
ro

je
ct

io
n
 o

f 
p

re
ce

d
in

g
 f
ig

u
re

 (
co

nc
lu

de
d)

z 



326 THEORY OF MELODY ADDITIONAL MELODIC TECHNIQUES 327 

Figure 100. The melody of Figure 99 (concluded). 

B. Technique of Plotting Modulations 

First: a modulation through common tones. Plot the scales of all Leys in 
which the melody will appear on the left side of the graph. Draw all the pitch- 
levels which appear in common for any two of the adjacent keys at the cor¬ 

responding period of time assigned for such modulation. Composition of dura¬ 
tions for the modulation must be made in advance, i.e., at the time the entire 
continuity of time rhythm is planned. The final step is to drop perpendiculars 
from the points of attack upon the common pitch levels. 

No selection of secondary axes for the period of modulation is necessary. You 
are free to choose the trajectorial phases. If the portion of melody appearing in 
the succeeding key starts on the primary axis, it is desirable to select the phases 
which will permit the use of leading tones. As modulation means a transition from 
one primary axis to another, it is necessary to plan die axial schemes for the 
adjacent keys before plotting the modulation. 

A modulation through chromatic alterations must be plotted first rhythmically 
(i.e., by using long durations) and then by dropping perpendiculars on adjacent 
tones not common to the two keys. 

The technique of identical motifs requires first a rhythmic identity of ad¬ 
jacent groups and, secondly, imitation of the first configuration (motif belonging 
to the preceding key) carried out through pitch-levels of the following key. 

Both configurations must be in the same pitch-range. 
Here is an example of melody plotted with all three types of modulations: 

Melody in -f Series 

Theme: (5+3) + (3+2+3); Theme (factorial): aTP + bT2P 

First Modulation (common tones): (2+ 1+ 2 + 1+2) 

Second Modulation: (chromatic alterations): (3+ 3+ 3 + 3+4) 

Third Modulation (identical motifs): 

(3 + 2 f 1 + 1 + 1) + (3 + 2 + 1 + 1 + 1) 

The Sequence of Keys and Scales: 

(1) C maj. natural: P.A. d0 
(2) Ab 41 “ P.A. dx 
(3) G " “ P.A. d* 

(4) C “ “ P.A. do 

Modulating Melody Graphically Composed 

f Series 
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Figure 101. Plotted melody with-three modulations (continued). 
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Graph concluded from preceding page. 
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CHAPTER 8 

USE OF ORGANIC FORMS IN MELODY 

rT'HE TERM organic is usually associated with living matter. The most obvious 
forms of organic existence manifest themselves in growth. Different rates 

of growth have been observed in different fields. Even the ancient Egyptians 
and Greeks had stumbled upon different forms of regularity, which they dis¬ 
covered as geometrical proportions of a rectangle. This discovery led to the 
development of a system of proportions expressing a harmonic relation between 
the preceding and the succeeding link. Numerical values arranged in an in¬ 

creasing order on the basis of this form of proportional growth became known in 
the 13th Century as summation series. It was formulated by the Italian mathe¬ 
matician, Fibonacci, and became known as the Fibonacci series. 

This is how summation series were deduced on a purely geometrical basis. 
Take a square, and use the diagonal of it as a radius. From any of the four 
possible points of origin, draw an arc. Extend one of the sides which does not 

intersect the arc until the arc intersects it. Erect a perpendicular at this point 

of intersection and extend the opposite side of the square until it intersects the 
perpendicular. This newly formed rectangle possesses proportions which de¬ 
velop the Fibonacci series. 

■Figure 102. Deducing the Fibonacci series on a geometrical basis. 

The Fibonacci series is based on the principle of adding every two con¬ 
secutive numbers in a series to obtain the third.* Thus, starting with l,we ob- 
ain 1,2. By adding 1 and 2 we acquire the third number of this row: i -f 2 - 3. 

ever,, ,s ?ne’ tl'e second term is two, t 
immerfuf1? th««after is the sum of the t 
S Preceding terms. Other reia 

an, of course, be obtained by using sq 

other number than two as the second term, 
thereafter proceeding to arrive at each term by 
adding the two immediately preceding terms. 
(Ed.) 

[329] 
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The following numerical values are obtained in exactly the same way. This 

summation series developed through eleven terms acquires the following ap¬ 
pearance: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. These numerical values can be 
obtained purely geometrically, i.e., without computation and directly from the 
rectangle in Figure 102. 

By drawing the diagonal of a rectangle, indicated in Figure 102 as r\ we sub¬ 
divide the entire area into two triangles known as “pyramid triangles’'. Let us 
consider the lower pyramid triangle for the development of the proportions 
representing the summation series. 

Consider point V in Figure 103 a vertex of the triangle. Drop the per¬ 
pendicular from point V on the base of the triangle. This produces the line piV. 
Now we have acquired a new triangle, Vpjp,,. Dropping a perpendicular from the 
vertex pi on the base Vp*, we acquire a new triangle, pjp'p,,. Continuing this 
procedure further, we obtain a group of triangles which become partial of the 
original pyramid triangle. The lines p,p' p,p" etc., produce the extensions which 
in turn represent the numerical values of the summation series. 

;:.~T 

PTI P’ 
tii. 

Figure 103. Partials of the pyramid triangles. 

A dear realization of the principle of summation series as a foundation of 
^autiful proportions was presented by Luca Pacioli in his treatise, De Divina 

Froportume (1509). The principle of the “divine proportion” is derived from the 

^ °f 5?* 8“",matio» s^es. It is also known as “Gold Section,” “Gold Cut” 
and Golden Mean.” 

This particular proportion is | = a-^. This expression can be read: the 

short segment is related to the long segment as the long segment is related to 

the sum of both segments. The usual presentation is in the form of a subdivision 
of a given hne through the “Golden Cut,” Jiat is, dissecting a line into two 
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segments so that the short segment is related to the long segment as the long 

segment is related to the whole original line. Michelangelo, a friend of Pacioli, 
applied the “Gold Section” ratio to proportions of the human body. 

Figure 104. The Golden Mean. 

thatch!"’ Le°nardo da Vinci' while studying plant structures, discovered 

follows thr^TT !-VeS °n a St6m’ °r °f various members of a plant, 

was followed 3 7°Seonald“ grOW thr0UKh the summati°n aeries. This study 

by A-H-Church in his Principhs °fPhyZ 

themtw^’tont7°rl-ar,tiCrlarl5',SCUlpt°rS *** ancient Gree“’ have devoted 
bodily symmetry TheTrVk aPP yl"g *?e ratlos °f the summation series to 
(5th center £ r r “ntrlbutor to this analysis was Polykleitos 
formation of se H Gree“^' Profe5sor Church has demonstrated that the 

patterns of e^hlnfa„SUn 1°^’ ^ T*™1 ‘° a maple leaf’ and other b°tanical 
tried to develop ° °W ^ aummatIon series. Artists and art theorists have 

of spiral form,? p"nclples to ,serve their PurPose. An exhaustive study 

Theodore A c ‘°as.as they appear ln plant and animal life was completed by 
eoaore A. Cook m his Curves of Life.* 

Jay Hambide 77“* “Tmation series was stimulated by the publication of 

to pictorialWhicH he tried t0 apply this principle 
applied thesTn ^ T'- JY HambldSe and Howard Giles have developed and 

Sreatsuccess In*?? ‘I "u °f art b New York with 
symmetry is 7 r 7ay haS bLeCOme S° common that the principle of dynamic 

y applied even m the construction of such articles as radio cabinets. 

*New York, 1914. 
**New York, 1920. 
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A thorough survey and analysis of the whole problem has been accomplished 
in very extensive research by Wilford S. Conrow, a New York artist, in his 
The Ratios 0/ Bodily Symmetry and Growth in Relation to Sculpture and Medical 
Science* Some further developments of the Hambidge theory were made by 
one of his collaborators, Edward Bj. Edwards, in his Dynamarhythmic Design. 

A property of tine summation series known as Fibonacci series is that it 
contains symmetry throughout. The word symmetry emphasizes the equality of 
two measured ratios, according to an authority on the subject, Dr. William 
Churchill. Thus the adjacent portions of any structure following the summation 

series produces equality of ratios. 
Summation series spirals can be constructed through a group of 90° arcs 

so that the value of the radius grows after every 90° through the summation 

figure iOS. Summation series spirals. 

•New York, 1937, 
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The values of the summation series may be applied to intonations as well. 
Portions of musical melody appealing to us as organic are based on identical 
principles of expanding intervals. In music, the unit of measurement for the 
intervals between the pitch units of an octave is expressed in semitones. The 

growth of semitones through the summation series in unilateral and bilateral 
symmetry develops motifs, i.e., melodic forms, which are truly organic as they 

exhibit the processes of growth of intervals. Such melodic forms can be often 
found as the outstanding themes of recognized composers as well as in folklore. 

Historians and musicologists have an accepted term for such motifs, calling 
them “traveling” or “wandering” motifs. These motifs have such a universal 
appeal that, whether they appear in folk music or in the work of an individual 

composer, they become universally accepted as definite crystallized symbols of 
musical expression. It is interesting to note that “tonality” is an outcome of 
organically related number values and is not a “musical” quality a priori. 

The unilateral symmetry of the Fibonacci series, applied to semitones, 
produces the following sequence: 

Figure 106. Unilateral symmetry of Fibonacci series (continued). 
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Unilateral Summation 

Figure 106. Unilateral symmetry of Fibonacci senes (concluded). 

As-in every spiral, it is only in using a few successive links that we can 

achieve what we term “beauty.” Beyond this the form becomes too extreme; 
and the same is true in music, too. Thus a melody seems more melodious if it 
emphasizes only the first few steps of the summation series. Beyond this point 

the intervals become so great that our conditioned perception of melody, as 

melody of a vocal type, is disturbed by such extreme dimensions. Some con¬ 

temporary composers, however, use such intervals, being guided by a purely 

intuitive urge. Their ears are pleased and satisfied by such wide intervals. The 

most representative extremist in this field is the Austrian composer, Anton von 
Webern. 

After a melody is constructed through summation series in the unilateral 
form, it is possible to produce any number of derivative melodies through re¬ 

adjustment of the range, i.e., by means of octave transposition of the corresponding 
pitch units. In such a case any spiral may be confined to a very limited range, 
yet produce intonations which originally were organically related. The following 
is range readjustment of the scale in Figure 106. 

Figure 107. Range readjustment of scale in figure 106. 

In addition to the Fibonacci series, a number of other summation series of 

the same class can be developed. We shall call the Fibonacci series the first 

summation series. In order to obtain the second summation series of the same 

class, i.e., by the addition of every two consecutive numbers, we have to start 

with 1 and add 3 instead of 2; thus we obtain: 1, 3, 4, 7, 11, 18, 29. 

The third summation series introduces 4 after 1; thus we obtain 1, 4, 5, 9, 14, 

It is easy to see that the number of summation series in this class is infinite. 

Other classes of summation series can be developed by obtaining every fourth 
value as the sum of the three preceding values. For example: 1, 2, 3,6,11, 20. 

Further classes represent the addition of a greater quantity of numbers, and 

there is always an infinite number of series in each class. 

My own applications of the various summation series to design as well as 

music (not only to pitch, but also to the development of durations) show ti -t 

such groups of lines or durations or pitches affect us as organic formations. 

Application of the second summation series to melody produces the following 

scale: 

Figure 108. Second summation series applied to melody. 
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After readjustment of pitch ranges through octave inversion we obtain the 
following melodic forms: 

The above melodic forms are naturally only a few of the basic ones. The 
following figure.represents the third summation series in unilateral symmetry 
and is followed by examples of readjusted ranges. 

Figure 110. Third summation series in unilateral symmetry (continued). 

Range readjustment 

Figure Hi. Readjusted range in figure HO. 

Forms of bilateral symmetry can be devised from summation series in a 

similar fashion. The values of a summation series follow the directions of an 

alternating spiral. Thus, if the first number represents an ascending interval, 
the second number represents a descending interval from the origin. Using the 

three summation series we obtain the following two fundamental forms. 



pip 
fiffwe U4. Bilateral symmetry in third summation series. 

as rangtU n0t necesaary in the case of alternate spirals 
as it is more limited than in the case of unilateral spirals. 

and rKPiralSCaobe deVd0ped With “« °f bilateral structures 
*e Such melodic forms being played at a relatively 

f ? three P^8 moving in rapid alternation. From a 

" ri' “ 8‘m,lar t0 3 rapid ar<*® with °"8 alternately repeated 
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Series I 

1-1-2 + 2 + 3-3-5+5+8-8-13+13 - 1+1+2-2-3+8 + 5-5-8+8+13-13 

figure 115. First summation series and alternating axes. 

Series II 

1-1-3+3+4-4-7+7+11-11-18+18 1+1 + 8-3-4+4+7-7-11+11+18-18 
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melody may start at different points of one summation series and be carried out 

to any desirable himt. The following represents the application of this principle 
to the three summation series: 

Summation Series 

Series HI 
1 -1-4+4+ 5-5** 9 + 9+14-14 -1 +1 + 4-4- 5+5+9-9- 14+14 

The most satisfactory melodies from the viewpoint of their organic develop¬ 
ment are the spirals whose successive links involve movement in the opposite 
direction. The most common type of crystallized melodic forms usually corres¬ 
ponds to the following formula: 

S'"* = ti + ta — ti. 

Assuming the ascending steps as the positive and the descending as the 
negative, we can transcribe the above formula as follows: the spiral sequence 
consists of the following terms of a summation series: the first term (ti), followed 

by the second term (t*), die omission of the third term and the appearance of 
the following term (t4) with the opposite sign. The following organic forms of 

figure 119. Spiral sequence of first summation series. 
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figure 121. Spiral sequence of first summation series. 
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& 14 37 9 14 37 

All the above forms contain four pitch units and three intervals. More 
eveloped forms of organic motifs can be obtained through the addition of three 

successive terms, the amission of one term, and the addition of the next term 
with the opposite sign: 

Figure iZO, Spiral sequence of third summation series. S = ti —f— ta ts — tB. 
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128. Spiral sequence qf five pitch units in first summation series. 

figure 129. Spiral sequence of five pitch units in first summation series. 
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figure 130, Spiral sequence of five pitch units in second summation series. 

HHlIllPilliinNlnHlSBinillnmilimiilmljllllllj 
[■5£ssggSSggg"g***ggB*B***************wwwM5»iiiii5igi ■nan 
nd 

■mu—Hi !■■■■■■■■■■■■ 

1 4 6 14 1 4 5 14 4 5 9 S3 4 5 9 S3 

figure 131. Spiral sequence of five pitch units in second summation series. 
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Anothex form of melodic spiral without the change of the original direction 
can be obtained through the omission of two terms after the summation of three 
terms and the appearance of the last term with the opposite sign: ti -f 
+ t* + tj —1«* 

Figure £$2. Another type of spiral sequence in first summation series. 
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Figure 184, Another type of spiral sequence in second summation series. 

Fzpurfi J7r-T*4/* 1 1 1 '« I M * I i 1.1 U.T, I ) 1 M 1 I Ml 1 1 l j |. 

s c Another type of spiral sequence in second summation series (continued) 
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Figure iSS. Another type qf spiral sequence in second summation series. 

Many other forms of the harmonic arrangement of numbers produce an 

organic effect upon the listener when such harmonic relations underlie the structure 
of melodic intervals. 

Among such harmonic relations I will mention only the most fundamental 
ones: 

1. Natural harmonic series. 
2. Arithmetical progressions. 

3. Geometrical progressions. 

4. Involution series. 
5. Various logarithmic series. 

6. Progressive additive series. 
7. Prime number series. 
8. Arithmetical mean. 
9. Geometrical mean. 

These series of constant or variable ratios with harmonic arrangement of 
number values, when translated into an art medium, produce organic or nearly 
organic effects. Spiral formation as revealed through Summation Series affects 

us as being organic because there is an intuitive interdependence of man and 

surrounding nature. The patterns of groyth stimulate in human beings a definite 

response which is more powerful than many other similar but casual formations. 
Thus we see that the forms of organic growth associated with life, well-being, 

self-preservation and evolution appeal to us as a form of beauty when expressed 
through an art medium. Intuitive artists of great merit are usually endowed with 

great sensitiveness and intuitive knowledge of the underlying scheme of things. 
This is why a -composer like Wagner is capable of projecting spiral formations 

through the medium of musical intonations without any analytical knowledge 
of the process involved. On the other hand, scientific analysis shows that the 

efforts of greatly endowed and creative persons could have been accomplished 

without any waste of time, introspection, or over-sensitiveness. Once the laws 
underlying certain structures have been disclosed, anyone can develop any 
number of structures in a class through the use of a formula. This does not 
prevent an artist, who makes an individual selection (whatever the value of such 

selection nmy be), from operating under the illusion of as great a freedom as 
that he imagines he possesses when he creates through the channels of vague 
intuition and nebulous notions. 
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CHAPTER 1 

INTRODUCTION 

WT SPECIAL theory of harmony is confined to Et of the first group of scales, 
which contains all musical names (c, d, e, f, g, a, b) and without repetition. 

There are 36 such scales in all. The total number of seven-unit scales eauals 
462.* H 

The uses of El refer both to structures and progressions in the diatonic 
system of harmony. The latter can be defined as a system which borrows all its 
pitch units for both structures and progressions from any one of the 36 scales. 

When the structures are limited to the above scales but the progressions develop 

through all the semitonal relations of equal temperament, the latter .comprises 
all the symmetric systems of pitch, i.e.} the third and the fourth group’. ‘ 

C hord-structures, contrary to common notion, do not derive from harmonics. 

U the. evolution of chord-structures in musical harmony had paralleled the 
evolution of harmonics, we would never have acquired the developed forms of 
harmony we now' possess. 

To begin with, a group of harmonics when simultaneously produced at 
equal amplitudes, sounds like a saturated unison, not like a chord. In other 
words, a perfect harmony of frequencies and intensities does not result in musical 

armony but rather in a unison. This means that through the use of harmonics, 

. would never have arrived at musical harmony. But actually, we do get 
narmony and for exactly the opposite reason. The relations of the sounds we 

in equal temperament are not simple ratios (harmonic ratios). 

When acousticians and music theorists advocate “just intonation”, that is 

On rt0,!f,0u ofJhairmonic ratios- they are not aware of the actual situation.’ 
triJrhf hand’the ratios th°y &ivc for certain familiar chords, like the major 

(4^5^-*l7\ 6i’ the minor triad (5^6-H.S), the dominant seventh-chord 

menr s' , ? n0t corresP°nd t0 the actual intonations of equal tempera¬ 

like th* me °f tHeSe ratlOS> hke deviate 50 much from the nearest intonation, 

to us out of°tuneVenth WhIdl W® ^ ad°Pted thr°Ugh habit’ that lt sounds 

than^aturai" T*' “ “ in a" ™anifestatio"s of life, are more important 
confined to If the Problem of chord-structures in harmony were 

16^-10^f Vatl(!S nearest t0 ec*ual temperament, we could have offered 

tempered m nl .e nLm0r ^ f°r exam**e- as 11131 rat‘o m fact approaches the 

would dtcTediTT mUChum°re d0Se,y than 5^6-15- But, if accepted, this 
scredit the approach commonly used in all textbooks on harmony, for 

;>nct5n?d general theo^’^LnnnT6-’ in d-Si is /,or.th at a later point in the work—the 
theory confines itself tl' ~ci1,i]in?er s special possibilities of harmonies which construct 

(Ed.f in fourths’fifthS' **- “ -r-S 
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the following reason: if such high harmonics as the 10th ar» r , 

Plays b as a leading tone to c and JsTSeoZ nf h^ ^ V1°hmst 

mss m sr—zz'xzzxi 

a greater prestige. Though the original reasoning in this field resuhed from rhl 

investigation of Jean Philippe pleau (G^rtZ fJZil 

Tw \, T" °VerlMked ** development of acousti^ s^Te 
The, laapuaUon was Rameau-plus their own mental 

■two ^n^0lmi8UnderBtanding in ^ feld °f —^ ^rmony is due to 

(1) underrating habit; ' 

(2) confusion of the term “hannonic” in its mathematical connotation-i e 

pertainmg to simple ratios with “harmony" in its musical connotation- 
1 a,ma|taneous pitch-assemblages varied in time sequence 

w . H».y «- 

y Btmg trends xn our music and musical education. 

CHAPTER 2 

THE DIATONIC SYSTEM OF HARMONY 

CHORD structures and chord progressions in the diatonic system of harmony 
have a definite interdependence: chord-structures develop in a direction op¬ 

posite to their progressions. 

This statement brings about the practical classification of the diatonic 

system into two forms: the positive and the negative. 

As the term diatonic implies, all pitchrunits of a given scale constitute both 

structures and progressions, without the use of any other pitch-units (those 

not existing in a given scale) whatsoever. 

In the form which we shall call positive, all chord structures (S) are the 

component parts of the entire structure (2) emphasizing all pitch-units of a 

given scale in their first tonal expansion (Ex) and in position ®- In the same 
form, chord progressions derive from the same tonal expansion but in position (£). 

In the negative form of the diatonic system, it works in the opposite manner. 
Chord-structures derive from the scale in Ei and in position (£), while the pro¬ 

gressions develop from Ei®. 

By reason of the personal qualities we have inherited and developed, the 

positive form produces an effect of greater tonal stability upon us. It is chrono¬ 
logically true that the negative form is an earlier one. It predominates in the 

works where the effect of tonality, as we know and feel it today, is rather vague. 

Such is 14th and 15th century ecclesiastic music, developed on contrapuntal, 

not harmonic, foundations. 

Many theorists confuse the negative form of the diatonic system with 
“modal” harmony. Since to them diatonic tonality generally means natural 

major or harmonic minor scales moving in the positive form, they notice the 
lade of tonal stability when harmony moves backwards. Losing tonal orienta¬ 
tion, they mistake such progressions for modes—and modes are merely derivative 
scales, and may also have the positive, as well as the negative, form. But—as 

we have seen in the Theory of Pitch Scales1-modes can be acquired from any 
original scale through the introduction of accidentals (sharps and flats). 

In the following table, MS represents “melody scale” (pitch-scale), and HS 

represents “harmony scale” (i.e., the fundamental sequence of chord progressions). 

Diatonic System 

Positive Form Negative Form 
2 = MSm 2 - MSKl® 

HS = MSe,® HS = MSEl® 

^See Book II, Chapter 3. 

13611 
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Example (Natural Major) 
1 *>rm ; Segativsform 

figure t. IHatonie tyvtm, negative and positive forms. 

In the positive forai, chords are constructed upward; in the negative, on 
the contrary, downward. The matter is greatly simplified by the fact that anv 

• wXZ'fTitiLrr “ «""“*■ ‘—^negative when rUd back¬ 
wards. All the principles of structures and motion involved are therefore reversible 
No properly constructed harmonic continuity can be wrong in backward motion. 

snr«wTl^0mPirrB^-h0Ut iraining in harmony (for example, Modest Mous- 
7” “ beg,™ers of inadequate study-^onfuse the positive 

effected ,their harmonic P™grassions. The resulting 
effect of such musics a vague tonality. The admirers of Moussorgsky consider 

such sty e a virtue (in Moussoigsky’s case it is about half-and-half poAive and 
negative) and do not realize that all the incompetent students ofVharmony 
course incompetently taught possess full command over such a style. 

A. Diatonic Progressions (Positive Form) 

scalef'Thetrilnil'H^8!^. scale Produce the derivative harmony 
StonMi rvrZ Tn, “pana0ns form the dkrioni cycles. Diatonic 
(or tonal) cycles represent all the fundamental chord progressions 

T ™!re T three T°nal LCyCleS in the Pnsidve form for the seven-unit scales. 

o*lTon£'Z7c > ■' ™rre9P°ndS HS^ *<= second cycle, 
°LCyT*!htfifth (C‘>' co™P°n^ to HSEl; the third cycle, or the cycle of the 

*• 

oertininvdrti°r'Lt0 ‘>0th *"'7 Pr0gressions' there ™y k changes in a chord 
- r°°! (a”s)- Connections of an S with its modified S of 

the same root will be considered a zero cycle (C0). 

the f°"rng tabue-^ are US6d mere'y for convenience; they indicate 
1 n J e‘r 7* P°^ti0n 18 dictated by purely melodic con¬ 

siderations and by the necessity of moderating the range. 

for . int£rvak representing cycles must be constructed downward 
for the positive form regardless of their actual position on the musical staff. 
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Diatonic Cycles (Positive Form) 

H8*, Cycle of the Third (C„> starting Ending0*3' Combined 

Cycle of the Fifth (C®) Starting Ending Combined 

Cycle of the Seventh (C») Starting Ending Combined 

In the above table, arrows indicate cadences of the respective cycles. Cad¬ 
ences consist of the axis-chord moving into its adjacent chord and back. It is 

interesting to note that what are usually known as plagal cadences are the starting 
cadences of the cycle, and that cadences known as authentic arc the entling cadences. 
The immediate sequence of Starting and endings cadences produces combined 
cadences (the axis-chord is omitted in the middle). 

Progressions of constant tonal cycles (Ca, or Ca, or C7 const.) produce a 
sequence of seven chords each appearing once and none repeating itself. The 

repetition of the axis-chord either completes the cycle or starts a new one. The 
addition of cadences to the cycles is optional as cycles are self-sufficient. 

Considering constant cycles as a form of monomial progression, we can 
devise binomial and trinomial progressions by assigning a sequence of two or 
three cycles at a time. 

In binomial progressions each chord appears twice and in a different com¬ 
bination with the preceding ami the following chord. Thus, a complete binomial 
cycle in a seven-unit scale consists of (2 X 7 = ) 14 chords. 

Binomial Cycles 

Ca + C# C* + C, C7 + C, 
Ca + C? Ca -f- C7 C7 •+• Ca 

C«+ C# 

Ca+C, 

Figure 3. Binomial cycles (continued). 
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Both binomial and trinomial cycles produce marked variety combined with 
absolute consistency of character (style) of harmonic progression. Being perfect 
in this respect they are of little use when a personal selection of character becomes 
a paramount factor. 

In order to produce an individual style of harmonic progression, it is neces¬ 
sary to use a selective continuity of cycles. This can be accomplished by means 
of the coefficients of recurrence applied to a selected combination of cycles. A 
combination of cycles can be either binomial or a trinomial. Groups producing 
coefficients of recurrence can be binomial, trinomial or polynomial. The materials 
for these are presented in the Theory of Rhythm* Rhythmic resultants of different 
types and their variations provide various groups which can be used as coefficients 

of recurrence. Distributive power-groups, as well as the different series of growth 
and acceleration,** can be used for the same purpose. 

Binomial Cycles, Binomial Coefficients 

Cycles: C8 + Cr, Coefficients: 2+1 = 3tj Synchronized Cycles: 2Cs+Cb: 
3x7= 21 chords 

Cycles: Cb+C?j Coefficients: 3+2 = 5tj Synchronized Cycles: 3C5+2C7: 
5x 7 = 35 chords 

figure 6. Binomial cycles, binomial coefficients. 

of ,are presented in Chat 
of aJLfanM: book. Among the useful 
aa*™*" for musical purposes a 

7 V rjstural harmonic series: 1, 2, 3, l. 

"'.etc.; 
etc.- anthraet,cal progressions: I, 3, 5 

3) geometrical progression: 1, 2, 4, 8, 16, 
etc.; 

4) power series: 2, 4, 8, 16, 32, etc.; 
5) summation series: 1, 2, 3, 5, 8, 13, 21, 

etc.; 

6) arithmetical progressions with variable 
differences: l+i, 2+2, ..4+3, 7+4. 11+5. i6+«, 
22+7, etc. 

7) prime number series: 1, 2, 3, 5, 7, 11, 
13, 17, 19, 23, 29, etc. (Ed.) 
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Figure 6. Binomial cycles, coefficient-groi&s with number of terms divisible by 2. 

Binomial Cycles, Coefficient-Groups producing interference with the cycles 
(not divisible by 2) 

Cycles: CB + C3 Coefficients: 3+1+2 = 6t 

Synchronized Cycles: 3C6+Ca+2C6+3C3 + C5 + 2C3 
I-1--I 

Synchronized coefficients: 6i x 2 =12t; 12 x 7= 84 chords 

Figure 7 Binomial cycles, coefficient-groups producing interference with the cycles. 

* 
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Trinomial Cycles, Trinomial Coefficients 

Cycles: Cg + CB + C? Coefficients: 4 +1 + 3 = 8t 

Synchronized Cycles: 4Cg+Cs+3C7j 8x7 = 56 chords 

Figure 8. Trinomial cycles, trinomial coefficients. 

Trinomial Cycles, Coefficient-Groups with the number of terms divisible by 3 

Cycles: Cy + Cg+Cg; Coefficients: r = 2+2+1+1+2+2= lOt 

Synchronized Cycles: 2Cy + 2Cg+C6 + C7+2C3+2C5j 10x7= 70 chords 

Figure 9, Trinomial cycles, coefficient-groups with number of terms divisible by 3. 

Trinomial Cycles, Coefficient-Groups producing interference with the cycles 

(not divisible by 3) 

Cycles: C7 + C5 + C3; Coefficients: 3+1 = 4t 

Synchronized Cycles: 3C7 + C5 + 3cT+ C7 + 3C5 + Cg 

Synchronized Coefficients: 4t x 3= 12tj 12 x 7 = 84 chords 

Figure iO. Trinomial cycles, coefficient-groups not divisible by 3. 
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Th* style of harmonic progressions depends entirely on the form of i 
employed. No composer confines himselfT one definite c^ e v™ 
predominance of a certain cycle over others that u- • ■ * the 
recognizable to the listener. In onl^eitw ^ 

gression is expressed through the cXlTa^^c^lnother T' 

different froroTer"^!*'16"' gr°UP ** ^ ^ ^ S°Und distinc^ 

selJ^cyT. MeZb^TcyZ £e“ n^eja'd tht' T 1 

B. Development of Cycle Styles 

for there are already some wro^^^^WWryi^ISS ^ ** 

^ historical evidence, as well as mathematical analysis, prove the contrary. 

aSar-sfflS 

forms W aPPeaf m both P08^ (C.) and negative (C-,) 

16thTcenturie3Win£ “* * iUustrations f™m the music of the 15th and 

Opening of “Ave Regina Coelorum”- Leonel Power, c. 1460 

Figure 11. Cycle of the third {continued). 
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Giulio Caccini (1660-1618) 

Figure 11. Cycle of the third {concluded). 

The cycle of the seventh (C7), on the other hand, has a purely contrapuntal 
erivation. When the two leading tones (the upper and the lower) move in a 

ence into their respective tonics (like b-* and d->c) by means of contrary 

f°,°n *? *wo voioes» we obtain the ending cadence of C7. Further development 
e third part was undoubtedly necessitated by the desire for fuller sonorities, 

form lcJ<?d^Ced an e*tra .tone ^in a chord of b) which the remaining tones 
rru~.fr l j 1 e,t a third-sixth-chord or a sixth-chord, the first inversion of the 
root-chord: S(5). 

Figure 12. Cycle of seventh (Cj). 



370 
SPECIAL THEORY OF HARMONY 

~£ -re rr,in:s is 5 s ?»« 
VT Guillaume de Machlla1^ (“30M37O Mat 

ofC C’“c C^T afreadyUSe' 1°**^eTlowfnghySherisof’the Sn 

Figure 13. Cycle of the fifth (U5). 

j„;rTl* °rlgin °f the rle?ative fonn of the cycle of the fifth (C.t) is due to the 

the ide ofqc,reThe°Zt SUPP0^ng a Ieadin« tone- Let b be a leading tone in 
i e in the mean to t ™““>rdant combination of tones in pre-Bach times, 

waithetwf^rTt T 5y8tem,M Which harmoni2“> «be tone b 
fZ, Of tkT 1 ■ ’■)- But’,n the movement from G-chord to C-chord the 
are the w ^ *18 P?‘PVe' In reaIity both forms, the positive and the negative 
are the begmmng and the ending cadences. Compare Figure 14 with 

Figwe 14. Cycle of the fifth (C,). (See pp. 363 and 386). 

1. Richard - Wagner 

last threed«rturirseran°Lhe^lyntoc^St0to 'ts 4,16 " music of the 
composer is hybrid v#»t #-k® • • to lts sources. The style of every 

(like the cycled appearing withX predo™.nance of certam ingredients 
individual characteristics coefficients of recurrence) produces 

progr^^ons^n^die^iiate^c^system*^ ‘ 

versal Cue of .u . , COntemporanes and predecessors. C.was the uni¬ 
versal vogue of the whole century preceding Wagner. In fact, it is not even 

New '^k‘n^Ued by Gra™phon' Sh°P of "Officially recognized in Europe before the 
advent of equal temperament tuning. (Ed.) 
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necessary to analyze all the works of Wagner; the most characteristic pro¬ 
gressions may be found at the beginning of his preludes to music-dramas and also 
in the various cadences. 

The beginnings of the major works of any composer are important for the 
reason that they cannot be casual: the beginning is the “calling card” of a com¬ 

poser. The importance of cadences as determinants of harmonic styles was 
stressed by our contemporary Alfredo Casella in a paper Evolution of Harmony 
from the Authentic Cadence. 

Wagner, being German and being an intentionally Germanic composer, un¬ 
doubtedly had done some research into earlier German music, for he intended to 
deal with the subjects of German mythology in which he was well versed. Fif¬ 
teenth century German music discloses such an abundance of C* that it is only 
natural to expect there would be strong influence by such an authentic source of 
Germanic music on Wagner's creations. In his time, Wagner’s harmonic pro¬ 
gressions sounded revolutionary because many things had been forgotten in 
four hundred years, and the archaic acquired a flavor of the modernistic. So 

ar as the development of diatonic progressions in Wagner’s music is concerned, it 
.appears to the unbiased analyst that the whole mission of Wagner’s life was 
to develop a consistent combined cadence in Cj. 

Starting with an early work like Tannhauser, we find that the very beginning 
ol the overture is typical in this respect. 

Figure IS. Opening cf Tannhauser. 

Lflver on, we find more extended progressions of Ca, as in the 

m VOn tt,Schenbach (the scene of the Minnesingers’ contest): 
aria of Wolf- 
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Lohengrin abounds even more in C, than Tannhauser. In the “Farewell to 
the Swan", as in many other passages in the same opera, we find the characteristic 
back-and-forth fluctuation: Ca + C-a. 

Figure 17. aFarewell to the Stcann. 

In forming his cadences, Wagner sometimes paid tribute to the dominating 
“dominant” of Beethoven (C*). This produced combined hybrid cadences, which 
are characteristic of Lohengrtn. The first part of such a cadence is the beginning 

cadence in C, while the second part is the ending cadence in C*: I - IV - V - I. 

Figure 18. Lohengrin. 

Though he dealt with types of progression other than diatonic in the course 
of his career, Wagner came back to diatonic purity in its most complete and con¬ 
sistent form in his last work, Parsifal. The beginning of the prelude to Act I 

reveals that the composer came to a realization of the combined cadence of Ca: 

Figure 19. Beginning of Parsifal. 
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The more extensive sequences of C« are: I — VI — IV — II; 

The complete combined cadence appears in the “Procession of the Knights 

of the Grail”: I — VI — III — I. 

I VI IH I 

Figure 21. Procession qf The Knights of The Grail. 

2. Hegemony of Cs, 1750-1850 

The second half of the 18th century and the first half of the 19th century 
are the period of the hegemony of the dominant and C§ in all its aspects in general. 

The latter are: continuous progressions of C«; starting, ending and combined 
cadences (I —IV —I; I — V—I; I—IV —V —I). The main bodies of 

rouse possessing these characteristics are the Italian opera and the Viennese 
School. 

To the first belong Monteverdi, Scarlatti, Pergolesi, Rossini, and Verdi. 
The second is represented by Dittersdorf, Haydn, Mozart, Beethoven, and 
Schubert. Today this style has disintegrated into the least imaginative creations 
in the field of popular music. Nevertheless, ^ is the stronghold of harmony in 

educational music institutions. 
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Here are a few illustrations of C8 style in the early sonatas for piano by 

Ludwig van Beethoven: Sonata Op. 7, Largo; Sonata Op. 13, Adagio Cantabile. 

Any number of illustrations can be found in Mozart’s and Beethoven’s 
symphonies, particularly in the conclusive parts of the last movements. 

3. C7 in Bach 

Assuming that the historical origin of the cycle of the seventh can be traced 
bach to contrapuntal cadences, it would be only logical to expect to find evidence 

C, m the works of the great contrapuntalists. 1 choose for the illustration 
ot U as cnaractenstic starting progressions, some of the well-known Preludes 

to hugues taken from the First Volume of the Well-Tempered Clavichord by 
Johann Sebastian Bach: Prelude 1; Prelude Ill; Prelude V 5 

i-fc- * f 
T>- 

i 

^» 1 f B 1—4—« 

•j p-j 

ibbi y: it MS&»£ 

Figure 28. Gi in Bach 

{concluded). 

Bach’s famous Chaconne in D-minor for violin discloses the same character¬ 

istics: the first chord is d, and the second chord is e—which m a ices C*. 
A consistent and ripe style of diatonic progression corresponds to a consistent 

use of one form, either positive or negative, and not to an indiscriminate mixture 
of both. Many theorists confuse the hybrid of positive and negative forms with 
modal progressions, which these theorists have never defined clearly. In reality, 

modal progressions are in no respect different from tonal progressions except for 

scale structure. Both types (tonal and modal) can be either positive, or negative, 
or hybrid. Modes can be obtained by the direct change of key signatures, as set 

forth in my theory of pitch-scales (transposition to one axis).* 
Here is an example, which is typical of Moussorgsky from the opera Boris 

Godounov. 

figure 24. Sybrid of positive and negative forms 

In the above example, the mode (scale) is Cd$, the fifth derivative scale of 
the natural major in the key of C, known as the Aeolian mode; the progression 
of tonal cycles is a hybrid of positive and negative forms. 

Figure 23. C7 in Bach {continued). 
•See Book II. 
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C. Transformations of S(5). 

In traditional courses in harmony the problems of progressions and voice- 
leading are treated as inseparable. Each pair of chords is described as a sequence 

and as a form of voice-leading. Thus each case becomes an individual case 
where the movement of voices is described in terms of melodic intervals—like: 
"a fifth down”, “a second up”, “a leap in soprano", "a sustained tone in alto”, 
etc. No person of normal mentality can ever memorize all the rules and exceptions 
offered in such courses. In addition to this unsatisfactory form of presentation 
of the subject of harmony, one finds out very soon that the abundance of rules 
covers very limited material, mostly the harmony of the second-rate 18th century 
European composers. 

The main defect of existing theories of harmony is in the use of the descriptive 
method. Each case is analyzed apart from all other cases and without yielding 

. any general underlying principles. But the mathematical treatment of this 
subject discloses the general properties of the positions and movements of the 
voices in terms of transformations of the chordal functions. 

Any chord, no matter of what structure, is from a mathematical standpoint 
an assemblage of pitch units, or a group of conjugated functions (elements). These 
functions are the different pitch-units distributed in each group, assemblage, 
or chord, according to the different number of voices (parts) and the intervals 
between the latter. 

In groups with three functions, known as three-part structures (S = 3p), 
the functions are a, b and c. These functions behave through general forms of 
transformation and not through any musical specifications. 

As in this branch we are dealing with so-called four-part harmony, we have 
to define the meaning of this expression more precisely. 

When an S(5) constitutes a chord-structure, the functions of the chord are: 
the root, the third and the fifth or 1, 3 and 5. In their general form they correspond 
to a, b and c, i.e., a = l,b *= 3, and c = 5. The bass of such harmony is a con¬ 
stant root-tone, i.e., const. 1 or const, a. 

Thus the transformation of functions affects all parts except the bass. Here, 
therefore, we are dealing with groups consisting of three functions. 

Such groups have two fundamental transformations: (1) clockwise (O 
and (2) counterclockwise (G) 

The clockwise transformation is: a 

( ) 
c^b 

The counterclockwise transformation is: a 

C 5 
Cub 
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Each of these transformations has two meanings: the first meaning is to 

be read— 
a is followed by b 
b “ “ “ c 

c “ “ “ a, 
for the C; and 

a is followed by c 
c “ “ " b 
b “ “ " a 

for the G 

discloses the mechanism of the position of a chord. 

The second meaning is to be read— 

a transforms into b 

b 14 c 
c “ 44 a, 

for the C; and 

a transforms into c 

c 44 b 
b 44 44 a, 

for the G. 

These constitute the forms of voice-leading. 

1. Positions 

The .different positions of S(5) = 1, 3, 5 can be obtained by constructing 
the chordal functions downward from each phase of the transformations. 

a b c 
b c a 

cab 

a c B 
c b a 

b a c 

Substituting 1, 3, 5 for a, b, c, we obtain 

13 5 15 3 
3 5 1 and 5 3 1 

5 13 3 15 

The clockwise positions are commonly known as "open”, and the counter¬ 
clockwise as "closed.” 
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Here are the positions for S(5) - 4 + 3 = c - e - g. The bass is added 
to double the root. 

Positions 

Figure 25. Open and close positions of S5. 

D. Voice-Leading 

The movement of the individual voices follows the groups of transformation 
in this form: a of the first chord transforms into b of the following chord; b of 

the first chord transforms into c of the following chord; c of the first chord trans¬ 
forms into a of the following chord. The above three forms constitute clockwise 
voice-leading. 

For counterclockwise voice-leading, the reading must follow this order: a 
of the first chord transforms into c of the following chord; c of the first chord 
transforms into b of the following chord; b of the first chord transforms into a 
of the following chord. 

*r-N 

a —► b a — c 

b —► c and c —* b 
c —► a b — a 

Applying the above transformations to 1, 3, 5 of the S(5), we obtain: 

1-3 1-5 

3 — 5 and 5 — 3 
5—1 3—1 

Clockwise form: the root of the first chord becomes the third of the next 
chord; the third of the first chord becomes the fifth of the next chord; the fifth 
of the first chord becomes the root of the next chord. 

Counterclockwise form: the root of the first chord becomes the fifth of the 
next chord; the fifth of the first chord becomes the third of the next chord; the 
third of the first chord becomes the root of the next chord. 

Both forms apply to all tonal cycles. Let us take Cj in the natural major, 
for example. The first chord isC = c — e — g and the next chord is A = a — 
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Each tonal cycle permits a continuous progression through one form of 
transformation. In the following table const. 1 in the bass is added. The commas 
indicate an octave variation introduced when the extension of range becomes 
impractical. 

In Ci both directions are combined, offering the most practical form for 
the range. 

Figure 83. Clockwise and counterclockwise transformations qf <7a, <76| C7 

r. 
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Both clockwise and counterclockwise transformations are applicable to all 

positions for the starting chord. When the first chord is in the C (open) position, 
the entire progression remains automatically in such a position, When the first 
chord is in C (close) position, the entire progression remains in that position. 
This constancy of position (open or close) is not affected either by the constancy 

of the tonal cycles or by the lack of such constancy. 
The transition from close to open position and vice-versa can be accom¬ 

plished through the use of the following formula: 

Constant b transformation 
Const. 3 

b —> b 3 —► 3 

c —* a 5 —* 1 

It is best to have 3 in the upper voice for such purposes, as in some 

positions voices will otherwise cross. Function 3 from close to open position 
moves upward to function 3 of the following chord. Reverse the procedure from 

open to close. 

Ca Cb C7 

Figure 33. Transitions from open to close positions and vice-versa. 

Continuous application of const. 3 transformation produces a consistent 

variation of the C and the C positions, regardless of the sequence of tonal cycles. 

The following table offers continuous progressions through const, cycles 
and const. 3 transformation. 

Constant 3 Transformations 

Figure 34. Continuous progressions through constant cycles and 

constant 3 transformations {continued). 
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Cfi Const. 3 

C7 Const. 3 

-—-^A . 

w 

—n 0—«—2— 
*■'. 

a 0 

.."O— 

0»-«- 

5 * S w u 
O 

Figure 34. Continuous progressions through constant cycles and 

constant 3 transformations (concluded). 

E. How Cycles and Transformations are Related 

There are four forms of relationship between cycles and transformations 
with regard to the variability of both: 

(1) const.-cycle, const.-transformation; 
(2) const.-cycle, variable transformation; 
(3) variable cycle, const.-transformation; 
(4) variable cycle, variable transformation. 

The forms of transformation produce their own periodic groups which may 
be superimposed on the groups of cycles. 

Monomial forms of transformations (const, transformations): 
(1) C, (2) C, (3) const. 3. 

Binomial forms of transformations: 

(1) C + G, (2) G + C 

Here const. 3 is excluded because of the crossing of inner voices. 

When coefficients of recurrence are applied to the forms of transformations, 
selective transformation-groups are produced. 

For example: 2C+C;3 

+3C+2G+2C+3G 
4C+2G + 2C+G. 

C + 2C;2C+G + C + 2G;4 

+ 0 + 4 0; 0 + 20 + 30+5 
+ C + 
+ 8 0; 

Although the groups of tonal cycles, as well as the forms of transformations, 
may be chosen freely with the writing of each subsequent chord, nevertheless 
rhythmic planning of both cycles and transformations guarantees a greater 
regularity and, therefore, greater unity of style. 

Here are examples of variable transformations applied to constant tonal 

cycles. 

C8 const. 2 0+Q+0+20; ^3 added for the ending 

II
 

m
m

 

1
 

— 

HI 
I 

wmm. % 1 

C7 const. 4 «3 + 2 + 2 *3 + 

pm ... 0 , ♦ — - 0. —0... 
XT 

XX... 0 —e— H 
•e- 

—R— 

C5 const. 3 + *3 + 2 ^3 

Figure 35. Variable transformations qf constant tonal cycles. 

Examples of variable transformations applied to variable tonal cycles. 

Figure 36. Variable transformations of variable tonal cycles {continued). 
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2C7+C8+3C5; 40+20+ 20+0 

' -/ ■ 

tion 0f their properties of ^istribu 
ficatio™ y and convert,blllty. are subject to the following modi 

(1) Placement of the voice representing constant function, and originally 

appearing the bass m any other voice, i.e., tenor, alto or soprai 
There are four forms of such distribution: 

s s s s 

a a A a 

i T t t 
B b b b 

Capital letters represent the voice functioning as const. 1. 

Original 

(2) General redistribution (vertical permutations) of all voices according 

to the 24 variations of 4 elements. 

B 

Figure 88. General redistribution of all voices, 

(3) Geometrical inversions: (a), (g), (e) and 0 for any or all forms of dis¬ 

tribution of the four voices. 

Original (d) 
(3) 

(4) Modal variation by means of modal transposition, i.e., direct change 

of key signature, without relocating the notes on the staff. 

Original + <bl>+ f#) = G mel. minor: d8 
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E. The Negative Form 

As previously indicated, the negative form of harmony can be obtained by 
direct reading of the positive form in position <£). 

Here, for the sate of clarity, I offer some technical details-which explain 
the theoretical side of the negative form. 

According to the definition given of the harmony scale in the negative form, 
we obtain the latter by means of further expansions of HS. In the positive form 
we use: HS* (= Ct), HSE| (= C6) and HS* (= C7). 

By further expanding HS, we acquire the cycles of the negative'form: 
HS* (= C-7), HS* (= C-8), HS* (= C-,). 

Figure 4t. Cycles of the negative form. 

As in this negative form, the chord-structures are built downward from a 
given pitch unit, such a pitch unit becomes the root-tone of the negative struc¬ 
ture: the negative root ( — 1). All chord-structures of the negative form, accord¬ 
ing to the previous definition, derive from HS©. Thus, in order to construct a 
negative S (5), it is necessary to take the next pitch-unit downward, which be¬ 
comes the negative third ( — 3), and the next unit downward from the latter, 
which becomes the negative fifth ( — 5). 

For example, if we start from c as a -- 1, we obtain a negative S (5) where 
a is — 3 and f is — 5. 

Figure 42. Negative C-major. 
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Here is how a negative CS (5) would appear in its four-part settings. 

*3 (open) ZZ* (close) 
wmm % 

Ml- ' ' 1 ~ I 

1 

:K
 o 
■

 
i

 

M 
MB % 

HR 
mam. % 

1 
'HB — R§ M 

Figure 43. Four-part setting of negative GS(5). 

Under such conditions, if the chord is constructed downward, the reversal 
of C and C reading takes place. 

Transformations as applied to voice-leading possess the same reversibility: 
if everything is read downward, the C and the O transformations correspond 
to the positive form, while in the upward reading the C becomes the O, and 
vice-versa. 

Let us connect two chords in the negative cycle of the third: CS (5) 4- C3 4- 
4- ES (5). 

CS (5) = -1, -3, -5 = c - a - f. 
ES(5) = -1, —3, —5 — e — c — a. 

It is easy to see that in the upward reading, chord C corresponds to F 

w i e chord E corresponds to A. Transposing this upward reading to C, we find 
t at this progression is C —► E. This proves the reversibility of tonal cycles 

an the correctness of reading the positive form of progressions in position (R) 
when the negative form is desired. 

The mixture of positive and negative forms in continuity does not change 
e situation, but merely reverses the characteristics of voice-leading with regard 

°rvT>S*^Ve an<^ ne8ative forms. For example, Cs in O in the positive system 
produces two sustained common tones. In order to obtain an analogous pattern 

o voice-leading in C —8| it is necessary to reverse the transformation, i.e., to use 
the ^ form in this case. 

Positions of chords, as they were expressed through transformation, remain 
identical in the negative form, providing that they are constructed upward. 
In such a case, the addition of a const. 1 in the bass must be. strictly speaking, 
transferred to the soprano. 



CHAPTER 3 

THE SYMMETRIC SYSTEM OF HARMONY 

jQ I ATONIC harmony can be best defined as a system in which chord-structures 
as well as chord-progressions derive from a given scale. The structural con¬ 

stitution of pitch assemblages, known as chords, as well as the actual intonation 
of the sequences of root-tones, known as tonal cycles, are entirely conditioned 

y he structural constitution of the scale, which is the source of intonation 

Symmetric harmony is a system of pre-selected chord-structures and pre-selected 
chord progressions, one independent of the other. In the symmetric system of 
harmony, scale is the result; scale is the consequence of chords in motion. The 

selection of intonation for structures is independent of the selection of intonation 
tor the progressions. 

A. Structures of S(5) 

•11 thl8,part of.™y treatment of harmony only such three-part structures 
willbe used as satisfy our definition of the special theory of harmony. The 
ingredients of chord-structures here are limited to 3 and 4 semitones. Under 
such limitations only four forms of S(5) are possible. It should be remembered, 
however, that the number of all possible three-part structures amounts to 55, 
which is the general number of three-unit scales from one axis. 

Table of S(5) 

Si(5) =4 + 3, known as a major triad; 
S*(5) =3 4-4, known as a minor triad; 

S»(5) =4 4-4, known as an augmented triad; 
S4(5) =3+3, known as a diminished triad. 

Si<5> Sa<5> S8(B) S4(5> 

Figure 45. Table qf 8(5) structures, 

J:ra3!?UChu^ s(5) Wil! h*5 ** onIy structure treated at present, we shall 
simpuly the above expressions to the following form: 

Si; Sj; Sj; S*. 

Regardless of what the chord-progression may be, the structural constitution 
ot chords appearing m such a progression may be either constant or variable. 

??,8 , t StTUC^res ^ con.«dered as monomial progressions of structures, 
w ile the variable structures will be considered as binomial, trinomial and poly¬ 
nomial structural groups. 

1 
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1. Monomial Forms of S(5) 

Si + . . . . 
St 4- . . • . 
Si 4- - • • • 
S4 + • • . • 
Total: 4 forms 

2. Binomial forms of S(5) 

Si 4* Sj Si 4- Si S, 4- S* 
Si 4- Sa Sj 4* S4 
Si 4* S4 

- 6 combinations, 2 permutations each. 
Total: 12 forms 

3. Trinomial forms of S(5) 

Sx + Si + S* S* 4- Si 4- Si S» 4- Sj 4- S4 
Si 4- Si 4- Si Si 4- Si 4- S4 
Si 4- Si 4- S4 

Si + Si 4- Si Si 4- Sj 4- Sa Sj 4“ S4 4- S4 
Si 4- Sa 4- S, Si 4- S4 + S4 
Si 4* S4 4" S4 

12 combinations, 3 permutations each. 

Total: 36 forms 

Si 4- Si + Sj Si + Sj + S4 
Si 4- St 4- S4 
Si + Sj 4- Si 

4 combinations, 6 permutations each. 
Total: 24 forms. 

The total of all trinomials: 36 + 24 = 60. 

4. Quadrinomial forms of S(5) 

Si 4* Si 4- Si 4- Si St 4- Si 4- Si 4- Sj S3 4- Sj 4- Sj 4* Si 
Si 4- Si 4- Si 4- Sj Si 4-Si 4-S, 4-S« 
Si 4- Si 4- Si + S4 

Si 4- Si 4- S2 4- S2 Si + S, 4- S, 4- S* S8 + S4 4~ S4 + S4 
Si 4- Sa 4“ Si 4“ Sj S2 4- Si 4* S4 4* S4 
Si 4- S4 4- S4 4- S4 

12 combinations, 4 permutations each. 
Total: 48 forms. 

Si + s, + s, + s, s, + s2 + s, + s, s, + s, + s, + s. 
Si + S, + S, + S, S, + S2 + s. + s. 
Si+St + S. + S. 

6 combinations, 6 permutations each. 
Total: 36 forms 
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Si 4 Sj + S2 -f S, S2 4 S2 4 S3 4 S4 
Si 4- Si 4- S2 4- S4 

Si 4 Si 4 S3 4 S4 

Si 4 S2 4 S2 4~ Sj S2 4- Ss 4- Sj 4- S4 
Si 4 S2 4 S2 4 S4 
Si 4 S3 4- S3 4 S4 

Si 4" Si -{- S3 4* S3 S2 4 S3 4 S4 4 S4 
Si 4- S2 4- S4 4" S4 
S, 4- S3 4- S4 4- S4 

12 combinations, 12 permutations each. 

Total: 144 forms. 

Si 4- S2 4- S3 4- S4 

1 combination, 24 permutations. 

Total: 24 froms. 

The total of all quadrinomials: 48 4 36 4- 144 4- 24 * 252. 

In addition to all these fundamental forms of the groups of S(5), which 
represent a neutral harmonic continuity of structures, there are groups with co- 

efficiente of recurrence, which represent a selective harmonic continuity of struc¬ 
tures. The latter are subject to individual selection. 

Any rhythmic groups* may be used as coefficients of recurrence. 

Examples 

(1) 2Si 4 S8 

(2) 3S| 4- S2 

(3) 3Si 4- 2S, 4- S2 

(4) 2S2 4 Si 4- S2 4" 2Si 

(5) 2Si 4 Si 4 S3 4 2S4 

(6) 3S, 4 Si 4 2Si 4 2Si 4 S, 4 3S2 

(7) 3Sj 4S,4 2Sa 4 2Si 4 S, 4 3Sa 

(8) 4Sa 4 2S2 4 2Sa 4 S2 

(9) 2Si 4 S2 4 S, 4 Si 4 Si 4 S2 4 2S, 4 2S2 4 Si 4 S2 4 Si 4 S2 4 
4 Si 4 2Si 

(10) 4Si 4 2S2 4 2S4 4 2Si 4 S2 4 S4 4 2Si 4 S2 4 S4 

(11) Si 4 2S2 4 3S4 4 5S, 

(12) Si 4 3Si 4 4S2 4 7S, 

*In this brief sentence, Schillinger reminds 
the reader that all of his basic rhythmic 
procedures, set forth in great detail in the 

earlier section of rhythm, may be applied as a 
means of determining the pattern of coefficients 
of structures. (Ed.) 
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B. Symmetric Progressions. Symmetric Zero Cycle (Co) 

A group of chords with a common root-tone hut with variable positions and 
variable structures produces a symmetric zero cycle (Co). 

Such a group may be an independent form of harmonic continuity as well 
as a portion of other symmetric forms of harmonic continuity. 

Coefficients of recurrence in the groups of structures, when used in a con¬ 
tinuity of Co, acquire the following meaning: a structure with a coefficient greater 
than one changes its positions until the next structure appears. The change of 
structure requires the preservation of the position of the chord. 

This can be expressed as a form of interdependence of structures and their 
positions in the Co: 

S const.--———position var. 
S var. .-position const. 

For instance, in a case of 3Si 4 S* 4 2Sa = Si 4 Si 4 Si 4 Ss 4 S2 4 Si, 
the constant and variable positions appear as follows: 

var. var. const, const, var. 

S, 4Si4Si4S> 4 Si 4 Si 

2St+Sa4S1+2SJ8 4S;} + 2Si+2So + Si 

Figure 46. Harmonic continuity in C0 (continued). 
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3Sg + 2Sa+Si+ 2S8 + Sg+3S|+Sg + 3Sg +2 Si 

S4+3Si+4Sg + 7S3 

CHAPTER 4 

DIATONIC-SYMMETRIC SYSTEM OF HARMONY 

(Type II) 

W“'HE diatonic-symmetric system of harmony must satisfy two require- 

•*“ ments: 
(1) all root-tones of the diatonic-symmetric system must belong to one scale 

of the First Group; 
(2) all chord structures must be pre-selected; they are not affected by the 

intonation of scale formed by the root-tones. 
In this system of harmony, structural groups must be superimposed upon 

the progressions of the root-tones belonging to one scale. This form of harmony 
has advantages over the diatonic system itself, to which I refer as Type I. Like 
the diatonic system, the diatonic-symmetric system produces a united tonality, 
which is due to the structural unity of the scale. Unlike the diatonic system, the 
diatonic-symmetric system is not bound to use the structures which are con¬ 

sidered defective in the equal temperament [like S4(5), for example], as the 
individual structures and the structural groups are a matter of free choice. 

Unlike the diatonic system, the diatonic-symmetric system has a greater 
variety of intonations, as the pre-selected structures unavoidably introduce new 

accidentals (alterations), which implies a modulatory character without destroy¬ 

ing the unity of the tonality. 

Examples of Harmony Type II. 

Pitch-scale: Tonal cycles: 2Cy + C3 *f C5 

Structural group: Si (5) const. 

Figure 47.- Diatonic-symmetric system (continued), 
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Figure 47. Diatonic-symmetric system 
(concluded). 

Pitch-scale: Tonal cycles: 2C$ + C6 

Structural group: Sj + Sg + 2fajj 

Figure 48. Diatonic-symmetric system (continued). 
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Figure 48. Diatonic-symmetric system (concluded). 



CHAPTER 5 

THE SYMMETRIC SYSTEM OF HARMONY 

(Type III) 

'J’HE symmetric system of harmony of the third type must satisfy the follow- 
* ing requirements: 

(1) the root-tonra and^their progressions are the roots of two(i.e., s/i, 

V 2» V2i V2)> that is, the points of symmetry of an octave. 

(2) chord structures are pre-selected. 

n ,A1! “"sequence of motion through symmetric roots, each voice of harmony 
produces one of the pitch-scales of the third group. 

Symmetric C0 represents one tonic; 

Vl represents two tonics; 

\^r2 represents three tonics; 
yfi represents four tonics; 

\^2 represents six tonics; 
Wl represents twelve tonics. 

foiw COrreap0ndences of the tonal cycl« end the symmetric roots are as 

One tonic: C—-— q 

Two tonics: 

Three tonics: C- 

Four tonics: 

Six tonics: 

Cr C7 

-Ab- 

-F#-Ab- 
C7 

—F#-E- 

-Bb-C 

C7 CT 
-D-C 

C-7 C-7 C-z C-r C-7 

Twelve tonics: C-Dl 

C7 
C-R- 

-Dtj-Eb-El? . . . 
Cr C7 C7 
-Bb-A-Ab 

C-7 C-7 C-7 C-7 

I 
(396] 
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Transformations with regard to positions and voice-leading remain the same 
as in the diatonic system. In case of doubt, cancel all the accidentals and test 
the leading of voices that way. 

A. Two Tonics 

Two tonics break an octave into two uniform intervals. The second tonic 
(T,) being the V2 produces the center of an octave. This property makes the 
two-tonic system reversible. All points of intonation in the C as well as in the C 

transformation are identical, that is, both clockwise and counterclockwise 
voice-leading produce the same pattern of motion. This is true only in the case 
of two tonics. 

Two tonics form a continuous system, i.e., the recurring tonic does not appear 
m its original position. Two tonics produce a triple recurrence-cycle before the 
original position falls on the first tonic (TO for the C and the C. Const. 3 pro¬ 
duces a closed system. 

figure 49. Si const, and const. 3, 

The upper voice of harmony produces the following scale: c - db-e-f#- 

S a# “ (c) = (1+3) + 2 + (1+3) + 2. All other voices of the above pro¬ 

gression produce the same scale starting from its different phases. 

on ‘leasy to 866 that this scale belon£s to the third group and is constructed 
un wo tonics. 

othnrB> *flect!nS other structures and structural groups of S(5), one can get 

iT: “ the th‘rd grouP' For “ample, the use of S, const, produces the 
E scale, c - db - eb - f# - g - a - (c) = (1+2) + 3 + (f+2) + 3. 

structural groups may be used in two ways: 

(1) S changes with each tonic; 

(2) the groups of S produce Co on each tonic. 

Figure 50. S changes with each tonic. 
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Combinations of the preceding two methods in the structural selection of 
each tonic of any one symmetric system are applicable to all symmetric sytems. 

Figure S3. Structural selection of each tonic. 

Longer progressions may be obtained through the use of longer structural 
groups, such as rhythmic resultants, power-groups, series of growth, etc. 

In some cases, the number of terms in the structural group produces inter¬ 
ference against the number of tonics in the symmetric system. 

Example: 

Ti, Ti; 2Si *f- Si -f- Si -+• S2 -f- Si -f- Sj ■+• 2Sj. 

(SaT! + S,T, + SsTx + S,Tt + S*Ti + S{TZ + SiTl + S,T2 + S{T{) -f (S,T* + 
+ SiT, + SjTi + S1T1 + SsT2 *f S1T1 f S2T2 + S,Tr+ S,T*). 

i 
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B. Three Tonics 

Three tonics produce a closed system for C and C, and a continuous system 
(two recurrence-cycles) for const. 3. 

Figure S3. Three tonics. 

C. Four Tonics 

Four tonics produce a continuous system (three recurrence-cycles) for 
and C, and a closed system for const. 3. 

Figure 54. Four tonics. 



Figure 66. Twelve tonics. 

v-i, . 

CHAPTER 6 

VARIABLE DOUBLINGS IN HARMONY 

TJTARMONY, in many cases conceived as an accompaniment, may be given 
^ a self-sufficient character by means of variable doublings. This device gives 

to chord progressions a greater versatility of sonority and voice-leading than the 
one usually observed. 

Variable doublings comprise the three functions of S(5). Thus, the root, 
the third or the fifth can be doubled. The notation to be used is: S(5)®,S(5)® 
and S(5)®. 

When the root-tone remains in the bass, S(5)® is the onlv case of doubling 
where all three functions (1, 3, S) appear in the upper three parts. 

The following represents a comparative table of functions in the three upper 
parts under various forms of doubling. 

S(5)® = 1,3,5 
S(5)<S> = 3, 3, 5 

S(5)<D - 3, 5, 5 

In cases S(5)® and S(5)®, only three positions are possible for each case. 
Black notes represent variants where unison is substituted for an octave. 

"x 

Positions 

Figure 67. Various forme of doubling in 8 upper parts. 
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SC51® 

Transformations 

J . r* / f* s. /'IN 

54-45 5 4-4 3 

-- 
54-43 

34->3 3 4-4 5 34-43 
1 4-43 I 4-4 3 1445 

C3 coast. C5 const. C7 const. 

Figure 68, Transformation S(5)® --- S(5)®. 

S(5)® 

C8 const. 

5 44 3 

3 +-* 5 
3 44 3 

Cg const. 

8(5)® 

C7 const. 

Figure 69. Transformation qf 8(5)® 

S(5)® 4---* S(5)® 

5^5 5<-» 3 5^5 
3^5 3^5 3 3 
14-43 1 4-4 5 1 <-* 5 

C3 const. Cg const. C7 const. 

V ' 

VARIABLE DOUBLINGS IN HARMONY E 

S(5)@ <-► S(5)® 
54-43 

5 <->5 

3^5 

S(5)® 4-*• S(5)® 
5<->S 
3 <-> 5 

3 4->3 

In reading these tables, consider identical directions of the arrows for the 
sequence of structures and for the corresponding transformations. 

Note that there always are three transformations when S(5)® participates 
and only one when 4t does not. 

Musical tables in the above figures are devisei 

fanie position. Similar tables can be constructed from all positions as w< 
*n reverse sequence; also in the cycles of the negative form. 

Variable doublings are subject to distributive arrangement and 
superimposed on any desirable cycle-group. 
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Example: 2CZ + C# + C7; S(5)®+ 2S(5)®+ S(5)®. 

= S(5)® + C, + S(5)® + C, + S(5)®+ C( + S(5)® + C, + 
+ S(5)®. 

- Example: 2C, + C, + C, + 2C,; S(5)® + S(5)® + S(5)® + S(5)®. 

H-* - S(5)® + C, + S(5)® + Ct + S(5)® + C, + S(5)® + C, + 
+ S(5)® + C, + S(5)®+ C, + S(5)® + C. + S(5)® + C, + S(5)®+ 

+ C, + S(5)® + Cs + S(5)® + C, + S(5)® + C, + S(5)®. 

Figure 64. Variable doublings superimposed on a cycle-group. 

Variable doublings are applicable to all types of harmonic progressions, tnus 
including types II and III. 

Type II (diatonic-symmetric). • 
H as in the preceding example. 
S“* = 2Sj •+• Sj -f* Si 

Figure 85. Variable doublings are applicabe to type II, 
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Type III (symmetric). 

H (6T) - TiSi® -f T*Si® + TjSx® -f T*S|® -f TsS4® 4- T«Si® -f TiSs®. 

Figure 66. Variable doublings are applicable to type III, 
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CHAPTER 7 

INVERSIONS OF THE 5(5) CHORD 

THE usual technique of inversions, strictly speaking 

of partsTn a^y\ar^niC*con^tnui^-<of^S(5)ertheain^en^Uta^0n °f ** ***** 
when inner or upper L u the lnverS10"* appear automatically 

de^bed in *?* 

" *4 SeCtlon o" continuity of geometrical inversions ' ^^™' 

classical ShSfofTT S~~ * the 

harm^y^V conf^^; ^ " 

chord” and is expr^d in this n^tedoTbyrte symtelSCbf Th 3 

under which S(5) becomes an S(6) is when the thL « ^ 6 ’ ™ °nly condltlon 
positions of the upper voices are not aff^ ! ^ 3PP,earS m the bass' The 
of doublings are affected Whirh ui y SUcb a c^ange> hut the forms 
be discussed liter d°UblmgS ^ appr°Prlate in each case, will 

Assuming that any S(6) may be Either S(6)® orSf6}® nr q/m® 
the following Table of Positions- W W * S(6)U«we obtain 

it is easy to memorize the above table, as Sffil® 3„j q/a\/h 
systematized through the fnllnn,;™ v, ^ . and S^6)® positions are 
appears above ZTrn^nin^ 7 <*> the doubled function 
remaining function- (3) the 2 ^ doub,ed funct»on surrounds the 
function. ' (3) d°UbIed funct,on below the remaining 

*Sec Book III, Chapter 1, pp. 200-203. 

INVERSIONS OF' THE S(5) CHORD 

S(6)® is identical with S(5) positions, except that the bass has constant 3. 

Harmonic progressions (H-) consisting of S(5) and S(6) are based on the 

following combinations by two: 

As the first case is covered by the previous technique, we are concerned 
for the present, with the last three cases.- e are concerned, 

All the following transformations, being applied 
versible, as in the case of variable doublings of S(5) 
measured through root-tones. 

to voice-leading, are re- 
Tonal cycles are always 

S(5) <—-—-—> s(6)® 

5 <->5 5 «-* 1 5 <-> 1 
3 4-4 1 3<->5 3 l 

1 ** 1 1 «-* 1 1 *->5 

--* S(6)® 
5^5 5 <-> 5 

3*-* 1 3<r+ 5 
1 5 1 <_► 1 

S(5) 
5 «■*» 1 

3 <-> 5 

1 <->5 

[406) Figure 69. Transformation of S(s) ___ S(6)® 
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INVERSIONS OF THE S(s) CHORD 



410 SPECIAL THEORY OF HARMONY INVERSIONS OF THE S(s) CHORD 41! 

S(6)®<-► S(6)® 
5 <—► 5 5 <-► 1 5 3 
5 <-► 3 5 *-* 5 5 «-*• 1 
1 «-♦! 1<->3 1 *-♦ 5 

Aay variants which conform to identical transformations (like the black 
notes in some of the preceding tables) are as acceptable as those in the tables. 

A. Doublings of S(6) 

Musical habits are formed comparatively rapidly. Once they assume the 
form of natural reactions, they influence us more than the purely acoustical 
factors. This is particularly true in the case of doublings of S(6). The mere fact 
that identical doublings in the different musical contexts affectajs in a different 
way, shows that our auditory reactions in music are not natural but conditioned. 

The principles offered here are based on a comparative study of the re¬ 
spective forms of music. 

There are two technical factors affecting the doubling in an S(6): 

(1) the structure of the chord; 

(2) the degree of the scale (on which the chord is constructed). 

These two influences are ever-present, regardless of the type to which the re¬ 
spective harmonic continuity belongs. 

While in harmonic progressions of type II and III, the structure of the 
chord is the most influential factor—in the diatonic progressions (type I) it is 
exactly the reverse. The influence of a constant pitch-scale is so overwhelming 

that each chord becomes associated with its definite position in the scale. Thus, 
one chord begins to sound to us as a dominant and another as a tonic, a mediant 
or a leading tone. This hierarchy of the various chords calls for the different 
forms of doubling, particularly when the respective chords appear in the different 
inversions. 

The following is most practical for use in diatonic progressions. 

Strong Factor Weak Factor 

The degree Regular Irreg. The structure Regular Irreg. 

of the scale Doubling Doublirg of the chord Doubling Doubling 

I, IV, V, VI © © © ©.© © 

11, III, VII © ©. © B i ip j © ©,© 

■ Wm © 
®, ©, © “ — 

Figure 77. Table for doubling in diatonic progressions. 

Regular doublings are statistically predominant. Irregular doublings, in most 

cases, are the result of melodic tendencies. 

In reading the above table, give preference to the strong factor, except in 

the case of S*(6) and S<(6). It is customary to believe that an Si(6) must have 
doubled root or fifth. But in reality it seldom happens when such a chord belongs 

to II, III or VII. Naturally, all our habits with regard to doublings are formed 
on the more customary major and minor scales. The above table will work 
perfectly when applied to such scales. There will be no discrepancy when Sa(6) 
and S«(6) are compared with the data on the left side of the table, as such struc¬ 
tures do not occur on the main degrees of the usual scales. 

In using less familiar scales, however, one or another type of doubling will 

not make as much difference. Yet in such cases the structure may become a 
more influential factor, though the sequence is diatonic. 

In types II and III the most piactical forms of doublings are: 

Structure 

Regular 

Doubling 

Irregular 

Doubling 

Si(6) ®. © © 
S2(6) ©. © © 
S3(6) © — 

S<(6) ®> ©, © —— 

Figure 78. Forms of doubling for types II and III. 
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B. Continuity of S(5) and S(6) 

The comparative characteristic of S(5) is its stability, due to the presence 
of the root-tone in the bass. The absence of the root-tone in the bass of S(6) 
deprives this structure of such stability. 

Composition of continuity consisting of S(5) and results in an interplay 
of stable and unstable units or groups. The following fundamental forms of 
continuity utilizing the above-mentioned structures are possible: 

(1) S(5) const.-stable 

(2) S(6) const.---unstable 

(3) (S(5) -f S(6) ] -f- . . . alternate 

(4) + 2S(6) 

3S(5) -f- S(6) 4* 2S(5) + 2S(6) + S(5) + 3S(6) 

4S(5) -f S(6) + 3S(S) + 2S(6) -f 2S(5) + 3S(6) + S(5) + 4S(6) 
' 1 ^ 

"---► increasing instability 
increasing stability <-----1- 

(5) 4S(5) + 2S(6) 4- 2S(5) 4* S(6) 
<---;- 

► proportionately decreasing ratios 
proportionately increasing ratios _ 

(6) S(5) + 2S(6) + 3S(5) + 5S(6) + 8S(5) + 13S(6) 

--—>■ progressive over-balancing of unstable elements 
S(6) + 2S(5) + 3S(6) + SS(5) + 8S(6) + 13S(5) 

—► progressive over-balancing of stable elements 

Many other forms of the distribution of S(5) and S(6) may be devised on 
the basis of my theory of rhythm.* 

Diatonic 

S(0) Const.; 2Q?'+2C5+C8 + Cb 

® ® ® ® ® 

Figure 79. Progressions in diatonic, diatonic-symmetric 

and symmetric (continued). 
*See Book I. 
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® ® ® ® ® ® ® 

Diatonic-Symmetric 

2S3(6)+Si(e)+S8(fl)+Si(0)+S4(«)j 2C5+C7+C5+2C7 

Symmetric 

S8(e)+Sa(e)+S4<e)+2Si(6>; Six tonics 

Figure 79. Progressions in diatonie, diatonic-symmetric and symmetric. 
(1concluded). 

Diatonic 

3S(6)+ S(6) + 2S(6)+2S(5)+S(6)+3S(5); 2C5+ C7 

666566506000 

Figure 80. Progressions in diatonic, diatonic-symmetric and symmetric (continued). 
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Diatonic - Symmetric 

2S3(6)+S|(6)+S*(6)+2Sa(6>; 2C7+C5; Scale of roots: Aeolian 

l[s1(5>+Sa(«0 Ti+ [S4<6)+St(6)] Ta j + . . . Four tonicl 

figure 80. Progressions in diatonic, diatonic-symmetric and symmetric. 

(concluded). 

CHAPTER 8 

GROUPS WITH PASSING CHORDS 

A. Passing Sixth-chords 

A GROUP with a passing S(6) is a pre-sel combination of three chords: namely, 
S(5) _j_ S(6) -f* S(5). Every passing chord occupies the center of its group, 

appears on a weak beat and has a doubled bass. The complete expression for a 

group (G) with passing sixth-chord is: 

G« = S(5) + S(6)® 4- S(5). 

This formula is not reversible in actual intonation. The relationship between 
the extreme chords of G6 is C-5. This relationship remains constant in all cases 

of classical music. 

We shall extend this principle to all cycles. Under such conditions G« 

retains the following characteristics: 

(1) The transformation between the extreme chords of the group is always 

clockwise for both the positive and the negative cycles. 
(2) The bass progression is: 1 —>3 —»1, which necessitates the first condition. 

In the classical form of G»> the bass moves by the thirds. Thus, 3 in the 

bass under S(6) is a third above its preceding position under the first S(5), and 

a third below its following position under the last S(5). 

In order to obtain G«, it is necessary to connect S(5) with the next S(5) 

through C-5 and add the intermediate third of the first chord in the bass, without 

moving the remaining voices. 

Ga= S(5) + S(6)® + S(5) 
t_T 

C-5 
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There are three melodic forms for the bass movement. 

Figure 82. Melodic forme for base. 

Combinations of these three forms in sequence produce a very flexible bass 
par and, being: repeated with one G«, make expressive cadences of a Mozartian 
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Further versatility of Ge progressions can be achieved by varying the cycles 
between the groups. Any time a decisive cadence is desirable, C* must be in¬ 
troduced, as this cycle closes the progression. 

= Gi + C7 4- G« 4- Ct + G$ 4“ Cj Hh G« 4- C7 + Ge 4- 
4* Cs 4" G« 4' C« 4* G« 4* C* 

O7 Cn Cn C*y Go C'- 

Figure 88. Combination of figures 81 and 82. 

B. Continuity op G«. 

the tonsil01 S“Ch gr°UPS * °btained by th0m throuKh 

of 7Q °nnecting by Cl closes •"I"**** while C, and C7 produce a progression 

* C6 

Figure 86. Varying cycles between G*. 

C. Generalization of G« 

In addition to the classical form of Ge, other forms can be developed through 
the use of other than C-5 cycles within the group. Of course, each cycle produces 
its own characteristic bass pattern. 

G«<C8> GefCs) G«(C7) G6(C-s) G6(C-b) G6<C-7) 



418 SPECIAL THEORY OF HARMONY GROUPS WITH PASSING CHORDS 419 

D. Continuity of the Generalized G« 

Such a continuity can be developed through the selective progressions of 
the various forms of G* combined with the various .cycle connections between 

the groups. 

Example: 
H~* = G*(C-5) 4* C7 + G«(Cs) + C6 + G(C-7) + C5 + 

4- G(C-5) 4- C* 4- G(Cr) 4- CB 

E. Generalization of the Passing Third 

It follows from the technique of groups with a passing sixth-chord that 

the first two chords, i.e., S(5) and S(6)®, belong to Co, and that the position 
of the three upper parts does not change until the last chord of the group ap¬ 
pears. This last chord, S(5), can be in any relation but Co with the preceding 

chord. 
If we think of the appearance of the third in the bass during S (6)® merely 

as a passing third, it is easy to see that this entire technique can be generalized. 
The passing 3 can be used after any S(5), providing the transformation between 
the latter and the following S(5) is clockwise for all the cycles. Such a device 

can be applied to any progression of S(5) with the root-tones in the bass. 

Example: 

The effect of such harmonic continuity is one of overlapping groups of Ga, 

as marked in the preceding figure. 

F. Applications of G6 to Diatonic-Symmetric (Type II) and Symmetric 

(Type III) Progressions 

The use of structures of S(5) and S(6)® in the groups with a passing sixth- 
chord must satisfy the following requirement: the adjacent S{5) and S(6)® of 

one group must have identical structures. 

This requirement does not affect the form of the last S(5) of a group; neither 

does it influence the selection of the forms of S(5) in the adjacent groups. 

As each G« consists of three places, two of which are identical, the number 
of structural combinations for the individual groups equals 42 = 16. 

s, 4-Si S2 4- Si S3 4- Si S4 4* Si 

Si 4* S2 S2 4* S2 Ss 4" S2 S< 4* S2 

Si 4- S8 S2 +Ss S8 4” S* S4 4-S3 

Si 4* S* S! 4" S4 S3 4- S* S4 4-S4 

Thus, we obtain 16 forms of Gb with the following distribution of structural 
combinations: 

G, = S,(5) + S,(6)® + S,(5) 

G. = S,(5) + S,(6)® + S,(5) 
G, - Si(5) + S,(6)® + S,(5> 

G, = S,(5) + S,(6)® + S,(5) 

Gj = S,(5) + S,(6)®.+ Si(5) 
G, = S,(5) + Sa(6)® + S,(5) 

G, = S,(5) + S,(6)® + S,(5) 
G, = S,(5) + S,(6)® + S,(5) 

G, = S,<5) 4- Ss(6)® + S,(S) 
G, = S,(5) + Ss(6)® + S,(5) 

G. = S,(5) + Sj(6)® + S,(5) 
G, = Sj(5) + S,(6)® + S,(S) 

G, = S.(5) + S,(6)® + Si(5) 
G, = S,(5) + S,(6)® + 5,(5) 
G, = Si(5) + S.(6)® + Ss(5) 
G, = S.(5) + S,(6)® + S.(5) 
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Example: 

Forms of S: S,(5) + S*(6)® 4- S*(5) 
H-* *= as in Figure 88. 

Figure 98. Progression of type If. 

Generalization of the passing third is applicable to this type of harmonic 
progression as well. The following is an application of the structural group 
2Si -f* S2 + 2Si 4- S* 4- 2Si to Figure 89. 

Figure 94. Generalisation of pasting third in type II. 

2. Progressions of Type III. 

Applications of Gs to symmetrical systems of tonics disclose many un¬ 
explored possibilities, among which the two-tonic system deserves particular 

tent*0?’ ^ intervak forming the two tonics are equidistant, the passing tones 
of S(6)®, which in turn may also be equidistant from Tj and Ts, produce, in the 

bass movement, diminished seventh-chords in symmetric harmonization—a de¬ 
vice heretofore unknown. 

The justification for the use of G$ in the symmetrical systems of tonics is 
based on the following deductions from the original classical form, i.e., G8(C™5). 

(Diatonic) (Symmetric) 

Figure 95. Justification for use of (?6 in symmetric systems qf tonics. 



The above-mentioned equidistancy of the two tonics permits retention of 
H = 3Ga until the cycle closes. Selecting Sl for the entire G«, we obtain: 

The following is a table of intonations and melodic forms in the bass part 

on two tonics. Total: 4! = 16. 

Figure 96. Progression of type MI. 

The overlapping of groups, indicated by the brackets in the above Figure, 
.is an invariant of the symmetrical systems. Thus the passing third can be con¬ 
sidered a general device for progressions of type III. 

The number of bass patterns for the cycle of the two tonics equals: 22 = 4. 

The number of intonations in each cycle of the two tonics equals: 22 = 4. 
The latter is due to the use of the different fornis of S(5). The interval between 
1 and 3 equals 4, and is identical for S,(5) and S,(5). The interval between 1 

and 3 equals 3, and is identical for S*<5) and S*(5). Thus, by distributing the 
different structures through two tonics, we obtain the following combinations: 

SxCT,) + Sj(Tj) 

Si(Tj) + Sj(Ts) . identical intonations 

Si(Ti) +St(Ta) in the bass part 
S3(T,) + Sj(T t) 

Sicro + s4(t#) 
Sj(Ti) 4- Si(Tj) identical intonations 
S<(Tj) 4 Ss(Ts) in the bass part 
S4(Ti) 4 S4(Ts) 

St. Sr: Sa. S4 

5656 6656 5656 5656 

Figure 97. Intonations and melodic forms in bass part on two tonics. 

The above combinations can be incorporated into a versatile continuity 

of G« on two tonics. 

Example: 

Figure 98. Continuity of ffB on two tonics. 

Si(Tj) 4 S2(T2) 

Si(Ti) 4- S«(T2) identical intonations 
Sb(Ti) + S*(T*) in the bass part 
Si(T0 4- S«(Ts) 

Sa(T,) 4- Si(T») 

S*(T,) 4- S,(T,) 

S«(T0 + Si(Ti) 

Application of G« to three tonics produces 8 melodic forms in the bass part: 
2* - a. 

Tia2 4" T2a2 4* T3a2 
Tibs 4* T2a2 4“ Tja2 
Tia2 4* T2b2 4* T3a2 
Tia* 4 T2a2 4 T3b2 
Tib2 4* T2b2 4~ Tsa2 
Tib2 4- T2a2 4* Tsb2 

Tiaa 4- T2b2 4* Tsb* 
T iba 4* T2b2 4 Tab2 

identical intonations 
in the bass part 
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6 5 6 5 6 5 6 5 5 6 5 6 5 6 

666660 6 6 6 5 ff6 
figure 99. Application of to three tonics. 

The number of distributions of the different S through three tonics is 4s = 64, 
while the number of non-identical intonations is 2* = 8. 

Non-identical intonations: 

f1^ + S'(T0 + S>(T«) SjfT,) + SjfTj) + Si(Tj) 

+ Sl(T,) + S,(T,) S,(T,) + S‘(T") + S,(T,) 
Si(T0 + S,(T,) + Si(T») Si(Ti) + Sa(Tj) + SifT,) 
s.(t>)+sj(Tj)+sl(Tl) S)(t /)+s,cro+ 

The total number of different intonations and melodic forms in the bass 
part is 8* = 64. 

. Si const. 
--- 

S3 const. 

figure 100. Examples qf continuity qf on three tonics. 
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Application of Ge to four tonics produces 2* - 16 melodic forms in the 
bass part. The number of distributions of the four forms of S through four tonics 
produces 44 = 256 intonations. The number of intonations in the bass part is 
limited to 24 = 16. Thus the total number of intonations and melodic forms 
in the bass part is 16* = 256. 

figure 101. Continuity qf G$ on four tonics. 



426 SPECIAL THEORY OF HARMONY 

Application of G* to six Ionics produces 2* = 64 melodic forms in the bass 
fart. The number of distributions of the four forms of S through four mics 

produces 4 - 4096 intonations. The number of intonations in the bass part is 

is 64’= 4096 nUmber °f lntonations and melodic forms in the bass part 

Si const. 
A ti 

Figure 103. Continuity of G% on twelve tonics {continued). 
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Figure 108. Continuity of 0a on twelve tonics [concluded). 

G. Passing Fourth-Sixth Chords: S(J) 

The second inversion of S(5) is a fourth-sixth chord: S(®). This name derives 
from the old basso continuo or generalbass, where intervals were measured from 
the lass. 

Figure 104. Fussing S (f). 

s(*) has a fifth (5) in the bass while the three upper parts have the six usual 
arrangements. 

The use of S(S) in classical music is a very peculiar one. This chord appears 

ln definite pre-set combinations. One of them is the group with a passing 
fourth-sixth chord: GJ. 

As in the case of G«, the passing chord itself appears on a weak beat, being 

***** by the two other chords, and has a doubled fifth: SJ®. The two 
,*r j.°rt*s Gf are: S(5) and S(6). The latter can have two forms of doubling 

egardless of the chord-structure): S(6)® and S(6)®. 
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The group with a passing fourth-sixth chord, contrary to G., is reversible 

GJ =S(5)+S(J)+S(6), 

produces four^variants.^ ^ ““ ^ ^ doublings 

Gfr®=S(S) +S(2) + S(6)® 

GJ|® =S(6)® + S(«) +S(5) 

G2t® = S(5) + S(J) + S(6)® 

G2i® = S(6)®+S(2)+S(5) 

to J thr"hCesro7SGtVelOPed °n threeaijacmt which correspond 

1 6 3 
S<5) S(S> S(8) 

Figure 105. £ass pattern. 

Arabic numerals represent the respective chordal functions. 

i /a r^:~8 betT S(5) and S(°> in ** G°: 0f moves from- 

in ord'er tn LTrh ‘1 "I000"; “* Upper VoUes mu!i clockwise m order to get the transformation of 1 into 3. 

Figure 100. Transformations between 8 (5) and S (f). 

forJr-ltranSi.tIOn fr0m S(?).into SW® or S(6)® follows the forms of trans- 

S(5)^S(6)®WaSdS(5)«s“)®al func‘io"s participate, as in the cases of 

transWr^'' C'aSSi“' teChniqUe ad°pted definite routines concerning this 

“ iss in “,l h""»»• 
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Under such conditions G® acquires the following appearances: 

Figure 107. ff i transformations. 

In the sequence of operations the following items should be 
the order indicated; 

considered in 

(1) bass 

(2) part reciprocating the bass 
(3) common tone 

(4) part supplying the third for S(J) 

The relations between the chords of GJ are as follows: 

S(5) + C-5+S(J)+C, + S(6) 

S(6) + C-5 + S(J) + C6 + S(S) 

posi^n^ gr°UP ^ h* CaiTied °Ut in 6 P0"*0”8 which dePend on the starting 

The following is the table of all four forms of GJ in one position. 

Figure 108. Forms of <5r® in one position. 

their rZ^****1 !°rmS °f G* can** connected by means,, of tonal cycles ai 
coefficients of recurrence can be specified. 
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It is desirable to make the following tables: 

(1) G4jO const.; Ca const., Cfi const., C7 const. 

(2) G4iO const.; Ca const., C* const., C7 const. 

(3) GJT® const.; Cs const., C6 const., C7 const. 

(4) GJJ.® const.; Ca const., C6 const., C7 const 

(5) GJT® const.; C~* * C, + C6 + C7 

(6) GJi® const.; = Ca + C6 -f C7 

(7) GJT® const; C“* = C, + Ct + C7 

(8) GJi® const.; C~* = Ca + Cs + C7 

(9) GJT® + GJ1® + GJT® + GJi®; C, const. 

(10) “ “ “ “ ;CS const 

(11) “ “ “ “ ' ; C7 const. 

... “ ;r-.c. + c# + c, 

C is the symbol of a group of cycles (cycle continuity). 

of seven'S: -W7Cn C°nneCted thrOUgh a constant tonal c-vde’ consists 

Example: 

GJT® const. C~* = const. 

figure 109. Continuity of 0%. 

0f ,Gi °f different forms anri connection through different cvcle- 
groups can be applied m its present form to diatonic progressions. 

fnr ^Irrmetr j>ro?reS8ionS of types llandin requires identical structures 
chord of th\reme Ck°rdS °^egrou^‘ This requirement does not affect the middle 
for th f ii° ^r°Up> i e" nor c,oes Jt influence the selection of structures 
tor 1 he lot lowing groups. 
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Examples of continuity with G J 

in progressions of types I and II. 

H“* = 2GJT + GJ1 + GJT + 2GJ1; C~* = C&4- 2C7 + 2C84* C6. 

Figure 110. Continuity with 0* in progressions of type I. 

H~* and C“* as in the preceding example. 

= 2(Si 4* Ss) 4- (Sa 4* Sj). 

Figure 111. Continuity with Q% in progressions of type If. 

Application of Gj to symmetric systems requires the following sequence 
of tonics: 

GH“* = (Tj 4* T2 4- Ti) 4- (Ts 4- Ta 4- T2) 4- (Ts 4* T* 4- Ts) 4- • . . 

For example, the three-tonic system must be distributed as follows: 

GH-* = (Ta 4- T2 + TO 4* (Ti + Ts 4 T8) 4- (Ta + Ti 4- Ta). 

The number of tonics in the respective system specifies the cycle. Each 

group may begin with either S(5) or S(6). 

Each group acquires the following distribution of inversions: 

GJ = T,S(5) 4-T2S(J) 4-TiS(6) 

Under such conditions, each tonic appears in all the three inversions. 
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Table of G« applied to all symmetric systems 

Two tonics 
T* Ta T* Ti T* Ti 
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Twelve tonics 

T* TlO TU T10 Ti,iLT13 Tu T* Tj Tw T4 

Figure 112. Gf applied to symmetric systems (concluded). 
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Other negative forms are not as practical: inversions weaken tonality. 

Example of variation of structures and directions. 

Four tonics. 

GH_>= [Si(5) + S,(f) + s,(6) ] + [S,(6) + S,(f) + S,(5) ] + 
+ JS.(6) + S.(5) + S,(5) ] + [Sa(5) + S,(«) + Sj(6) ] 

H. Cycles and Groups Mixed 

- -a «“■ 

It is convenient to plan the mixed form of cycle-group continuity by bars (T 

ficientof :nd barS °f ™ Can >* «**> to have different coe 

Examples: 

Figure 114. Cycles and groups mixed (continued). 
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Typ^ II 

Figure 114. Cycles and groups mixed (concluded). 
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THE SEVENTH CHORD 

'"PHE seventh chord, in the diatonic as in other systems, has the following 
positions: 

A. Diatonic System 

Fundamental The First The Second The Third 
A Position Inversion Inversion Inversion 

S(7) Seventh S (|) Fifth- S (f)Third- S (2) Second 
Chord Sixth Chord Fourth Chord Chord 

Figure 115. Inversions of Ike seventh chord. 

A seventh-chord, including all of its inversions, has 24 positions altogether. 
The classical system of harmony is based on the postulate of resolving seventh: 
the seventh moves one step down. 

Figure 116. Resolving the seventh 

This postulate provides a means for the continuous progression of S(7); in ad- 
dition, it is the basis of the entire system of diatbnic continuity (cycles). 

One movement is required to produce C,: the movement of the seventh 
alone. This results in a clockwise transformation. 

r1 
7\ 7 ^ 

^5 J 
Figure 117. Frodueing Ca 
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Two movements are required to produce C5: the movement of both the 

seventh and of the filth, each moving one step down. This results in a crosswise 
transformation. 

C* 

Thru movements are required to produce G7: the movement of the seventh, 
of the fifth, and of the third, each moving one step down. This results in a 
counter-clockwise transformation. 

Skipping two chords in C*, we obtain: 

C7 

Figure 119. Frodueing Gy . 

type Of music may be found among contrapuntalists of the 17th and 
8th centuries. Palestrina, Bach and Handel obtained similar results by means 

°f suspensions. 

Assigning a system of cycles, we can produce a continuity of S(7). The 
starting chord may be taken in any position. 

Figure 120. Continuity qf S (7), 
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This continuity—being entirely satisfactory harmonically—mav 
some cases to be unsatisfactory melodically because™the LS * ln 
ward movement of all voices. When it is desirAhl* to ^ H ™?ni\uous down- 
may be eliminated by meTs ofTo devils d<> th,a ch—teristic 

(1) exchange of the common tones 
(2) octave inversion of the common tones 

The same continuity of cycles assumes the following form: 

ngMre ***■ TAe ‘am° a factory melody, 

^ 'eaSt tW° ™» to"“' ** - the above 

it ma^rdtilblel^e"^ ^ f°r *” -ices, 

figure 122, Continuous C& through two parallel, 

This may be harmonized as follows: 

§ § $ 5 
ft ft & ^ 

Flgure 123• Harmonizing the continuum of figure 122. 

typi JT^e^uTty tHat °f SatUrati0" 

and inv:~|eclr;irmUOUSly thr°Ugh C' iS based “ exchange 
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The exchange and inversion of adjacent functions brings the utmost satis- 
faction. Nevertheless it .s not desirable to use the two extreme functions for 
such a purpose since they produce a certain amount «f harshness 

Figure £34. Inversion qf adjacent functions . 

An example of continuity of C0: 

Figure £25. Continuity of the CQ . 

CudiLVrt* f°"m of contin“ity of S(7) consists of mixtures of all cycles fin- 
mg C0) based on a rhythmic composition of the coefficients of recurrence. 

Example. 2C, + C0 + 2C3 + C„ + 2C, + C„ 

Figure £26. Final form, continuity of S (7). 

B- The Resolution of S(7). 

defined as a in*° an ^(5) in all positions .and inversions may be 
S7 *s a **nsthon from four functions to three functions. 

consits ofT 'Part harm°ny and With a normaI doubling (doubled root) 

a , 1. 1, 3, 5 
A°d S(7) consists of: 

3, 5, 7 

itj 
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Thus when a transition occurs, the root takes the place of the seventh. There* 
fore the resolution is provided through the motion of S{7) -+ S(7) and the sub 
stilutum of one for the seven, it., the function which would otherwise have become 

a seventh in the continuity of seventh-chords now becomes a root-tone in order 
to achieve a resolution. 

7-> 1 

5 -♦©*-> 1 
3 —* 5 

1 -> 3 
Note: Do not move S(7) -*S(5) in C0 

figure 127. Resolutions in diatonic cycles, 

This case provides an explanation of why a tonic triad acquires a tripled 
root and loses its fifth: 

figure 128. Tonic triad acquires a tripled root» 

l. Preparation of S(7) 

to S(7)ere three methods of preparing an S(7), i.e., of transition from S(5) 

(1) suspending 
(2) descending 
(3) ascending 

I^thod,i8 the only one producing the positive (C,, C«, C7) cycles, 
ethods (2) and (3) are the outcome of the intrusion of mdodic factors 

/?lL° Tnn0ny* Th?f obviously in conflict with the nature of harmony 
{Uke th0se wth chords we have already studied) as they produce 

THE SEVENTH CHORD 441 

negative cycles, and these in turn contradict the postulate of the resolving 
seventh universally observed in classical music. 

The technique of preparing the seventh consists of assigning a certain 
consonant function (1, 3, 5) to become a dissonant function (7) and of either 
sustaining the assigned function of the S(5) over the bar line, or moving it one 
step downward or upward. 

The last two forms of a seventh conventionally occur on a weak beat. 

ition^^6^ arC dlfferCnt P08*1*008* inversions and cycles of the S(5) -> S(7) trans- 

I (1) Suspending: 

1 r'7 3-^—7 5 -—j— 7 

C6 

(2) Descending: 
1 3 5 
\ \ \ 

7 7 7 
Co C-8 C-s 

(3) Ascending: 
7 7 7 

S / S 
1 3 5 
c-3 C-6 C-7 

Figure 129. Different positions of transition of S{5) —» S{7) 

(0 Suspending 

Figure 130. Preparation of S{7) {continued). 
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™ *-A “ ZCro and native cycles, provides the final form of 
continuity based on S(5) and S(7). 

For more efficient planning of such continuity, use bar lines for the layout. 
The preparation of S(7) may be either positive or negative; the resolution is 
always positive. 

Figure 13i. Preparation of 8(71 

C. With Negative Cycles. 

T he negative system of tonal cycles may be used as an independent system. 

The negative system is in reality a geometrical inversion of the positive system. 
Every principle, rule or regulation of the positive system thus becomes its own 
converse in the negative. 

Chord structures become Ei® of the original scale. Chord progressions 
are based on Ei® which forms the C-,. Clockwise transformations become 
counterclockwise and vice versa. 

Chord Structures 
Positive Negative 

Tonal Cycles: 

Negative — 

■» 4- Positive 

Transformations: 

Figure 132. Negative Cycles. 

The postulate of resolving seventh for the negative system must be read: 

n ”5* sfoent^1 moves one step up. The C-6 requires the negative seventh and 

to m 1Ve £ m°Ve °ne *tep up' C'7 retIuires aM tones except the root 
move up. This system may be of great advantage in building climaxes.* 

rtgure 133. Positive (C3) am negative (C-*). 

thou^°i this character, valuable ideas and techniques which 
£ noted carefullJ1?! y Scj1^in8?.r, should successfully exploited «n composition 

care,ul|y »>y the student. They offer ranging. (Ed.) 

valuably ideas and techniques which raa 
' an 

ranging 

be lY 
id ar 
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The root-tone of the negative system is the seventh of the positive, and 
tCC-VCfSO. 

It is easv to see how the other cycles would operate. 

Figure 134. Positive (CAf C7) and negative (C-,, C-7). 

If one wishes to read the negative system as if it were positive, the techniqm 
must be changed as follows: 

The C-j requires the ascending of 1 

JheC-B “ “ 44 “land 3 
The C-7* “ “ “1,3 and 5 

1. Special Applications of S(7) 

S(7) 611(18 lts application in G{, either as the first or the last chord of the 
group. 

The following forms are possible: 

S(5)-fS(«)+S(g) 

S(5) 4- S(f) -f S(j) 

S(5)+S(J)+S(2) 

S(7) +S(2)+S(6) 

S(7)+S(i)+S(|) 

+ 5>(2) S(7) -f- S(«) + S(2) 

Figure 135. Forms of S{7). 

The cycle between the extreme chords of G- may be either Cfl, or CJf or C*. 

C° c5 Co C» Ck 

Figure 186. Cycle between eateme chords of 0% - 
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Besides G« there is a special group in which S(|) is used as a passing chord. 
There are two forms of this group. 

(A) G},„ = S(5)®+ S(|) + S(7) or S(5) 

(B) Gj,„ = S(6)®+ S(|) + S(7) or S(5) 
---_____-----» 

Figure 137. S(|) used as a passing chord. 

These two forms may be used in one direction only. All positions are avail¬ 
able. 

The rule of voice-leading is: the bass and one of the voices of doubling 
move stepwise down; common tones are sustained. 

The cycle between the extreme chords in the first form is C3; in the second 
form it is Co. 

Glee) g!c«) 
. ® _ © 

Figure 188. Voice-leading exemplified ■ 

2. Cadences 

The following applications of S(7) are commonly known: 

(1) IV7 I« —V7 I6 
(2) IVj “ “ “ 
(3) Ilg “ “ “ 
(4) llj “ “ “ 

In addition to this, the following forms may be offered: 

(5) Any cf the previous I« — III# 1B 
forms 

(6) “ I- — VII* I* 

Besides these, there are two ecclesiastic forms: 

(1) l.-IV®., I, 

(7) I.-IV©nl) Is 
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figure £39. Application of 8(7) • 

D* S(7) in the Symmetric Zero Cycle (Cd). 

Of th!rtr^v?C?inSue^ra°rdinary Vereatility With S(7): structures 

obtained in the followin^ord^" eV°lved SClentifically’ they would have been 

during variations6thereof, we obtfr, two oThe^Jms: ^ ** ^ 

c - eb - g ~ bb (3 + 4 4- 3) 
and c — eb — gb — bb (3 + 3 -f 4) 

Taking another form, c-e-jr-b(4 4-?4-a'i .. 
forms: * t j 14), we obtain two other 

c-e ~g# — b (4 + 4-f3) 

and c - eb - g - b (3 4- 4 4- 4) 

has made*useo/thenTfor some 7 but ™ch » 
harmonic continuity ' " “™ a“ept a« of them in one 

j ®f3ides }bieBe six forms there is a c - eb - gb - b^ n 4-1 4- t V 
and there might have been c - e - g# - b# (4 + 4 .7, <3 + 3f+ 3> • f 

for the fact that c - b# is an enharmonic octave h 'f “ Were n0t 

tionsA sestet* c°of a" Tn structures «*»5’040 p-mu‘a- 

out n^;:j{~ce ^t!R^pssar 
based on the following Trindnle- thfblr116 available Progressions must be 

are due to identity of steps or to co^ToTon"* °n 8ymmetriC C° 
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(1) Identity of Steps: 
(2) Contrary motion: 

Call semitones] 

figure £40. Pest progressions on symmetric C0. 

the ImePas inSCS^ Variati°n * a"d ** ***». remains 

Structure Position 
Constant ---- Variable 

Variable - Constant 

and actives* ThTT 7'* "** SyStem °f indicati°"s: letter symbols 
of a nsrHcm?; Tbead)ectlves are chose" » that they do not pertain to degrees 

“ 7. bUt t0 structure alone- Thus, so common an adjective as 
dominant” must be abandoned. J 

if s!_1 1 Sa s* Sb s° s- 

Minor 
barge Small Diminished Augmented Augmented 

Figure I4£. 8(7) Table of structures 11 

1. An example of Continuity in C©: 

Structures: S, 4- Sr 4- S« 4- S, 

Cedents (rS*4): 4S, + S? + 3S< + 28. + 2S8 + 3S7 + S, + 4S, 

Figure £42. Continuity in <70 

be u^d!" S(5)’ any combination °( the forms of S(7) by 2, 3, 4, 5, 6 and 7 may 

Y adjective. Schillinger means the descriptive word used to indicate the shape of an S(7). (Ed.) 
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2. S(7) in Type III (Symmetric). 

As in previous cases, in dealing with symmetrical tonics, we may apply C0 
either to any of the tonics or with a continuous change of chord structures a 
change occurring with each tonic. 

When structures of S(5) and S(7) have to be specified in one continuity 
they must have full indications: 

Si(5); S*(5); S,(5) S*(5) and 

Si(7); Ss(7); S,(7); S4(7); S»(7); Se(7); S?(7) 

3. Two Tonics (\/2) 

As the\/2 forms the center of the octave, the progression 1—(C—*-F#) 
is positive and Vl -* 2 (F# -+ C) is negative. 

J7he 8>^tem of Two T°nics which was continuous on S(5) becomes closed 
on 5(7). Transformations correspond to C* 

Example of continuity 

4. Three Tonics (v/2) 

Continuous system: moves four times; transformations correspond to C*. 
To obtain S(7) after an S(5), use the position which would correspond to a con¬ 
tinuous progression of S(7). 

TnlK 

1., 

L J ̂ ^ xj — 

aba i 
*---— ..i i 

S(7) 3(6) S(7) S(5) S(7) S(S) S(7) S(5) S(7) S(B) 

An example of continuity: 

5. Four Tonics (v^2) 

A closed system: transformations correspond to Cs; S(7) after S(5) as in 
uie t“fee-tonic system. 

Figure 145. Four tonics (continued). 
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Example of continuity: 

Figure 145, Four tonics {concluded). 

6. Six Tonics {Vi) 
A continuous system: moves two times; transformations correspond to C7; 

S(7) after S(5) as in previous cases; both positive and negative progressions are 
fully satisfactory! to obtain the negative progressions, read the positive ones 

• backwards. 

Example of continuity 

Figure 146. Six tonics. 
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7. Twelve Tonics (v^) 

A closed system: all specifications and applications as in the six-tonic system. 

' Figure 147. Twelve tonics. 

E- Hybrid 5-Part Harmony 

The technique of continuous S(7) makes it possible to evolve a hybrid five- 
part harmony, in which the bass is a constant root tone and the four upper 
functions assume variable forms of S(7) with respect to the bass. 

By placing an S(7) on either the root, or the third, or the fifth, or the seventh 
of the bass root, we obtain all forms of S in five-part harmony. An S(5) has to 

^ represented with the addition of 13th (the so-called "added sixth"). 

_ 
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Forms of Chords in Hybrid Five-Port (4 + 1) Harmony 

The 4 

Upper 
Parts 

The forms 

of Tension S(5) S(7) S(9) S(ll) S(13) 

Figure 148. Chord forms in hybrid fine-part harmony. 

It is posable to move either forms or any of the combinations of forms 
. continuously in any rhythmic form of continuity. 

Note that the tonal cycles do not correspond in the upper four parts to the 

°na cyc,es m ^ ^ when the forms of tension are variable. For example, 

f-a-c-e may be 3-5-7-9 in a DS(9} or 7-9-11-13 

m a GS(13) In such a case, a progression C* for the bass with S(9) - S(13) 
produces Co for the upper four parts. 

trueThe PnnaPle of exchange and octave-inversion of the common tones holds 

t- f°rmS °f (harmosi -ontinuity will be used in the following illustra- 
tmns (these forms of continuity are appUcable in four-par larmony as well). 

^ ? °!gT?r tension are desired, and also when compensation 
. Sy.Bte/" ® defiaencies is required, it is often desirable to use 

H" f0rms°i -structures which nevertheless move diatonically. Such 

bel0ng,n?‘° 0ne definite diatonic scale, while the chord 
r r„r Ure T°“5 ““fdentals ,n order to produce a definite sonority. 

as d^«Z^7r£ arm0niC Pr0greSSi°n5' latter ^P- * ^own 

1. Thres Types of Harmonic Progressions 

1. Diatonic 

IL Diatonic-Symmetric 
III. Symmetric 

r„J„he/°"rnS eXamP‘eS WlU ** Worked oat i" nil three types of harmonic 
continuity. Constant and variable forms of tension will be offered. 

of "rr ? desirable form or forms of structure for the different forms 
tension it is advisable to select a scale first, as such a scale offers the manifold of 

forms of tension. For example, if the scale selected isc-d-e-flt-g-a- 

bh; S 5) = c - e - g - a; S(7) = c - e - g - bb; S(9) = c - e - g - bb - 

' £L1J T: r g “ bl> “ d - *: S(13) = c - bb - d - f# - a. 
Though the same scale would be ideal for the progression, it is not impossible 

and not undesirable to use some other scale for the chord-progressions. 
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2. Tables and Examples 

(a) Continuity of S(5) [monomials] 

Type II 

Type HI 

Figure 149. Continuity of 8(5) monomials. 

-ibi 
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(b) Continuity of S(7) [monomials] 

Figure ISO. Continuity of 8(7) monomials. 

THE SEVENTH CHORD 

(c) Continuity of S{9) [monomials) 

Figure 151. Continuity of S(S) monomials 
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3. Table of Combinations 

The Arabic numerals in the following tables represent the chord struc¬ 
tures (S): 

a. Combinations by 2 

5+7 7 + 9 • 9 + 11 11+13 
5+9 7+11 9 + 13 
5 + 11 7 + 13 
5 + 13 

10 combinations, 2 permutations each 
Total: 10 X 2 * 20 

b. Combinations by 3 

5+7+9 7+9 + 11 9 + 11+13 
5+7 + 11 7 + 9 + 13 

5+7+13 7 + 11 + 13 
5 + 9 + 11 

S + 9 + 13 
5 + 11+13 

10 combinations, 6 permutations each 
Total: 10 X 6 = 60 

c. Combinations by 4 

5 + 7+ 9 + 11 7 + 9 + 11 + 13 
5 + 7 + 9 + 13 

5 + 7 + 11+13 

5+9 + 11 + 13 

5 combinations, 24 permutations each 
Total: 5 X 24 = 320 

d. Combinations by 5 

5 + 7+9 + 11+13 

1 combination, 120 permutations 
Total: 1 X 120 = 120 

All other cases of trinomial, quadrinomial, quintinomial and larger com¬ 
binations are treated as coefficients of recurrence. 

Example: ST «= 2S(5) + S(7) + 2S(9) = S(5) + S(5) + S(7) + S(9) + 
+ (S(9), i.e., a quintinomial with two identical pairs. 



CHAPTER 10 

THE NINTH CHORD 

A. S(9) in the Diatonic System 

NINTH-CHORDS in four-part harmony are used with the root-tone in the 

bass only, thus operating as a hybrid four-part harmony—like S(5) with 
the doubled root. The three upper parts are 3, 7 and 9. The 7 and the 9 are 

subject to resolution through stepwise downward motion. 
If one function resolves at a time, it is always the higher one (the ninth). 

A resolution of one function at a time produces Co. Other cycles derive from the 

simultaneous resolutions of two functions (the ninth and the seventh). No 
consecutive S(9)’s are possible through this particular type of system for S(9) 

alternates with S(7) and S(5). 
The reason for first resolving the 9th rather than the 7th in Co is that the 

latter procedure would result in a chord-structure alien to the usual seven- 
unit diatonic scales; the intervals in the three upper voices are fourths. 

Figure 155. Resolving the ninth. 

1. Positions of S(9) 

As the bass remains constant, the three upper voices are subject to six 

permutations resulting in corresponding distributions. 

Figure 156. Table of positions of S (9). 

[460] 

Figure 157. Resolutions of S(9), 

The resolutions (except in Co) produce positive cycles only. In C$ they are 
characteristic of Mozart, Clementi and others of the same period. C6 (the second 
resolution) is the most commonly known, especially with bb in the first chord 

(making a “dominant chord” of F-major). 
C7 is characteristic of Bach and contrapuntalists who developed such 

progressions from the idea of two pairs of voices moving in thirds in contrary 
motion. Read the last measure with bb and f# and add S(5) g-minor. All these 

cases of resolution were known to the classics through melodic manipulations 

(i.e., as a part of their contrapuntal heritage) and not through the idea of those 

independent structures we call S(9). 
Preparation of S(9) bears a great similarity to the preparation of S(7). 

There is even an absolute correspondence in the cycles with respect to technical 

procedures. 
The same three methods constitute the technique of preparation (sus¬ 

pending, descending, ascending). 

2. Table of Preparations 

(1) Suspending: 

3""h 9 S" 9 

1 7 3' 7 

c7 C6 c, 

(2) Descending: 

3 \ 9 5 \ 9 7 \ 9 

1 \ 7 3 \ 7 5 \ 7 
Co C-3 c-& 

(3) Ascending: 

3/9 5/9 7 / 9 

1 / 7 3/7 5 / 7 
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Here is another example of a characteristic classical cadence: 

figure 161. Example of continuity containing 8(9)* 

ori8inal manuscript, 
JkLT If the student is to grasp 
should1'i1Cau,0ns °f t¥ foreg°ing material, 

as home-work^ °Ut the f°llowin* *“*«***« 

0) reiferp(lete taJ?les of preparations and resolutions from all positions. 

(2) Write diatonic continuity containing S(9). 
(3) Make some modal transpositions of the 

examples thus obtained. 
(4) Write continuity containing S(9) in the 

second type (diatonic-symmetric) of har¬ 
mony. Select, chord-structures from the 
examples of hybrid five-part harmony.” 

(Ed.) 
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B. S{9) in the Symmetric System 

The classical (preparation-resolution) technique just described—and com¬ 
monly used in the diatonic system—is also applicable to the symmetric system. 

Symmetric roots correspond to the respect cycles: C6, to V2; C«, to y/i and 
V^2; C», to v^2 and $2. With this in view, a continuity consisting of S(5), 
S(7) and S(9), and operated through classical technique, may be offered. 

Symmetric C« is quite fruitless when S(9) alone is used', for the upper three 
functions (3, 7, 9) produce an incomplete seventh-chord, the permutations of 

which (3 «-♦ 7, 3 9) sound awkward. There is one exception: 7 *-* 9. 

As S(9) in hybrid four-part harmony is an incomplete structure—5 is omit¬ 
ted—the .adjectives descriptive of chord structure may be applied only with 
a certain allowance for the 5th. 

There are two distinctly different families of S(9), not to be mixed except 
when in C©: 

(1) The minor seventh family. 

(2) The major seventh family. 

The minor 7th family includes the following structures: 

Figure 162. Minor 7th family. 

To these the following adjectives may be applied in their respective order: 
7bSi — targe. 

7bSa — diminished. 
7bSi — minor. 
7bS* — small. 

The major 7th family includes the following structures: 

Figure 163. Major 7th family. 

The respective adjectives are: 
7 bSj — major. 
7 fc}S* — augmented I. 

7 fcjSa — augmented 11. 

These are the only possible forms. 

1 - 
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It seems that all combinations of .the two families, except those producing 

consecutive sevenths (7bS< <-*• 7t|Si; 7fc|S* 7fcjSg; 7bS* «-> 7ljSt; 7bSx 7bS«), are 
satisfactory when in C0. On the different roots, the forms of S(9) must belong 
to one family. 

Figure 164. Example of G0 continuity. 

Full indication for S(9) when used in combinations with S(5) and S(7): 

7bSl(9); 7bSj(9); 7bS,(9); 7bS4(9) 

7^(9); 7bS*(9); 7fcjS3(9) 

Two tonics (V2)- The technique corresponds to Ch. 

M Resolution Resolution Prenaratiorj 

Figure 16$. Two tonics (VjT) 

To resolve the last chord of the preceding table, use position (K) of the 
^solution technique. 

Figure 166. Resolution of last chord of figure 16$. 
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Three tonics (v^). The technique corresponds to C*. 

Resolution Preparation Progression 
ffcrti 

¥ 
Undesirable: 

Awkward steps etc. 

9 6 

Figure £68. Three tonics ■ 

0 9 1 0 

In order to acquire a complete understanding of voice-leading in the 
preceding table of progressions (9 — 6 — 9 — 6 etc.), one should construct 
mentally an S(7) instead of an S(6). Then the first two chords will appear in 
the following positions:. 

3 
t. 

Or: 

jto 1 

Figure £69. Positions qf 8(9) to 8(6). 

It is clear now that d# and fx are the necessary 7 and 9 of the following 
chord. 

.fMfXKSZi.*. 
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Four tonics (v^)- The technique corresponds to C*. 

Six tonics (v^). The technique corresponds to C7. 

Resolution Preparation Progression 

Figure £72. Sias tonics V 2 . 

The above consecutive sevenths are unavoidable with this technique. 
he position of every S(9) is based on the assumption that the precedin 

chord was S(5) and not S(7). 

& 
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9 7 6 0 7 6-75 

Figure 178. Continuity: S (9)+8(7) + 8(5). 

The negative system which may be obtained by reading the above tables 
in position <£) is not as desirable with these media as the positive. The same 

-concerns the following More plastic devices (general forms of transforma¬ 
tions) will be offered later. 

Twelve tonics (v^). The technique corresponds to C?. 

Resolution Preparation Progression 

Figure 175. Continuity: S(9) -f S(7) + S(5}.* 

In. the original manuscript, Schillinger sag- in the different symmetric systems containing 
gests that the implications of this material S(5), S(7) and S(9) with application of different 
he studied through the following: "Exercises structures and the C0 between the roots." (Ed.) 

CHAPTER 11 

THE ELEVENTH CHORD 

A. S(11) in the Diatonic System 

TN FOUR-PART harmony, eleventh chords [S(ll) ] are used with the root- 
1 tone in the bass only, thus forming a hybrid four-part harmony [like that 
formed by S(5) with the doubled root). The three upper parts consist of 7, 9, 11. 
An S(11) has an advantage over S(9) in that the upper functions form a complete 
S(5). All three upper functions are subject to resolution through stepwise down¬ 

ward motion. Resolutions of fewer than the three upper functions produce Co. 

No consecutive S(ll)’s are possible in this particular system. They alternate 
with the other structures. 

For reasons explained in the previous chapter, the C0 resolutions must follow 
in the direction of the decreasing functions: if only one is resolved, 11 must be 

resolved first; then, 9; then, 7. When two functions resolve simultaneously, they 
arc 11 and 9. An S(ll) allows a continuous chain of resolutions4 

S(ll) \ 
S(9) 9 \ 

S(7) 7 \ 

S(6)® 

An eleventh-chord through resolution of the eleventh becomes a ninth- 
chord; a ninth-chord through resolution of the ninth becomes an incomplete 

seventh-chord (without a fifth), or a complete S(|) as in the corresponding 

resolutions of S(9); an incomplete seventh-chord through resolution of the seventh 
becomes a sixth-chord with doubled third. 

1. Positions of S(I1) 

As the bass remains constant, the three upper voices are subject to six 
Permutations. Seventh, ninth and eleventh form a triad corresponding to a 
root, a third and a fifth while the bass corresponds to the pitch-unit one degree 

■gher than the root of the triad. 

Figure 176. FositUms of 8 (11). 

[469) 
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Figure 177. Resolutions of 8(W. S(B> ^(11) S(7> S(ll) S(g) S(ll) S(9) S(ll) 

c/o\ uS ** fo OWS from the above table, when S(ll) resolves into S(9) in C0, 
b(9) has its proper structural constitution (i.e., 1, 3, 7, 9).The C7 resolution docs 

not appear on this table for the reason that the structural constitution of S(9) in - 
lo which S(ll) would resolve is 1, 5, 7, 9, and this does not sound satisfactory, 
according to our musical habits. 

S(U) SfeJ 

Figure i78. S(li)—+~S(9). 

The above resolutions correspond to the classical resolutions of the triple sus 
pensions. v 

B. Preparation of S(ll) 

Preparation of S(li) in the positive cycles has a cyclic correspondence to 

the preparation of S(7) and S(9) through suspensions. Nevertheless, the manner 
ol reasoning is somewhat different in this case. 

. S ^ ^ has an appearance of an S(5) with a bass corresponding to the pitch- 

. / c/c-,®^rCC b*?bcr tban the root of the triad, the most logical assumption is: 

t 7, i ' m°VC ,tS bass onc stcP UP and this wiir Produce an S(11) with a proper 
rU<'. restitution. In such a case, the relation of the three stationary upper 

nC Tk*S ° ^one® being common tones, may be inverted or exchanged. 
The first case gives a clue to the preparation of other cycles (positive and 

negative as well). The method of preparation implies merely the more gradual 
transformation (O or Q) of the three upper functions. 

0 prepare S(ll) after an S(5) in C0, move all upper functions down scale- 
wise and leave the bass stationary (which is the converse of the first proposi¬ 
tion). r 

C7 
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When all tones are held in common in the three upper parts, it is advisable 
to use the over-the-bar suspension method. (See page 462.) 

Whoi some of the upper parts move and some remain stationary, either 
the within-the-bar or the over-the-bar preparation may be used. 

Characteristic progressions and cadences, in which all forms of tension 
ffrom S(5) to S(1I) ] are applied, would be: 

Figure 180. Characteristic progressions and cadences employing 5(5) to S{11). 

Figure 181. Continuity containing S(ll). 

it. r. ' 

C. S(ll) in the Symmetric System 

The above technique of diatonic progressions containing S(ll) is applicable 
to the symmetric system as well. The cyclic correspondence previously used 
remains the same. Thus, preparations of S(ll) are possible in all systems of the 

symmetric roots, whereas resolutions can be performed only when the acting 

cycle is C* {y/~2 and \^2) and C* (V^)- There is no difficulty with any pre¬ 
paration of S(ll) after a resolution, as the latter always consists of 1, 3, 5 and 
therefore may be connected with the following chord through the usual trans¬ 
formations. 

Unlike S(9), S(ll) produces a highly satisfactory Co, due to the presence 
of all functions without gaps in the three upper parts. 

As with the ninth-chords, there are two distinctly different families of S(ll) 

which are not to be mixed, except when in Co. The distinction becomes even 
greater than before and the mixing becomes still more “dangerous.” 

The structural constitution of S(ll) permits the classification of such struc¬ 
tures as S(5) with regard to their upper functions. 

The Minor The Major 

Seventh Family Seventh Family 

There are two less common forms. The diminished in the first group and the 
augmented in the second group. 

Figure 188. 7\ 5* (tt); 7l| Sa (li). 
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The selection of better progressions in Co for the continuity of S(ll) must 
be analogous to the selection of forms for S(5). If desired, consecutive sevenths 
may be avoided by permutations. 

1>£k bn 

Full indications for S(ll) when used in combination with other structures: 

7hSi(ll); 7VSj(ll); 7bS«(ll) 
7NSi(ll); 7MS,(11); 7HS,(11) 

Two tonics (V^2)* The technique corresponds to Co; clockwise or counter¬ 

clockwise transformations for continuous S(11). 

Resolution Preparation Progression 

You may consider the upper three parts either as 7, 9, 11 in O and O trans¬ 

formations or as 1, 3, 5 with a displaced bass. 
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Figure 185. Two. tonics (concluded) 

Three tonics (v^2). The technique corresponds to Cs or to the 

O and C* transformations. 

Figure 186. Three tonics v'#”. 



476 SPECIAL THEORY OF HARMONY 
THE ELEVENTH CHORD 477 

Example of Continuity 

figure iS6. Three tonics (concluded). 

Four tonics (v^). The technique corresponds to C» or to the 
and Ci transformations. 

Resolution Preparation Progression 

Example of Continuity 

figure 187. four tonics V 2 

With the complexity of the harmony above, the consecutive ninths (if they 
are both major and move on a whole tone) are perfectly admissible. 

Six tonics (v^). Use O and (Q transformations only. 

Continuous S (it) 

Twelve tonics (v/2). Use O and Q transformations only. 

Continuous S(li) 

iV-O— -■■■-.■'. 

“‘HfS- 
etc.-— 

Example of Continuity 

*]"ihC.°:i.glnf,„ma"lJScriPl- SchiHinger sug- progressions on S(ll). The transformation 
SulVrm -r follo?’inB work be done: “As technique is applicable to diatonic and dia- • 
wun S(y;, utilize various structures, forms and tonic-symmetric progressions as well.” (Ed.) 
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D. In Hybrid Four-Part Harmony 

The general technique of transformations for groups with three functions 

may now be adopted for a generalization of the forms of voice-leading in hybrid 
four-part harmony. The three upper parts perform the transformations corres¬ 

ponding to the groups with three functions, and the bass remains constant. 

The following technique is applicable to any type of harmonic progression: 
diatonic, diatonic-symmetric, or symmetric. The specifications for the following 
forms of S are chosen with respect to their sonority. Those marked with an asterisk 

in the following tables are less commonly used than the unmarked ones. The 
charts of transformations for the latter are worked out; the reader may easily 

substitute them for those marked with the asterisk. 

Forms of Hybrid Four-Part (3 + 1) Harmony 

Figure 190. Forms of hybrid four-part harmony. 

When the numerals expressing the functions in a group are identical with 

the numerals of the succeeding group, certain forms of transformation—such as 

constant abc—may be eliminated because of their complete parallelism. When 
the numerals in the two allied groups are partly identical, some of the forms 

(constant a, constant b, constant c) give either favorable or unfavorable partial 
parallelisms. The partial parallelisms are favorable when the parallel motion 
forms desirable intervals with the bass. They are unfavorable when the motion 
causes a consecutive motion of the seventh or ninth with the bass (consecutive 

seventh, consecutive ninth). 

Inasmuch as the actual quality of voice-leading depends on the structures 

of the two allied chords, the student will be able—upon completion of all these 

charts in musical notation—to make his own preferential selection. 

When the numerals in the two allied groups are either partly or totally 

different, often the constant abc transformation becomes the most favorable form 
of voice-leading. There is a natural compensation at work in this case. Homo¬ 

geneous structures are compensated by heterogeneous transformations—and heter¬ 
ogeneous structures are compensated by homogeneous transformations. For 

example, if the allied groups are both S(5), the constant abc transformation 

1 

hybrid four-part harmony 47<J 

would be unconventional: 1 —M, 3 —» 3, 5 —♦ 5, which gives consecutive octaves 
and fifths. On the contrary, when the functions have different numerals, the 
smoothest voice-leading results from this particular transformation. 

When two allied groups have different or partly different numerals for their 
functions, the first group becomes the original group and the succeeding group 
beomes the prime group. When a transformation between two such groups is 
performed, the prime group in turn becomes the original group for the next 
transformation. 

The Original The Prime 
Group Group 

a a* 

c b cl b1 

For example, by connecting S(5) + S{9) -f S(13) we obtain the following num¬ 
erals in their corresponding order: 

S(5) S(9) S(13) 

1 3 7 

5 3 9 7 13 9 

When the functions of S(5) are connected to the functions of S(9), the first 
group is the original group; the second is the prime group. When the functions 

of S(9) are connected to S(13), the functions of 5(9) form the original group, 
and the functions of S(13) form the prime group. 

Here is a complete table of transformations. 

Forms of Transformations in the Homogeneous Groups 

Figure 191. Transformations in the homogeneous groups. 
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Farms of Transformations in the Heterogeneous Groups 

The Original 

Group, 

a 

c b 

The Prime 
Group. 

a1 

c1 b1 

Figure 192. Transformations in the heterogeneous groups. 

Here are all the combinations for the two allied groups, applied to all forms 

of tension. 

Binomial Combinations of the Original and the Prime Groups 

S(5) ++ S(7) S(7) «-> S(9) S(9) «-> S(ll) S(ll) <-* S(13) 

S(5) «-* S(9) S(7) «-> S(ll) S(9) ~ S(13) 

S(5) ♦+ S(ll) S(7) S(13) 

S(5)S(13) 

10 Combinations, 2 permutations each. 

Total number of cases: 10 X 2 = 20. 

Figure 193. Binomial combinations. 

The following pages contain tables of transformations for the 20 binomials 

consisting of one original and one prime group. Each S tension is represented 
in this table by one structure only. The sequence of the forms of transformations 

in this table remains the same for all cases: (1) O: (2) Oi (3) Const, a; (4) 

Const, b; (5) Const, c; (6) Const, abc. 

HYBRID FOUR-PART HARMONY 481 

1. Table of transformations for the twenty binomials. 
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S(5)- —> S(ll) 

1 — 9 1 — 11 1 — 7 1 — 11 1 — 9 1 — 7 

3 — 11 3 — 7 3 — 11 3 — 9 3 — 7 3— 9 

5— 7 5 — 9 5 — 9 5 — 7 5 —► 11 5 — 11 

S(ll) — ->S(5) 

7 — 3 7 — 5 7 — 1 7 — 5 p w.. X ' 1 7 — 1 

9 — 5 9 — 1 9—>5 9 — 3 9 — 3 

11 — 1 11 — 3 11 —* 3 11 — 1 m 11 — 5 

S(5)- — S(13) 

1 — 9 1 — 13 1— 7 1 — 13 1 — 9 1 — 7 

3 — 13 3— 7 3 — 13 3— 9 3— 7 3—9 

5— 7 5— 9 5— 9 5— 7 5 — 13 5 — 13 

S(13) — —>S(5) 

7 — 3 7 — 5 7 — 1 7 — 5 7 — 3 7 — 1 

9 — 5 9 — 1 9—5 9 — 3 9 — 1 9 — 3 

13 — 1 13 — 3 13 — 3 13 — 1 13 — 5 13 — 5 

Figure 195. Transformations of binomial combinations. 

HYBRID FOUR-PART HARMONY 



hybrid four-part harmony 

S(9) — —► S(13) 

3-4 9 3 —» 13 3-4 7 3 -4 13 3-4 9 11 
7 -> 13 7-4 7 7 -> 13 7-4 9 7-4 7 H 
9 —> 7 9 —♦ 9 9-4 9 9-4 7 9-4 13 IE 

S(13) — — S(9) s 7 -» 7 7 -4 9 7-43 7-49 7-4 7 
9—4 9 9->3 9-»9 9-47 9-43 

13-4 3 13-4 7 13-4 7 13-4 3 13 -4 9 B 
S(ll)- — S(13) 

7-4 9 7 -4 13 7-4 7 7 -4 13 7-4 9 
9 13 9-> 7 9-4 13 9-4 9 9-4 7 B l'l -+ 7 11-4 9 11-4 9 11-4 7 11-4 13 n 

Figure 198. Transformations of binomial combinations. 



Figure 200. S{7) —* S(5) (continued), 
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It is easy to work out all cases in musical notation by applying each case 
to all three tonal cycles. 

As in previous cases, continuity may be composed in all three types of har¬ 
mony (diatonic* diatonic-symmetric and symmetric). Structures of different 
tension may be selected for the composition of continuity. Different individual 

styles depend upon the coefficients of recurrence applied to structures of differ¬ 
ing tensions. 

The first of the following two examples of continuity is produced through 
structures of constant form and tension £S<13) ]; the second illustrates a con¬ 
tinuity of variable forms and variable tensions distributed through r3^-2* 

Continuity of Groups with Identical Functions 

S(13) —* Type II. Scale: bb-harm., di. 

Figure 208. Structures cf constant form and tension 8(13). 

Continuity of Groups with Different Functions 

2S(9) + S(7) +S(11) + S(13) + 2S(11); Type III. 

3*3 • 

i 

Figure 203. Variable forme and tensions through r 

CHAPTER 12 

GENERALIZATION OF SYMMETRIC PROGRESSIONS 

rPHE forms of symmetric progressions heretofore used in this portion of my 

discussion of harmony were based on a monomial symmetry of the uniform 
intervals of an octave. 

But in order to obtain other mixtures (binomials, trinomials and poly¬ 
nomials) of the original forms of symmetry within an octave, it is necessary to 

establish a general nomenclature for all intervals of an octave. As all intervals 
are special cases of the twelve-fold symmetry, any diatonic form may be con¬ 
sidered a special case of symmetry as well. 

The system of enumeration of intervals may follow the upward or downward 
direction from any established axis point. As both directions include all intervals 
(which means both positive and negative tonal cycles), the matter of preference 

must be determined by the quantitative predominance of the type of intervals 
generally used. It seems that the descending system is the more practical, for 

smaller numbers can then be used to express the positive steps on three and four 
tonics; the negative, on six and twelve tonics. 

In the following exposition, the descending system will be used exclusively. 
This need not prevent one from using the ascending system. 

Scales of Intervals within one Octave Range : 

Descending System: Ascending Systemr 

c —»c = 0 c —> c = 0 
c —* b 1 c —► db « 1 
c —* bb = 2 c —»d = 2 

c —* a — 3 c —> eb - 3 

c —»ab = 4 c —* e = 4 

c y S — 5 c —♦ f = 5 

c-*f# = 6 c-*f# = 6 

c —* f = 7 c * g - 7 
c —* e 8 c ab = 8 

c —* eh = 9 c —> a = 9 
c —*d 10 c —* bb = 10 

c —»db = 11 c —> b = 11 
c -»Ci = 12 c -+C1 = 12 

[480] 
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Monomials 
Two Tonics: 6 + 6 

Three Tonics: 4+4 + 4 or 8 + 8 + 8 

Four Tonics: 3+3+3+3or9+9 + 9 + 9 
Six Tonics: 2+2 + 2+ 2+ 2 + 2orl0 + 10 + 10 + 10 + 10 + 10 
Twelve Tonics: l+l+l+l + l+ l+ l+ l + l + i + i+ i 

pr ll+ll+ll+ll+ll+ll+ll + ll+ll+ll + ii+ll 

Figure 204. Intervals and tonics within one octave. 

So approached, each constant system of tonics becomes a form of monomial 
periodicity of a certain pitch-interval, expressible in the form of a constant 
number-value, which in turn expresses the quantity of semitones from the pre¬ 
ceding pitch-unit. 

In the framework of this system, the problem of mixing various tonics (or 
any interval-steps in general) becomes reduced to the process of composing 
binomials, trinomials or any more extended groups (such as rhythmic resultants, 

their modifications through permutations and powers, series of growth), i.e., 
to the rhythmic distribution of steps. 

The vitality of such groups, i.e., the periodicity of their recurrence until the 
completion of their cycle, depends upon the divisibility-properties of the sums 

of their interval-quantities. The total sum of all number-values expressing the 
intervals becomes a divisor of 12, or any multiple thereof. This signifies the 
motion of a certain group through an octave (or octaves). 

For example, a binomial 3 + 2 has 12 recurrences until it completes its 
cycle, as 3 + 2 =5, and the smallest multiple of 12, diyisible by 5 is 60. This 
is true of all prime numbers when used as divisors. 

C - A — G ~ E — D - B — A - F# - E~-C# - B 

B - G# - F# -m-Ci — A# — G# — F — Eb 
i--- i i «- i ■ 

Eb - C - Bb - G - F — D — C 
■ ■ i 

Figure 205. Binomial 3 + 2. 

This property makes mixtures of three and four tonics very desirable when 
a long harmonic span is necessary without a variety of steps. 

The process of division serves as a testing tool of the vitality of compound 
symmetric groups. 

Two tonics close after two cycles, as6+6 = 12, or ^ = 2; 

r4-**3 closes after one cycle, as3 + l+ 2+ 2 + l+ 3 = 12, and = 1; 

rs-5-4 closes after three* cycles, as 4 + 1 + 3 + 2 + 2+ 3 + 1 + 4 = 20, 
and f# = 3. 
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Greater variety without deviating from a given style may be achieved by 
means of permutations of the members of a group. For example, a group with 
a short span may be revitalized through permutations: 

(3+1+2) + (3+2 + 1) + (2+3 + 1) + (1+3+2) + (1+2+3) + (2+1+3) 

or: C - A - G# - F# - Eb - Db - C - Bb - G - F# — Fi: - D —~C 
I----»_U—. __I ,_ 

C — Bfcj — A — Fff — Efcj — Eb — C 

Figure 206. Permutating a group with a short span. 

The selection of number values is left to the composer’s discretion; if he 
wants to obtain the tonic-dominant character of classical music, the only thing 
he needs is an excess of the value 5. 

Anyone equipped with this method can dodge extremities of style by a 
cautious selection of the coefficients of recurrence. For instance, in order to 

produce that style of progressions which lies somewhere between Wagner and 
Ravel, it is necessary to have the 5, the 3, and the 10 in a certain proportion- 
such as: 23+5+10i i.e., 

C — A — F# — C# — D#-C-A-E-F# , etc. 
-— l 

Naturally, selection of the tensions and of the forms of structures in definite 

proportions is as important as selection of the forms of progressions when a 
certain definite style must be produced. 

On the other hand, this method offers a fascinating pastime, as one can 
produce chord progressions from any number combinations. Thus, a telephone 
directory becomes a source of inspiration. 

Columbus 5 *— 7573 

5 + 7+ 5 + 7+ 3 is equivalent to 
C-G-C-G-C-A. 

This progression closes after 4 cycles: 

C—G—C—G—C—A—E—A—E—A—Ffl— 

Fft — C# — Ffl — C# — F$ — 5ft - A# — D# — A# - D# - C 

Figure 207. Chord progressions from a telephone number. 

When zeros occur in a number-combination, tney represent zero-steps, i.e., 
zero cycles (C0). Then the form of tension, the structure, or the position of a 
chord has to be changed. 



492 SPECIAL THEORY OF HARMONY 

Example of Continuity: 

A. Generalized Symmetric Progressions as Applied to 

Modulation Problems 

The rhythm of chord progressions expressed in number-values may serve the 
purpose of transition from one key to another. This procedure can be approached 
in two ways: (1) as a problem of connecting the tonic chords of the preceding 
and the following key; or (2) as a problem of connecting any chord of the pre¬ 
ceding key to any chord of the following key. The last case requires movement 
through diatonic cycles in both the preceding and the succeeding keys. 

The technique of performing such modulations, based on the rhythm of 
symmetric progressions, consists of two steps: 

(1) detection of the number-value expressing the interval between the two 
chords, where such connection must be established; 

(2) composition of a rhythmic group from the numeral expressing the interval 

between the above-mentioned chords. For example, if one wants to per¬ 
form a modulation by means of symmetric progressions from the chord C 
(which may or may not be in the key of C) to the chord Eb (which may 

or may not be in the key of Eb), the first procedure to perform is to com¬ 

pose rhythm from the interval 9. The techniques set forth in the Theory 
o/ Rhythm* offer many ways of composing such groups: composition of 
binomials, trinomials or larger groups from the original number, or any 
permutation thereof. 

The number of terms in a group will define the number of chords for the 

modulatory transition. Breaking up number 9 into binomials, we obtain: 8 + 1, 
7 + 2, 6 + 3, 5 + 4, and their reciprocals. When a binomial is used in this 
sense, the two chords are connected through one intermediate chord. For example, 

taking 5 + 4 we acquire: C - G - Eb. If more chords are desired, any other 
rhythmic group may be devised from number 9. For example, 4 + 1+4, which 
will give C — Ab — G — Eb, i.e.,*two intermediate chords. 

•See Book I. (Ed.) 
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When a number-value expressing the interval between the two chords to 
be connected through modulation is a small number, it is necessary to add the 
invariant 12. This places the same pitch-unit (or the root of the chord) in a 
different octave without changing its intonation. For example, if a modulation 

from a chord of C to the chord of Bb is required, such an addition becomes 
very desirable. 

C -*Bb = 2 
Bb —* B+= 12 
12 + 2 = 14 

Some rhythms derived from the value 14: 

7 + 7 = C - F - Bb 
5+2+2+5=C — G — F - Eb - Bb 

In cases such as this, rhythmic resultants may be used as well, providing 
the necessary changes are made. 

r4-*-3 = 3 + 1 + 2+ 2 + 1 + 3 

Readjustment: 

3 + l+ 2+ 2 + l+ 3 + 2= C—A — Ab — F# — Fb — Eb—C — Bb 
Or: 

r5*s-3 ='3+2 + 1 + 3 + 1 + 2+ 3 

Readjustment: 

3 + 2 + 1+ 2 + 1+ 2+ 3- C— A—G — F# — E — Eb — Db — Bb 

All these procedures guarantee the appearance of the desirable Bb point. 

When a modulation of still greater extension is required, the invariant of 
addition becomes 24 or 36—or even a higher multiple of 12—from which rhyth¬ 
mic groups may be composed. 

Many persons engaged in the work of "arranging” find this type of transition 
more effective than the modulations ordinarily used. Naturally, selection of 
structures of different tension and form may be made according to the require¬ 
ments of the general style of harmony used in a particular arrangement. The best 

modulations will result from use of that symmetry which may be detected in 
any given piece of music. 

Even when the tonic-dominant progression is characteristic of harmonic 
continuity, this method may be used with success—it simply requires the com¬ 
position of a rhythmic group in which the original value is 5. In this seemingly 
limited case there is still a choice of steps: 4 + l;3+2;2+3; 1 +4. 
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Examples of Modulations 

Through Symmetric Groups 

(1) Key of C to Key of Eb; i = 9 

Symmetric Group: 1 3 —{- 1 -f- 3 -f- 1 (r*of$- series) 

1+3 + 1+ 8+ i 

C----Et> 

Figure 209. Modulation through symmetric group: G-+B\. 

(2) Key of C to Key of Eb 

Chords to be Connected: D-Bb; i = 4; 4 -f-12 = 16 

Symmetric Group: n+s = 3 + 1+ 2 + 1+1+14-1+2 + 1+ 3 

L 

*4-f 3 

Figure 210. Modulation through symmetric group: D -*■ £\. 

' I 'HE basis of the chromatic is: transformation of diatonic chordal functions 

-*• into chromatic chordal functions and back into diatonic. Chromatic con¬ 

tinuity evolved on this basis emphasizes various phenomena of harmony which 
do not confine themselves to diatonic or symmetric systems. What are usually 

known as “modulations” are simply a special case of the whole chromatic system. 
Chord progressions usually called “alien chord progressions’" find their exhaustive 
explanation in the chromatic system. 

Wagner was the first composer to manipulate intuitively this type of har¬ 
monic continuity. Not having any basic theoretical principle for handling such 
progressions, Wagner often wrote them in an enharmonically confusing way. 
(Note, also, that J. S. Bach made an unsuccessful attempt to move in chromatic 

systems; see The Well-Tempered Clavichord, Vol. 1, Fugue 6, measure 16). It 
is necessary, for analytical purposes, to rewrite such music in its proper notation, 
i.e., chromatically rather than enharmonically. A more consistent notation of 

chromatic continuity may be found among such followers of Wagnerian harmony 
as Borodin and Rimsky-Korsakov. 

The chromatic system of harmonic continuity is based on progressions of 

chromatic groups. Every chromatic group consists of three chords which express 
the three stages of the following mechanical process: balance—tension—release. 

These three moments correspond to the diatonic-chromatic-diatonic trans¬ 
formation. 

A chromatic group may consist of one or more simultaneous operations. Such 
operations are alterations of diatonic tones into chromatic tones, by raising or 

lowering them. The initial diatonic tone of a chromatic group and the next alter¬ 
ation have the same name, but the ensuing release results in a pitch-unit of a 

new name. 

The two general forms of chromatic operations are these: 

(1) x 
F 

x# 
F 

(2) x 

\ 
y 

In their application uo musical names these general forms may become, 

for instance, g — g# — a or g — gb — f. Such steps are always semitones. At 
each such moment of release in a chromatic group a new chordal function (and, 

ln some cases, the same) becomes the starting point of the next chromatic group; 
thus the whole evolves into an infinite chromatic continuity. 

i 

14951 
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Such a continuity has the following appearance: 

d — ch — d 
1 ,..i 

d — ch — d , etc. 
■ - .) 

d — ch — d 

tnbution places the release of tension on the downbeat and this sounds satis 

ZZlJ, cT/dilin^of beCaUSe " haVC SCqUired the habit of -n„g 

add11.tion t0 ^ form of continuity of chromatic groups presented in thp 
preceding diagram, two other forms are possible. The latter do not n m 
require the technique of the chromatic " The tnt J tkl "hhT i 

fonns of continuity produces an overlapping over one term: ** addlt’°nal 

(1) d — ch — d 
*■..- mi 

d — ch — d 
* ,r 

d — ch — d 

•X « - SCLT, XX *“ “ - *v«p. 

(2) d — ch — d 

d — ch — d 
— i 

in ti^al^oug^Xfomoftrantf “• ^ transf°™ation nougn tne form of transformatron may be different in each part. 

tbe same ctrd ofTchrLlT” tha" 
h.,o be intensified, the following forms of 

The only combination which is undesirable 
ness—is that m which the middle term is S(5). 

-it produces an effect of weak- 
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Operations in a given chromatic group correspond to a group of chprdal 
functions which may be assigned to any form of alterations. For technical 
reasons 4-part harmony is here limited to S(5) and S(7) forms with their in¬ 

versions; so all transformations of functions in the chromatic group deal with 
the four lower functions, 9, 11 and 13 being excluded. 

Numerical Table of Transformations 

for the Chromatic Groups.* 

“ U T , must be exc,uded because of the adherence of 
he seventh to the classical system of voice-leading, the descending resolution. 

(\ £reCfd,nL-able °fferS 16 different versions for each starting function 
3’ 5’ ?)- In add,tlon to this, any middle chord of a chromatic group may 

assume one of the seven forms of S(7); any of the last chords of a chromatic 

* P may have either one of four forms of S(5) or one of seven forms of S(7). 

a»c<uis, lor example, UHt a tone-—let us 
S of tlle triad, C-E-G—selected 
chromatic alteration will be the 1 (root' 
the first of the three chords in the chrom 

groups; it will be, when altered (say, C#), 
the 3 of the second chord; and it will be, when 
the alteration is completed (say, D), the 5 
of the third chord. (Ed.) 
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Thus, each starting point offers either 28 or 49 forms. The total number of 
starting points for one function equals 16. These quantities must be multiplied 
by 16 in order to show the total number of cases. 

28 X 16 = 448 

49 X 16 = 784 

This applies to one initial function only, and, as any group may start with 
any of the four functions, the total quantity is 4(784 + 448) = 4,928. A 
number of these cases eventually exclude themselves because of the above- 
mentioned limitation imposed by the tradition of voice-leading.- 

Actual realization of chromatic groups must be accomplished on what we 
may call the two fundamental bases: the major and the minor. This concept of 
harmonic basis refers to any three adjacent chordal functions, such as: 

5 7 9 11 13 

3 5 7 9 11 

1 3 5 7 9 

Owing to practical limitations this section of my discussion of harmony will 

deal with the first (a) basis only.* The terms major and minor correspond to 

the structural constitution in the usual sense: major = 4 + 3, and minor = 3+4. 

All fundamental chromatic operations are derived from these two bases. 

Major Basis Minor Basis 

1# lb 

These six forms of chromatic operations (3 on each basis) are used independently. 
Chromatic operations available from the major basis are: raising of the root- 
tone; lowering of the third; raising of the fifth. Note that they are the opposite 
of those of the minor basis. 

S(m1“or's(£» *i^triLdSU"gh^th an iL(9)' ry *» P"*1™*1 »n the» three tones as if 
tones'^ b<? thTee th®y were a ringle triad rather than part of tones form a triad, the chromatic operation a larger structure. (Ed.) p 
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Examples of Chromatic Groups: One Operation 

Table of Transformations. 

6-1-1 1-1-7 

Figure 212. One operation transformations (continued). 
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5-1'8 1-6-8 

8-8-8 

Figun 2i2. One operation, transformations (concluded). 

system of voice-leading?^ w’ remembenn* that th<= classical 

-y* iw*c:i.T5a!sr 

explained in the following lesson. r0m othcr ba8es Wl11 bo 

liSK Becaaqple qf chromatic continuity. 

2SV*1b£i 
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A. Operations from S,(5) and S4(5) Bases 

correspond to thol for S^^Thly^re^ 3 °f Sl(5)> ^ fundamental operations 

(1) raising of 1 

(2) lowering of 3 

rases’altho,,fth * rptains ;ts — a;. t;“ 

correspond to tho«L for S^^he^are! 3 °* 1116 fundamental operations 

(1) lowering of 1 

(2) raising of 3 

rectified ^ ^ n<>t in 1,16 fundamental operations .but may be 

***"' 2U. Operations from m augmented S, (S) to*,. 

‘Th' meaninB °f ta *•— is gained page 503. (£d, 



502 SPECIAL THEORY OF HARMONY THE CHROMATIC SYSTEM OF HARMONY 503 

B. Chromatic Alteration of the Seventh 

Because of the classical tendency toward a downward resolution of the 
seventh, chromatic alterations in this case conventionally follow the same direc¬ 
tion. This lowering of the seventh (both major and minor) can bo carried out from 

all forms of S(7). If the seventh is minor, it is more practical to have it as sharp 

or natural, since lowering of the flat produces a double-flat. Do not operate from 

a diminished seventh. 

Figure 217, Examples of operations from the seventh. 

All the single operations may now be incorporated into a final example 
of a form of chromatic continuity: 

Figure 218. Operations from 1,3, S and 7, all bases. 

C. Parallel Double Chromatics 

Parallel double chromatics occur when fundamental operations are performed 

from an opposite base. In such a case the rectification of the third is required. 
If, for example, we decide to lower the 1 of the Si(5) basis, it becomes neces¬ 

sary to adjust 3 to its proper basis, i.e., in this case to lower it. 

We shall consider the alterations of 1 and 5 as fundamental; the correction 
of 3, as complementary. 

g
y

-
a
a
a
s
a
s
: 
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The following table represents all operations. 

Parallel Double Chromatics. 

Si{5) basis 

f Fundamental lb 
(Complementary 3b 

Fundamental 5b 

Complementary 3b 

Figure 219. Parallel double chromatics. 

S*(5) basis 

(Fundamental 1# 
[Complementary 3# 

(Fundamental 5# 
[Complementary 3# 

The fundamental chromatics represent the middle term of a complete 
chromatic group; whereas the complementary chromatics do not necessarily per¬ 

form the conclusive movement designated by their alterations. Thus, the scheme 
of chromatic groups for the parallel double chromatics is generalized as follows: 

(1) 

(fundamental) 

(complementary) 

i 

(fundamental) 

(complementary) 

For example, if c — cb — bb is a fundamental operation, the complementary 
chromatic is e — eb- The complementary chromatic eb does not necessarily 

move into d. It may remain, or it may even move upward-depending on the 
chordal function assigned to it. 

The same is true of the ascending chromatics. If c — c# — d is the funda¬ 
mental operation, the complementary chromatic is eb — e. The comp!ementar> 
chromatic e does not necessarily move to f; it may remain, or even move down¬ 

ward, depending on the chordal function assigned to it. 

The assignment of chordal functions must be performed for the two simul¬ 
taneous operations: fundamental and complementary. 11 is practical to designate 
the ascending alterations as: f or §, and the descending—as: J or 

This protects the resulting harmonic continuity from a wrong direction and 
sometimes from an excess of accidentals, particularly in reference to the middle 
term of a chromatic group. 

Figure 220. Double parallel chromatics. 

By assigning the opposite bases, we can obtain double parallel chromatics 

at any desirable point in the chromatic continuity. 

Figure 221. Continuity of double parallel chromatics. 
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Double parallel chromatics are the quintessence of chromatic style in har¬ 
mony. It is these chromatics that created the unmistakable character of Wag¬ 
nerian and post-Wagnerian music. While an analysis of the music of Borodin, 
Rimsky-Korsakov, Franck or Delius does not present any difficulties to an 
analyst familiar with my theory, the music of Wagner often requires transcribing 
into chromatic rather than enharmonic notation. One of the progressions typical 

of Wagner’s later period, for example, (we find much of it in his Parsifal) is: 

Figure 222. Typical Vagner. 

But when transcribed into chromatic notation, it has the following ap¬ 
pearance: 

5 
8 - 

Figure 224. Triple parallel chromatics. 

Figure 223. Previous figure transcribed into chromatic notation. 

This corresponds to the Si(5) basis: J 
1 \ 

There are many instances in which double parallel chromatics are evolved 

on the basis of passing chromatic tones; they are abundant in the music of 
Rimsky-Korsakov, Borodin and lately have become very common in American 

popular and show songs (Cuban Love Song, The Man I Love, for example.) 

The historical source of passing chromatic tones, however—the technique of 
which 1 shall discuss later is Chopin rather than Wagner or the post-Wagnerians. 

D. Triple and Quadruple Parallel Chromatics 

Triple parallel chromatics occur when the 1 is raised in S«(5) basis. This, 

being the fundamental operation, requires the correction of the third (3#) and 
of the fifth (5#). The triple alterations become: 

5 7 

3 or 5 

1 3 

Quadruple parallel chromatics occur when the 1 is raised in S6(7) basis 
[diminished seventh-chord]. This requires the alteration of all remaining func¬ 

tions, i.e., 3#, 5# and 7#. This is the only interpretation satisfying those cases 

of chromatic parallel motion of the diminished seventh-chords—such as that 

found in Beethoven’s Piano Sonata No. 7, the largo movement, (measure 20 

from the end and the following five bars in relation to the adjacent harmonic 

context). Such a continuous chain of quadruple parallelisms takes place when 
the same operation is performed several times in succession. 

As the chromatic system is limited to four functions (1, 3, 5, 7), quadruple 
parallel chromatics remain with their original assignments (while being altered). 

Figure 225. Quadruple parallel chromatics. 

By combining all forms of chromatic operations, i.e., single, double, triple 
2nd quadruple, we obtain an example of the final form of mixed chromatic 
continuity. See Figure 226 on the following page. 



Pignre 226, Continuity of mixed chromatic operations. 

E. Enharmonic Treatment of the Chromatic System 

By ratersing the original directions of chromatic operations, we more than 
double the original resources of the chromatic system. 

Enharmonic treatment of chromatic groups consists of the substitution of 
raising for lowering, and vice versa. This changes the original direction of a group 
and brings the second, or “tension,” chord to a new point of release in the third 
chord. 

The following formula expresses all conditions necessary for the enharmonic 
treatment. 

,x# = yb. 

(!) x z (1,3,5, 7) 

(2) x z (i, 3, 5, 7) 

- yr 

Progressions of this kind are characteristic of the post-Wagnerian composers 
—see Borodin’s opera Prince Igor, Rimsky-Korsakov’s opera Coq d'Or and 
Moussorgsky’s Kkovanschina. 

•I; 
ill 
•If 
«*i 

1 i; ; it 
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Figurt 221 • Enharmomc treatment of chromatic system (concluded). 

B&: 
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In using double or triple chromatics, all or some of the altered functions can 
be enharmonized. 

Figure 228. Enharmonic treatment of double and triple chromatics. 

F. Overlapping Chromatic Groups 

The use of overlapping chromatic groups produces a highly saturated form 

of chromatic continuity. Alterations in the two overlapping groups may be 
either both ascending, or both descending—or one of the groups can be ascending 

while the other is descending. The choice of ascending and descending groups 
depends on the possibilities presented by the preceding groups during the moment 
of alteration. 

The general form of overlapping chromatic groups is: 

d — ch — d 

d — ch — d 

This scheme, being applied to ascending and descending alterations, offers -4 
variants. 
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figure 229. Examples of overtopping chromatic groups. 

purposes 7ZTJ," '*** "*0”* can * constructed is as follows: (For 
”simi5trat,0n’ We U8e 229 ** «*«". The procedure in other 

Write the first chord first: 
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The next step is to make operations in one voice; in this example, 1$ was 

chosen in the bass: 

Figure 231. Step 2. 

The next step is to construct the middle chord of this group; 1# was as¬ 

sumed to remain 1, which yielded the C# seventh-chord: 

Figure 232. Step 3. 

The next step is to estimate the possibilities of other voices with regard to chro¬ 

matic alterations. 

The b —► t>b step permits us to construct a chord which necessitates the 

inclusion of d and bb. Another possibility might have been to produce g —»g#, 

which would also permit the use of d in the bass, as in the second example of 

the figure just given. The third possibility might have been the step e —* e#, 

m the alto voice, which also permits the use of d. Even such steps as e —» eb 

or g —+ gb would be possible, although the latter would require an augmented 

S(7), i.e. (reading upward) d — gb — eb — bb- 

Figure 238. Continuity of overlapping chromatic groups. 
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G. Coinciding Chromatic Groups 

Ml Jhe *echnique of evolving coinciding chromatic groups is quite different from 
all the chromatic techniques previously described. It is more sSr to the 

echmque of passing chromatic tones, which we shall discuss later. 

thnw.CNinCidin8 Ch™™at!c *rouPs are evolved as a form of contrary motion in 

iZ bcgilTeS “ i0UbHni °! }UnCil°n *th' M wkich the 

The genei*al form of a coinciding chromatic group is: 

d — ch — d 
d — ch — d 

or inwaerd™ntrar> direCti°nS °f the chromatic operations may be either outward 

y 

(i) x 
X 

(2) x 

/ 

\ 

*# 

xb 

xb 

x# 

/ 

\ 
y 

cidingASagupmcai ^^0™^?'^ -T^T" the middle chard a eoin- 
by sonority by Sldcmlff thcni ^harmonically instead of 

Tor instance, in a group 

\ 
cb 

\ 

c# 

bb 

d 

‘ho5ine^Tt Ca" ** T* enharrn°nically, i.e., as cb, in which case it becomes 

Cs’wetnJ;^ucyt fcWrd ^^^ ^ d ^ 

full control of the’ variable doubling teL^'xL’doubHng TTs* 

(Hid smminthr)rust be used intenti°°*"y ^^itnsi 
S(5) and S(7) the latter, naturally, to obtain the doubled 7. 
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Notation of chromatic operations as in all other forms of chromatic groups). 

Figure 234. Coinciding chromatic groups. 

It is important to remember in executing the coinciding chromatic groups 

that the first procedure is to establish the chromatic operations. 

Figure 235. Step 1 in constructing a coinciding chromatic group. 
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-and the second procedure is to add the two missing functions. 

^figure 236, Step 2, 

Of th^oufg thiS' the final Step is to “*» th« functions in the last chord 

3. 

Figure 237. Step 3. 

rmrfle-J ln m0Ving fr0m “ octave inward by 

from unison or octave, the In m0ViDg outward uive, me last term of the group produces a major third, 

a contil™'StoinjdintfH,the8e);COnSideratiC,'S int° aCcount while cvolvmg 

any two ** ^ gTO,P “ Start 
minor sixth. y un,80n* an octave, a major third or a 

The following are all movements and directions with respect to c. 

(1) c 

(2) e 
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Figure 238. Continuity of coinciding chromatic groups. 

All techniques of chromatic harmony may now be utilized in the mixed 
lorms of chromatic continuity. 



CHAPTER 14 

MODULATIONS IN THE CHROMATIC SYSTEM 

sa'fir-.-i-s - a: 
As our musical system operates with m* «amej i e c d e f - k 

every possibility within the seven-unit scalM m„ct kJ * ’* \ f’ g’ a' b’ 

-- 
» concerned), everyW 
an5- preceding and following key. b common chord between 

or example, a transition from the kev nf C tr. 1 c ^ > 

complished by means of seven modulations: M may aC_ 

*"**** Common Chord Foliounn, Key 

Figure 239. Modulations. 

the following key and 
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Combining all forms of modulations from all keys to all keys and assuming 
that every chord may be a common chord, we obtain the following table of 
musical names in naturals: 

Figure 240. Table of musical names. 

From the above table it follows that a common chord may be established 
on any degree of the preceding key—which, in turn, corresponds to a certain degree 
of ike folloiving key. 

Applying this principle to the figure just given, we obtain the following 
key-chord correspondence: 

Figure 241. Key-chord correspondences. 
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The rest of the necessary procedure in key-to-key modulation is simply 
the chromatic readjustment of accidentals. The following key demands that the 
tones be adapted to its real key signature. Thus all names which are not the 

same in pitch in both the preceding and the following signatures must be altered. 
When all names of the common chord are common tones (identical pitches), 
modulation becomes diatonic, i.e., the intonation of the preceding and following 
keys, in this particular chord, coincides. Thus, diatonic modulation is a special 
case of chromatic modulation. 

The technique includes: 

(1) the preceding key has to be developed through diatonic cycles; 

(2) the particular common name chord has to be selected; 

(3) the corresponding chromatic alterations have to be made; 

. (4) the correspondence of the degrees has to be established; 

(5) after the common chord is repeated with the accidentals of the following 

key (preferably in the form of a seventh chord), the continuation— 
and, possibly, completion—has to be performed through the diatonic 
cycles of the following key.. 

When a full completion is needed, a cadence may be added. The common 
chord thus has the significance of the middle chord of a chromatic group. In 
case the modulation becomes diatonic, there is no repetition of the common 
chord and there is no need to have the latter in the form of a seventh chord. 

C-F-G C-F-Gb 

Figure '242. Examples of modulation. 
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There are some cases—mostly those in which the preceding and the follow¬ 

ing keys are one semitone apart, or in which the common chord is one semitone 
away from the following key—in which alterations cause consecutive sevenths 

or an awkward hidden seventh. If such steps are to be avoided, it is necessary 
to have the common chord first as S(5), then as S(7). To avoid the hidden 

seventh, double the fifth in S($), i.e., use S(5)® for the first common chord. 

C-A-Gtt 

Figure 243. To avoid consecutive or “hidden” sevenths. 

This theory of modulation is applicable to all seven-unit scales in which 
each musical name appears once and in which none of the seven intonations 

(pitches) coincide. There are 36 such fundamental scale structures, and each 

of the 36 has six derivative scales (modes) by pitch permutations, producing 
a total of 36 X 7 = 252 scales. 

The ears of our audiences^—and often those of composers themselves—are 
accustomed to modulations dealing with natural major, harmonic major, harmonic 
minor and melodic minor. All other seven-unit scales, even the modes of these 
scales, sound new and strange. Therefore a free use of 252 scales offers a new 
and virgin field to a composer who wants to achieve originality without departing 
from the established trends of musical reasoning. 

Examples of original key-scale relations 
in modulation. 

(1) Key of Cdo*. c — db— eb— f — g — a — b; modulation to the key of 
Eda: a b — c# — d# — e — f — g; common chord: F. 

(2) Key of Cdi: d — e — f#— g# — a — b — c; modulation to the key of 
l>d&: g -a — bb — c — d — e — f#; common chord: E. 
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mod. 

Figure 244. Original key-scale relations in modulation. 

The readjustment of accidentals of the following key may be performed 
gradually (one by one) when an instantaneous change would produce an 
effect of too abrupt a character, as is usually the case when there is considerable 

difference between the real signature of the preceding and the real signature of 
the following key (see the modulation in the preceding example). We shall 
call such cases extended modulations. 

Key I: Cdo Nat. major; 

Key II: G#doNat. major; 
common chord: A. 

The reader is now in a position to work out a systematic tabulation of all 
modulations, if necessary. Here is offered one example of a table comprising 
all the modulations between two keys and two scales. More such tables—between 

other pairs of keys and scales—may be worked out in a similar way. 
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Example of all modulations between two 
keys and two scales. 

Key I: Cdo Nat. major; 

Key 11: Ebdo Nat. major; common chords: (1) C; (2) D; (3) E; (4) F; (5) G; 
(6) A; (7) B. 

%gUre 246‘ AU modulations between two keys and two scales {continued). 
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Ftgure 246■ AU modulations, between two keys and two scales (concluded). 

A. Indirect Modulation 

It happens that the typical, trivial academic modulations into remote key 
signatures by means of mtermediate keys are known to lack musical interest. 

ese academic modulations sound very unimaginative, indeed, especially after 
one has listened to a symphony by Schubert or by Mendelssohn-not to men- 

ion the modulations of such leading composers who came after Schubert and 

Mendelssohn, as Wagner, Brahms, or Franck. 

, J*UVf a?demicJ. modu,ations are analytically dissected and if the cause 
of. their triviality is found, then, perhaps, the same analysis will lead us to an 

explanation of the modulatory secrets of Schubert, Mendelssohn, Wagner and 
others. Such was the reasoning which led me to the discovery of the theory of 
indirect modulations. 

, The fundamental solution of this problem (i.e., the selection of intermediate 
keys to link the initial and the terminal key) lies in establishing a scale of key- 
signatures. 

Let us take the established key signatures, i.e., those which are real for 
natural major. Let us next assume the starting point to be “zero accidentals” 

f': ' 01 L),whl.cih wiU become the axis of symmetry for the reciprocal position 

0‘tuh7flPp051ltelaccldentals* For example, 3 sharps above the axis are equidistant 
with 3 flats below the axis, 

MODULATIONS IN THE CHROMATIC SYSTEM 525 

Under such conditions the scale of key-signatures, which we shall here limit 

to seven accidentals, will assume the following appearance: 

Figure 247. The Scale of Key Signatures for the Natural Major. 

The academic method of planning intermediate keys for remote modulations 
exhibits a definite tendency (even though it is usually expressed through a 

whole system of complicated rules) which tendency can be formulated as: the 

accumulation of sharps when the preceding key has fewer sharps than the follow- 
mg key, and the accumulation of flats when the preceding key has fewer fiats 

than the following key. When such a tendency is carried into practice directly, 
the outcome of such planning can be graphically represented as: scalewise motion 

through the scale of key signatures. The latter would be one general rule working 
m all such cases and would exclude all other rules. 

Let us, for illustration, apply this rule to the planning of a typical academic 

modulation. Major and minor keys are frequently alternated—and we shall 

o ow this precedent: let Db major be the preceding and E major be the following 

f °n ' ^ c*raw*n8 a scalewise graph between the limits of the preceding and the 
° 0wm£ key we obtain the key-sequence shown in Figure 248 on the following 

Page. 
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Figure 248■ Sa^mise graph b; major ,0 E major . 

The graph above can be read as follows- 

Th D‘, + f + E‘’+e + F+a + G+b+A+E 

to rep^eS„o:t^here " * r™ keys; the small letters, 

minor ' transition ‘h™ugh 

In '^-TX IKS 
" *"*« in such a 

Figure 249. Shortening the modulation. 
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One could extend this principle still further to make wider gaps on the 

scale of key signatures; but this would not help, for the trajectory still remains 

predominantly scalcwisc—and such a form never produces anything of interest. 

Thus we arrive at the conclusion that, bv producing more dramatic forms 
of trajectories on the scale of key signatures, -we can obtain more expressive 
modulations. 

The fact is that any trajectory which is not scalewise produces modulations 
with musicq.1 interest. Various forms of resistance, binary and ternary axes_ 

as set forth in my earlier discussion of the theory of melody—constitute such 
material. 

Here are a few examples of the planning of such modulations to remote 
keys. 
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Deciphering the graph, we get: 

(1) Bb 4- c + Ab 4- D; Bb 4- c 4- Ab 4- b- 
g + Eb + f 4. D; g -f- Eb 4- f 4- b. 

(2) Bb 4-d 4-Ab 4-D; Bb 4-d 4-Ab 4-b- 
g + F 4- Ab + D; g + F + Ab + b. 

(3) B^+Gb+d + EM-D; Bb+Gb + d+Eb+b; 
g + bb+F+c + D;g + bb+F + c + b. 

W f+F++c + C+1 D; + d + Eb + e + Ab + b; 
g + F+ c+ G+ f+ D; g + F-fc+G + f-fb. 

(5) Bb+c+Ab+d+g-j-C+c-fD; 

Bb+c-fAb-j-d+g-fC-fEb-f-b- 
gH-Eb+f-fd+Bb+a+c + D; 
g + Eb + f + d + Bb + a + Eb + b. 

Figure 251. The previous figure deciphered. 

or in time ul'. m ** espressed either in chord-units (H) 
number of H in u *r • ^ w^lc^ **, practically, the same thing when the 

•Utrsal).,n ^ T “ C°nStant (ie' Whe" - —ber of chordsln each bar 

Let us take as an example the first modulation in group (4) of Figure 250. 

Bb -f d + Eb + e 4- Ab *f D. 

nece^^^Teltil^^ **jT ^ “ *** * » 
presrat somedefinhp t ‘"‘T" f* °n,y' Th - intermediate 

and the following keys as well as to !?Va.ent Ume *Ith rc8ard to the preceding 
ng Keys, as well as to the duration of the entire modulatory group. 

on 8-ILealaSst™cturalthuan|tmTKC in the firSt and ** *■« key is based 
group, we cSlv dkrihto Tt, r Wa"‘ a!l0W 8T for ‘He entire modulation 

in this case would be-j- = 2 ie 2T°“rr^term^dlate.keys' The simplest solution 

the following appearancef' ^ V' W "•«■“«»*” takes 

Bb8T + d2T + Eb2T + e2T + Ab2T + D8T. 

^ The above scheme can be plotted as shown in Figure 252 on the following 
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Figure 252. First modulation of figure 250 plotted to 8T structure. 

It is easy to see that the same scheme can be represented through the quan¬ 
tity of H. For example, assuming that there are three chords per T, and sub¬ 
stituting 3H for each T, we obtain: 

Bb24H + d6H + Eb6H 4- e6H -f Ab6H 4- D24H. 

Any non-uniform distribution of intermediate keys must conform to the 
rhythmic series to which the factorial continuity of the theme belongs. 

Eor example, let us assume that the above described 8T-groups belong to 
f series; we want to find a proper form of distribution for the four intermediate 

keys, and we want to express it in T-units—and this amounts to the construc¬ 

tion of a quadrinomial in •§- series. Of the three trinomials of this series, i.e. 

3+24-3 and 24-34-3, we may choose any one. Let us take the first 
trinomial and evolve a binomial split-unit group out of the first term: 3 = 24-1. 

hen the quadrinomial acquires the following form: 24-14-34-2. 

Applying this quadrinomial to the modulation group under discussion, we 
obtain: 

Bb8T 4- d2T 4- EbT 4- e3T 4- Ab2T 4- D8T. 

such key-time schemes, it is well to carry them out as closely 
as possible, although there is no need for absolute mathematical precision. 

n > the total duration of the entire modulation group must be carried out exactly. 
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Example of indirect modulation with, key-time 

planning: 

(Bb8T) -f d2T -f- EbT -f e3T 4- Ab2T -f (DBT) 

Figure 253 Indirect modulation with key-time planning. 

CHAPTER 15 

THE PASSING SEVENTH GENERALIZED 

AS we have seen before, the preparation of the seventh in C0 requires a de¬ 

scending step from the root-tone. In C3 the seventh while resolving, becomes 
a new root-tone. This fact permits as to develop a continuity of the passing 
seventh when Cs is constant. All transformations are applicable. All chords 

must be S(5). 

Figure 254. Passing seventh. 

By reading the above figure backwards, we obtain an ascending scale in the bass. 

The cycle in such a case becomes negative (C-3) and the transformation 

Figure 255. Previous figure read backwards. 

Examples of the other forms of transformation: • 

Figure 256. Other forms of transformation. 

[531] 
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In each case the role of the base can be transferred to soprano. 

j-tgure -* rumj erring 

upwar/for the positf^lycleTn^^le^H'f 3" ** aCJ’leVed by a leaP of a seventh 
cycle. K *’ and a leap of a seventh downward for the negative 

Figure 258. Adding flexibility of melodic form. 

fo™s of distributioifof t^wtletiMttepTC ^ aC?mp,ished by P™-** 
^ermine the nnmber of 

Figure 259. Pre-eel form of distribution of scalcwise steps (continued). 
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Hgure 259. Pre-sel form of distribution of scalewise steps {concluded). 

A variety of melodic forms may also be obtained by mixing Cg and C-*. 

4C-j + 3C, 

Figure 260. Mixing C3 and C-s 

All forms of the generalized passing seventh are applicable to modal trans¬ 

position, as well as to progressions in harmony of types II and 111. The latter 

must be confined to -^2 and -\/~2, (three and four tonics), as only these two 
systems correspond to the C* and C-». 

(A) Phrygian (do) 

Figure 261. Modal transposition. 
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Jn lypo II all structures must be specified as S(7) and S(9) in such a w.i 
to contomi to the'seventh of one family 

Example: large -f 2 minor -f small. 

Figure 262. In type II, all structures must be 5(7) and S(9). 

The use of but one consistent S for the whole progression results in a con- 
Sistent scale in the moving voice for each half of the entire cvcle. 

Figure 263. 5(7) large constant. 

A. Generalized Passing Seventh in 

The fundamental material for this 
three and four tonics. 

Progressions of Type III 

technique is the progressions based on 

This’m T T6 °f •m'* t0niCS *he ‘nterVal between the roots equals 4 semitones. 

t*e dTmh1TshedPOSS C ‘° ““ ‘hra,Jorms °^,he saenlh■tha ™jor. the minor and 

Figure 264. Passing 7th in 
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In this field, by means of symmetric chord progressions and the passing 

seventh device (which need not always “pass” in the conventional sense), we 

obtain pitch-scales of the third group. The number of tonics in the scales corres¬ 

ponds to the number of tonics in the chord progression. As in previous cases, 

the bass part can be placed above the remaining three voices and, as before, it is 

subject also to octave variation (leap into the adjacent octave). 
■ As the 1, 3 and 5 of the three voices may be Si(5), Sa(5), S8(5) or S4(5), it is 

possible to obtain automatically some of the new structures of S(7), which belong 

to the category usually known as “altered chords. 
In four tonics the interval between the roots equals 3 semitones. This gives 

us a choice of a major and a minor seventh. 

Figure 265. Passing 7th in \/2- 

The above two cases produce the Arabian scale called String of Pearls 

(Zer ef Kend) in its two versions. The ascending forms can be obtained by re¬ 

versing the cycles: 

C — E — Ah — C for the three tonics 

and C - Eb - F# - A for the four tonics. 

By mixing the positive and the negative forms, we can acquire a rfiore diversi¬ 

fied melodic structure. 

Figure 266. Mixing positive, and negative forms. 
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into ~ ^ ^UCeS StiI1 ~ varies 

FtgUre 267• ***** Of structures and of sevenths. 

/tUr.^ler deveIopment of this fi 
that 1 followed by 7 in C0 can be u may be obtained through the assumption 

in any symmetric system other than C3. 
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Under such conditions, i.e., without the necessity of resolving the seventh 

by scalewise downward motion, it is possible to apply the technique of the passing 
seventh to generalized symmetric progressions. 

Figure 269. Applying the passing seventh to generalized symmetric progressions. 

B. Generalization of Passing Chromatic Tones 

oi me seventh available in the system 
tomes, we may now incorporate all three into a continuous progression. 

Figure 270. Three forms of the seventh in one progression. 

Applying the same to the negative form of three tonics, we obtain: 

Figure 271. Negative form of three tonics. 

shallLnowWute’ the S>:’Stem °f f°Ur t0n‘CS °fferS tW° f°rmS of 11,6 seventh-we iow use them in succession: 

Figure 272. Four tonics offer two forms of the seventh. 
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The same approach is applicable to the negative form of four tonics- 

system 

chori equ‘° ** harmonized by °"< 

two tonics requires *£ = 6, i.e six units'lf th *” ™?S* ThUS’ system 01 
by one chord. S °f the chromatlc scale to be harmonized 

Figure 274. Two ionics. 

The system of six tonics requires = 2 ;p * 

scale to be harmonized by one chord. ^ ’ M tW° UmtS °f the chromal 
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Figure 275. Six Tonics (concluded). 

In the system of twelve tonics, each pitch-unit of the chromatic scale must 

be harmonized by one chord, as -ff = 1. 

In this way we establish an interrelation between the complete form of 

symmetry of our tuning system (v^2) and the subsystems of this symmetry 

(V2» V^2, yfl and v^2). 

A mathematical representation of the forms of symmetric harmonization 

of the chromatic scale would be: 

Form of Number of chromatic 

symmetry units per chord 

1. 12 

V2. 6 

<Tl. 4 

<n. 3 

. 2 

KTi. 1 

Figure 276. Symmetric harmonization of chromatic scale. 

by 
We see that a variable quantity of units of the chromatic scale may be harmonized 

means of generalized symmetric progressions. 

Example :6+l+4+2+3 

Figure 275. Six Tonics (continued). 

Figure 277. Harmonizing by means of generalized symmetric progressions. 
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Wn appL *ven tt" Sn S”rmS T* HaVe 
point; the structures may be varied. P Performed from any 

Ftgtire 278. Leaps areappUcable to chromatic passages. 

When passing chromatics fill the intervals between th* 

they resuit in chromatic passages symmetric ' "*** 

vhoU^tlny Si T/SZnST " ‘ ?”*** °'*“”* * " « « 
to the given ^ telatec 

Type 1= Original 

Typ? 1= Chromatic variation 
J1 

Type 11= Original 

Figure 279'. Passing chromatic tones {continued). 
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Type 11= Chromatic variation 

Figure 279. Passing chromatic tones (concluded). 

.^.1|though a chromatic harmonic continuity (of any form) offers but limited 

fi-tT' * !tICS °r *nsert*on passing chromatics, such a procedure can never- 
c css °c accomplished if and when necessary. 

Chromatics Original 

t m ° -—tu-n —p 

*""q .. -'I1 -■ .. 

- a ~-h- 
-**•*=-e-*- 

-—--n-- 

Figure 280. Passing chromatics inserted into chromatic harmonic 

continuity (continued)' 

■■ 
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Chromatic = Chromatic variation 

FigUre m- Chr0nat™ * *«*■< into chromatic Harmonic continuity 
(concluded) 

C. Altered Chords 

~ r sr,£r-~ ■*'— 
is’ vcry nmTt^6 °f inf,°rmati0n r^ding “altered chords" 

chords become all butwh 'n **“ f<>rmS °f altered 
chromatic tones. V rou?h the technique of passing 

r^Tnfhebm^^^r' aItho“«h i« their written forms, ror- 

haLn> ZL falT8 T? ^ “ this S-cial theon- of 

entirely new progressions (as no,:pa J witf^SX 

For example, a chord— 

Figure 281. 

may be known in the key of harmonic G#-minor (II) in the following 
notation: 

Figure 282. Same chord in G§ minor (II). 

Yet in the first notation it moves into A-minor (I)A- 

Figurc 283. Moves into A minor (I) in first notation. 

THE PASSING SEVENTH GENERALIZED 543 

whereas in the second notation it could move through^any cycle in the key 
of G# - minor. 

Some other altered chords do not correspond to any of the structures previously 
classified, as-they contain an interval 2—and all structures previously classified 
contain 3 and 4 only. 

For example: 

Figure 284. Other altered chords. 

—where is an interval of two semitones. 

In order to obtain a progression where such altered chords occur, it is neces¬ 

sary to start with a chord produced by passing chromatics and alternate con¬ 
tinuously the altered and the regular chords. 

Figure 285. Alternating altered and regular chords. 



CHAPTER 16 

AUTOMATIC CHROMATIC CONTINUITIES 

^ T'r] by mcans of «— to be moving wed b> whatever voice or voices happen 

A. In Three-Part Harmony 

are three gwMlT6”?1 Prf*^°n: SAT. As there 

one semitone lower, we obtain 3 X 12 - t “ ^ SUCCeedin« starts 

malic continuity of this type doses atTlfi l i ”8 6ach Case' chr°- 
progression. ses at 36 + 1, i.e., on the 37th chord of the 

there are 6 in’tWs'^T deVe’°P fr0m vanations of the part-sequence, of which 

SAT’ STA’ TSA' AST, ATS, TAS. 

each moving in the^me, mOV?ng in one direction is 4 x 6 = 24, 
we double the quantity. By reverslnEthe direction of each progression, 
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Summarizing the total number of possible forms for three-part automatic 

chromatic continuity, we arrive at the following figures for all cases in which 

one voice moves at a time. 

4S produce 4 forms of intonation 

Chromatic scale produces a sequence of 36 chords 

SAT produce 6 variations of the sequence for each form of intonation 

The 2 directions (upward and downward) double the quantity of all forms 
of sequence and intonation 

Total: 4 X 6 X 2 = 48 forms 

(a) S*(5): ATS | (b) Sj(5): TSA f 

Figure 287. (a) S*(5): ATS j . (b) S3(S): TSA f 

at aI** teConiqUe ?f 86111110,121 motion makes it possible to move two voices 
time. Both voices must move in one direction. 

js mlthemad(^ny0f C°mbinati°nS OUt of three elements> taken two at a time, 

r - 3! _ 6 
s^2 2! (3-2)! “ 2-1 ~ 3 

In the simultaneous (vertical) arrangement they are: S S 

A A 
T T 

arranwrt e°UStm0tlOn °f tW° P31^ re<5uires the use of all three combinations 

be no wa " t"V ° th® 6 possible forms of succession. Otherwise, there would 

become “T* 3t th.e original structure and the entire sequence would 

and these I?,*!) m?re distorted. Some cases produce consecutive seconds, 
these’ lf felt to be undesirable, may be omitted. 
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An example of two-part chromatic motion 

in all six permutations of the 
original combination. 

Original Structure: Si(5) 

Direction: t 

(a) A S S 

T T A 

(b) A S , S 
T ^ A T 

(c) S A S 
A t t 

(d) S A S 
T ~r T 7" A 

(e) S S A 
T ^ A -r t 

(f) S , S , A 
ATT 

Figure 288. Two-part chromatic motion. 
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Another form of automatic chromatic continuity applies to the variable 

number of parts participating in simultaneous moves. In three-part harmony, 

it is possible to alternate the two simultaneous parts and to use the remaining 

one to produce compensation. 

Thus the following forms are available: 

(1) S (2) S (3) S 

A ; A ; A , 

T T T 

as well as their reciprocals: 

(1) S • (2) S (3) S 

A; A ; A. 

T T T 

(1) 

Figure 289. Alternating two simultaneous parts. 

The above combinations may be further combined into continuously vary¬ 

ing groupings. 
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" f *) * (sV (4s) 

"(r ‘) + (%K$) 

***""’ ■?*>. Combining foregoing (figure 289) with continously varying groups. 

and °l ““T*"1 continuity insists of variations of the single 

both descending d ^ ““ appear in 

Example: 
St S I 

At aJa! 
I s* St 

Tt Tt Tt- 
AT 

FigUrt 291 ■ Varying lhe se^<> ^tending and descending directions. 

the “ -* ^ -* <* 

A. In Four-Part Harmony 

Thisoff^T ha7n°ny any form of S<7> "»y be selected as a starting point 

SATE to be on"0:! “?">* the —« 
as many for the ascending progressions. descending and 

7XWX2e=3Mf„7J:™S f, int0nation to eacb progression, we obtain: 

times 2 for the descending ““ SATB 5e<luence' 
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The number of combinations out of four elements taken two at a time is: 

^ 4! _ 24 _ * 
~ 2! (4-2)1 = 4 

These combinations by two refer to two simultaneous moves to be used in¬ 

dependently, i.e., without compensation. 

S ; S ; S 
A ; A ; A 

T T ; T. 
B B B 

In using these combinations by free choice, remember that the direction 
may be changed only after the participation of all four voices m equal quan¬ 

tities and regardless of the combination selected. 

For example: 

S t 
A 

S 

T 

BT BT 

represents a group in which all 
voices participate twice. 

Another form of four-part automatic chromatic continuity is based on the 
compensation of pairs of the simultaneously moving voices. 

The following forms are available: 

(1) S 
A 

T 
B 

(2) S 

T 

(3) S 

(4) (5) 
A 
T 

B 

A 

B 

S 

T 

A ; 
T 

B 

(6) S 
A. 

T 
B 

As the first of the two combinations in each group is compensated by an¬ 
other combination by two, this includes the reciprocals as well. 

1. 
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Still another form of automatic chromatic continuity is produced by simul¬ 

taneous motion of three voices (in any combination) followed by motion of the 
one remaining voice. 

The following^groups are available: 

(1) S (2) S 

A ; A ; 

T T 

(3) S (4) S 

A . 

T 

B 

-s — 3! (4-3)! “ 6-1 — 4 

Single, double and triple movements may be arranged in any desirable 

sequence, provided that there is no conflict with the principle that the number 

1 moves in the adjacent groups must equalize in one direction. 

Si S 
A At 

T T 

Bi B 

FlgUre 293‘ Combined devices in automatic chromatic continuity. 

(In the above, the identical structures are marked.) 

claJcal^orLT5 four-PartJconrinuity, especially with the single moves, 
C assical forms of suspensions arid anticipations take place. 

(a) Original Structure: S(7) = 4 -f 3 4. 4, 

Sequence: TASB 

(b) Original Structure: S = 3 -f 3 + 5. 

Sequence: TSAB 

See the corresponding music examples on the following page. 
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Figure 294. Four-part continuity with single moves. 
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CHAPTER 17 

HYBRID HARMONIC CONTINUITIES 

pURlTY of harmonic style is more inherent in the music of those composers 

who were bom at a time when they could crystallize past experiences alone 

.dentjcal technical lines. Palestrina, J. S. Bach, Wagner, Chopin, Scriabine, 
Ravel, Debussy, Hindemith—all have sufficient unity in their harmonic ex¬ 
pressions. 

For practical purposes, however—especially in the field of “arranging” when 

re-harmonization of a song is desirable—it is sometimes necessary to produce 
harmonic styles that are intentionally.hybrid. 

We shall consider that the mixture of diatonic, symmetric and chromatic 
forms is hybrid. 

This type of harmonic continuity requires quick changes from one type of 
harmony to another. The reason for this is that our ears get used to one type 
very quickly; an instantaneous change to another type, when the habit is already 

formed, often produces an undesirable disturbing effect. The diatonic type 
conflicts strongly with the symmetric. It becomes necessary to separate the 

two one from another by means of the chromatic type, which is more neutral 
m character. 

The first necessary condition for successful mixing of harmonic types is 
the insertion of the chromatic type between the diatonic and the symmetric. This 
can be expressed by the following diagram; 

diatonic-chromatic-symmetric 

Hybrid harmonic continuity may be of any desirable length, providing that the 

diatonic and the symmetric have no immediate contact. For example: di + ch 4- 
+ sy + ch + sy + ch + di + ch + di. 

The second requirement for the successful execution of the hybrid con¬ 
tinuity concerns the ratios in which the three different types appear. As the 

chromatic type neutralizes the effect of the preceding type (whether diatonic 
or symmetric), it is necessary to have more of it. 

The most desirable of the simple ratios for this purpose is: di + 2ch + sy. 

The third requirement concerns the quantities expressing the ratio In 
moderate tempo, approximately two or three chords are a desirable unit. In 
fast tempo the quantity should be increased accordingly. Thus, the average 
form of hybrid harmonic continuity <Hy>) can be expressed as follows: 

Hy = di3H + ch6H + sy3H 

When the above requirements are actually fulfilled, the resulting music 
may achieve a very high quality. 

[552} 

The inclusion of one more refinement guarantees the utmost smoothness 
to such progressions. This becomes particularly important when music is in¬ 
tended for mass consumption—as in dance music, for instance. 

The refinement consists of maintaining an identical intervallic root-relation be¬ 
tween the last two chords of the preceding chromatic group and between the last chord 

of the chromatic group and the first chord of the following symmetric group. Further 
relations of the symmetric group are not influenced by this. 

ch 

In the above example, identical steps occur at two successive points: between 
E and F (the last two chords of ch) and between F and F# (the last chord of ch 

and the first chord of sy). As the figure shows, the subsequent relations of the 

symmetric group (6 + 9 + 9 semitones) are not influenced by the preceding 
identity of steps. 

mm r?~ -s^TTS~ ■ r4#- 

° 1-0- 
1_ _ii_ -#*»— 

-e-o-—l 

ri °h 
_«— J!X_ — ch di 

ms®- 
ti f 

-e o— 
_ii_ ° " -1 

= ° 
H 

Figure 296. Hybrid harmonic continuity : di+ch+sy+ch+sy+ch+di+ch+di 
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LINKING HARMONIC CONTINUITIES 

"^W'HEN contrasts between analogous portions of harmonic continuity are 

desirable, the latter may be bridged by harmonic connections of a different 
t>pe; T^e degree of contrast between the continuity and the connections 
(“bridges”) depends on the type of progressions used in both. One can easily 

recognize a composer by the type of continuity and connections he uses. For 
instance, it is typical of Wagner to make symmetric connections between the 

portions of diatonic continuity. The starting point of each consecutive section 
is in the v 2 relation to the preceding section. 

Figure 297. The “Pilgrims' Chorus” from Tannhduser. 

Assuming that any form of harmonic progression is used either as con¬ 
tinuity or as connection, we obtain the following nine forms of combined harmonic 
continuity. 

(1) diatonic progressions, diatonicaJly connected; 
(2) diatonic progressions, symmetrically connected; 

(3) diatonic progressions, chromatically connected; 

(4) symmetric progressions, diatonically connected; 
(5) symmetric progressions, symmetrically connected; 

(6) symmetric progressions, chromatically connected; 

(7) chromatic progressions, diatonically connected; 

(8) chromatic progressions, symmetrically connected; and 
(9) chromatic progressions, chromatically connected. 

Each form of combined continuity provides a certain amount of variation within 
its own limitations. 

In the-first case above, progressions may be developed through diatonic 
cycles (No. 1), whereas the connections will be developed through groups with 
passing chords. This can be done in reverse as well by connecting one form of 

group with a cycle alien to the group. For instance, Gj (in which C-6 and C5 

participate) can be connected to the folIowing.Gj through C3 or through C7. 

(554) 
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When diatonic progressions of cycles are connected through G& or G«, there 
is one extra chord within the connection, i.e., the first chord of the group is the 
last chord of the preceding progression, the middle chord of the group is the 
extra chord and the last chord of the group is the first chord of the succeeding 
progression. 

Figure 298. Diatonic progression connected through G*,. 

This form of combined continuity requires the exact recurrence of the cycle group; 
however, the positions of chords as well as their forms of tension may be varied 
in each subsequent progression of one continuity. 

When groups are connected by a cycle, there is no extra chord to be gained. 

C7 C7 

Figure 299. Groups connected by a cycle. 

The diatonic connection of symmetric progressions (No. 4) may be accom¬ 
plished by assuming that the last chord of the symmetric progression belongs to a 
certain key. Thereupon, through one cycle connection the harmony affirms the 

assumed key in which the subsequent symmetric progression then begins. There 
is no extra chord appearing during the connection. All forms of symmetry 
may be used. 

Figure 300. Diatonic connection of symmetric progressions. 
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Symmetric connection of symmetric progressions (No. 5) must be based 
on selection of such forms of symmetry as do not appear in the progression itself. 

vr Vr vrvrVr VrVr vr vr Vr 

Figure 301. Symmetric connection of symmetric progressions. 

A symmetric connection of diatonic progressions (No. 2) does not produce, 
an extra chord, but rather an interval (Vj, jft). Such a connec-' 

tion may be planned either in relation to the first or to the last chord of the diatonic 

progression. In Figure 290 the connection through referred to the first 
chord of each diatonic progression. 

Figure 302. Symmetric connection of diatonic progressions. 

Diatonic progressions may be connected through any form of chromatic 
group (No. 3) (parallel or contrary). An extra chord is gained through such a 

connection. This type of combined continuity, incidentally, usually sounds like 
diatonic harmony with modulations. 

Figure 303. Chromatic connection of diatonic progressions. 
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The chromatic connection of symmetric progressions (No. 6) introduces 
one extra chord. Any form of chromatics can be used. It is desirable that the 
interval between the extreme chords of the chromatic connection should not 
duplicate any steps of the symmetric progression. 

Figure 304. Chromatic connection of symmetric progression. 

The diatonic connection of chromatic progressions (No. 7) is achieved by 

assigning the last chord of a chromatic progression to the key in which such a 
chord may exist. The latter is connected by a diatonic cycle with some other 

chord in the same key. Thereupon the chromatic progression is resumed. There 

is no extra chord gained in the cycle connection. Chromatic progressions (con¬ 

sisting of one or more chromatic groups of any type) may be varied after each 
diatonic connection. 

C5 C-5 

Figure 305. Diatonic connection of chromatic progressions. 

Symmetric connection of chromatic progressions (No. 8) is achieved through 
the selection of a root which does not produce chromatic steps in any voice. 
There is no gain of an extra chord. 

Figure 306. Symmetric connection of chromatic progressions. 
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The chromatic connection of chromatic progressions (No. 9) may be ac¬ 
complished by introducing contrasting forms of chromatics. Contrasts may be 

achieved by the juxtaposition of parallel and contrary chromatics, or by the 
juxtaposition of chromatics and enharmonics. An extra chord is gained by such 
connections. 

The above nine forms of combined harmonic continuity can be further 
combined by varying the forms of connection between each set of progressions of 
any one particular type. 

CHAPTER 19 

A DISCUSSION OF PEDAL POINTS 

PEDAL Point or Organ Point (P.P.) is a primary axis about which chord 
progressions are formed. The various patterns of motion which the re¬ 

maining voices produce in relation to the pedal point consequently result in 

different effects corresponding to the axial combinations, including the O-axis.* 
P.P. is primarily conceived as a sustained bass, but by means of vertical 

rearrangement of parts, one can achieve the appearance of a P.P. in any desirable 

voice. We shall compose pedal points first as basses. 
P.P.#, i.e., a pedal point with a more or less stationary or a slightly re¬ 

volving pattern for the motion of upper voices, produces either the effect of 

accumulation or discharge of energy—the first resulting from a crescendo; the 
second, from a diminuendo. In such a form, P.P. is used either at the beginning 
of a composition, mostly as an introduction (“take-off”) or at the end of it, 

mostly as a coda (“landing”). The next stage of dramatic expression is obtained 

through the use of several secondary axes against P.P. The following may be 

considered as fundamental combinations. 

p.p ja_+bL±... and pp <b + a) + ... 

In some cases, the pedal point leads to a climax. Then the entire P.P. 

serves as a form of accumulation of energy followed by discharge (climax). 

In such cases P.P. is associated with crescendo and requires a prolonged a-axis 

for the upper parts of harmony. The climax itself is the ultimate forte. 

p.p4 

After such a vigorous climax, an anti-climax—i.e., moving toward ultimate 

balance—is often necessary. Being usually a coda or an episode preceding re¬ 

capitulation, this requires a gradual dissipation of energy which can be expressed 

through the use of an extended b-axis of upper voices in relation to P.P. The 
dynamic form for this is diminuendo. 

p.p.£ 

The devices of this theory of harmony supply all the necessary forms by 

which the patterns of harmonic motion—as expressed through tonal cycles in 

relation to the quantity of voices—may be obtained at will. 
For instance, An a-axis for three parts may be obtained through Cj const., 

as well as through some techniques of ascending chromatics. For a gradual 

ascent, C$0 and C$0 may be used. For ascent in leaps, CjQis the cor¬ 
responding technique. All the negative forms of continuous S(7) or any other 
structures in the hybrid five-part harmony produce the same axis. 

*The axes referred tcrare those of the theory of melody, i.e., a, b, c, d and 0. (Ed.) 

(559) 
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’1°!?“ hfaPPenS,thatL *he number of ™ harmony determines the 
patterns of motion under the same cycle. For example, four tonics S(9) const 

' C*’ ** 8tftl10nfT,m five but climb quite decisively in four (the three 
upper parts of the hybrid four). V 

throlhlr0"5 ^ rraAtin£ (“““ding-daacending) motion may be achieved 
through the use of C7 0 in three parts (see S(5) in C7). 

tinumis "w deSCent' c6'' b'axi”‘ may ** obtained through the use of con- 
Ind T !i7 harmony, through theQC, (thus including the six 

matira.6 “ ’ ^ C C‘’ “ We“ “ by means of descending chro- 

An oscillating pattern, which may be considered to be an 0-axis in that it 

has but limited amplitude, may be achieved through the alternate use of positive 
and negative fonns m any type of harmony where parts move through limited 

melodic intervals. The technique of continuous S(7), alternating the positive 

SiTS.T.TS.rKf-'i— - 

he effect; of vanishing or "flying away" may be accomplished by what 
we consrier dissipation of energy or moving toward balance. However, we have 

conditioned associations with the quantity of sound and volume. The use of an 

a-axis combined with a crescendo leads to a climax—yet the very same axis 

CT^dnT "‘h dTrd° a89°ciates itself in our Perception with an object 
growing smaller and flying away in an upward direction. This is due to the 

influence of the concepts "high" and “low" in reference to frequencies trans- 
ormed into spaS.al analogies. Flying away in an upward direction, hich to us 

as human beings ,s associated with extreme tension (overcoming of gravity 
and the effort necessary to accomplish it), corresponds to the increasing^ension 

of our vocal chords, which tension we all mimic sympathetically in infinitesimal 
degrees while listening to music. Thus, vanishing fn mid-air through Za! 

mth the gradual diminution of an object correspond! to the 0-axis 
combined inth diminuendo; whereas, vanishing into the ground from above re 

manvdlff ^ diminuendo. This analysis throws light on the 
any different effects achieved in music by means of pedal point 

• .e e ° , US example of tl>e effect of “vanishing" in an upward direction 

' accomplished by 
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In the first movement of Beethoven's Sonata No. 8 (the Pathetique), 
the first four measures of the allegro con brio produce a "take-off” by means of 

axis; this establishes a firm foundation for the music to follow. In the same 

movement, the third theme begins with a two bar axis pedal point (eb), ac¬ 

cumulating energy for the following diverging texture of broken chords: | axis. 

In the same movement, there is a climactic pedal point preceding a recapitula¬ 
tion. This pedal point on g (the dominant of the key), being of intensely revolv¬ 

ing character, accumulates a tremendous energy (due to the crescendo), which 

energy is dissipated in a duly extended descending (b-axis) passage leading into 
the recapitulation. 

A. Classical Pedal Points 

It is regrettable that the manner in which classical composers used the 
various forms of pedal point is not now generally known to the more prominent 

contemporary composers; the evidence of this consists of the misplaced pedal 
points in their own works. In order thoroughly to understand the classical 
approach to this problem, it is first important to classify and define the tradi¬ 
tional forms of pedal point. 

The two fundamental forms of the classical pedal point are: P.P.T., i.e., 
pedal point on the tonic, and P.P.D., i.e., pedal point on the dominant. 

P.P.T. affirms the harmonic axis of the composition, i.e., it establishes the key. 
Technically, P.P.T. may usefully be defined as an extension of the ecclesiastic 
plagal cadence. 

The cadence itself consists of Tonic -f Subdominant -f- Tonic, which usually 
appears as I -f- IV* + I (T -f- ST *+■ T). Here T is the tonic, ST—the subdominant 

with a tonic characteristic. This form has for long been used in many sung prayers 

of the Christian church of different denominations and is usually associated 
with the intonation formula for “Amen,” although it appears very frequently, 
too, at the beginnings. The device was undoubtedly used in order to help the 

singers “to tune-up”; it is most prominent in music of the Russian-Orthodox 
Greco-Catholic church. 



Figure 310. Classical pedal point on tonic. 

n uP P Ij ‘5 e!ther a” 'ni‘M (to »* u5ed at the very beginning) or the final 
(to be used at the very end) pedal point. It is a sort of airdrome, we might ay 

from whmh the flight has to be begun. Thus the initial P.P.T. corresponds to 
the take-off , and the final P.P.T. corresponds to the “landing.” 

r JUt:, P'P;D"a°neth® other hand- is a climactic pedal point; it corresponds 
to the apex of a flight. Technically P.P.D. may' be defined as an extension of 

radCT°^f/U5(a)Uthent'C Cade"CB °r’ m°re Spec‘fically’ as an extmsion of the 

The cadence from which such a pedal point derives is as follows: 

T + S +Td + D +T 

ffere T is the tonic, S is the subdominant, TD is the tonic with a dominant char- 
actenstic, D is the dominant. 

It can be symbolized in the following form: 

I + iV + U + V + I 
(ID (III) 

The actual P.P.D. starts on TD = is. 

P P n P T beE’I\S ,W'th *!“ tonic and ends with a plagal cadence (S + T). 
P.P.D. is prepared by a subdominant (S), starts withTD (I.) and ends with an 

EZZZSZ £***-« * ‘»e progressions which occur 

SLw ^ P P D ’ WHiCh *““■ —»* before ^ 

tHan °ne *** P°int can * us^d in sequence in the course of one 
°ne movement. Let us take the most typical scheme of thematic 

of one them#, r • A + + Al. where A and are the modified expositions 
of one theme. B is the contrasting theme (middle strain in a song), andTAi (at 

e end) is the recapitulation of the first theme (usually in an abbreviated form). 
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Consider A to include the introduction and the second Aj to include the coda. 
We may then chart all the possible combinations of pedal points to be used in 

a typical scheme of thematic distribution. 

Figure 311. Traditional location of pedal points. 

In the last two cases, P.P.D. is often immediately followed by P.P.T. 
The two predominant types of classical pedal point are the diatonic and 

the chromatic pedal points. 

B. Diatonic Pedal Point 

Diatonic P.P.D. or P.P.T. consists of the free use of the diatonic cycles in j 

both the positive and the negative form. It must satisfy all the requirements 

as to the proper start and proper cadences. 

Figure 312. P.P.D. + P.P.T. in diatonic type. 
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The three parts above the pedal point in the above figure are devised by 
means of classical and hybrid transformations. It is useful to know the struc¬ 
tural specifications for the chords appearing above the pedal point and devised 
in three parts. They are: 

5 3 7 7 9 

3 13 5 7 

1 1 1 1 1 

S(5) S(5) S(7) S(7) S(9) 

Figure 313. Structural specifications of chords in figure 312. 

As to their transformations, they have to be treated as abc, which corresponds 
practically to a mixture of classical and hybrid techniques. 

If all chords above the P.P. are S(5) in three parts, then the classical trans¬ 
formations cover the field completely (C. O and const. 3). 

Continuous four-part setting above the P.P. corresponds to the technique 
of S(7) const Note that this device produces very expressive pedal points 

reminiscent of those of J. S. Bach and Handel, particularly when modes, har¬ 
monic major, melodic major or melodic minor are used. All that is necessary 
is the addition of a stationary bass to the upper four parts moving as seventh- 
chorda. 

Figure 314. Continuous 4-part setting above P.P. corresponds to 
technique of S{7) const. 
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C. Chromatic (Modulating) Pedal Point 

Classical modulating pedal points (P.P.D. and P.P.T.) consist of a rapid 
succession of key-to-key transitions. The latter are usually performed by means 

of the chord on the VII or V of the following key; such a limitation is not neces¬ 

sary, however, and any other intermediate chords may be used. 

The most important—and heretofore unsolved—problem is that of the 

particular key selection to be evolved above the pedal point. 

As P.P.D. is associated with the authentic cadence (Ijc^V), its natural 

tendenev is to modulate through a chain of dominants, i.e., through the keys in 

C—5 relation—which amounts to moving toward sharps. 

The natural tendency of P.P.T. is to modulate through the chain of sub- 

dominants, i.e., through the keys in C8 relation—i.e., in the direction of fiats. 

This is due to the fact that P.P.T. is associated with the plagal cadence (1 lVj). 

(Small letters represent the minor mediants', lower and upper). 

Table of natural key tendencies for modulations 

in P.P.T. and P.P.D. 

e — a — d — g — c — f — bb — eb 

P.P.T.; C — F — Bb— Eb— Ab— Db— Gb— Cb 
a — d — g — c — f — bb — eb ab 
e — b — f# — c# — g# — d# — a# — e# 

P.P.D.: C — G — D — A — E — B — F# — C# 
•a - e - b — f# - c# - g$ - d# - a# 

Figure 315. Natural key tendencies for modulations in P.P.T. and P.P.D. 

However, the natural tendency has only a partial influence in the selection 

of keys for modulating pedal points. 

The main factor, usually neglected in academic musical theories, is the 

sonority of the tonic (I) 5(5) of the respective key in its relation to pedal point. 
This can be defined in the form of a requirement, which is: only those keys may 
be selected for the classical type of pedal point modulation in which I 5(5) taken 
together with P.P. produces a crystallized structure acceptable in the established 

four-part harmony. For instance, it is wrong to modulate to the key of D-minor 
on a P.P.D. in the key of C-major (or C- minor),.for the unit g in the bass pro¬ 

duces—together with the upper parts—a structure of 1, 5, 7, 9 for S(9), which 

is not the accepted form, 1, 3, 7, 9. In this case, even though the key tendency 

is correctly carried out, the result is not satisfactory in sonority. 

On the other hand, a key selection which may be contrary to the natural 

tendency, such as F-minor above the P.P. on g, is perfectly satisfactory as 
1 S(5) in that key, for together with the bass it produces an accepted form of 

S( 11 >- 1, 7, 9, 11. 



The above structural requirement excludes the following keys in relation 
to a pedal point on c: 

F# — minor 

G — major 
G — minor 

G#— minor 
A — major 

All other keys are fully acceptable. An allowance is made for FS maior 

because the sonorous quality of thesis very desirable. The best sounding 
position for f# S,(5) above c is when the pitch-unit nearest to the bass is a* 

The latter produces an equivalent of b\, and furnishes a perfect acoustical sup- 
port for c# and f%. H 

Figure 316. Chromatic (modulating) pedal point. 

D. Symmetric Pedal Point 

Progressions of types 11 and III and the generalized symmetric progression 
may be included in this group. All these types have more or less the sameThar 

Cony mWaynbeU^dabOVe ^ ^ P°int' ^ '°rmS °f f—par 

svmm hfe pedai P°'n- itSellis the main (orif!inal>tonic- ln cases of the gcneralizec 

CS.r0Sr“8,OnS' “ iS the r0Ot-tOne °f thc lh0rd With "hiclf the p«,a 
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(l) 

Figure 317. P.P. with harmonic progressions of type II, III and generalized. 

A more extensive form of the symmetric pedal point (type III) may be 

devised through a group of pedal points, each tonic becoming a pedal point in 

succession. The remaining parts form progressions through the same system 
of symmetry. 

vr 

Figure 318. An extended symmetric (type III) P.P. 
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Special Case 

There Is a special case in which diatonic alternate pedal points on the tonic 
and the dominant merge with the symmetry of the on Si(5). This is an 

equivalent of the entire chromatic scale versus tonic-dominant. Sx(5) is the only 
satisfactory form of sonority. Note the coincidence of the tonic and the dom¬ 
inant as S(5). 

(b) 

Ftgtm 319. Alternate diatonic P.P, on tonic and dominant merge with symmetry 

CHAPTER 20 

MELODIC FIGURATION 

Preliminary Survey of the Techniques 

THE technique of melodic figuration* consists mainly of the process of evolving 

leading tones for chordal tones in a given harmonic continuity. When leading 

tones move into chordal tones, they produce directional units. Melodic figuration 

can be defined as a process of transforming neutral units (chordal tones) into 

directional units. 

A. Four Types of Melodic Figuration 

There are three types of leading tones satisfying such a definition: 
Type one: suspended tones (suspensions), i.e., tones belonging to the preced¬ 

ing chord and held over; such tones must be moved into an adjacent chordal 

tone. 
Type two: passing tones, i.e., pitch-units inserted between two other pitch- 

units moving in sequence and constituting chordal tones. Passing tones may, 

or may not, belong to the same scale as that in which the harmonic continuity 

has been evolved. In the first case, they are diatonic passing tones; in the second, 

chromatic passing tones. 
Chromatic passing tones were discussed earlier under their own heading; 

here, only diatonic passing tones will be discussed. 
Type three: auxiliary tones, i.e‘, unprepared leading tones selected with no 

regard to basic pitch scales. They too, can be either diatonic (in which case they 

have an “ecclesiastic” flavor) or chromatic (in which case they add an extreme 

lyrical expressiveness, due to sudden intensifications, to the music). Chromatic 
auxiliary tones are one of the most powerful resources of expression in the music 

of Mozart, Schubert, Chopin, Chaikovsky,** Scriabine and, in some instances, 

Wagner—as in Tristan and Isolde. Contemporary popular songs dealing with 

love or despair are overloaded with this device. 
The fourth type of melodic figuration is based on a technique different 

from the evolution of leading tones: it introduces certain chordal tones (one 

or more) ot the following chord into the preceding chord. This device is known as 

anticipated tones or anticipations. It has long been neglected because composers, 
for some reason, associate anticipations with antiquated harmonies. But it be¬ 
comes a very important source of harmonic expression when used in harmonic 

continuity of a more developed type. 

•By melodic figuration is meant the process 
of converting a harmonic continuum into a 
partially .melodic continuum, the melodic 
characteristics being introduced into the con¬ 
tinuum itself—in contrast to the melcdization 

of harmony, which means the fabrication of a 
melody to go vhth a given H . (Ed.) 

••Schillinger, Russian-born, preferred this 
simplified spelling to the more commonly ac¬ 
cepted form, “Tschaikowsky." (Ed.) 

(569) 
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B. Development of Suspensions 

The effect of a suspension is to intensify the chord by means of common 

tones which, while being suspended, rise in rank as a chordal function after 

which rise they are then released. Every suspension consists of three consecutive 
phases: preparation, suspension, and resolution. Our ears, due to heredity and 
habits, accept a suspension only on a strong beat. The source of this habit is 

strict counterpoint, in which dissonances were only permitted on weak beats 

an on strong beats, by suspending (“tying over”) a common tone. Classical 

armonic structures had not been fully crystallized at the time suspensions were 

use in counterpoint this way, and so these suspended tones produced antiquated 
harmonic structures resembling those of the old organum type. 

One of the most common suspensions was the 7 11, which, at the moment 
of suspension, produces the structure: S(U) = 1, 5,11. Naturally, such a struc¬ 
ture fails to conform to the later classical form—and, although Mozart had 

already felt the need of a more nearly perfected structure at the moment of 
suspension, theories of harmony even today continue to advocate this most 
antiquated form. 

The following figure illustrates the evolution of structure under suspension. 
It has been gradually realized that it is necessary to support the eleventh by 
the ninth; and the ninth, by the seventh. 

Similar considerations require that passing tones (diatonic) conform to 
crystallized chord-structures. This means that the single passing tones must be 
passing 7ths, double passing tones must be passing 7ths and 9tks, and triple 

passing tones must be passing 7ihs, 9ths and llths. 

In addition, some groups with passing chords give other double passing 

tones in parallel (GJ) or contrary (G«) motion. 

All other cases are crude and antiquated; they create harsh and empty- 

sounding gaps when orchestrated. 

It should not be forgotten that the best composers of the 18th century, 

such as Mozart and Scarlatti, through constant use of correct suspensions, 

helped to crystallize the structures of the future, such as S(9). 

Figure 320. Evolution of structure under suspension. 

. The h*stoncal crystallization of S(7) as an independent structure goes back 
to the 18th century; the crystallization of S(9) goes back to the middle of the 
19th century. 

This analysis may. well lead us to the conclusion that it is essential that the 
structures under suspension conform to these crystallized forms of S(7) S(9) 
and S(ll). v K ' 

A single suspension requires an S(7) in which the suspended tone is a pre- 
pared 7th. 

A double suspension requires an S(9) in which the suspended tones are the 
prepared 7 th and 9th. 

A triple suspension requires preparation of the 7th, 9th and 11th in an S(11). 

As classical theory offers suspended and passing tones under positive forms 

which are always descending, it would be important to have as secure a system 
for devising ascending resolutions of suspensions and for ascending passing tones. 

Such a system of melodic figuration would exist as a normal one under cycles 
of consistently negative form. For practical purposes, it is expedient to invert 

the positive form into <Q), either the geometrical or the tonal (i.e., without any 

changes of accidentals of the original), rather than to think of the 1 as a negative 

7th,” the 3rd as "a negative 5th,” etc. 

The techniques of melodic figuration are applicable to all types of harmonic 

progression in close, open or mixed positions in four- and five-part harmony. 
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SUSPENSIONS, PASSING TONES AND ANTICIPATIONS 

SUSPENSIONS, PASSING TONES AND ANTICIPATIONS 573 

A. Types of Suspensions 

Single Suspensions: Single suspended tones may be obtained by making 

the 1, the 3 or the 5 become a prepared 7. The functions, 1, 3 and 5, serve 
as the preparation; the 7th, as a suspension; and the nearest function one step 
lower, as a resolution. 

Figure 323. Single suspensions. 

Double Suspensions: Double suspended tones may be obtained by mak¬ 
ing the 1 and 3, or the 3 and 5, or the 5 and 7 become a prepared 7 and 9. In a 

continuity of double suspensions, one of the suspended voices may appear in 

the bass, thus producing an inversion of S(9). The voice-leading in such a case 
remains usual, i.e., the remaining two voices must furnish 1 and 3. 

Figure 324. Double suspensions. 

1 TriPle Suspensions: Suspending the 1, 3 and 5, and the 3, 5 and 7 as 
'' y a°d 11 produces triple suspensions. 

Figure 325. Triple suspensions. 



Figure 327. Geometric inversion: figure 326 in position 

*As explained in Book III concerning geo- 
metncal and tonal inversiona—position H>, the 
reader will recall, m the original upside down* 
a geometrical inversion preserves the exact 

intervals, whereas a tonal inversion alters the 
mtervato to conform to the original or some 
other key. (Ed.) 

ft'dSieWiaQt*- 
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Tonal Inversion: By canceling the accidentals or by readjusting them, 
we obtain the same, but in the original—or any other—key. 

Figure 328. Tonal inversion. 

B. Passing Tones 

Single Passing Tones: Single passing tones may be produced by moving 
the 1 downward to 7, stepwise. The particular sequence of voices in which the 

passing tone will then appear depends upon the particular cycles and the voice¬ 
leading. 

If passing tones are desirable in one continuous voice, the procedure should 
be carried out through the procedure I have already described in generalization 

of the passing seventh* A progression of S(5)C3 const, must be written first; the 
passing sevenths are then inserted afterward. When this procedure has been 

completed, the bass may then be placed into any other voice (geometrical vari¬ 
ation of positions). 

Figure 329. Single passing tones. 

Ui 

•See pages 534-6. [Ed.J 
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9 nh^Tjfh T°,ne8: D°“bIe ■** either the passing 7 and 
obtained by means of downward motion front the 1 and 3, or theTand 5 or 

the 5 and 7-or are paraliel and contrary passing tones of the £oupGJandGj! 

Figure 330. Double passing tones. 

. - JSKSSriis ttz Tir7i 9 11 obtained b> Of S(ll) in C*. the 1, 3 and 5, this corresponds to a preparation 

Figure 332. Mixed forms of passing tones. 

for addTtLnailZttT^Vr^ discussed Piously, there is no need sr*'" —-> >«—»— 
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Ascending Passing Tones: Ascending passing tones may be obtained 
through geometrical or tonal inversions Here are two inversions of Figure 332, 

Figure 333. Geometrical inversion of figure 332. 

Suspended Tones in a Given Chord Progression: So far we have dis¬ 

cussed the techniques of suspended and passing tones evolved during the process 
of composing harmonic continuity—i.e,, the H“* was not already set. 

Now, however, we shall develop the technique of producing suspensions in 
a given harmonic continuity. In addition to the standard forms of suspensions, 
we shall use delayed resolutions for this technique—that is, suspensions in which 

t e dissonant (higher numbered) functions become temporarily consonant (lower 
numbered)—and then resolve in the customary way. Root, third and fifth may 
a so be suspended if the seventh is held. As long as the structures are properly 

represented during the period of suspension* any functions can be suspended. 

- » o - e> 

Figure 335. Harmonic progression serving as a theme. 

(SJof'some^nd11^^!1)16 tones at t^ie moment °f suspension comprise altogether an acceptable 
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The simplest way to obtain ascending suspensions is to write the harmonic 
progression first, then to evolve suspensions, and finally to re-write the result 
into position 0. Otherwise, the original harmonic progression must be written 
in a consistently negative form, and the suspensions must be evolved through 
1, 1 and 3, or 1, 3 and 5—resolving upward. 

Passing Tones in a Given Chord-Progression: By combining dia¬ 
tonic and the chromatic passing tones, a corresponding variation can be evolved. 
Using Figure 335 again as a theme, we obtain the following: 
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C. Anticipations 

Anticipated tones may be evolved from any chordal function of the following 
chord, provided that such a function is not the same in pitch as the voice in 

which the anticipation occurs. The nomenclature I use is: anticipated root, —* 1; 

third, —►3; etc. 

Single anticipated tones may be evolved to the root, to the third, to the fifth, 

to the seventh—or to any higher chordal function which is actually present in 
the following chord. Such forms may be called anticipations of a constant chordal 

function. 

In addition to this form, anticipations of variable chordal functions may be 

used, and these may be selected at random. They provide greater variety in 
the quality of tension, whereas the first form provides a unity of tension. Both 

forms may be evolved for any harmonic continuity, as shown in the example: 

Anticipated 1. 

Theme: Type I 

§ g- Um -3T 

BE .. —o- 

Variation: —1 

? r.. 

.°. 

8 8 

gr.1.r i ~zz= 

=B^ 8 ~0«T 

HrVgB 
sv — 

1 J. ■■■■ 

Figure 338. Anticipation of a constant chordal function. 
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Figure 341. Anticipation of a constant chordal function {concluded). 

Anticipated 5. 

Type I: Variation: 5 

(common tone) due to cycles and structures 

Type II: Variation: —> 5 

(common tone) due to cycles and structures 

Type III: Variation: —*► 5 

Figure 342. Anticipation of a constant chordal function. 

Anticipated 7. 

Type I: Variation: —* 7 
(common tone) 

Type II: Variation: —> 7 
(common tone) 

Type III: Variation; —*• 7 

Figure 343. Anticipation of a chordal tone. 
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2. Anticipation of a Variable Chordal Function 

Theme: Figure 335. 

Variation: variable anticipated chordal functions 

Figure 344. Anticipation of a variable chordal function. 

Double and Triple Anticipations 

Theme: Type III: v^, S(9) const. 

Variation: Anticipation of variable chordal functions 

(double and triple) 

Figure 345. Double and triple anticipations. 

SUSPENSIONS, PASSING TONES AND ANTICIPATION’S 

Combined devices: suspended, passing and anticipated tones. 

583 

Theme: figure 335. 

Variation: evolving combined devices to a given harmonic progression. 



CHAPTER 22 

AUXILIARY TONES 

A UX1LIARY tones, being harmonically unmotivated, may be evolved in 
a given harmonic continuity. Any chordal function may be preceded by 

an upper or lower auxiliary tone. The interval between the auxiliary and the 
chordal tone depends on the type of harmony. 

In diatonic progressions, auxiliary tones may be either diatonic—i.e., based 
entirely on those pitch units which produced the harmony itself and hence based 
on one definite diatonic scale—, or chromatic, i.e., arrived at by free selection 

among the leading tones which do not exist in the given scale. 

As 1 noted earlier, diatonic auxiliary tones accentuate the diatonic character 
of the harmony and, because of previous associations, produce in us an impression 

of “ecclesiastic” music. This is particularly true when such scales as natural 
njajor are used. At the same time, some of the derivative scales of the same 

natural major, when they are supplied with diatonic auxiliary tones, may not 
produce this "ecclesiastic” impression but rather suggest such styles of harmonic 

writing as are to be found in compositions by Ravel and, particularly, by De¬ 
bussy when these composers do express themselves diatonically. 

Because of our previous experiences, we have established many auditory 
habits, among them an especially keen, critical perception of auxiliary tones. 

When chord progressions evolve diatonically from familar scales, we anticipate 
a priori certain definite forms of auxiliary tones. For example, in Sj(5) the 

\ 3—i.e., an upper auxiliary tone (descending) to the third of a minor triad— 
must be i = 2, i.e., an interval of two semitones. If, instead, the movement is 

only one semitone, an ordinary listener will regard such an auxiliary tone as a 
“wrong note.” The same is true for S;(5) \ 1; our ears want the i (interval) 
to equal 2. The real cause of these reactions is the fact that ordinary listeners 
are familiar with the harmonic minor in which scale such auxiliary tones are 
diatonic. What seems wrong to the listener when i = 1 would sound perfectly 

natural if he were familiar, by ear, with dj of harmonic major; in such a case, 

in the key ofC(c—d —e —f —g — ab — b), the root triad would be e — g — b 
and the discussed auxiliary tones would then be f —> e and ab —► g, with i = 1. 

In harmonic progression of Types II and III, the auxiliary tones are governed 
by the master-structure (2) of each chord.* This means that the auxiliaries 

are diatonic during each individual chord. If a certain 2 produces f 5, i = 1, 
and such a 2 is used throughout, then all cases of ? 5 must have i = 1. On the 

•A 2 (the Greek letter, sigma) is an ex- which the substructures S(5), S(7), S(9), etc., 
pansion of a scale; in Schilhnger's special har- are derived. The 2 concept is the source of 
raony, as in the present discussion, it is the many of the brilliant harmonic and orchestral 
hrst tonal expansion, Ei, of some 7-note scale, effects which Schillinger pupils—and only 
as explained by him in.his discussion of pitch Schillinger pupils, so far as we are aware- 
scales. A 2 of the C major scale would be, use in their music a,nd in their arrangements, 
for example, C - E - G-B-D-F-A reading (Ed.) 
upwards. Hus 2 is the master-structure from 
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other hand, in progressions based on more than one 2, the respective differences 
will affect the intervals of the auxiliary tones. For example, if we compare two 

2’s—c — d — e — f# — g—a~bb, with c — d — e — f — g — a — bb—we find 
that in Si /* 5, i = 1 (c-chord: f$ —* g), whereas in 2i / 5, i = 2 (c-chord: 

f-*g). 

If chromatic auxiliary tones are used in progressions of Types li and III, 
they have to be pre-set in definite relations to the pitch-units of the given 2. For 

instance, in 2i (c — d — e - f# — g — a - bb) of the preceding example, we 
may introduce a / 13, i = 1 (i.e., g# —> a of the c-chord), which is not in the 2. 

In this case, one would have to transpose such an auxiliary tone to each chord of 
identical 2, whenever the auxiliary tone is to be used. (See page 824, footnote.) 

A melodic form containing directional units may start either on a chordal 

or on an auxiliary tone. However, it must end with a chordal tone. Taking this 
into consideration, we may now evolve many melodic forms of different com¬ 

plexity and character. 

Figure 347. Melodic forms of auxiliary tones. 

Those forms in which the chordal tones predominate produce a more restful 

effect on us than forms in which the auxiliary tones predominate. We might well 

expect to find a delay in arriving at the final chordal tones in the music of those 
composers who express (intentionally or unintentionally) “longing,” “restless¬ 

ness” and “dissatisfaction.” And, indeed, Chopin and Chaikovsky have each 
the same style of handling auxiliary tones; the difference between their respective 
styles in this regard lies mostly in the particular intervals between the chordal 

tones and in the predominance of the a axis in Chaikovsky .and the h axis in 

Chopin.* Mozart’s music already had developed some of the chromatic auxiliary 

tones which became prominent later in Chopin, Schumann and Chaikovsky. 
Beethoven, whose music suggests to us a more masculine character, uses a de¬ 

cided predominance of chordal tones in figures containing auxiliaries; the latter 

*The a axis is, of course, the secondary axis; the b axis fs the secondary axis leading 
melodic axis leading upward from the primary downward to the primary. (Ed.) 



586 SPECIAL THEORY OF HARMONY AUXILIARY TONES 587 

usually conform to those well-known melismatic developments commonly 
known as gruppctti. Scriabine uses delays still more exaggerated than in the 

music of Chaikovsky or Chopin. And a Wagnerian characteristic is his simple 
directional units used with chromatic auxiliaries superimposed upon chromatic 
harmonic continuity. 

J. S. Bach 

Chopin 

Figure 348. Melodic forms produced by auxiliary and chordal tones, 

typical of different composers (continued). 

Chaikovsky 

Scriabine 

Wagner 

,i —..L =1 

t- r # 
h~.=1 

-6 

rJ 
- " a) 

Figure 348. Melodic forms produced by auxiliary and choidal tones, typical 

of different composers (concluded). 

The auxiliary tones we wish to use in any case may be pre-selected either as 
(a) auxiliaries to a definite chordal function, or (b) auxiliaries to a group of 
chordal functions, and may appear in one or more voices simultaneously. We 

shall consider such forms to be thematic. 
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We could classify all ascending and descending forms of auxiliary tones for 
one, two, three and four voices, but practically speaking, we have a choice of 
direction (ascending or descending) depending on the case. 

Classification of single auxiliary tones 

7 1 \ 1 7 3 \ 3 7 5 \5 7 7 \ 7 

Classification of double auxiliary tones 

7 3 \ 3 y 3 \ 3 7 5 \ 5 7 5 \5 
7 1 7 1 \ 1 \ 1 7 1 7 1 \ 1 \ 1 

7 7 \ 7 7 7 \ 7 7 5 \ 5 7 5 \ 5 
y l 7 i \ 1 \ 1 7 3 7 3 \ 3 \ 3 

7 7 \ 7 7 7 \ 7 7 7 \ 7 7 7 \ 7 
7 3 7 3 \ 3 \ 3 7 5 y 5 \5 \ 5 

This table can, of course, be extended to include higher chordal functions. 

Coefficients of recurrence of any type and form are also applicable to this 
problem. Exam pies :* 

r3-i-2 71 + 71 + \1 + 71 + \1 + \1 
r3+2 / l + \l + /3+\l + /3 + \3 
r4*3 71 + \l + 71 + 73+\5-f\5 + 77-f-77+\3 + 

+ \ 1 +• 7 1 + \ 1 

Each directional unit in the example above applies to one chord. 

Another way of selecting the sequence of auxiliary tones is by the parts. 
The sequence of soprano (S), alto (A), tenor (T) and bass (B)—SATB—or any 
variation thereof (of which there are 24 for four-part harmony) permits us to 

have full control over the order in which the auxiliary tones appear. When such 
a harmonic continuum is orchestrated (vocally or instrumentally), the sequence 
of definite voices or instruments as they enter with a certain figure becomes a 

matter of considerable importance. We shall consider these forms to be neutral. 

A more detailed specification is possible through the assignment of directions 
to the sequence of parts: for intance: / T+ \ B-f \A + 7 S. 

These groups are, of course, subject to variation by means of permutations 
or by means of coefficients of recurrence. Example: 

Classification of trifile auxiliary tones 

7 5 \ 5 7 5 \ 5 75 
7 3 y 3 \ 3 
y i y l 7 1 

7 7 \ 7 7 7 
7 3 7 3 \ 3 
7 1 7 1 7 1 

7 7 \7 7 7 
7 5 7 5 \5 
y i 7 1. 7 1 

7 7 \ 7 7 7 
y 5 7 5 \ 5 
7 3 7 3 7 3 

7 3 \ 3 

\ 1 7 1 

7 7 »\7 
73 i3 
\ 1 Ji 
7 7 \7 

7 5 \ 5 
\ 1 7 1 

7 7 \7 
75 \ 5 
\ 3 7 3 

\ 5 7 5 \ 5 
7 3 \ 3 \ 3 
\ 1 \ 1 \ 1 

\ 7 7 7 \ 7 
7 3 \ 3 \ 3 
\ 1 \ 1 \ 1 

\ 7 7 7 \ 7 
7 5 \ 5 \ 5 
\ 1 \ 1 \ 1 

\ 7 7 7 \ 7 
7 5 \ 5 \ 5 
\ 3 \ 3 \ 3 

Figure 349. Single, double, and triple auxiliary tones. 

This table can also be extended to include higher chordal functions. A table for 
four simultaneous functions can be devised in a similar fashion. These tables 

are to be used as guides in the choice of pre-selected groups of directional units. 

For instance: 71 + \5-fr-\7 

\3 
7 5 etc. 

SATB + ATBS + TBAS -f BSAT 

2 SATB + BTAS -f SATB + 2 BTAS 

4 TSAB + 2 ABTS + 2 TSAB + ABTS 

There is still another way of selecting the sequence of auxiliary tones through 
several parts, following the principle of “reciprocity” or free choice. 

Examples of reciprocity: 

S S S 

A ; A ; A ; . . . 

T T T 
B B B 

S S S 

A ; A ; A ; . . . 
T T T 
B B B 

Examples of free selections: 
S S S S S 

A A ; A ; A ; A A ; . . . 

T B B B T T 

B 

• In fhe first example the ra+s (2 + 1 +1 +2) 
is applied in turn to s and to \.; in the third 
example, the r*.*.* is applied to the 1, 3, 5 

and 7, in turn, with the / and \ following 
1 +1 +2+2+2+ 2+ l -t-1 pattern. (Ed.) 
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Figufe 3o0. Single auxiliary tones; constant chordal function (continued). 
Figure 350. Single auxiliary tones; constant chordal function (concluded). 
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Variable Chordal Functions. (A) Neutral Selection Through the Sequence of 
Pacts. 

Figure 351. Variable chordal function. 

AUXILIARY TONES 593 

(2) Double Auxiliary Tones. (A) Neutral Selection through the Sequence of Parts. 

A ill ill . i .. 

i r 

Figure 352. Double auxiliary (continued). 
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Figure 352. Double auxiliary {concluded). 

(3) Triple Auxiliary Tones. (A) Neutral Selection through the Sequence of Parts. 

Figure 353. Triple auxiliary. 

AUXILIARY TONES 595 

Diatonic-Symmetric Progressions, 
Diatonic and Chromatic Auxiliary Tones. 

Theme: Type II 

Figure 354. Auxiliary tones in diatonic-symmetric progressions. 
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Theme: Type 

Symmetric Progressions, 
Diatonic and Chromatic Auxiliary Tones. 

m:Vr~ S (9) const. 

Variation: ---*'5 (Diatonic auxiliary) 

tfei— ■ — 1 1 ■ =f -W?-t - 1-& XT—- 

j ^ 1« 

r"TT 

j— at* 

—“—r-o -^-a- 

.il -1 ,nJ 
7 

Figure 355. Auxiliary tones in symmetric progressions. 

CHAPTER 23 

NEUTRAL AND THEMATIC MELODIC FIGURATION 

BY combining all the devices using the suspended, the passing, the anticipated, 

and the auxiliary tones, we attain the final—and fully versatile—form of 

melodic figuration. 

We shall distinguish the two forms of it: 

(1) Neutral melodic figuration. 

(2) Thematic melodic figuration. 
Neutral melodic figuration may be effected in the following forms: 

(a) Free development of resources without preliminary planning; this cor¬ 

responds to that technique, the best examples of which are to be 

found in J. S. Bach's 3?1 chorals. 
(b) Free selection of resources, but with preliminary planning of the 

sequence of parts in which the figuration is to appear. 

Theme: Type I 

(A) 

m 

[597] 
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(B) TABS+ABST + BSTA + STAB 

Figure 356. Neutral melodic figuration (concluded). 

Thematic melodic figuration, however, presupposes that the motif to be 
used throughout the different parts of the harmonic continuity will be selected 

in advance. A motif to be put to such use must be approached, firet, as a group 
of both chordal and non-chordal tones. Ascertaining which tones are in fact the 
chordal tones is a process based on the principle that, in even- seven-unit scale, 

either the first or the second pitch-unit is a chordal tone. This gives us two 
possible definitions to any scale— 

The non-chordal tones then become either auxiliary or passing tones. 

Once the chordal functions are designated, their assignment must be per¬ 

formed from the axis of the motif. If this axis is not sufficiently prominent, 
then any arrangement of units by thirds may suggest the position of chordal 
tones in the motif. 

In other cases, the chordal tones may best be detected by elimination of all 
the accidentals which do not belong to the (real) key signature. Analysis of 

an actual motif and assignment of the chordal tones will illustrate this process: 

Figure 357. Analysis of a motif. 
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In this case the grouping of thirds is quite apparent for a, c and e are obvious¬ 
ly the chordal functions; g# is the lower auxiliary tone to a, and f is the upper 
auxiliary tone to.e. It is understood, in this example, that the entire motif must 
be superimposed on one chord. The grouping of chordal tones is as follows: 

The next step is to assign any one of the seven possible systems to our 
reading of chordal functions; we may select from the following: 

Figure 358. Assigning chordal functions. 

Inasmuch as the axis of this motif obviously falls on e, we have to bear in 
mind that whatever chordal function we select for the motifs, starting chordal 

function must also be present in the chord itself. For example, if e.becomes 

assigned to function as the ninth, we must start on the fifth. 
This assignment of chordal functions in a motif may be either constant or vari¬ 

able. In the first case, chords of a certain tension are required. If the starting 

point becomes a ninth, all chords must be S(9), as a minimum form of tension. 

Assigning the axis, in the above case, to a seventh, the starting point in the chord 

will be a third. 

In the variable assignment of chordal functions, the sequence in which 
the motif appears in the different parts is controlled by the SATB arrangement 

(24 fundamental forms). 
In the constant assignment of chordal functions, the sequence in which the 

motif appears in the different parts is controlled by voice-leading which will 

necessitate the appearance of the assigned chordal function in some specified 
voice. 

In using thematic melodic figuration, it is advisable to have open positions 

of the chords so as to provide sufficient range for the motif to move. 

Examples of Thematic Melodic Figuration 

(Diatonic Progressions) 

(1) Constant assignment of chordal functions. 

(a) 1, 3, 5 (axis placed on the fifth) operation from the root. 
The missing functions are compensated (marked with cross) and 

the original voice-leading resumed. 
(b) 3, 5, 7 (axis placed on the seventh) operation from the third. 
(c) 5, 7, 9 (axis placed on the ninth) operation from the fifth. 

See the corresponding music examples on the following pages. 
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(2) Variable assignment of chordal functions 

(a) SATB 

(b) BTAS 

(c) ABST 

Figure 360. Variable assignment of chordal functions (continued). 
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I" progresaons of Types II and III, at lust the chordal tones of the thematic 

mony ^lmple 40 PartiCUlar 2 ™ * ** out *"»*«■ the har- 

I (is) Thematic motif Thematic motif Adapted to /(is) 

operation from!; operation feam 7; operation from ii 

Theme: Type II 
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Any crossing of adjacent voices by the thematic motif is undesirable. Com¬ 
pensation of the missing tones during the period of figuration is desirable but 
unnecessary, particularly in fast tempi. 

The range of some thematic motifs is so great that they are bound to cross 
adjacent voices; in such a case the harmonic continuity has to be rearranged 
into extra-open position, with the original voice-leading preserved. Example:' 

Figure 362. Using extra-open position to avoid crossing of adjacent voices. 



CHAPTER 24 

CONTRAPUNTAL VARIATIONS OF HARMONY 

■yXTHEN different parts of a harmonic continuity enter and dropout at dif¬ 

ferent time intervals, the continuity acquires contrapuntal* characteristics. 
This effect arises from greater independence of the voices; it can be accomplished 
by operations upon any type of harmonic continuity. The sequence in which the 

different parts may enter or drop out is naturally subject to permutations. 

Any three-part harmony offers us six variations for either entering or drop¬ 
ping out. making a total of 12 variations: 

S- 

A 

* ® 
S 

A- 

T- 

T- T- 

® <D ® 
s — s— s 
A- A- A 

T- T- T 

Figure 363. Contrapuntal variations of three-part harmony. 

This table can be reduced** to three variations each way (through circular 
permutations) making a total of 6 variations. 

® ® ® 
s- s— s- 
A- A- A- 
T- T- 1-- 

® ® © 
s— s- s- 
A- A- A- 
T—- T- T- 

Figure 364. Contrapuntal variations of three-part harmony. 

Indeed, it is Schillinger who gives to this 
matter of sequence and interval of entrance 
and dropping out its proper emphasis in 
counterpoint itself, as will be seen later, in 
contrast to the customary emphasis on the 
techniques of simultaneous melodic lines. Con¬ 
sequently, the usefulness of the techniques 
described in this chapter cannot be overes¬ 

timated. (Ed.) 

"•Reduction becomes desirable when the full 
set of 12 general permutations provide too 
much raw material, and when some casual 
selection of fewer than 12 would lack the logic 
of the 6 circular permutations—a lack that 
would be reflected in the resulting music. (Ed.) 
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Likewise, any four-part harmony affords 24 permutations each way, making 
a total of 48 variations. This can be reduced through circular permutations to 

4 variations each way, making a total of 8 variations. 
In five-part harmony, general permutations produce 120 variations each 

way, making a total of 240 variations. This can be reduced through circular 
permutations: 5 variations each way, making a total of 10 variations. 

(1) Three-Part Harmony. 

(a) Theme: Type 
(b) Variation: 

III: [Ss(5) 4-S2(5)] C, 
S- S- 

A- A- 

T-  T- 

Figure 365. Contrapuntal variation of three-part harmony. 

(2) Four-Part Harmony. 

(a) Theme:Type III: v'T* Si(5) + Co((Sj(5) + S2(5)]. 

(b) Variation: S -- S 
A- A 
T- T 

B— B 

(2) (a) 

Figure 366. Contrapuntal variations of four-part harmony (continued). 

(606] 
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(b) 

Figure 366. Contrapuntal variations of four-part harmony (concluded). 

(3) Five-Part Harmony. 

(a) Theme: Type II. 

(b) Variation: S 

(b) 

Figure 367. Contrapuntal variation of five-part harmony. 

. - • -■/ i. 
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Deciding upon the number of attacks after which the next voice will enter 
or will drop out may be a matter of free selection and distribution. Or the number 
of attacks for each voice may be rhythmically arranged. Attack-groups may 

be composed either with or without interference in relation to the part-sequence 
group. For example, the part-sequence group might be distributed in one-to- 

one correspondence to the attack-group: 

S- 
A---— A = 4a + 3a -f- 2a -f- 2a 

T- 
B- 

Then: S4a + S3a + S2a + S2a 
A3a -f* A2a -f- A2a 

T2a + T2a 
B2a 

Theme: Type I: 11 H* 

Variation. 

Theme 

Figure 368. Correlation of part-sequences and attack groups. 

*The “11 H” we may read, of course, as various attack patterns producing more than 
“eleven harmonies"—harmonies rather than one “chord” for each H. (Ed.) 
chords, for each H might be subjected to 
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When several entrances produce different part-sequence groups, their in¬ 
terference against the attack-group offers the possibility that each voice may 
have a different number of attacks at each of its consecutive entrances. Example : 

Part-sequence group: 

S- 

A- A = 3a 4- 2a 
T- 

The synchronized part-sequence group would then be: 

S3a S2a 

A3a 4- A2a + A3a 4- A2a 4- A3a 4* A2a 
T2a 4- T3a 4- T3a 4- T2a 

(The bass is excluded in the variation) 

Theme: 15 H: Chromatic. 
Variation. 

Variation 

CONTRAPUNTAL VARIATIONS OF HARMONY 

When this technique for the contrapuntal variation of harmony is applied 

to harmony that has already been subjected to melodic figuration (neutral or 
thematic), many more developed forms of counterpoint (including imitations) 

may be derived from harmony. 

One of the advantages that “contrapuntalized” harmony has-over counter¬ 

point proper is that it permits complete control over the style or type of harmony 
a priori. Another advantage lies in the fact that this technique is incomparably 
easier than any purely contrapuntal technique. Still another advantage comes 

from the fact that it is possible to use such a contrapuntal variation against 
its own harmonic theme, the theme functioning as a harmonic background; 

the latter may take on, by means of patterns of attack, any instrumental form, 
such as (1) sustained chords, (2) staccato chords, (3) broken chords (arpeggio). 

In all these cases, the counterpoint stands out against its own harmonic 

background (accompaniment), particularly when the background is sounded by 

instruments (or voices) different from the counterpoint itself. When these de¬ 
vices are applied to arranging (when the thematic motif is a fragment of a given 

piece), they produce very effective introductions, transitions, and conclusions 

(codas). 

The following techniques for melodic or contrapuntal development of har¬ 

monic continuity may be suggested: 

A. Neutral or thematic melodic figuration carried out in one voice. This, 
combined with other voices, produces a melody-with-accompaniment: 

Theme: Figure 359. 
Variation: Thematic Melodic Figuration in Soprano. 

Figure 369. Synchronizing part-sequences and attack groups. 

It is this technique which enables us to obtain vocal or instrumental or- 
c estration comparable to that found in the scores of the best composers of the 
past (Palestrina, Bach, H&ndel, Wagner, and others). 

B. Neutral or thematic melodic figuration carried out through all voices and 
assigned either to a sequence of chordal functions (Fig. 359, 1) or to a 

sequence of parts in which the motif appears (Fig. 360). 

C. Neutral or thematic melodic figuration (as in B) with gradual entrances 

or gradual dropping out of voices. When such a form is. based on thematic 

figuration, the result is txfugafo, i.e., a group of imitations. 
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SATB 

It is easy to achieve the opposite effect by using the inverted position (£).* 
When, a fugato, is to be used as an introduction which is to have a duration 

of 4T, all that is necessary is to compose a 4H continuity so that the last chord 
will lead directly to thd following exposition (an equivalent of an exposition in 

a song is the “chorus"). A fugato used as a modulating interlude between suc¬ 
cessive expositions (choruses) should be developed from a harmonic continuity 
that effects the desired modulation. A 4T introduction or interlude may also 
be constructed by making a three-part fugato with a cadence on the last chord 
(H«). 

When an 8T introduction or interlude is desirable, the thematic motif em¬ 
phasizing one chord (H) should occupy a duration rhythmically to 2T. 

Likewise, a 6T introduction or interlude may be constructed from 2T-per-H 
motifs in three-part Fugato with a 2T cadence at the end. 

Theme after: Honey-Suckk Rose,** by Thomas Waller. 
Theme 

CONTRAPUNTAL VARIATIONS OF HARMONY 613 

Figure 372. Introductions or interludes on a given theme (concluded). 

D. Accompanied Fugato with constant or variable density* in the harmonic 

accompaniment. 

(1) Constant density in the harmonic accompaniment. Example shown 

on the following page. 

(2) Variable density in the harmonic accompaniment; decreasing density 

in the accompaniment. Example shown on the following page. 

(3) Variable density in the harmonic accompaniment; decreasing density 
in fugato, increasing density in the accompaniment. (Reverse the 

procedure of (2) ]. 

*Density is a term which will be explained numlftr of parts sounding, in relation to their 
more fully at a later point in the text; it is distribution over the total practical range of 
enough to say that it has to do with the total instrumentation. (Ed.) 

3 



Figure 373. Accompanied fugcUo with constant or variable density. 
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CHAPTER 1 

MELODIZATION OF HARMONY 

I 'HE composition of melody with its harmonic accompaniment can be ac¬ 
complished either (a) by correlating the melody with a chord progression, 

or (b) by composing the melody to such a progression. While the former pro¬ 

cedure is the one more commonly known—and attempts have even been made 
to develop a theory to this effect—it is the second procedure which has in fact 

brought forth music of unsurpassed harmonic expressiveness; many composers, 

particularly the operatic ones (among them, Wagner), composed the melodic 
parts of their music to harmonic progressions. 

So far as my theory is concerned, the technique of harmonization of melody 

can be developed only if the opposite process is known. If melody can be ex¬ 
pressed in terms of harmony, i.e., as a sequence of chordal functions and their 

respective tensions, then a scientific and universal method for the harmonization 

of melody can well be formulated by reversing the whole system of operations. 

The process of composing melody to chord progressions thus becomes what 
I shall call the melodization of harmony.* The word “melodization” cannot now 

be found in English dictionaries, but we may be certain it will be found there 

soon, for the discovery of a new technique necessitates the introduction of a 
new operational concept. 

At this point, I shall apply my theory of melodization to those particular 

narmonic progressions which satisfy the definition given earlier for the Special 
fieory of Harmony,** as distinct from general harmony*** which will be discussed 

considerably later. According to this definition, all chord-structures are based 
on Ex, the first expansion of those seven-unit scales Which contain seven musical 

names without any identical intonations. So approached, any pitch unit of 
elody can be only one of these seven functions: 1, 3, 5, 7, 9, 11, or 13. These 

seven functions produce that manifold which I call the scale of tension. By ar- 
anging this scale of tension in a circular fashion, one obtains two harmonic 

erections: the clockwise, and the counterclockwise. See Figure I on the following 

riS.3^081 brilliant discoveries, refers to 
aS« "' a rT!ei<?dy to g° with an ] 
fiaura^?^’ in contrast to mel{ "guration, which does not add any additic 

voice to those of which the H~* (harmonic con¬ 
tinuum) is composed. (Ed.) 

**See Book V. 

***See Book IX. 
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, Figure I. Scale of tension 

* Clockwise functioning of the consecutive pitch-units of a melody obtains 

the positive form of tonal cycles. 
Counterclockwise functioning of the consecutive pitch-units of a melody 

obtains the negative form of tonal cycles. 
If we assume, for example, that all pitch-units of a melody are stationary and 

identical and that we may therefore select any pitch-unit that is stationary, we 
may choose c as such a unit, for illustration. By assigning clockwise functioning 

to such a unit, the positive form of harmonic progressions is obtained: 

I 3 5 7 9 11 13 1 

Melody: c 4- c + c + c -F c 4- c 4* c 4- c 
C3 

f 

1 
Chords: C + A + F + D 4- B + G 4* E + c 

By reading the above progression backwards, the negative form is obtained. 
Omission of certain of these chordal functions for the consecutive pitch- 

units of the melody will result in a change of cycles but not of direction. 

1 5 9 13 3 7 11 1 i 
Melody: c + c + c 4- c + c 4- c 4- c 4- c 

C. 

Chords: C + F + B 4- E 4* A 4- D + G + c 

Likewise: 
1 7 13 5 11 3 9 1 

Melody: c 4- c -F c 4- c 4* c 4- c 4- c 4- c c, 
Chords: C + D + E 4- F 4- G 4- A 4- B 4- C 

It follows, from the above, that every chord has seven forms of melodizatv^^ 

insofar as the 1, 3, 5, 7, 9, 11 or 13 can be added as a melodic tone to the chord 

itself. Reduction of the scale of tension decreases this quantity accordingly. 
Let us consider all the reduced forms of the scale of tension to be the ranges 

of tension. When each chord is melodized by but one attack (or one pitch-unit), 
the range of tension can be entirely under control. 

The minimum range of tension that is possible may be secured by causing 

but one chordal function to appear in the melody. Let us assume that such a 
function is the root-tone of the chord. Then, if harmony consists of three parts, 

the melody so obtained will sound like the bass of progressions of S(5) const. 

For example: 

2C6+ C3 + C6 + 2C7 

Melody: c 4- f 4* b -j-g + c + d +e 4- . . . 

Chords: C 4* b 4- B 4- G 4* C -FD-f-E-j-... 

Figure 2. Minimum range of tension: one chordal function in melody. 

It is clear that the particular pattern of melody in such a case is conditioned 

by the cycles through which the roots of the chords move. Predominance of 

Cv produces scalewise steps or leaps of the seventh. Other cycles influence the 
melodic pattern accordingly. 

If we assign any other chordal function (but still one function for the entire 

progression), the resulting melodic pattern does not change, although the form 

of tension does vary. This time we shall use the 7 to melodize the same chord 
progression. 

Figure 3. Using seventh to melodize chord progression of Figure 2. 

Different ranges of tension produce different styles of melodization. Histor¬ 
ically, melodization progresses clockwise through the scale of tension. A narrow 
range, confined to the lower functions, produces the more archaic or more con¬ 
servative styles, and the resulting melodization may suggest Haydn or other 
early forms (1 say “early,” since in most cases such styles later become hackneyed); 
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but when a narrow range of tension is confined to higher rather than lower func¬ 
tions the result is melodization that suggests stylistically Debussy or Ravel. An 

intermediate form may produce characteristics of Wagner, or Franck, or Delius. 
And when the entire scale is used as a range of tension, i.e., from I to 13, the 

resulting melodization becomes highly flexible, indeed, in its expressiveness. 

A. Diatonic Melodization 

It follows from the preceding exposition that any chordal function may 
participate in melodization. The only procedure that remains to be effected is 

to assign chordal functions for melodization with regard to actual chord-struc¬ 
tures. Let us denote melody as M and harmony as H. In terms of attacks, when 

one pitch-unit has been assigned to melodize each chord, the attack formula is 

= 1. Under such conditions it is possible to evolve seven forms of melodiza- 

. tion. For example, a C- chord may be melodized by c(l), or by e(3), or by g(5), 
or by b(7), or by d(9), or by f(Il), or by a(13). 

Figure 4. Seven forms of melodization when § = 1. 

The majority of these pitch-units of M are satisfactory; two of them (d 
and f), however, do not result in satisfactory melodization. This is because such 

high functions, without support from the immediately preceding function in 
harmony are not ordinarily acceptable. Similarly, the presence of lower functions 

jn the melodization of high-tension chords is equally unacceptable. Thc‘13 is fully 
satisfactory, however, as melodization of S(5) because by sonority it converts 
an S(5) into S(7) * 

*As a by-product of these circumstances, a 
special technique devised by Schillinger may 
be mentioned. It has been shown (1) that any 
triad will harmonize any tone in the same scale 
except the 9 and 11; (2) that the 9 is accept¬ 
able when two or more melody tones occur 
per H; (3) that a 9 or 11 not preceded by, 
respectively, a 7 or 9, is statistically rare in 
any combination of H and M; and (4} that 
the undesirable effects of an unsupported 9 
or 11 are minimized in fast tempi when three 
or more melodic tones occur to each H. Now 

it happens to be so that any diatonic melody, 

provided it moves at ^ = 3 or more, may be 

harmonized by any progression of triads. 
S(5)—and, when S(7)'s are used, the results 
are still better. In this way, a 16-measurc 
diatonic M-" where ^«3 may be con¬ 

structed separately, and a 16-measure H"* 
of S(7) may also be constructed independently 
—and the two will “fit." (Ed.) 
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We can now construct the table of melodization for the fifth voice above 
four-part harmony when both melody and harmony are diatonic. 

Table I: § - 1. 

Figure 5. Table of melodization for fifth voice when M and H are diatonic. 

It follows from the above table that: 

(1) classical and hybrid four-part harmony can be used for. diatonic 
melodization; 

(2) all chordal tones actually participating in the chord as well as the 
functions designated as M can be used for diatonic melodization; 

(3) by diatonic melodization we mean the participation of pitch units 

of one diatonic scale, from which scale the chord-progression is itself 
evolved; 

(4) the use of 13 in the melody with an S(7) is more conventional when the 

root of the chord is in the bass (i.e., this would exclude inversions); 

(5) the alternatives that exist in the table for selection of functions for 

the melodization of S(13) arise from two forms of structures covered 
by hybrid four-part harmony. 

Assuming, that there are, on the average, about five practical pitch-units 

(functions) for the melodization of each chord through the form | « 1, the 

number of possible melodizations of one harmonic continuity (under such con¬ 
ditions) equals 5 to that power the exponent of which represents the number of 

chords. Thus a progression consisting of 8 chords produces 58 = 390, 625 possible 
melodizations! 

The two fundamental factors which determine the quality and the character 
of melodization are: 

(a) the range of tension; 

(b) the melodic pattern, i.e., the axial combinations of melodic structure. 

Interest may be concentrated on either one, or on both; attack-interference 
patterns give additional interest to melodization. 
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In the following example, R represents the range of tension, and A denotes 

SeaSden^s °n'* A" f°ll0Wi"E ““Pk< may be played in “V system 

Rs 1—9 

R=l—18$ As b 

R= l-lBjA=a+bH 

R=l-18; A=b+a 

R= 1—18 Binary parallel axes 

R= 1—18 Binary diverging axes 

Figure 6. Diatonic melodization | = l {continued). 

•«2d25.A.iVS,«fcS,,SS of & i5fir*£-the » 
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6. Diatonic melodization ^ = 1 {concluded}'. 

B. More than One Attack, in Melody per H 

r ‘ht "Umber °f 3ttaCks of M Per H requires a slight remodeling 
ot 1 able I (Fig. 5). Any higher function may be supported by the immediately 

preceding function of immediately preceding rank. For instance, 9 may be used 
ior melodization of S(5) if two conditions are met: 

(1) it must be immediately preceded"by 7, and 

(2) the root of S(5) must be in the bass, a necessary condition for the support 

of 9. For the same reason, 11 can be used for melodization of S(7) if 
preceded by 9 and if S(7) has a root in the bass. 

Additions to Table I: 

7 —> 9 9-411 

7 

5 5 

3 3 

I 1 

S(5) S(7) 

Figure 7. Table II: % ~ 2, 3, 4, . 
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A= a + b 

Figure ■S. Diatonic melodizalion ^ = 2. 
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With the further growth of the number of attacks of greater allowances 

(particularly in fast tempi) can be made. This is particularly true of the use 

of “unsuitable” functions for melodization when such functions are used as 

auxiliary tones moving into chordal tones, i.e., chordal tones actually present 
in the harmonifc accompaniment. Such styles of melodization (particularly in 

harmonic minor) may easily be associated with the music of Mozart, Chopin, 
Schumann, Chaikovsky ancf Scriabine, i.e., with the sentimental, romantic! 
lyrical type of melodization. 

Examples of Diatonic Melodization. 

Figure 9. Diatonic melodization ^ = 3 (continued). 
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A= b 

A = a + b 

Binary parallel axes 

Binary converging axes 

Figure 9. Diatonic melodization § - 3 {continued). 
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Figure 11. Diatonic melodization 5 (continued). 
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Figure 13. Diatonic melodization 7 {continued). 

J
t:
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Attack pattern: (4 + 8)+ (8+ii+2) + (3+4) 

Figure 13. Diatonic melodization ^ = 7 {concluded). 

Examples of Diatonic Melodization. ^ = 8 

Compare classical type (-J series) with jazz (f and series) in the following 
illustrations. 
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A = b+a 

Figure 14. Diatonic melodization f£ = 8 (continued). 
Figure 14. Diatonic melodization ^ = 8 (concluded) 
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CHAPTER 2 

COMPOSING MELODIC ATTACK-GROUPS 

TN ALL the forms of melodization previously discussed, the attack-group of 

M was constant in relation to H. Any preselected quantity of attacks per 
chord (H) was carried out consistently. The monomial attack group (A) in all 
these cases was an integer remaining constant throughout H~*. This monomial 

form of an attack-group can be expressed as ^ = A, where A can be any integer 

from one to infinity. 

Now, however, we are to consider binomial attack-groups for the melody. 

This situation may be expressed as |g = A* -f As, i.e., the melody covering 

two successive chords consists of two different attack-groups.* 

For instance: 

(l)£-2a + a; <2)|,= 3a + 2a; 

(3) £ = 5a + 3a; (4) | = a + 8a; . . . 

These expressions can be further deciphered as: 

(1) £ + £ = 2a + a; (2) £ + £ = 3a + 2a; 

(3) £ + £ - 5a + 3a; (4) f, + £ -= a + 8a; . . . 

What is true of binomial attack-groups is true of any polynomial; the latter, 

too, are subject to permutations. 

Examples of trinomial attack-groups: 

(1) 
M 
3H 

= 3a -F 2a + a; 
M 
Hi + 

M 
Hs + 

M 
Hs 

II c*
> 

p
 

+ 2a + a; 

(2) 
M 
3H = 4a + a + 3a; 

M 
Hi + 

M 
Hj + 

M 
h8 

= 4a + a + 3a; 

(3) 
M 
3H = a + 2a -F 4a; 

M 
Hi + 

M 
Ha + 

M 
Hs = a + 2a + 4a; 

(4) 
M 
3H = 3a + 5a + 8a; 

M 
Hi + 

M 
Ha + 

M 
Hs 

II p
 

+ 5a + 8a. 

Figure 16. Trinomial attack-groups. 

Examples of polynomial attack groups based on the resultants of interference: 

(1) r*+y- 

m = £ + £ + *,+ 5. +£ + £=3a+a + 2a + 2a+a + 3a. 

(2) r3~-2: 

JH ~ H. T ff, T H, T T w. ■ W* i Hi Hi T H2 t* Hs -r m T Hs T H« "T Hi 

s=2a+a + a+ a + a+ ar 2a. 

(3) 1^9+8: 
= 8a + a + 7a-F2a-F6a-F3a-F5a + 4a-F 

■f 4a -F 5a + 3a + 6a -f 2a + 7a + a + 8a. 

Figure 17. Polynomial attack-groups. 

The main technical significance of a binomial attack-group is that it in¬ 
troduces contrast between the two successive portions of M. The greater the 
contrast required, the greater the difference between the two number-values of 

the binomial. This proposition can be reversed as follows: the contrast between 
the two terms of a binomial decreases when their values approach equality. 

Thus, = a -f- 6a contrasts more than ^ = 2a + 6a; 2a -f 6a possesses 

more contrast than 3a -F 6a; and 3a -F 6a has more contrast than the least 
contrasting, 5a + 6a. With further balancing we return to a monomial, 

-F U, = 6a -f 6a which means that ” = 6a. 

If permutation takes place in a binomial attack-group, it results in a second 

order binomial attack group. For instance: H = 4a + 2a; in the course of 

H~~* = 4H,’ this becomes: H = Ig, -F + j{3 -F — 4a *F 2a -F 2a -F 4a. 

u 
H 

|l| 
*55 " A* + A* is not the same situation as 
■» 2; the latter means two uniform attacks 

of melody per H, while the former means two 
groups oi melody attacks per2'H,and one group 
need not be the same as the other. (Ed.) 

1642] 

The effect produced by such composition of attacks as (3) is that of counter¬ 

balancing the original binomial; the melody starts with excessive animation 
over Hi (8a) and complete lack of it over Ha(a); it follows into that state which • 

is closest to balance, after which the counterbalancing begins, ultimately reaching 

its converse: a -F 8a. 

In all cases of ra4-b, maximum animation takes place at the beginning and 

at the end. When the opposite effect is desired (minimum animation at the 

beginning and at the end), use the permutation of binomials (which is possible 
when the number of terms in the polynomial is even). For instance: (3) can be 

transformed into ^ = a + 8a-F2a-F7a-F3a-F6a-F4a + 5a-F5a-F 

-F 4a *F 6a -F 3a + 7a -F 2a -F 8a -F a. 

In addition to resultants, involution (power) groups, various series of vari¬ 

able velocities (natural harmonic series, arithmetical and geometrical prog¬ 

ressions, summation series), may be used as the forms of attack-groups. 

For instance: (2 + 1)*: = 4a + 2a + 2a -F a ; 

(1 *F 3)2: ^ = a + 3a + 3a + 9a ; 

— 2a “F 3a -F 5a *F 8a -F 13a. 
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in the present examples, I shall use the simplest duration-equivalents of 

attacks, as this subject is to be a matter of further analytical investigation later 

in our text. 

Examples of Diatonic Meloduation with 

Variable Quantity of Attacks of M over H: 

g «= A var. 

♦afterattack* have been planned, tie* may be 
added (as above) 

Figure 18. Diatonic melodization with ^ * A variable, (continued). 

H=Var.-a: 4+ 2+2+1, H"* : Hybrid 4 part harmony 

--r----—1 a  --1—^--- 
9 9970 976 

Figure 18. Diatonic melodization with = A variable (concluded). 

The ties in the above examples were added after the completion of the 
Melodization. 
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A. How the Durations for Attack-Groups of Melody are Composed 

Durations for the attack-groups of melody may be "composed by means of 
the techniques previously discussed as evolution of style in rhythm.* Every 

attack-group—monomial, binomial, trinomial, quintinomial, etc.—can be ex¬ 
pressed through the different numerical series. For instance, a binomial of § 

series is 2 + 1, or its converse; a binomial of -f- series is 3 4- 1, or its converse; 

a binomial of ■§■ series is 5 4- 3 or its converse. Likewise, a trinomial of series 
is either 2 4-1 4-1 or one of its permutations; a trinomial of •§■ is 4 + 1 -f 1 

or one of its permutations; and a trinomial of J- series is 3 4- 3 + 2 or one of 

its permutations. 

By selection of the durations for the attack-groups according to the different 
series, we may translate a piece of music from one rhythmic style into another. 

When a choice is to be made as to the use of a binomial or a trinomial, the 
form of balance (unbalancing, balancing) becomes the decisive factor. 

Of the two binomials, 3 4-1 and 14-3, the former is the more suitable at 
the* beginning of melody; the latter, at the end. As to a trinomial in -f- series: 

we might well use 2 + 1 + 1 at the beginning, 1 4* 2 4- 1 somewhere about the 
center, and 1 4-1 4" 2 at the end. Likewise, in f- series, 3 4- 3 4* 2 at the begin¬ 

ning, 3 4-2 4-3 about the center and 2 4- 3 4* 3 at the end. Four attacks can 
be achieved, among other ways, by splitting one of the terms of a trinomial. 

Splitting the terms serves as a general technique for acquiring more terms 
for low determinants. 

Here are examples of the composition of durations for the attack-groups 

of melody where each term of an attack-group corresponds to one chord: § - A. 

A“* *= Aj 4- A* 4- A* 4- A< 4- A§ 4- Ae 4- A7 

Aj = a; 

A* ~ a + b; 

Aa = a 4- b 4- c; 

A* ssa4b4c4d4e; 

A* = a 4- b 4- c; 

A* = a 4- b; 

A7 ® a 

A~* *=a 4" 2a 4“ 3a 4" 5a 4* 3a 4- 2a 4- a 

Series: f ( 

T - 3H, 4- (24-l)H. 4- (14-14-l)H, 4-(£4-£4-14-£4- £)H4 4- 
4- (14-14-1)H6 4- (14-2)H« 4- 3H7. 

•See Book I, Chapter 13. 

_•_ 

•^
ic

o 

J. N J IJ J J IJ3J/3IJ J J IJ J I J- II 

Sr 1 rpr ir ppr icmxr ir ppr irpri r II 
3 
3- series 

mm \*M MSF-Wl— 

E 

..Mir 

BUt——u—- .j 
ammmmmmmmm 

iii MM 1!
 

■ B
 

mm* 1 
M/ 

ii3
 

■r/rwM W/jnSBBBM w.npm j 

Figure 19. Series -|. 

Series-: £ 

T = 4Hi 4- (34-l)H2 4- (2+14-l)H, + (1+14-Hi4-1)H4 4- 

4- (14-14-2)H§ 4- (14-3)H6 4- 4H7. 

10 If r Ir rr irrtrr irrr Irr 1 0 l 

4 
■4 6eries 

Figure 20. Series 
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Series: ■§• 

T = 6Ht 4- (5+l)H, 4- (4+l+l)Hs + (1+14-24-14-l)H4 + 
+ (1 +1 +4)H* + (1 +5)H« + 6H7. 

Ir4frpireixriufunufrlpr~rrIr II 
or 

(Waltz or Mazurka) 

f r in.itir zsitrrtricrr itfr I r II 
| series 

T ~ 8Hi + (5+3)Hs + (3+3+2)H, + (2+1+2+1 +2)H* + 
4- (2+3+3)Hi + (3+5)H$ + 8HT. 

(Fox-trot, Rhumba, Charleston) 

f ° irlrirprrlrprpr irrcfr irp? I ° n 
§ series 

mi* -ir 
tr-“- 

£be=ee 

-i- r i -H— 

itTK-iinmH 

TT ■ ■ Htt- 
TT 

- 

Figure 22. Series f. 

- - 
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The final and most refined technique of coordination of attack with duration- 
groups occurs when the attack-groups are constructed independently of T This 
results m an interference between the attack-groups and the du Jtinn * 

-d thehd“radon °\ the ^ividual chords coincides neither with the blrdhS 
nor with their simplest subdivisions. 

A simple case for our illustration: let us choose A - r5-.4~4a + a + 
+ 2a + 2a + 3a + a + 4a = 20 a. + a + 3a 4- 

fe dUrationS isT“rt±^ AST in this case has 10a and A has 
zUa, the interference is a simple one. 

5_JA) bm= 2 . 1 (30) 
a (T) TT T • 2 (ioi 

Hence, T' = 16t*2 = 32t. 
Let T" = 8t, then: 

Nqv# = — 4 

rimPIl'!tdtUrtti0n °f eaCh1C°nSeCUtive H et>ual5 “>e of durations during the 
time of attacks correspond,ng to such an H. H, corresponds to 4a, the durations 
of wh,ch constitute 3t + t _+ 2t + t, and so H, will laVt 7t. Likew,^ the next 

last t-,51nce m<=lodization at this point consists of one attack 
and that attack corresponds to one unit of duration. 

Here is the final solution* of the case: 

Hw = f + i- + f + f + f + f + -}- + 4.- 
“ 4aIil + aH« + 3aH' + 2aH, + 2aHs + 3aH, + aH, + 4aH, 

^ = C^f±1+| + i^ + ^ + (i±i+Mi±i + ,+ 

^‘4) HI + (I) H, + C-^) H.+ 

(1) 

(2) 

+ O Hi] + [C^)HS+ C^) H|+ ()) H,+ 

+ 0 t -f2t +t +3t 
7t ) HJ 

J3J J»J. J. jjji J1J JU. 
r r r r or 

Figure 23. ajH j and (continued). 

fs °ne which the reader who 
may undeSSjh*1^the “tecedent techniques 

5? K-rt™f'S“ m 
attack of"melodv°he?hTK d?ralton “hajl each 

+ 1 + 3 — meaning that the first 

T(H) 

Se^nyirn0ttLW!l!>fV0r 3 units-the ^"d for one unit, the third for two units, etc. When 
owreiwf the P?ttlrn is reached, it begins all 
over again until the two, rs-f.4 and r4-±-3, 

JKJf a”lend at the •*"« P°int* Knowing; 
th!niiiJ?t«hereJfreu0 raelodic attacks for 

*1’ lnd that the duration of these 
t0 respectively, 3 and 1 and 2 

“ the s u m**; ,. 7 "“v’"™**" Of <l>« H must 
’ 7' 7h,s Process is earned out 

until the two resultants, rs—4 and r4^.a 
close. (Ed.) ' 
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Figure 23. 2® and {concluded). 

B. Direct Composition of Durations Correlating Melody and Harmony 

Time-rhythm of both melody and harmony can be set simultaneously by 

means of a. proportionate distribution of durations for a constant quantity of attacks 

of j{. This can be achieved by synchronizing a polynomial (consisting of the 

corresponding number of terms, representing attacks) with its square, or by 

synchronizing the square of a.polynomial with its cube, etc. For instance, we 
might assume that we would like to have 4 attacks per chord with the duration 

in the style of the £ series. Let us take a quadrinomial from that series, 3 + 1 + 

+ 2+2, and square it. 

(3+i +2+2)* = (9+3+6+6) + (3+1+2+2) + (6+2+4+4) + 

+ (6+2+4+4) 

ThiB distributive square represents T (M). The T (H) is the original quadri¬ 

nomial, synchronized with the distributive square: 

8 (3+1+2+2) *=24 + 8 + 16 + 16 

We obtain: 
T (M) 9t + 3t + 6t + 6t , 3t + t + 2t -f 2t , 
T <H) = 24t "r 8t 

, fit + 2t + 4t + 4t , 6t + 2t + 4t_+4t 
■*“ 16t 16t 

M 8 J* 
8 o p. . o 

M J. J <J J 
H— “v._ 

J- JlJ J 

Figure 24. Correlating melody and harmony: direct composition of durations 

(icontinued). 
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Figure 24. Correlating melody and harmony: direct composition of durations 

{concluded). 

Likewise, a synchronization of the distributive square with the distributive 
cube of the same polynomial may be used for melodization of harmony. The 
group arising from the square furnishes durations for the chords; the group 
arising from the cube furnishes durations for the melody. 

T_ - (2 4-1 + 1)» 8t+4t+4t , 4t+2t+2t . 
T (H) 4(2+1+1)?-16t +'-8t-+ 

, 4t+2t+2t , 4t +2t +2t , 2t +t +t . 
^ 8t + Si + 4t + 
J. , 4t+2t+2t 2t+t+t , 2t+t+t 

4t ^ 8t + " 4t + —t- 

This produces harmony: H~> - 9H, and melody: M = 27a, with constant 
3 attacks per chord. 

M 8 « J J J J J J J J 
H 8 °v_o o 

m J j j j ni n j j j j nj n 
H ° r r r ? 

Figure 25. Synchronisation of distributive square with distributive cube {continued). 
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For still greater contrast in quantity of attacks between M and H"”*, use 
the synchronized first power group for H~*, and use the distributive cube for M. 

In addition to distributive powers, coefficients of duration can be used. 

For instance: 
M _ (3 + 1+2+1+1+1+1+2+1+3) -f (3+1 +2 +1+1 +1+1 +2 +1+3) 
H * 6+2+4+2+2+2+2+4+2+6 

C. Chromatic Variation of Diatonic Melodization 

It is expedient to construct a chromatic melody for a diatonic chord pro¬ 
gression by using two successive operations: 

(1) Diatonic melodization of die harmony; and then 
(2) Chromatization of the diatonic melody. 

The first technique has been fully covered in the preceding explanation. 

The second, chromatization, can be accomplished by means of passing or 

auxiliary chromatic tones. The most practical way to perform this rhythmically is 

by means of split-unit groups, as discussed earlier in the Theory of Rhythm under 
“Variations.”* This-splitting does not change the character of durations with 
respect to their style; it merely increases the degree of animation of the melody. 

•See Book I, Chapter 9. 

COMPOSING MELODIC ATTACK-GROUPS 
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D. Symmetric Melodization: 

The 2 (13) Families 

Each style of symmetric harmonic continuity (the Type II, the Type III 
and the generalized) is governed by the 2 (13) families. Pure styles are controlled 

by any one 2(13); hybrid styles are based usually on two, sometimes on as many 

as three, 2 (13). 
The complete manifold of 2 (13) families corresponds to the 36 seven-unit 

pitch-scales which contain the seven names of non-identicai pitches; the 2 (13) 

is the first expansion (Ei) of such scales. 
We shall classify all forms by considering 1,3,5 and 7 to be thelower structure 

[as S{7) ], with 9,11 and 13 constituting the upper structure [as S(5)}, eliminating 
all enharmonic coincidences and eliminating all those adjacent thirds which do 

not satisfy i = 3 or i *= 4. These limitations are necessitated by the restricted 

scope of the special theory of harmony. 

xrn xrv xv xvi xvii xvhi 

xxv xxvi xxvn xxvni xxix xxx 

Figure 27. Complete table of 2 13. 

I 

Symmetric melodization provides the composer with resources particularly 

suitable for equal temperament (v^2)- In the diatonic system some chord-struc¬ 
tures, particularly those of high tension, produce harsh-sounding harmonies; 

but in the symmetric system both the chord-structures and the intonations of 
the melody are entirely under control—they are subject to choice. The technique 
of symmetric melodization makes it possible to surpass the refinements of Debussy 

and Ravel. And whereas it took any important composer many years to crystal¬ 
lize his own original style, this technique of melodization offers us 36 styles to 
choose from if one 2 (13) is used at a time. The number of possible styles grows 

enormously with the introduction of blends based-on two 2 (13). Thereupon the 
number of styles becomes 36s = 1,296. Likewise, by blending three 2 (13), which 
is a reasonable limit of mixing, we acquire 36a = 46,656 styles! 

We should note, too, that only four of the 36 master-structures have been 
explored to any extent; the rest are virgin territory, packed with the most ex¬ 
pressive resources of melody and harmony. 

In offering the following technique, I shall use symmetric progressions of 

Type II, Type III and the generalized form in four- and in five-part harmony. 
The main difference between the four- and the five-part type of harmony is 

density. For massive accompaniments, use five; for lighter ones, use four-part 
harmony. 

When all substructures [S(5), S(7), S(9), S(11) ] derive from one master- 

structure [ 2 (13) ], they derive all their intonations from that master-structure. 

The easiest way to acquire a quick orientation in any 2 (13) is to prepare a chro¬ 

matic table of the master-structure. Taking one 2 (13) [XIII] from Figure 27, 
we obtain the following table of transpositions: 

SVSIBHtf % 
—*1 

m
n All
 

Wm 

%■■■■■■ 

\±m rjSrnmi w ■■■■■ 

Such a table is very helpful; in it one can find all intonations of both melody 
and harmony for any symmetric progression. Each 2 (13), being Ei of a seven- 
unit scale, corresponds to E0 of the same scale. 
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The remainder of .the procedure of melodization is based on the same prin¬ 

ciple of tension as in diatonic melodization. Those functions which are added to 
the respective tensions of chords are the most desirable ones for use as axes of 

the melody. Thus, the axis of the melody above S(5) in four-part harmony is 
either 7 or 13. Actually Buch a choice creates polymodality, as S(5) dc serves as 

an accompaniment to melody which is d* or d8 respectively.* It is polymodality 

that makes such music expressive. 
There follows a table of melodic axes for the respective structures in four 

and five-part harmony. In some cases there is a choice of more than one. Some 
of the forms are admitted because there has been practical use of them already— 
for example, S(5) in five-parts with the melodic axis on di (= 9). It is interesting 
to note that 2 (13) [XI11} is used most of all, and that it is the most obvious of 
the master-structures, as it consists of a large S(7) and a major S(5). 

Master-Structure: 2 (13) [XIII] 

M da d6 
=4^ 

d5 di 
>-.. 

acn 

Cl 7 18 18 uii 
H ^- 

i mm % i 

rzz 
S(6) S(5) S(6) 

h-O-H 
S(7), l in the bass 

M <4 
F 

di <4 
*4^ 

d* u 

Cl 18 ; J7- 18 6 ij 

H 
EE ift== ^8= m= 
?= 

S(7),l TO! ■Bn HBH 
L " -= 

Sfe), i in the bass 

_K "^j 

Sfe) 

M da d* da A-— 
• t. m 
y 18 13 

H 

¥ 
tft il

l 

Sfc) S(9) S<0) S(9) 

Figure 29. Table of melodic axes in relation to tension of H (continued). 

♦That is to say: S(5) as a triad in do (that 1, 3, 5) or at the 13 (a third below the 1 of the 
mode which starts on the same tone—the do— 1, 3, 5), thus putting the melody in dg (that 
as that on which the key itself starts) serves mode which starts on the la of the key) or 
to accompany a melody the axis of which is in d« (that mode which starts on the ti of 
located at the 7 (a third above the 5 of the the key). (Ed.) 

S(il) 

Figure 29. Table of melodic axes in relation to tension of H {concluded). 

Using this 2(13) [XI11] we shall melodize a generalized symmetric progression 
in four parts in “ — a. 

Theme: 2 + 2 + 2 -f 1; tension: S(5) + 2S(7) -f- S(9) + 2S(13) 
2 (13): XII) 

Figure 30. Melodising a generalised symmetric progression in four parts ^ ~ a. 
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Theme: Type II: ( = 2C5 + C-7 + 2C, + Cs 

tension: S(5) ■+ S(7) + 2S(9) + S(ll) 
2 (13): XIII 

Figure 31. Theme of Type II. 

With more than one attack of M per H, the quality deriving from the transi¬ 
tions in melody during the chord changes becomes more and more noticeable. 

In melodizing each H with more than one attack of M, it becomes necessary 
to perform modulations in melody. Such modulations are equivalent to polytonal- 
unimodal and polytonal-polymodal transitions. The technique for this is based 

on common tones, on chromatic alterations, or on identical motifs and a full ex¬ 

planation has been provided in the Theory of Pitch-Scales (the first group).* 

jf- 2 + 4 + 8; 4 series of T. 

•See Book II Figure 32. Symmetric melodization (continued). 
Figure 32. Symmetric melodization (continued). 
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Figure 32. Symmetric melodization (concluded). 

With this kind of saturated harmonic continuity, the melody often gains 
in expressiveness by being more stationary than would be desirable in simple 

diatonic melodization; greater stability of tension is another desirable character¬ 
istic. 

When mixing the different master-structures for one harmonic continuity, 

it is desirable to alter either the lower part of the Z (13), i.e., 1, 3, 5, 7, without 

altering the upper, or the upper part of it, i.e., 9,11,13, without altering the lower. 

Let us now produce such a mixed style of master-structures, confining the 

latter to two—-2 (13) [XIIl]and 2 (13) [XVII]. After such a selection has been 
made, the master-structures may be called simply: 2i and Zs. In devising the 
style, we resort to coefficients of recurrence, for a predominance of one 2 over 
another is the chief stylistic determinant. 

Let us assume the following recurrence-scheme: 2 2i + 2*. 

§ = a -f 4a; J series of T. 

2C7 + C6 -f Ca (type II). 

S’* = 2S(9) + S(13). 

/l £l £» 2*1 

Figure 33. Recurrence scheme: 2Zi -f Z2 (continued). 
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Figure 34. Chromatic variation of symmetric melodization. 

are d,f"CeS_such as c°mP°sition of attack and duration-groups- 
applicable to all forms of symmetric melodization. 
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F. Chromatic Melodization of Harmony 

, The chromatic melodization of harmony serves the purpose of melodizing 

•all forms of chromatic continuity. This includes techniques already explained 
in my discussion of the chromatic system, modulation, enharmonics, altered 

chords and of hybrid harmonic continuity. Such melodization is applicable to 
all forms of symmetric progressions; but from this approach we have nothing 

to gain, for symmetric melodization is itself a more general technique than the 

technique now being considered. 
There are two fundamental forms of chromatic melodization. One of them 

produces melodies either of the chromatic type, or of the extensively chromatized 

type. The other form produces melodies of a purely diatonic type from 

chromatic harmony. 
The first technique consists of anticipating chordal tones and using them as 

auxiliary tones: In a sequence, Hi -p H* -f* Hj-+ • • •, the chordal tones of 
.H2 are the auxiliaries and the chordal tones of H! are chordal tones while this 
chord sounds. In the next chord, (Hs)f the chordal tones of Hs are the auxiliaries 
and the chordal tones of Hi are chordal tones while this chord sounds. This 

procedure may be extended ad infinitum. 
As all of the “disturbing” pitch-units are harmonically justified as soon as 

the next chord appears, the listener is not aware that nearly every chromatic 

unit of the whole octave is used against each chromatic group, especially when 

there are enough attacks of M against H. 
The auxiliary tones should be written in the proper manner, i.e., by raising 

the lower (ascending) auxiliary and by lowering the upper (descending) auxiliary, 

even if they have a different enharmonic notation when they occur in the follow- 

Figure 35. Chromatic melodization by means of anticipated chordal tones 

(continued). 
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Figure 35. Chromatic melodization by means of anticipated chordal tones 
(concluded). 

G. Statistical* Melodization of Chromatic Progressions 

The second technique derives from the method of constructing a quanti¬ 
tative scale. Such a scale may be evolved by a purely statistical method. Although 

it is not obvious even to the most discriminating ear, it is easy to find by plain 
addition the quantity in which each chromatic pitch-unit appears during the 

course of a harmonic continuity. To find a quantitative scale, write out a full 
chromatic scale from any note (1 do it usually from c). 

The next procedure is to add up all the c-pitches in a given harmonic pro¬ 

gression (doubled tones to be counted as one and enharmonics to be included). 

Then proceed with all of the c#-pitches, the d-pitches, etc., until we sum up th£ 

entire chromatic scale. This produces a quantitative analysis of the full chro¬ 
matic scale. Now, by eliminating some of those units which have lower marks, 
we obtain a quantitative (diatonic) scale. 

The unit having the highest total becomes the root-tone of the scale and, 
possibly, the axis of the future melody. If more than one unit has a high mark, 
it is up to the composer to select one of them as the axis. 

In the chromatic progression of Fig. 35, a quantitative analysis would b^: 

Figure 36. Quantitative analysis of chromatic scale in figure 35. 

By excluding all values below 4, we obtain the following nine-unit scale with 
the root-tone on e (maximum value). ; 

If such a scale seems to be too chromatic, further exclusion of the tones 
with lower marks will reduce it to a scale of fewer units. 
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By excluding all the marks below 5 in this case, the scale will be reduced 
to one of five units and will have a purely diatonic appearance. 

Figure 38. Reduced further by excluding all marks below 5. 

The next procedure is the actual melodization, performed according to the 

diatonic technique. By this method the tones which predominate quantitatively 
during the course of chromatic continuity (and which affect us as such physi¬ 
ologically, i.e., as excitations) become the units some of which satisfy every chord. 

They attribute great stylistic unity to the entire product of melodization. 

The number of attacks of M against H largely depends on the possibilities 
of melodization. 

Figure 39. Chromatic melodization by means of quantitative diatonic scale. 
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These two techniques of chromatic melodization may be combined in se¬ 
quence. This results in contrasting groups of first a diatonic and then a chromatic 
nature. The quantity of H covered by one method can be specified by means 
of the coefficients of recurrence. 

For example: 2H di + H ch. 



CHAPTER 3 

THE HARMONIZATION OF MELODY 

* I 'HE usual approach to the problems of harmonization of melody seems 

A entirely superficial when we consider that the very task of “finding a suitable 
harmonization" is expected to solve the problem in its entirety. Looking back 
at music which has already been written, we find a great diversity of styles of 

harmonization. In some cases the melody has a predominantly diatonic character 
while the chords seem to form a chromatic progression; in other cases the melody 

has a predominantly chromatic character while the accompanying harmony is 
entirely diatonic. Operatic works by Rimsky-Korsakov and Borodin illustrate 
the first type; music by Chopin, Schumann and Liszt supply examples of the 

second type. This raises the whole question of an accurate and systematic- 
classification of the styles of harmonization. 

By the pure method of combinations, we arrive at the following forms 
of harmonization: 

(1) Diatonic harmonization of a diatonic melody. 
(2) Chromatic harmonization of a diatonic melody. 

(3) Symmetric harmonization of a diatonic melody. 
(4) Symmetric harmonization of a symmetric melody. 
(5) Chromatic harmonization of a symmetric melody. 

(6) Diatonic harmonization of a symmetric melody. 
(7) Chromatic harmonization of a chromatic melody. 

(8) Diatonic harmonization of a chromatic melody. 
(9) Symmetric harmonization of a chromatic melody. 

In addition to these styles, various hybrids may be formed intentionally— 
and such hybrids do exist in music written on an intuitive basis. The necessity 

of handling these hybrid forms of harmonic continuity—which is inevitable not 
only in popular dance music, but frequently in music of composers who are 

considered “great" and “classical"—in special arrangements or transcriptions 

requires a thorough knowledge of all pure, as well as hybrid, forms of harmo¬ 
nization. 

A. Diatonic Harmonization of a Diatonic Melody 

There are two fundamental procedures required for this method of harmo¬ 
nization : 

(a) The distribution of the number of attacks in melody and harmony, i.e., 

the number of attacks of melody to be harmonized by one chord, or the 
number of chords harmonizing one attack in melody. 

(b) Selection of the range of tension. 

[666] 
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Let us take a melody consisting of 12 attacks. Such a melody may be 
harmonized by 12 different chords, each attack in the melody acquiring its 

individual chord. But it may offer, as well, two attacks of a melody harmonized 
With each chord; in this case, 6 different chords will constitute the harmonic 
progression. Further, each 3 attacks of a melody may acquire a chord, making 
4 chords necessary for the entire melody. Proceeding in similar fashion, one 

may ultimately arrive at one chord harmonizing the entire melody—this is quite 
possible, because no pitch-unit in a diatonic scale may exceed the function of 
13th and will merely require an 11th chord for its harmonization, in order to 
support the 13th as an extreme function in a melody in which all the remaining 
units of the scale may be present as well. 

Let us take, for example, the following melody: 

Figure 41. Melody. 

In order to harmonize this melody with 12 different chords it is necessary 
to assign each pitch-unit of the melody to one chord. Such an assignment is 
based on a selection of the range of tension. 

. +.Le* u* 8UPP°se that we decide to make our range of tension from the 5th 
to the 13th. Having a considerable choice in the assignment of pitch-units as 

chordal functions, we will give preference to those forming a positive cycle of 
roots for the chords. 

Examples of assignment of the above melody: 

= 1 Range of tension: 5 — 13 

Figure 42. § - 1 Range of tension: 5-13 (continued). 
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But if we now decide to assign two attacks in the melody against 1 chord, 

it is necessary to conceive of the two adjacent melodic pitches as being both in 
a scheme of chordal functions—thirds in this case. Thus, the first 2 units, a+b, 

have to be translated into p which may, of course, assume any one of the follow¬ 
ing assignments: 

a 9 11 13 
b 3 5 7 

Likewise, the pair, c + d, transforms itself into: 

c 9 11 13 

d 3 5 7 

The next two units produce: 
e 

c 

5 
3 

7 

5 

9 
7 

11 13 
9 11 

The next two units produce: 
7 9 11 13 
5 7 9 11 

The next two units produce: 
e 

f 

9 

3 
11 13 

5 7 

The next two units produce: g 
a 

9 

3 

11 13 
5 7 

This group of assignments offers a considerable variety of harmonization, 
even if we preserve only the positive system of progressions. 

figure 43. § « 2 Range of tension: 3 - 13. 

- rlody to one Ch0rd following table: ch'3rdal funct,ons we acquire the 

^ = 3 Range of tension: 1-13 
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And here are examples of the same procedure as applied to harmonization 
ot the 12 melodic tones by three and by two chords respectively: 

M 
h = 4 Range of tension: 1—13 

13-7-1-9 9 -7-18-1 18-7-1-9 
C D G 

M 
Figure 45. ^ — 4 Range of tension: 1 — 13. 

h = 6 Range of tension: 1—13 

Figure 46. g = 6 Range of tension: 1 — 13. 

d. 

H — 12 Range of tension: 1—13 

Figure 47. g = 12 Range of tension: 1 — 13 (continued). 
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Figure 47. g = 12. Range of tension: 1—13 (concluded). 

Likewise, a non-uniform group distribution of the pitch-units of a melody 
may be devised. Rhythmic resultants, or any other material from the pro¬ 

cedures already set forth- in my theory of rhythm * may be used as schemes 
for such distributions. 

h “ t4-f~3 Range of tension: 1—9 

Figure 48. g - ^44-3 Range of tension: 1—9. 

B. Chromatic Harmonization of a Diatonic Melody 

To harmonize a diatonic melody chromatically, it is necessary to obtain 
first a diatonic harmonization, then to insert passing and auxiliary chromatic 
tones. These inserted tones must not conflict with any of the pitch-units in the 

melody. For example, in a c 7th chord, if a melody has b, auxiliary tones may 

be devised on any of the remaining chordal functions, i.e., c, e, or g. Such a 

harmonization will acquire a particularly chromatic appearance if the tones of 
the figuration are written out together with the chord, thus forming altered 
chords. The following chromatic harmonization is merely a variation of Figure 
^ b, obtained through insertion of the passing and auxiliary chromatic t*- ies. 

*See Book I. 
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Figure 49. Chromatic harmonization oj figure 44b. 

C. Symmetric Harmonization of a Diatonic Melody 

Symmetric harmonization of a diatonic melody may be desirable when a 
certain type of chord structure is preferred to the casual selection that comes 
when the shapes of the chords are controlled by the diatonic scale. Such chord 
structures are derivatives of some 2 (13), which may be selected from the com¬ 
plete table of 13th chords. It is usually sufficient to limit the harmonized group 

to one 2. In some unavoidable cases, an additional 2 (13) of the same family 
may be added. A preselected 2 (13) implies a definite harmonic style and brings 

the structural chord characteristics into prominence. On the other hand, the 
procedure helps eliminate undesirable or weak sonorities that are inevitable in 
the purely diatonic system. Any portion of melody consisting of one or more 
pitch-units may be assigned to be part of a preselected 2 (13) with a definite 

placement in such a 2 (13). For example, if we take 2 (13) — c — e — g — bt>~ 
— d — f# — a, a melody, the structure of which is in conformity with an in¬ 
complete minor S(7), (with omitted 5th), such as c - eb - bb may be placed on 

the above 2as3—5—9or 13 — 1—5. No other location of this melodic 
form is possible with the above 2. 

118 

Figure 50. Melody placed on 213. 

After all the melodic forms of one continuous melody are thoroughly analyzed 
as to their harmonic structure (as in the above case), and after the quantities 
of attacks of the melody against individual chords are distributed, the next 

step is to make sure that all such melodic forms will fit a particular 2 (13) selected 
to Satisfy the entire melodic continuity. 

THE HARMONIZATION OF MELODY 

„r,j° ii is imp°rtant “> ^ 
J ™ t0t bfie baT"L J lf„necessary' make a “responding alteration 

than one's a 3 Ch ^ mtuty a" the f°™s- Cases in which more 
In the pardI! rare' as »f the 2 (13) forms absorb 

£ 18 

rn't princip!e szxzzsz and — 

consign, ™ °r"e pl.tch-u"‘t d'ntonically with more than one chord, use a 

rr i"eaH r zexampie’if a meiodic n°te is =■ -d chord 
chords I d “ h“S maklng C a third' one may add any quantity of 
c’tc The d, tD that’ “ *hat the third eventually becomes a fifth, a ninth 
For elmolf h Pr°greSS'°n of ,sl\ch chords does not necessarily have to be C,’ 

ing chords A ICF - a “ * “y '3 ~ 5 " 9 whi^ requires the follow- 

the 2TatiZatiT of.the d‘atnnic harmony will not require anv changes in 

auxiltan andnnC,P 1 T” V 5UPP'ement the diatonic harmonization bv the auxiliary and passing chromatic tones. 

appear aeamTo" ha™°ni2ati°" of ,a diatonic melody, when several chords 

CST p unlt °u “ mcl0dV’ the identical 2 may satisfy the usual 
ements of the symmetric harmonization of a diatonic melody. F.or example, 
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harmonizing with the 2 (13) used in Figure 51, the note c may be satisfied by 
the following chords: 

C, Bb, Ab, Gb, F, Eb, D 
arranged in any desirable sequence. 

Figure 53. Symmetric harmonization of "My Own” (continued). 

Copyright 1938 by Universal Music Cor- poration. New York N V T’«pd k- «neria! 
?• X; Rj?hts throughout £rmisston ’ N' Y‘ Lsed b> Sf*C 

the world controlled by Robbins Music Cor- Figure S3. Symmetric harmonization of "My Own” (continued). 

/. IS * 
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Figure 53. Symmetric harmonization of "My Own" {concluded). 

D. Symmetric Harmonization of a Symmetric Melody 

There is small probability that any melodies composed from symmetric 
scales exist outside this system, for the whole conception of symmetry scaie.- 
itself has hitherto been unknown to the musical world. The problem of harmo¬ 
nization of melodies composed from symmetric scales first requires, therefore, 

the existence of such melodies. As has been explained in discussing the third 
and fourth groups of symmetric pitch-scales, melodies may be composed through 

permutation of pitch-units in the sectional scales (each starting with a new 

tonic). After the complete melodic form is achieved, the final step consists of 
superimposition of the rhythm of durations on the continuity of melodic form- 

Let us take a scale based on 12 tonics, each sectional scale having a struct ur 
3+4; let us limit the entire scale to the first 3 tonics. As scales of the 12-toni. 
system have a wide range, it is desirable, in many cases, to reduce the range h> 
means of octave-contraction. 

Figure 54. Reducing range of 2 
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13 5- S 1 

FlgUre 36‘ Interference between number of attacks in melodic and rhythmic forms. 

hor this melody a sequence of chords will be assigned to each tonic. Thus, 
e hrst sectional scale emphasizes 13t: the second, 5t; the third, 13t; the second 

currence of the first, 5t; the second recurrence of the second, 13t; the second 
urrence of the third, 5t; and an axis (= 18t) is added to complete the whole. 

There ^ tW° practical methods of symmetric harmonization of melodies 
Rsructe^ °n symmetric pitch scales. The first provides an extraordinary 
rie y of devices—-the second is limited to a considerably smaller number of 

Harmonizations. 

Figure 55. Selecting melodic and rhythmic forms. 

By superimposing this rhythm of durations on the melodic form, we obtain 
an interference between the number of attacks in the melodic form (9) and the 
number of attacks in the rhythmic form (6). This means that the melodic form 
will appear twice, and the rhythmic form will appear three times. 

Composition of Melodic Continuity 

Melodic form consists of 9 attacks 
&. *= 3 2 ‘(9> 
8 t 3 <6) 

Rhythmic form consists of 6 attacks 

Melodic Continuity 

The next step is to select a melodic form based on circular permutations of 
the pitch-units in the above scale, and to select a rhythmic form based on syn¬ 
chronization of3-(2-f-l)and (2 + l)4. 

Melodic form: 
a b c b Rhythmic form: 8(2+1)+(2+i}! 

THE HARMONIZATION OF MELODY 
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1. The First Method 

The Erst method assigns the important tones (all pitch-units in this case) 
of a sectional scale to the three upper functions of a 2(13), adding the remaining 

functions downward through any desirable selection. The first sectional scale 
m the sample melody has three pitch-units (c, et>, g) which we shall originally 

conceive as 13-11-9, downwards. The continuation of this chord down¬ 
wards will produce pitch-units with the following names: a, f, d, b. In the following 
2(13) a certain structure is offered as a special case of many other possible Z’s. 

Figure 57. 213. 

The upper three functions of the chord (denoted in black note-heads in the 
figure) may produce their own chord in harmony. Thus, the functions 9 - 11 - 
13 of the 2 may actually become 1-3-5. All pitch-units of melody and 
harmony are identical in this case. (See Figure 58-a). By assigning the same 

three pitch-units as 3 - 5 - 7 we have to add one function down. (See Figure 

All further assignments of the three pitch-units, namely 5-7 -9, 7-9- 

pj’f “ I*’11 - 13 - 1. *3 - 1 - 3 are the c, d, e, f, g, respectively, on 

fv. .k T^8 6gU? 0ff!re a compIete transposition of all assignments through 
the three tonics employed in the melody. 

C-group 

Figure 58. Melodic structures (continued). 
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B-group 

Figure 58. Melodic structures (concluded). 

possible to exhaust all fnm,c u-• . , K ven group 01 chords> « is 
f exhaust all forms of harmonization for the given melodv through 

ZZl jr °‘ “d Va™bl assig„me„t of functions;6 The ^melody 

be read ^ ^ 

gf™ bars a, Figure J. . t’Z 

group of the-melody, the second to the second, and the third to the third. 

aaa bbb ecc ddd eee fff ggg 
aab aba baa cca cac acc eea eae aee aac aca caa ccb ebe bcc eeb ebe bee aad ada daa ccd ede dec eec ece cee aae aea eaa cce cec ecc eed ede dee aaf afa faa ccf cfc fee eef efe fee aag aga gaa ccg ege gcc eeg ege gee 
bba bab abb dda dad add ffa faf aff 
bbc beb ebb ddb dbd bdd ffb fbf bff 
bbd 
bbe 

t r 

bdb 
beb 

dbb 

ebb 
ddc 
dde 

ded 
ded 

edd 
edd 

% 
ffd 

fcf 
fdf 

eff 
dff bbf bfb fbb ddf dfd fdd ffe fef eff bbg bgb gbb ddg dgd gdd ffg fgf gff 

gga gag agg 
ggb gbg bgg 

Sgc gcg egg 
ggd gdg dgg 
gge geg egg 

ggf gfg fgg 

Figure 59. Total number of possible harmonizations (continued). 
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abc beb ede def efg 

abd bee cdf deg 

abe bef edg dfg 

abf beg cef 

abg bde ceg 

acd bdf cfg 

ace bdg 

acf tef~ 

aeg beg 

ade bfg 

. adf 

adg 

aef 

aeg 

afg 

Figure 59. Total number of possible harmonizations (concluded). 

The total number of possible harmonizations to be derived from Figure 59 
is as follows: 7 cases with constant tension: aaa, bbb, etc. 18 X 7 — 126 cases 
on a tension that is constant for 2 of the three groups. 35 X 6 = 210 cases with 

variable tension for all 3 groups. Thus, the total number of harmonizations 
offered for the melody is 7 4- 126 + 210 = 343. 

2. The Second Method 

The second method is based on a random selection of a 2(13) based entirely 
on the composer’s preference with regard to sonority. As any 2 (13) has definite 

substructures, often in limited quantities, the possibilities of harmonization are 
less varied than through the first method. If one selects 2(13) with bb and f# 

on a c scale (see Figure 60) the possibilities of accommodating a sectional scale 
3 4-4 (minor triad) becomes limited to only two assignments, namely, 5-7-9 
and 13-1-3. 

2 18 

Figure 60. 2 (13) with b\> and f% on c scale. 
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Retransposing these functions to the melody assigned for 
obtain the following results: 

harmonization, we 

. , . , ~ -mciuuy permits oniv 
venBOJiB of chords. By either a constant or variable assignment of the two 

posable venues, a complete table of possible harmonizations is obtained. 

aaa bbb 

aab bba 
aba bab 

baa abb 

Figure 62. Table of possible harmonizations. 

. r-— ...vmtauuns ctliiUUnCS 10 O. 

tones thHe,SfeCti0nal are 400 COmP,ete' assignment of only certain 
on 3 tn h da f«.un^tl0ns 18 necessary- For example, in the following scale based 

as chnrdTf3 . Un“u5ect,0nal Scales' ;t is suffident assign the white notes 
become th UnCt!°nS’ the" ,n the melody derived from such a scale, black notes 
oecome the auxiliary and passing tones. 

tgUre 63' Scale based on f ionics and 5^nit sectional scales. White notes are 
chordal. Black are auxiliary. 

suchlTr6”’^1 SCa'eS' theL5tructure of individual sectional scales is 

of special hi " r °f C®rta'n pitch'unlts does not conform to the structures 

tectionafs,ai™°"y. uharm0ny °f thirds)' S°me of the sucb 
in some chord ° dlstarb,n®’ and althouKh they may fir as passing tones 

chord structures other than those used in this special harmony, they 
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decidedly do not fit as passing tones in any 2 (13). In such a case, each pitch- 
unit in such sectional scale of a compound symmetric scale must be selected 
either as a chordal function or as an auxiliary tone with a definite direction. These 

pairs—i.e., the chordal tone and its auxiliary tone—are then directional units. 
In composing melodic forms from scales containing such directional units, 

permute the directional units and not simply the individual pitch-units. After 
all the units are assigned, the above-described procedure of harmonization (the 

second method) may be applied. 

Figure 64. A pplying the second method of harmonization. 

The arrows on the above figure lead from an auxiliary tone to a chordal function. 

E. Chromatic Harmonization of a Symmetric Melody 

Chromatic harmonization of a symmetric melody is based on the same 

principle as chromatic harmonization of a diatonic melody. The procedure con¬ 

sists of inserting passing and auxiliary chromatic tones into symmetric harmonic 
continuity. As a result of the insertion of passing or auxiliary chromatic tones, 

altered chords may be formed as independent forms. 
This type of harmonization may sound to the listener’s ears either as chro¬ 

matic continuity or as symmetric continuity with passing chromatic tones. 

Deep in a Dream* 
by Jimmy Van Heusen and Eddie DeLange. 

m 

Figure 65. Four-part hybrid with chromatic harmonization (continued). 

•Copyright 1938 by Harms, Inc., N. Y. Used by special permission of the copyright 

owners. Figure 65. Four-part hybrid with chromatic harmonization (continued.). 
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Jf the composer or arranger finds that certain passing or auxiliary tones in 
the above example sound unsatisfactory, he may eliminate them. The greater 

the allowance made for altered chords, the greater are the possibilities for giving 
a chromatic character to a symmetric harmonic continuity. 

F. Diatonic Harmonization of a Symmktric Mklody 

Melodies constructed from symmetric spales cannot be harmonized by a 
purely diatonic continuity. The style that has the most nearly diatonic char¬ 

acterization is in reality a hybrid of diatonic, progressions symmetrically connected. 
This type of harmonization is possible when the melody that has been evolved 

within the scope of an individual sectional scale is one that can be harmonized 

by several chords belonging to one key. The relationship of symmetric sectional 
scales defines the form of symmetric connections between the diatonic portions 

of harmonic continuity. The diatonic portions of harmonization are brought 
into conformity with one key. 

Symmetrical tonics do not necessarily represent the root chords of a key. 
For example, a note, c, in a melody scale may be the 1, or the 3, or the 5, etc., 
of any chord. In most cases, in music of the past, such harmonizations usually 

pertained to identical motifs in symmetric arrangement—as in the first announce¬ 
ment of a theme by the celli in Wagner’s overture to Tannhduser, where identical 

motifs are arranged through 2» and the diatonic portions appear, the first in 
B minor making a progression j^\ — I \ — 111, the following sections as exact 
transpositions through the y/2, i.e., in D minor and F minor respectively. 

Figure 66. Identical motifs in symmetric arrangement for “Overture" to Tannhduser. 

in the following example of harmonization, the melody is based on a sym¬ 

metric scale with three pitch-units (2 + 1) connected through y/j,- 

Scale 

Figure 65. Four-part hybrid with chromatic harmonization (concluded). 
Figure 67. Melody based on symmetric scale with 3 pitch-units connected through y/2- 

m 
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Each bar comprises one sectional scale utilizing the melodic form, abcb. 
As there are many ways of harmonizing such a motif, I shall give here one of 

them which produces Co + C7 4 C* for each group. All the following groups 
are identical reproductions of the original group, connected through y/~2. 

Figure 68. Harmonising the motif of figure 67. Co + Ci + C6. 

Music by Rimsky-Korsakov, Borodin and Moussorgsky has abundant examples 
of such forms of harmonization. 

In order to transform the above harmonization into a chromatic one, all 
that is necessary is to insert passing and auxiliary chromatic tones. A diatonic 
harmonization of those symmetric melodies which have not been composed on 

the sequence of identical motifs, and in which different portions pertaining to 
individual sectional scales are connected symmetrically, is possible as well. The 
latter form is not as obvious and it may seem somewhat incoherent to the ordinary' 
listener. 

G. Chromatic Harmonization of a Chromatic Melody 

A melody which is to be harmonized chromatically must be a chromatic 
melody consisting of long durations. Each group of three units of melody must 
then be assigned to a chromatic operation in a chromatic group of harmony. 

The usual sequence d — ch — d refers to every three notes where the middle note 
is a chromatic alteration. In the following melody, the chromatic groups of 
harmony will be assigned as follows: 

Group 1: c — c# — d 
Group 2: d — d# — e 

Group 3: a — ab — g 
Group 4: g - g# - a 

Group 5: a — a# — b 

Figure 69. Chromatic melody. 
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. fIhe Pr0CISS °f harmon1ization of a chromatic melody chromatically, consists 
of two procedures, once the pitch-units have been assigned tn n k 

m^vnth°nS’l^S °Ur tGw ^ °f Chr°matic harmony deals with 4-parttoTr- 
mony, the melody must become some one of the four parts. Let us assign the 
chromatic groups to the above melody as follows: * 

Group 1: 1—1 — 1 

Group 2: 1 - 1 — 5 

Group 3: 5 - 5 — 3 
Group 4: 3 — 1 — 1 

Group 5: 1 — 1 — 1 

f I, In gr0Up 3',ab is a lowered fifth- I" group 5, a# is a raised root tone The 
followmg example represents the above melody in a 4-part setting. 

1 I | r- 1 1-*-.-1-T 

Figure 70. Melody of figure 69 in a four-part setting. 

The final procedure in chromatic harmonization of a chromatic melodv 
consist? of isolating the melody; placing it above the harmony; and melodizing 

the remamtng 3-parl harmony with an additional voice. This additional voice 

s devised according to the fundamental forms of melodization, i e it may 

nextt"rank ^ PreSent " the Ch°rd' °r il ma>’add the’function 

voice"™6 ff°ll0*inB TI"Ple’ the n°teS in Parenthesis represent such an added voice. I he functions of this voice are: 

g - 5 e - 9 

h - 13 c# - 13 
a - 5 d - 5 
b - 9 e - 5 . 
b - 7 g - 7 

C - 7 a - 7 

Ftgjirt 71. Chromatic harmonization of a chromatic melody. 
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H. Diatonic Harmonization of a Chromatic Melody 

A chromatic melody may be diatonically harmonized when it has a con¬ 

siderable degree of animation (short durations). In such a case, some of the 
tones are treated as chordal functions and some become auxiliary or passing 

chromatic tones. The process of determining which functions are to be diatonic 
then takes place. 

The following example is the same melody that was used as an illustration 

in the preceding section; here it is used in its most animated form. 

Figure 72. Chromatic melody in animated form. 

Ta-5" 

|_e—9_ 

By assigning 
p- si 

[d —13 J 
we acquire an F chord. In the next bar, by assigning 

we obtain a D chord. By assigning [■.:;] we obtain a G chord; and by 

assigning b 1 — 5, we obtain the B and E chords. In this way the entire melody 

can be placed in a certain desirable key (C major in this case). The units 

a# and c# in the second bar are auxiliary tones to the third and fifth respectively 
of the G chord. The entire harmonization has a Phrygian character. 

Figure 73. Diatonic harmonisation. 

Another example of harmonization of the same melody will be found on 
the following page; by assigning the melodic tones to operate as the following 

functions, we obtain another harmonization: 

c - 7 

d - 1 

e - 13 g - 5 

a — 9 a -13 b-3 

THE HARMONIZATION MELODY 

Figure 74. Another harmonization. 

1. Symmetric Harmonization of a Chromatic Melody 

Symmetric harmonization of a chromatic melody is used for melodies of 
-ong durations In most cases each pitch-unit of a melody has to be harmonized 

is'thatlfTmelori f v.antage of the symmetric method of harmonization 
is that ,f a melody ,s partly diatonic, there is an opportunitv to use one chord 
against more than one pitch-unit of a melody. Any symmetric harmonization 
as in the cases above, must be based on a preselected 2(13). 

m„,Jret US^ thje.f0ll°winS 2<13> and ^ for harmonization of the same 

in th/fnMo T PreVi°US examP,es- The important considerations 
m the following procedure are (1) the variation of tension, and (2) the utilization 

tL ?3Th~B^d.r,1C'PamS °f S(U)i ai’ Sl,PPUCS of K# for 

9 5 7 13 

Figure 75. Symmetric harmonization is based on a preselected 1,(13). 
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CHAPTER 1 

THE THEORY OF HARMONIC INTERVALS 

ANY sequence of two pitch-units produces a melodic interval. A simultaneous 
combination of two pitch-units produces a harmonic interval. The technique 

of correlation of simultaneous melodies depends entirely on the composition of 
harmonic intervals. Any number of simultaneous parts (voices) in counterpoint 
is formed by the pairs. These pairs may be conceived as voices immediately 
adjacent in pitch, or in any other form of vertical arrangement (i.e., over 1, 
over 2, etc.). 

The degree of harmonic versatility achieved in counterpoint depends on 
the manifold of harmonic intervals used in a certain style. A limited number of 
harmonic intervals results in limited forms of harmonic versatility in counter¬ 
point. The study of harmonic intervals is an important prerequisite to the 
study of counterpoint. 

Harmonic intervals have a dual origin: 

1. physical 
2. musical. 

The physical origin of harmonic intervals goes back to the simplest ratios. 
The musical origin of intervals is based on selective and combinatory processes. 
All semitones—i.e., the units of the equal temperament of twelve—are the 
structural units of all other harmonic intervals available in such equal tem¬ 
perament. As they occur in our hearing, they take the following forms: 

i = 1, i = 2, i = 3, i = 4, 
i = 5, i = 6, i = 7, i = 8 
i = 9, i = 10, i = 11, i = 12 

The above, of course, includes the entire selection available within one 
octave range. The addition of an interval to an octave produces a musically 
identical interval over one octave, for the similarity of different pitch-units 
within the ratio of 2 to 1 is so great that they even have identical musical names. 
The present system of musical notation involves—among other forms of con¬ 
fusion-—a dual system of interval nomenclature. An interval containing three 
semitones, for example, may be called either a minor third or an augmented 
second. 

A. Some Acoustical Fallacies 

The simple ratios of acoustical intervals are merely approximate equivalents 
of harmonic intervals in equal temperament. It is not scientifically correct to 
think—as the majority of acousticians do—that a 5 to 4 ratio is the equivalent 
of a major third; or a 6 to 5, of a minor third; or a 7 to 4, of a minor seventh, 
otc. These intervals deviate considerably from their equivalents in equal tem¬ 
perament. 
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It is utterly impossible to follow some acousticians in the comparative re¬ 
lations they establish between the type and quality of intervals in the equal 
temperament of twelve and the equivalents of these intervals in simple acoustical 

ratios * So-called “consonance" is a totally different type of interval relationship 

depending on whether it is considered musically or acoustically. If music actually 
had to use acoustical consonances only, while being confined to the equal tem¬ 
perament of twelve, the only real consonance available would be the octave; 
no two pitch-units bearing different names would ever be used, and we would 
have neither harmony nor counterpoint; for no intervals other than an octave 

(or a perfect fifth, with a certain allowance).are consonances within equal tem¬ 
perament. All other intervals are quite complicated ratios. The art of music 

in fact, however, has its own possibilities based on the limitations within the 

given manifold constituted by our tuning system. 

Now, the acoustical consonances produce the so-called “natural harmonic 
gcale," which consists of a fundamental tone with all its partials appearing in 

the same sequence as a natural harmonic series—1, 2, 3, 4, 5, 6, 7, 8, 9, etc. 
The ratios of acoustical consonances are equivalent to the ratios of vibrations 

producing pitches. For example, a § ratio means that if the actual quantities 
representing both the numerator and the denominator were multiplied by a 

considerable number value, they would actually sound as pitches. While 
as such, sounds to our ear as the resultant of an interference of 3 to 2, cycles 
per second sounds to our ear as a perfect fifth. 

Figure 1. Acoustical scale oj natural harmonics ** 

Our ears accept pitch-units and their ratios in the form in which they reach 

our ears and our auditory consciousness—and not as they are asked to do 
according to the traditional musical schooling. For example, a melody played 

simultaneously in the key of c and in the key of b next to it, or a seventh above, 
sounds decidedly disturbing to musicians of our time. Yet an interval that is 

•Indeed, despite the specific warning of the 
great acoustician, Helmholz, against careless 
application of his discoveries to music, the 
"acoustical fallacy” has vitiated endless quan¬ 
tities of musical theorizing. So we find Sir 
Donald Francis Tovey—by no means an un¬ 
distinguished writer on music—lamenting that 
no “true” harmonic ideas are based on equal 
temperament, a statement which he can make 

directly in the face of the best that Western 
music has produced for more than 400 years. 
(Ed.) 

••This scale is necessarily given in the nota¬ 
tion used for equal temperament; the intervals 
in the acoustical scale—save for the octaves*" 
are, of course, not identical with the same in¬ 
tervals in equal temperament. (Ed.) 

"y W?‘ical is ““““‘‘cany so different that, being placed three octaves 

sudr ’ TIT8" muTa,ly cmsonant ^Pression.* The reason for this is that 
uch an absolute interval as the seventh three octaves apart approximates the 

a u l e'-’ S0Und °f a 15th harm°nic in relation to its fundamental— 
and when the pitches are so far apart, the deviation from equal temperament 

becomes less obvious in our discrimination of pitch. The following tabl« offer a 
group o examples illustrating musically consonant intervals which are usually 
classified as dissonances, together with their correspondence to the pro^r location 

^SXactfsTof^r' ~ 

figure 2. Musically consonant intervals usually classified as dissonant. 

auen as low registei 
The reason for this «k • P our ears tne ettect of musical Assonances. 

t ^^ssssstaseaS^ss: 
lourth harmonic; when mus.c is played in major thirds in the contra-octave 
the physical existence of such a fundamental is impossible. 

here (a melody Coupled'S* itsVth a? a*7 pta appeji-ta? on "tlT* corre*polnd t0 the numbers 
*5 octave mterval), any number of capable mu- ?{Lthe *'ou®tlcal **le of natural 
sicians thought it was a 4-octave couphng. (Ed.) of the fim Se.^Ed!) V “ the pitch 
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The following tables offer three examples of the low setting of intervals. 

Figure 3. The low setting of intervals. 

With these thoughts in mind, we can see that no serious theory of the re¬ 
solution of dissonant intervals may be devised without specifications as to the 

exact octave location of the intervals. In studying my theory of resolution of 
intervals, bear in mind that I offer it for the purpose of giving the composer a 

versatile treatment of progressions of harmonic intervals—not for the purpose 
of eliminating dissonances. Esthetically as well as physiologically, all of us desire 
sequences of tension and release. And, as different harmonic intervals produce 

different degrees of tension, the versatility of the sequence of intervals will 

satisfy such requirements. 
It has often been the case that music written according to the “rules and 

regulations" of dogmatic counterpoint does not sound esthetically as convincing 
as real counterpoint in the 16th or 17th centuries. This inferior quality is due to 

the limited number of harmonic intervals and the forms of treatment of the former. 

B. Classification of Harmonic Intervals within the Equal 

Temperament of Twelve 

Any harmonic interval may be classified in one of two ways: 

1. With regard to its density, i.e., the fullness of sonority; 

2. With regard to its tension, i.e., the degree of dissonance. 

Classification of density evolves from the intervals producing the “emptiest1 
effect upon our ears up to the intervals producing the “fullest” effect. The 

table on the following page is only a general one; nevertheless, it serves the 
purpose with a certain degree of approximation—the first few intervals sound 
decidedly empty; the last few, decidedly full; in the middle, there are some 

intermediate intervals. 

Figure 4. Classification of intervals according to density. 

Classification of intervals according to tension is based on a separation of 
consonances from dissonances—and upon a separation of intervals which are con¬ 

sonances or dissonances by name from those which are consonances or dissonances 
by sonority. Every case in which a consonance and a dissonance correspond both 
in name and sonority is a case implying diatonic intervals; all cases in which the 

consonances and dissonances do not correspond with their original names produce 

chromatic intervals. The group of diatonic consonances includes perfect unisons, 
perfect octaves, perfect fifths, perfect fourths, major thirds, minor thirds, major 

sixths, minor sixths. The group of diatonic dissonances includes major and 

minor seconds, major and minor sevenths, major and minor ninths. All the 
chromatic intervals are classified into augmented and diminished. 

The Augmented Intervals: 

Unison, 2nd, 3rd, 4th, 5th, 6th. 

The Diminished Intervals: 

Octave, 7th, 6th, 5th, 4th, 3rd. 

Consonances 

Disonances 
(1) Diatonie 

Tension 

ppep 
^ (2) Chromatic 

-0- " -•* 
1 

* WF 0 

♦ •0 
-V#- 
♦ ♦ - 

Ini 

♦See the footnote on the preceding page with regard to these numbers. (Ed.) 
Figure 5. Diatonic and chromatic dissonances and consonances. 
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The augmented unison is equivalent to minor 2nd by sonority. 
” *» 2nd „ „ „ minor 3rd „ „ 
»» »» 3rd „ „ „ perfect 4th „ „ 

»* *» ’ 4th „ „ ,» no diatonic interval. 
*» »* Sth „ „ ,, minor 6th by sonority. 
** >» 6th „ „ „ minor 7th „ „ 

The diminished octave „ „ „ major 7th „ 

»* »» 7th „ „ „ major 6th „ „ 

>» »» 6th >* »> „ perfect 5th „ „ 
.. „ Sth „ j* no diatonic interval. 
>* •» 4th „ „ „ major 3rd by sonority. 
»* »» 3rd ,i M >i major 2nd „ „ 

The following “dissonant” intervals are actually consonances by sonority: 
* the augmented 2nd, 3rd, 5th; the diminished 7th, 6th, 4th. All other chromatic 

intervals will be treated as dissonances, with resolutions corresponding to those 
of either diatonic or chromatic dissonances. 

C. Resolution of Harmonic Intervals 

The need for varying the tension results in the procedure known as the 
resolution of intervals. It is important to realize that the variation of tension 
may be gradual quite as well as sudden; the transition from a more dissonant 

harmonic interval to a less dissonant one, and finally into a fully consonant one, 
is just as desirable as a direct transition from extreme tension to full consonance. 

In the following tables, intervals such as the perfect 4th and 5th are included 
along with the dissonances—not for the purpose of relieving them of tension, 

but for the purpose of devising different useful manipulations for contrapuntal 
sequences. The actual number of resolutions known to any composer has a 

definite effect on the harmonic versatility of his counterpoint. For example, 
if a composer knows only four resolutions of a major 2nd (which is the usual case) 

as compared to the twelve possible resolutions, the number of musical possibilities 
open to him is considerably restricted. Thinking in terms of variations one can 

see that the number of permutations available from four elements differs so 
much from those afforded by twelve elements that they cannot be compared, 

the first giving twenty-four variations and the second giving 479,001,600 varia¬ 
tions. It is easy to see that when a composer suffers such losses as to the quantity 

of resolutions for each harmonic interval, the loss in the total versatility of his 
counterpoint is incalculable. 

There is no need to memorize all the details for the resolution of intervals, as 
there are general underlying principles evolved over the centuries: 

1. AH diatonic intervals resolve through outward, inward, or oblique motion. 
Eacli moving voice moves by a semitone or whole tone.* 

, *AnJ 7 3 is a,8P “XF*** when such an interval represents two adajeent musical names 
(c — df, for exampte). (J.S.) 
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2. A resolution obtained through oblique motion mav be replaced by one 
in which the formerly sustained voice leaps by a melodic interval of a perfect 
4th, either up or down. 

known M^h™18 kfT 38 ^ haW ^ tendenc>' t0 exPand. All intervals 
2nds l ,h , 3 tendency,t0 contract- A“ 7tha are the exact equivalent of 

\I,IToTl ,nVerS1°!5 (,'e" Pltch-units are identical with those of the 
.>■ A“ 9ths have a tendency to contract. All the 4ths and Sths are “neutral ” 
i e.. they either expand or contract. 

Thus, the entire range of permutations of semitones and whole tones, with 
their respective directions, constitutes the entire manifold of resolutions. 

beloJ!^ reader ma5' refer t0 "rhar‘ °f Resoluti0" “f Diatonic intervals" 

Seconds ~ — " 

Ninths 

Sevenths 

Fourths 

and Fifths -- ■— 

_ _ C enharmonic) 

Figure 6. Resolution of diatonic intervals. 

The following is a complete table of resolutions of diatonic intervals Thf 

Seconds and Sevenths 

Figure 7. Resolution of seconds and sevenths {continued). 
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Figure 7. Resolution of seconds and sevenths (concluded). 

Fourths and Filths 

Figure 8. Resolution of fourths and fifths. 

705 
Ninths 

Figure 9. Resolution of ninths 

D. Resolution of Chromatic Intervals 

Unison 

tenimm thrat ine.rtia scientifically refers to the 
tendency of moving bodies to k<4p on moving 

FtgUre 10■ R'soluti°” of Chromatic intervals (augmented). 
I Continued on following page). 

INTERVALS 

5 
(Ed.) 

harmonic 

have been a 2nd d or d# CnnaA * j ft 0 cq. Originally it could only 

the respective re»lutions-« d« T T °rigin °f SUch interval' *e find 

further* ^me Action 1 e ort t’ * "“£* makes “ 

When °f‘— -nervals. 

enh.” 13 placed above it meaning “enharmonic.” Whence L^rval'T 

15 SUrr°Unded by R?ren theses, the interval of resolution 



706 THEORY OF COUNTERPOINT 

3rd 

Figure JO. Resolution of chromatic intervals (augmented) [concluded]. 

Octave 

Figure 11, Resolution of chromatic intervals (diminished). 
[Continued on following page]. 

3rd 

Figure 11. Resolution of chromatic intervals (diminished) [concluded]. 

In the old counterpoint we often find a type of resolution different from 
those described above. They were known as cambiata* resolutions and were 
conceived of as a melodic step of a 3rd instead of a 2nd. No good explanation 

as ever been given of the use of such resolutions; J offer an hypothesis to ex¬ 
plain these resolutions, which 1 believe is the correct one. 

As the tradition of old counterpoint was developed while the pentatonic 
(5-unit) scales were in use, some of the pitch-units of full diatonic (heptatonic, 
7-umt) scales were absent, if we find that in resolving an interval g, d moves 

to e, while c moves to a (instead of to b), a cambiata takes place simply because 
the scale is a pentatonic scale and the unit, b, does not exist. 

This approach offers us a definite principle for resolution of intervals in 
sea es which have not been in use in classical traditional music confining all re¬ 

solutions merely to the step with the succeeding musical name. For example, 
m harmonic o-minor, the interval f# may be resolved through movement of the 

lower voice only to as no other pitch-unit with the name f exists in the scale. 

not* i"71- , a class of “changi 
resolution .^d,.t,on. the requirements 

solution, the classical cambiata. also obsen 

certain temporal considerations with rcsnect 
to the accent. (Ed.) 1 
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CHAPTER 2 

THE CORRELATION OF TWO MELODIES 

AS counterpoint represents a system of correlation of melodies in simul- 
taneity and continuity, it is absolutely essential that the composer be 

thoroughly familiar with the constitution of melody. Only through complete 
familiarity with the material discussed in my exposition of the Theory of Melody* 

is the successful accomplishment of such a task possible. The correlation of 
melodies is usually considered to be one of the most difficult of procedures; this 

is because the structural constitution of even one melody is unknown in ordinary 
theory; hence the combination of two unknown quantities is an entirely fan¬ 
tastic task to undertake. 

The problem is not only that of putting two voices together, but one of 
either combining two melodies already made, or making a composition of two 
melodies with distinct individual characteristics. As each melody consists of 

several components—such as the rhythm of durations, attacks, melodic forms, 
the forms of trajectorial motion, etc.,-—the correlation of two melodies adds one 

more component to those just mentioned: harmonic correlation. Counterpoint 
can be defined briefly as a system of correlation of rhythmic, melodic, and harmonic 
forms in two or more conjugated melodies. 

] shall assume that the forms applying to one individual melody are known 

through the previous material; we will now cover that field of harmonic correla¬ 
tion which is based on the theory of harmonic intervals in Chapter 1 of this 

section. After covering this particular subject, I shall then discuss other forms 
of correlation—so that the composer may be capable of using the complete 
resources offered by contrapuntal technique. 

A. Two-Part Counterpoint 

The fundamental technique in writing two-part counterpoint is based on 

the writing of a new melody to a given melody. A given melody is usually ab¬ 
stracted from its rhythm of durations, thus producing a melodic form which ma> 

be taken from a choral, as well as from a popular song. The usual way of present¬ 

ing such an abstracted melodic form is in whole notes, and this is usually called 
the cantus firmus (“firm chant,” canonic, or established, chant). The abbrevia¬ 

tion we shall use for cantus firmus will be “C.F.”; for the melody written to it. 

counterpoint or “C.P." The first forms of counterpoint will be classified ac¬ 
cording to the number of attacks in C.P. occurring against one attack in C.K 

All of these fundamental forms of counterpoint are devised as follows: 

*See Book IV. 
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B 
CP 
CF - a 

f -rr^r ;,;:r 
are: The positive requirements for harmonic correlation in 2-part counterpoint 

a' numberlh ^ in‘erVal (U’ intervals as “pressed by different 

b. A variety of density. 

C- into';"“denCeS' throU*h the - * '“ding tones moving 

d. Crossing of C.P. and C.F. is permissible when necessary. 

The negative requirements are: 

'■ .“rsTaJ “ Tt" prf- —■ rzszz* s.zrrr’1 *• •* 
: ^,h~°nly throuf contrary (outward or inward) directions ' ’ 

°f the — ^ * CP uniess it is 

my .continuity (see 

as the forms of simultaneous harmonic correlation “ counterP°int 

c. Forms of Harmonic Correlation 

L U"U- Umtonai-Unimodal: (identical scale structure and key sig- 

2' U' “ R nature)3' ~ (“ family 'dentical key sig. 

• 3' R_U' S!^fq>m°da,:(identicalsCale structure, different key 

P' signature) °lym°dal: (different scale structure, different key 

fully devtio^ftypeTand °f Guillaame de Machault,** we find a 
ignorance Z vamty of “me rZZU"dewloPed tyPe 3- Only the 

•See Book II. >™temoorary composers make them believe that 

<hisTomSaPl1' rSords °f a Mass written by * "“""ruction of Machault's 2- and 
are ,°f the coronation of Charles V in. modern musical notation 

* St‘ Jean schaftUK,8l02Ab>: th,l De“tsPhe Musikgesrll. 
valines and Brass Ensemble, conducted by Ludwig *926, ° e<l,tlon of F"edrich 
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they are the discoverers of poly tonal counterpoint; the joke being especially 

good on those modern French composers who make claim to priority, being un¬ 

aware that it is their own direct musical ancestors who were the originators of 

this style centuries ago. 
It is also unfortunate that the idea of polytonality is commonly associated 

with so-called “dissonant counterpoint”, i.e., the counterpoint of continuous 

tension without release. Music based on polytonality vnlh resolutions is a very 

fruitful, highly promising, and almost undiscovered field. 
The usual length of a C. F. is about 5, 7, 9, or more bars, preferably in odd 

numbers—this requirement being traditional. The selection of different key 

signatures for types 3 and 4 is entirely a matter of choice. Any two scales— 
the root tones of which produce a consonance—may be used for this type of 

counterpoint. The best way to construct these exercises is to place the C.F. 
on a central staff, with two staves below and two staves above, assigning a 

. different type of counterpoint to each staff. 
In the following group of exercises, each part must be played individually 

with C.F. Each example produces four types of counterpoint with a historical 

perspective of eight centuries, for the first and second types were considerably 
developed during the Middle Ages, and the third and the fourth types are mostly 

used—when at all—in the music of today. 
It is important to realize that all forms of traditional contrapuntal writing 

were based on the conception of each melody being in a different mode. One can 

even trace polytonal forms (although iii their embryonic form) as far back as 

the 13th century. 

As a temporary device for harmonic accompaniment, a double pedal point 
may be used in addition to the 2-part counterpoint. The root tones of both 
contrapuntal parts become the axes which must be assigned as chordal functions 
of a double pedal point. For example, in counterpoint of type 1 (giving the same 
pitch-units for both voices) the single root tone may be assigned as the root, or 

3rd or 5th, etc., of a simple chord structure. Then, inasmuch as c is the axis for 
both contrapuntal parts in the example, the pedal point will become § or l f, etc. 

This device is applicable to all four types of counterpoint. For example, in 
type 2, if one contrapuntal part were in Ionian c and the other in Aeolian a 
Hie two might represent a root and a 3rd, or a 3rd and a 5th, etc., respectively.’ 
The pedal point in such a case would be % or J, etc. In types 3 and 4, with any 

two such axes as c and ab, we may use £ or % etc., as pedal points. Each 

double pedal point must last through the entire contrapuntal continuity. 

More flexible forms ui harmonization of the 2-part counterpoint will be 
offered later. 

D. 

, /n deYlsmg two attacks of the counterpoint against one attack of the C.F 
tne follpwing combinations of harmonic intervals are possible: 

(c = consonance; d = dissonance) 

c — c 

c — d 

d — c 

d-d* 

In old counterpoint all these cases were used in both strict and free style, with 

t:'“p ion that a dissonance was not supposed to occur on the first of the 
lwo attacks. 

Eachpbar may start with either a consonance or a dissonance, and, in the 

case of ^ = 2, all dissonances require immediate resolution. The following 

Pages contain a few examples of such contrapuntal exercises. 

In scalewise contrary motion only. (J.S.) 



FigUn T™ a“ach * C P- one of C.F. (cmlinuedl 
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Pigure 15. Two attacks of C.P. to one of C.F. {concluded). 

E. 

Three attacks of CP against one attack of CF offer us the following com¬ 
binations of harmonic intervals: 

c — c — c 
c — d — c 
d — c — c 

c — c — d /h* resolution 

d — c — d 'T* resolution* 
d — d *- c 
c - d - d* 

The d — c — c combination offers a new device which only becomes possible 
with three or more attacks; we shall call it a delayed (or indirect) resolution- 

Instead of resolving a tense interval at once, we move it to another consonance, 
after which we resolve the dissonance. 

*In scalewise contrary motion only. (J.S.) 
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F. 

Four attacks of CP against one attack of CF offer still more combinations 
of harmonic intervals: 

c — c — c — c 

c — c — c — d /f~* resolution 
c — c — d — c 

c — d — c — c 
d — c — c — c 

c — c — d — d* 
c — d d* - c 
d ■— d — c — c 

d — c — c — d 'T* resolution 

c — d —■ c — d T* resolution 
d — c — d — c 

There are wider possibilities in the field of delayed resolution for — = 4. 

Parallel axes, centrifugal and centripetal forms now become more prominent 
among the devices by which the composer may construct the second melody. 

It is also useful to know all the advantageous starting points for those scale- 
wise passages which end with a consonance: 

Figure 19. Examples of passages ending with a consonance. 

•In scalewise contrary motion only. (J.S.) 
••Either the same as in *, or two independent 

dissonances, both of which are resolved by the 
following c — c in any order. (J.S.) 

THE CORRELATION 
OF TWO MELODIES 
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■•'-vvogai y 

The best aea the possible combinatior 

^solutions. Combined^wUhTvari T" rCSUlt fr°m extensive u: 

CaVed re“lutions make avai‘“b'e the 

c and d. 

delayed 

passage, 
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The devices for delayed resolution, impossible for fewer attacks than five, 

are as follows: 
di d* c di c—the first dissonance is followed by a second dissonance with 

v-jr 

its resolution, then by the repetition of the first dissonance with its resolution, 

di dt c da c—the first dissonance is followed by the second dissonance with- 
'v_* 

out resolution, followed by the resolution of the first dissonance, then by the 

second dissonance and its resolution. 

Figure 23. ^ = 5a (concluded). 

. mini OlA. ctLiaCKS. 

dl d! 1L,C d^,c-the firs‘ dissonance, the second dissonance, repetition of 

its rtolut,oTnCe WitH k5 reSOlUti°n' rePetiti°n °f thS SeC°nd diSSOnanCe with 

d.drc dscc-the first dissonance, the second dissonance, resolution of 

“ di“«' *• delay, and the 

dl ^ d^t-‘he 6** dissonance, the second dissonance with its re- 

Ssotnce; Petiti°n * ^ diSS°nanCe' del^’ and -solution of the first 

d^cc d^c-a combination of two groups of three, each consisting of 

dissonance, delay, and resolution. 

*»■ - —* *• 

f°rminaUnHnfnStiXfattaCkS againSt CF' U is easV t0 devise a great varietv of melodic 
°f harmony.* 6 ere"Ce patterns' as discussed in the section on melodization 

*See Book VI, pages 619-625. 
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Seven attacks of CP against one of CF offer new forms of delayed resolutions. 
The number of new combinations grows, and it becomes quite easy to develop 

various melodic forms built on parallel, converging, and diverging axes. 

Figure 28. Scalewise passages ending with a consonance. 

Figure 29. - = 7a [concluded) 

CP 
C'P ~ oa 

trinomials. Interference groups may be _reP'eynted. throu6h its binomials and 

'«5' as in the melodization of han^onv T “UlUerpo!nt in the same 
Used against the attacks of H. ’ ’ h h techn,<lue such groups were 

"»c; 

Klitre 30. Examples of delayed resolutions. 

Bool*- VI. 
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All 8-against-l scalcwise passages ending with a consonance must start and 
end with the same pitch unit, as this is a property of our seven-name musical 

1 

2 

CF 

3 

4 

Figure 31. Scalewise passages ending with a consonance. 

the CORRELATION of two melodies 72S 

The • , 

limited number of fttadcs YtTo^lri'technical equipment for an un- 

such cases as g =Ta and 2 « ^ 5tudent now *° devise 

for animated forms of nassaJdilT “ they Pr°V,'de V6ry useful material 

treatment, such groups with many irttadBof cpder the T“al °T traditional 
or nearly uniform in durations. CP aga,nst CF remain uniform 

are: ^e m°S‘ editions for obtaining an expressive counterpomt 

(1) an abundance of dissonances; 
UJ delayed resolutions; and 

(3) interference attack-groups. 



CHAPTER 3 

ATTACK-GROUPS IN TWO-PART COUNTERPOINT 

IN all the forms of counterpoint discussed so far, the attack-group of CP against 

each attack of CF was constant: §£ = A const. The monomial attack group 

consisted of any desirable number of attacks: A - a, 2a, 3a, . . . ma. 

Now, however, we arrive at binomial attack-groups for CP. This situation 

may be expressed as §£ = Ai + A*, i.e., the counterpoint to be written to two 

successive attacks of the cantus firmus is to consist of two different attack-groups. 

For instance: 

CPi , CPi 2a , a . /2^ 4. £P* „ ^ ^ . 
(1) cFi + CF"* = IT + ^ CFl + CFa a ' a 1 

CPi , CP* _ 5a 3a. 
W CFi CF* a “ a * 

CPi , CPi _ 
W CFi + CF* ~ 

a , 8a 
a ' a 

The selection of number values for the attacks of CP against the attacks 

of CF depends on the amount of contrast desired in the two successive attack- 

groups of CP. 
All further details pertaining to this problem are to be found in my earlier 

discussion of the theory of melodization.* 
Binomial attack-groups are subject to permutations. For example, if 

9*1 u. _**_»_ tHis binomial attack-group may be varied further through 

permutations of a higher order. Suppose CF has 8a; then the whole contrapuntal 

continuity will acquire the following distribution of attack-groups: 

CPi , CP* , CPs , CP* CPs CPs CP7 CP* 
CFi ' CF* •" CF* + CF* + CF* + CF« + CF? ^ CFa* or 

CPi-i 4a , 2a ,2a_L_4a_J_2a_i_i*j_ia.j_2a 
CFi —■ “ a ' a a ' a ~ a ~ a ^ a ~ a * 

Polynomial attack-groups of CP against CF may be devised in a similar fashion. 

The resultants of interference, their variations, involution groups, and series 

of variable velocities may all be used as material for this purpose. 

CP 
Examples of polynomial attack-groups of cf-: 

(1) 
CPi-8 _ 3a,a,2a_?a,a,3a_ 

CFi—« a ' a "■ a ' a ' a ' a’ 

(2) 

(3) 

(4) 

CPi—» 2a,a a a 2a a a,a.,2a. 
CFr—* ~ T+I+a+a+a+a+a+a+a' 

CPi—i a . 2a , 3a , 5a , 8a, 
CFi—& ~ a "" a ' a ' a a ’ 

CPx—< _9a.6a,6a,4a 
CFi—4 ""a'a^a'a* 

•See Book IV. 
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The simplest duration-equivalents of attacks 
examples. 

will be used in the following 

» 
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CP 
Figure 35. qp = A var. 

A. More than One Attack of CF to CP 

At this stage it should not be difficult for the student to develop the tech¬ 

nique of writing attack of CP to a group of attacks of CF. In an exercise, 

CF must be so constructed as to permit the matching of one attack against a 

given attack-group. In composing a counterpart to a given melody, it is necessary 

to compose the attack-groups first This should be done with a view to the 

possibilities of resolving the harmonic intervals. Whenever the assumed group 

does not permit one to carry out the resolution requirements (such as expanding 

of the second, contracting of the seventh or the ninth, etc.), then the attack- 

group itself must be reconstructed. 

As was mentioned previously, it is entirely practical to re-write the given 

melody into uniform durations first, then to assign advantageous attack-groups. 

After the counterpoint has been written, the original scheme of durations may- 

then be reconstructed. 

With the equipment which I have so far presented, only such melodies may 

be used as the cantus firmus which is built on one scale at a time; the scale itselt 

must belong to the first group (see my discussion of the theory of pitch scales). 

The procedure of distributing the attack-groups of a given melody is analogous 

to that used in the technique of the harmonization of melody,** according to 

which the attacks of a given melody were distributed in relation to the number 

of chords accompanying the melodic attacks. 

•See Book II. ••See Book VI, Chapter 3. 
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The following example is a melody which has been subjected to different 

attack treatments in the process of writing a counterpart to it. 

CP _ a, _a , _a , a_ , a. 

CF 8a a 2a 2a a 
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In writing a counterpart to a given melody (but without consideration of 

any harmonic accompaniment that may also be given) it is important to consider: 

(1) the composition of attacks, and 

(2) the composition of durations. 

The choir** of means for the composition of attacks depends on the degree 

of animation of the given melody. If a lively melody is to be compensated, 

then the countermelody should be devised on the basis of reciprocation of at¬ 

tacks and, finally, of durations. All the techniques pertaining to the variation 

of two elements serve as material for such a two-part compensation (counter¬ 

balancing). 

If a lively melody is to be contrasted, then the countermelody should be 

devised by summing up groups of attacks together with their durations. The 

sums of durations of the given melody, with the specified number of attacks 

against each attack of the countermelody, define the durations of the counterpart. 

If a slow melody is to be compensated (counterbalanced) by a slow counter¬ 

part, then the technique of reciprocation of attacks and durations should be 

used. Variations of two elements provide such a technique. 

If a slow melody is to be contrasted, then the countermelody should be 

devised first by defining the number of attacks in the countermelody against 

each individual attack of the given melody, after which the sum of the attacks 

of the counterpart will represent the duration, equivalent to the duration of 

one attack of the given melody. 

When one handles melodies which have animated portions alternating with 

slow ones, or with cadences, it will be found that these are particularly suited 

for the compensation methods In such a case, when one melody stops, the other 

moves—and vice versa. 

Let us analyze the problem, say, of writing a counterpart to a given melody, 

taking the setting to Ben Jonson’s Drink to Me Only With Thine Eyes. 

The melody is: 

Reconstruction of this melody into a C.F gives it the following appearance: 

Figure 38. C.F. of Drink to Me Only with Thine Eyes. 

This is a fairly animated type of melody. 

Let us first devise a scheme of durations for CP. One of the simplest solutions 

for a contrasting CP would be to make each attack of CP correspond to T; we 

would obtain CP - 4a and a = 6t. For a less moderate contrast, we could 

ass,gn CP - 8a and a = 3t. To obtain a CP of the counterbalancing type, we 

woidd have to assign two contrasting elements, if such can be found in CF 

•“6a,ai;dasTa T< 1=5 a' this CF provides sufficient 
material for assigning two elements and for compensating them in CP. There is 

of course, no way to counterbalance the original version of this melody. Jh this 

Way tebl°btam ^ followin£ three solutions, each different, but all equally 

lSUr€ 39' VaryinZ counterpoints to melody of Drink to Me Only with Thine Eyes 
{continued). 
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Figure 39. Varying counterpoints (continued). 

attack-groups in two-part counterpoint 733 

Figure 39. Varying counterpoints (concluded). 

B. Direct Composition of Durations in Two-Part Counterpoint 

to cotrr^ a" °riginal tW°'Part c°unterpoint, ^ is often desirable first 

■JESSSSSS^^^SS 

| jf jjj j. jjj 
rrr r rrr r rrr rrr r- 

«£»re 40. Counterbalancing through permutation of binomials. 

such a I, PU iTe^nrTf!! Part “ Writt<m firSt (thuS becominB ‘He CK) in 

by section. The CP must'b’e 

of ritar nuinber 

For example, T I ^ (+8^ ^'Ptoeate in such a case. 

1ipJ jj- jtj. 0 

^ rr- r p r p P'-fr p- r p-^cp ° 
41. Employing reciprocating binomials. 

•Book I. 
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In all such cases (continuous reciprocation of the variable binomials), the 

number of attacks of CP against CF remains constant while the durations vary 

Homogeneous effects of rhythm in both counterparts may be achieved through 

varying the rests or split-unit groups. The groups themselves do not have to be 

binomials. The two “best” of any polynomial groups are the self-reciprocating 

members.* 

For example: (a) rests 

4 jt J J J J * J J J J * J J J J * 
4 rrr* rr*r r*rr *rrr 

or: (b) tied rests 

-J’JJJ J JJ JJ 
rrr rr r rrkrrrr 

(c) split-unit groups 

4 JJJ J J JJJJ J JJ J3J |J JJJ3 
4 r rrcrlrr err rerr lerrrr 

Figure 42. Self-reciprocating members. 

Any rhythmic group set against its converse provides a satisfactory counter¬ 

part. For example: 2 ; T = 4t. 

IJJ. u j-hj jj+j j 
k r r4r r r- r ° 4 r r4r r Mr r l rj r r i 

Figure 43. Cowerse of a rhythmic group provides satisfactory counterpoint. 

Any of the series of variable velocities may be used for such a purpose. 

For example: 

. JJ JfJ J'N- J-h.-—hJ- J'K'KT- . 
4 o ip ip Lp pj i|»f<_|r r4r r f 

'J- J- 

Figure 44. Summation series I. 

*In \ 
three or 
able to 
groups. 

variations or circular permutation of there are rarely more than two, are J*? 

^TmStsVit is*k3ve and desir- best. Theywill befoundlm 

o choose only pairs of the resultant tions of rests, accents and (£d.» 
i. The self-reciprocating groups, of which (also non-uniform, durations). 
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Adjacent contrasts for two mutually compensating parts may be achieved 

by synchronized involution-groups placed in a sequence. The two powers supply 

the a and b elements, and thus are treated through the permutations of two 
elements (any order). 

For example: (2+1)2 + 3(2+1). 

a « (2+1)2; b = 3(2+1) 

£ JW'J J Jl J. J. J. J. Jr-JJ J J) 
8 f r Mr r p>pr r p r r 

Or, for example: 4(2+1+1) + (2 + 1 + 1)?. 

a = 4(2+1 + 1); b ■= (2+1 +1)2. 

i ° J j j jj jjun 
rrr r err nr ° r r 

Figure 45. Permutation of two elements. 

eithef4teas*rCFetndrmif,0nfe * ^ W°rk wkh the of P as the CF, and they all refer to counterbalancing (compensation). 

ha teLchnJI.qu! of simultaneous harmonic contrasts between CF and CP k 

Srk““" - *• - ZSSSZ 
. , y‘ Any number of terms may be used as a group. The limitation of 

hi t0 th* **<> tower-groups (adjacent or non-adjacent powers) 

a ^numbe, eS ?*** °- CP CF is and such 
^ t . q CP ^ number of terms in the polynomial. Thus, a binomial 
squared g.ves g = 2a; a trinomial squared gives g = 3a, etc. 

or h,Sti“ T*? contra5ts maV ^ achieved either by using larger polynomials 

d uJ/ rom;ing non-adiacent «»*«"■in 

cubed and H ltS.Sy“hr°m2ed fir5‘ «*» g = 4a i.e., 2- a trinomial 
nd used against its synchronized first power gives ~ = 9a, i.e., 3s, etc. 

as cu^efZ-rr?15 ther“” fr°m using adjacent h«her P<44uch gainst squares, fourth power groups against cubes, etc. 

easie^tom^ch6 Cases.the lo'ver P°wer employed represents the CF, as it is 
several attacks against a given single attack, than vice versa. 
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Examples: 

(a) CF = 3(2+1); CP = (2 + 1)2. 

9 J* J* J* J' J* J* 

8 Mr r t Mr r p Mr r p 
(b) CF = 9(2+1); CP = (2+1)’. 

J*"—"Jr" "Jf" ""J- '"J- 

r<^r p4r- m r m r r p 
(c) CF = 8(2 + l+2+l+2); CP - (2+1+2+1+2)’. 

Vrr-rrr rprpr rrr-rrr rprpr r rr-rrr 
(d) CF = 16(2+1+1); CP = (2+1+1)*. 

4 j jj jfljn j J1J73J73 j nrsm 
4 _ o o o 

Figure 46. Using larger polynomials for contrast. 

In addition to involution-groups, coefficients of duration may be used, as in 

CP _ 2 (r4+-3> _ (3+1 + 2+24-1 + 3) -f (3 + 1 +2 + 2+ 1+3) ^ wejj ^ the re- 
CF “ »«+6 ~ 6 + 2 + 4 + 4 + 2 + 6 ’ 

sultants of instrumental interference composed for two parts. 

In all the following examples, the intonation of CF was composed first. 

Figure 47. Two-part counterpoint with pre-composed duration group (contm 
inued 

Fmre4?- TW0-parl M Pre-co„ dumtwn group Uon/tmied; 
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Figure 47. Two-parl counterpoint with pre-composed duration group (continued ■ 

ATTACK-GROUPS in TWO-PART COUNTERPOINT 739 

The resultants ot instrumental interference: R 8f jj 

Figure 47. Two-part counterpoint with pre-composed duration group (concluded). 

melodv forlnv V l 3 Chromatic counterpart to any diatonic 
elody, for any suitable pitch-unit may be chosen from anywhere in the entire 

chromatic scale. But such countermelodies have one general defect a neutral 

aracter which comes with a uniform scale. To the average listener «?nrh 

~ndS T-if a"y fpitch'unit would be iust as acceptable as those alr^dy^t’ 

Xn“r^re=r atS indePmdaU PitCheS (a,thOU^h in a -rtlin 
l^ing into diatonic pitches "mtS ^ perceived as dePendent itches 

thereW^ThT^ chromatically' ;-e., without diatonic dependence 

‘■onal i l twn ^ “T* diffefrent from diat°"ic music with direc-’ 
mts, it is known under the name of “atonal”, or “twelve-tone” music 

®ce only ThTk^dWoefSha" Chr°matic ““"•“Point with diatonic depend^ 
inserl^I t °f,.““"f30Int may be devised at its best by mea^s of 

been written ^ Chr°matlC units tb* diatonic counterpoint has 

in.Poriantttohnni“ethSrarhPliCable ^ °f ha™°"- «lad°-. It is 
does not affect £ PatJ ! C,°.nverS10" of diatonic into chromatic counterpoint 

be accompShed L “ r T* °f reS°'uti™’ remodeling of durations may 
the character of th h ° lbunit grouPs’ a device allowing us to preserve 

aracter ot the rhythm which was originally set. 

Unless, Of course, the composer warns to write “atonal” music. (Ed.) 
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Chromatic variation 

FieUrt 4S■ Chr0matic of dKtomc counterpoint (continued) 



CHAPTER 4 

THE COMPOSITION OF CONTRAPUNTAL CONTINUITY 

rpHE extension of any given contrapuntal continuity is based on geometrical 

mutations. , , . . 
The fundamental technique of these geometrical mutations m two-part 

counterpoint, is the interchange of music assigned to Cb and CP. 

that OF represents the actual melody, and CP represents the actual counter¬ 

part, we obtain two variants for each voice: q- and ^>, where both Cb s and 

Ixjth CP’s are identical but change their vertical positions. 
In the old systems of counterpoint, this device was known as vertical 

convertibility in octave.” We shall regard it merely as a device formed by two 

variants of the exposition for any counterpoint; we shall consider such con¬ 

vertibility to be an inherent property of counterpoint as such. 

By applying the principle of variation of two elements ad mfintlum, i.e 

through permutations of the higher orders, we can compose an entire piece of 

music from a single contrapuntal exposition. 

Figure 49. Contrapuntal continuity of the third order produced through permutation 

of parts of the original exposition (continued). 

17421 
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Figure 49. Contrapuntal continuity of the third order produced through permutation 

of parts of the original exposition {continued). 
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-• - 

»VJ't —r , .»■ 

«/I 1 

Ml 

!!!■
 ■

ill! ill 

! \ 
ill 

I'
ll

 ill 
Figure 49. Contrapuntal continuity of the third order produced through permutation 

of parts of the original exposition {concluded). 

When it is conceived geometrically, any musical exposition becomes subject 

to quadrant rotation (as described earlier in my discussion of geometrical projec¬ 
tions of music), yielding the four variations of the geometrical position: (a). (£>. 

©. <a>.* 
Through vertical permutation of parts, two-part exposition yields two 

variants. Each variant has four rotational positions; the total number of variants 
for one two-part contrapuntal exposition is therefore eight: 

£Frt. CP*. cf~ CP_ CF- 
QpOyi CF®’ CP®’ CF^’ CP®' CF®’ CP®’ CF®' 

In making a transition from one form to another in the same part, place 

the respective pitch-unit in its nearest pitch position. This is true of both the 

octave and the geometrical inversion. The axis of inversion for © and (3) is the 

axis of CF, or the part assumed to function as the CF. 

*To remind the reader, these geometrical 
rations are: ®*the original; © the same but 
jckwards; @ the original backwards and uj»- 

side down: ® the original upside dow*- 
Book III. (Ed.)- 

THECOMTOSmoN 0F CONTRAPUNTAL CONTINUIT 
Type I 

^ 50' °f ™ Type I and quadrant rotate 
{continued). 
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Figure 51. Type II and quadrant rotation (concluded). 

Type HI and/or IV 

Figure 52. Type III andjor IV. Quadrant rotation {continued). 
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These eight variants of contrapuntal exposition may be selected in any 

desirable combination, Any combination of the selected variants produces a 
cdmplete form of continuity, i.e., a whole composition. 

The selection of various geometrical inversions must be guided by a definite 
tendency with regard to the number and distribution of contrasts; all considera¬ 
tions pertaining to this matter were discussed in the section on geometrical 
projections of music. * 

The most important principles to remember are: 

(1) © and © are identical in intonation and converse in temporal structure; 

(2) © and (3) are identical in intonation and converse in temporal structure; 
(3) © and fl) are converse in intonation and identical in temporal structure; 
(4) © and © are converse in intonation and converse in temporal structure; 

(5) © and © are converse in intonation and identical in temporal structure; 

(6) © and ® are converse in intonation and converse in temporal structure. 

There is a way of developing identical temporal structures for all geometrical 
inversions: any symmetrical group is identical with its converse; for instance: 

CD r6i4 = 4+1 + 8+ 8 + 84-3+1+4 

Figure 52. Type III andjor IV. Quadrant rotation (concluded). 

<2J f r r i rr r i r r r | 

i 
i 

i 
ii 4 
i 

I 

(3) gJ^rrrirej^rrirrcrr \r r r u l 

Figure 53. A symmetrical group is identical with its converse. 

There is also a way of developing an identical pitch-scale for all geometrical 
inversions, when such is desirable. The original scale must be symmetrically 
constructed (which does not necessarily place it into the third or fourth group), 
m such a case the pitch units in © and (3) are not identical but the scale struc¬ 
tures (that is, the sets of intervals) are identical. 

For instance: 

® c — eb — f — g - bb 

© bb — g —f — eb — c 
©d —f — g — a —c 
® c — a — g — f — d 

(3 + 2-f2+3) t 
(3 + 2 + 2 + 3) l 
(3 + 2+24-3) t 
(3 + 2 + 2 + 3) i 

Figure 54. Symmetric scale is identical for all geometrical inversions. 

•See Book HI. 
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Here are some examples of complete forms of contrapuntal continuity based 
on geometrical inversions: 

(*) cf® + §p® + + §f© + §|® + §p© + §f© ; 

(2) g@ + g©-i-§p©-|-g® + §p® ; 

(3) §p© + §§© + §f® + §p® + §p® ; 

(4) §®+ §£© + §£©+ §£®+ :§f© . 

Figure 55. Forms of contrapuntal continuity. 

We shall apply the first of the above schemes of continuity to the theme 
based on the exposition in type 11, Fig. 51. The theme will be used in its original 

ST version (i.e., without the added balance). 

Figure 56_ Scheme 1 applied to exposition in figure 51 (continued). 

Figure 56. Scheme 1 applied to exposition in figure 51 {concluded). 

- t OI ana produces 

^ JT15, Ee°metncal P03^0"' This praperty be utilized for the 
purpose of producing continuity based on imitation. The two reciprocal ex¬ 
positions following one another are planned in such a manner that the first one 

consists of an unaccompanied CF only, whereas the second has both parts, 
hen CF exchanges its positions, the resulting effect is imitation. 

In the following example, Fig. 52, type III, will serve as a theme. The com¬ 

plete continuity will follow this scheme: CF® + g® 4- g® + §?© + g© 

Kgare 57. Exposition of figure 52 developed by geometrical inversions 
(continued). 



Fignre 57. Exposition of figure 52 developed by geometrical inversions 

(concluded). 

CHAPTER 5 

CORRELATION OF MELODIC FORMS IN TWO-PART 

COUNTERPOINT 

nd *e tempera, 

been planned in some genemi w^y tut ™ have used have 
of the harmonic treatment of intervals. Y * ** S Were merely the outcome 

mdodic forms. Mdodyfeerpt^^futdameS”1^ method for correlating 

bination; the correlation of two melodies then Z' Y me^n3 of an axial com' 
of coordination between the two axial groups.*’ ^C°meS essentially a problem 

A. Use of Monomial Axes 

b0tk CF and C^rfolbSS1 forms Ltome^We:^ ““ ^ 

a . 0 
0 ’ a 

0 _ d o 
c ’ 0 » d > 

. a . d a b 
’ c » a ’ d » b » 

art ££ re 2-p**-*. 
or contrary is not sufficient as under either ,7?.- P S as beinE Parallel 

and the other may be unbaUndn*™ "0“"' ^7"^>*““«** 
be unbalancing. be baIancmg, or both may 

For example: * 
r CP b * b ’ c * d * 

the ^ - case, both voices are contrary but both „„ h , . balancmg; in the third 

voices are contrary, but lt£ndng^ f°Urth “*• botb 

conti„uo^t["„iTcrntltTs acbi- m one of the Darts wh*n terP°int « to introduce an unbalancing axis 

■ desired KSstC m°Ving “ baknCe'- a cadence 
realized; but he always managedtn^ ^ m°ti°n than is usually 

hand, many "****■ °" the °‘h" 

Tl“yC°ntraPUnte^ 
[753J 
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however; it actually becomes a source of monotony unless it is used along with 

the proper constitution of balance relations between CF and CP. 
The selection of axial combinations for the two counterparts (or for one 

counterpart to a given part) depends on the form of expression. 

Axial relations with regard to their directions are: (1) parallel. (2) contrary , 

(3) oblique. , , 
Axial relations with regard to their balancing tendencies are: 

(i) o ; (2) |; (3) l; (*) I • 

In addition, the zero-axis expresses a continuous state of balance. 

All further development of the technique of correlating axial combinations 

of two melodies follows the ratio development of the quantities of axes in one 

oart in relation to those in another. 
Under such conditions, all the above described cases refer to one category 

only = ax, i.e., one secondary axis of counterpoint corresponds to one 

secondary axis of the cantus firmus, ox being used as an abbreviate of the 

word, “axis.” 

B. Binomial Axial Groups 

Coming now to the binomial relations of axial groups of the counterpoint 

in relation to the cantus firmus, we see that. 

CP _ 2ax 

CF ” ax' °r 2ax 

Under such conditions, a monomial axis of one part corresponds to a binomial 

axial combination of another. For instance: 

CP *4.b c + d b +0 d+a 

CF 

CP 
CF 

0 + a 

0 

0 
0 + a 

a + b 

b 

c + d 
a 

b + 0 

c 
etc. 

0 
+ b ’ c+d’ b + 0’ d ~+ 

etc. 

It is easy to see that there are 200 such simultaneous combinations, as there 

are 10 original binomial axial combinations, each having 2 permutations, wen > 
combinations are now combined vertically with 5 monomials (0, a, b c, d • 

This produces 20-5 = 100. Finally, 100 must be multiplied by 2, as each s.m 

taneous combination can be inverted. . f t.v0 
The period of duration of one axis equals the sum of durations of th 

axes constituting the binomial. Thus, in a combination: 

CP 2ax ^ axmt + axnt _ T _ j the time period for both parts is the same. 
CF ~ ax axpt T ’ 

Time ratios for binomial axes must be selected in accordance with the sene5 

which the monomial axis represents. If, for instance the duration of ax oi^ 

is 8T, then CP may be matched as any binomial of f senes. We migh 

the 5+3 binomial of this series. 
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Now we can define the simultaneous temporal relations as follows: 

ax5T + ax3T CP 

CF ax8T 

In a simultaneous combination of a binomial-against-a-monomial axial 

combination, we find that the following is significant: during the period of the 
monomial axis (balanced, balancing, or unbalancing) its counterpart has two 

phases, which may be any of these pairs: U+U; U+B; B+U; or B+B. If we 
single out a continuous balance (0-axis) as an independent form, we obtain 12 

forms of balance relations between CP and CF, when one of them is a binomial 

and the other a monomial. 

CF 

CP 

ax 

2ax 

0 0 0 0 

U + U ’ U + B - B + U ’ B + B ’ 

u U U U 

u + u * U+B • B + U ’ B + B ’ 

B B B B 

u + u - U+B ’ B + U ’ B + B ' 

CP ax .... 
Just as many are available for If the 0-axis participates in a 

binomial, there are 15 more combinations: O+U, O+B, B+O, O+O multiplied 

by 3. 
. T . , CP 2ax 

Let us select one of the many possible combinations. Let it be qf — " 

-■^-U = d Suppose that CF = 8T, and suppose that we match the previ- 

ously selected time-ratio for CP. Then the correlation of appears as follows: 

= d5^cgTa3T-. In this case CP unbalances for 5T in the direction below 

its P.A. (primary axis) and unbalances still further in the direction above its 
P.A. for 3T, While this happens, CF moves steadily toward its own P.A. in the 

upward direction during the course of 8T. The graph of this would be: 
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C. Trinomial Axial Combinations 

In the same fashion, trinomial axial combinations of one part may be cor¬ 

related with a monomial axis of another. The number of simultaneous combina¬ 
tions equals the number of trinomials times 5. 

There are 60 trinomials with two identical terms (as noted in my discussion 
of the theory of melody)* and 60 trinomials with all terms different. This yields 

(120*5 - ) 600 for and the same quantity for ^p- 

As the number of axes is three in one part and one in the other part, we 

may write: 

In each case, the trinomial requires three temporal coefficients, the sum of which 

equals that of the monomial. 

CP _ 3ax 
CF ~\.ax 

axmt -f axnt -f axpt 
axT , where mt + nt + pt = T. Let T equal 5. 

Then, by selecting 2+2+1 which is one of the trinomials of f series, we obtain: 

CP ax2T + ax2T + axT 
CF “ axST 

The trinomial distribution of the O, U and B yields the following number 

of the forms of balance. 

O+O+U; O+O+B; U+U+O; U+U+B; B+B+O; B+B+U. 

Each of the above 6 combinations has 3 permutations, giving a total of 

6*3 = 18. When each of these variations is placed against O, U or B in the 
— CP CF 

counterpart, the number of forms becomes tripled: 18*3 = 54. Thus, ^p and Qp 

have 54 forms each. 

But the above forms contain trinomials with two identical terms. The 
addition of trinomials without identical terms produces one combination: 

O+U+B, which has 6 permutations. These 6 forms, placed against the three 

possible forms of the counterpart, produce (6*3 = ) 18 combinations. 

CP CP 
CP and £p have 18 forms each. 

CP 
The total of trinomial combinations of balance of ^p is (54 + 18 = ) 72, 

and the same number for ^p. 

When secondary axes are substituted for the forms of balance, each case 

gives mbre than one solution. For example: if = U + 0 -f B ^ t^en— 

CP CF 

(1) U = a; U = d; U = a; U = d. 
(2) O - O 
(3) B = b; B - c; 

*See Book IV. 
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—and the following solutions are available: 
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~ ~ A+°+ b a-f0-fb a + 0 + c a + 0+c 
CF a » d * a * d- 1 

d+°+b . d + 0 + b % d + 0 + c d + 0 + c 

a ' d ' a ’ d * 

. . Le!uUS,afign tHe Previously discussed f series trinomial time ratio. We 
obtain the following solutions: 

CP _ a2T + 02T + bT , a2T + 02T + bT a2T + 02T + cT 
Cp a5 * d5T : a5T- * 

a2T + 02T + cT > d2T + 02T 4- bT d2T + 02T + bT 
d5T ’ ~ a5T > dJV » 

d2T + 02T + cT d2T + 02T + cT 
a5T » d5T : 

fiBSBBBBBBSI!BBBBBBBllllliiw« 

BiiSKissSiissSssissH 
!■■■■■■■■ ■HHBasiB 
g5S5588llil5ilililll|g|SSMaa 
gSSSSSSSSBSSSSSBSSSSBSSBBBBH 
m""5BBSSa8g8S8SSa8si^M 

Figure 59. f series in trinomial lime ratio. 

Polynomial Axial Combinations 

mo„o™!iTately’4POlr0mif1 COmb,nation may as counterpart to a 
stabS? 1““' T-hnefftCu °f SUCh 3 correlation ia instability (polynomial) versus 

fft tnyf 7n0m,a11- The Selection °f of O, U and B depends on the 
axes. , ance nfessary m each articular case. An abundance of unbalancing 
cab La reStle8S’ dls,lu,eting, unstable melodies-such melodies are often 
DrnHi ramat}C; P****onate, ecstat.c, etc. An abundance of balancing and O-axes 

0r “ reStfu ’ qmet> stabIe melodies» usually termed contemplative, epical 
1 serene. r ' 
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Examples of compositions of ^ . 

Let m = 5; then: ^ ^. 

Let us consider our balance-group to be U+B-f-U+B+U, and assume 
that the two extreme terms are identical, but different from the middle one. 
Then the possibilities for the U’s are: 

(1) a+d+a and (2) d+a-fd 

In the first combination, let us assume that both B’s are identical but on 
the opposite side of P.A. from the two identical U’s. Then we get c-fc for the 
B+B. The entire axial combination for CP appears as follows: 

CP = a-pc+d+c+a 

Let CF be represented by B, and let it be b in order to achieve greater 
variety of balancing forms of CP in relation to CF. 

CP a + c+ d + c + a 
CF ~ b 

Let the duration of the entire group be 16T. Let the temporal coefficients 
correspond to $ series on the basis of t = 2T. Then, by selecting a quintinomial 
(for the five axes of CP), we obtain the following temporal scheme: 

CP a4T 4- c2T + d4T + c2T + a4T 
CF ** b!6T 

E. Developing Axial Relations Through Attack-Groups 

cp 
The temporal ratios, discussed so far, referred to the form = 1,2,3, • • • 

Such axial relations may be further developed into polynomial groups in 
both CF and CP: 

(1) through the technique previously applied to the composition of attack- 

groups, as in Melodizalion of Harmony? 

(2) by direct application of ratios producing interference. 

'See Book VI. 
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axesIf’thfcP^t’r ittPTi^t0 matCh any desirable “umber of axes oi tne Lr against each axis of the CF. 

Let us take a CF with 4 axes. We may match 2, 3, or more axes of CP 
against each axis of CF and in any desirable sequence. 

For example: — 4- ^ 4. 2** . 2ax 
H CF ax ' ax ' ax ' ax * 

in assigning temporal coefficients in such a way that the sum of durations 
m each 2ax of CP corresponds to the duration of ax of CF, we acquire a syn- 

chromzed ^ With the temporal coefficients based on r5+4, for instance, we 
ootain the following correlation: 

CP _ sx4T + axT ax3T+ax2T ax2T + ax3T , axT + sx4T 
CF ax5T T axST -f- ^ + -~5T 

Let O+b+c+a be the axial combination of CF, and let (0+a) + (0+b) + 

+ (b+0) + (a+0) be the axial combination of CP. Then acquires the 
following appearance: 

mwm ■■■i«iigssi,fii5ss:ssssg 
Figwe 61. Two axes of CP matched to each one of CF. 

and WLhen PrOPOrti°nate relati0nS 0f the coefficients of g are desirable, 
and when a constant number of the axes of CP is assigned against each axis of 

. the technique of distributive involution solves the problem. 

For example: S = ~ + jg* i 3a* 
CF 3ax ax ' ax ^ ax * 

squa^of 27, + ll ofh;hefr--s.COrrelati0n ^ Pr0P°rti°nS’ We ^ tha 

= -4T + ^ + ax2T + H£L±_«xT + axT ax2T + axT + axT 
ax8i ax4T ' ax4T 

Let the axial combination for both CP and CF be the trinomial a+b+c. Then: 

~ = — + h2I + c2T 4- *2T + bT -f cT , a2T + bT + cT 
^ a8T ^ b4T "*-^4f-• 

musical illustration on following page. 
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F. Interference of Axis-Groups 

The most complex temporal relations result when the respective axes in 

CP and CF produce interference ratios. I shall discuss here only the simplest 
forms of such interference, those which require uniform temporal coefficients 

for both CP and CF, and differ only in value. This corresponds to binary syn¬ 
chronization as described in my earlier discussion of the Theory of Rhythm * 

In this sense, an g ratio represents the number of secondary axes in the two 

counterparts. 

_ , . a • tt j i. . CP 3ax CP 2ax 
Let us take the f ratio. Under such conditions or gp = 3^- 

After synchronization, the first expression appears as follows: 

CP _ ax2T + ax2T + ax2T 
CF ~ ax3T -f ax3T 

Let CF consist of 0-f-d and CP—of a+d-f 0. Then: 

CP a2T + d2T + 02T 
CF “ 03T + d3T 

Figure 63. More complex temporal relations of CP and CF. 

•See Book I. 
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Series of accelerations used in their reciprocal directions serve as additional 
CP 

material for the temporal coefficients of This technique produces two counter¬ 

parts in the form of “growth” against “decline." 

An example: 

CP axT + ax2T + ax3T + ax5T 
CF = ax5T + ax3T + ax2T + axT 

Axial combinations: ^ ^ + c + d ’ Hence: 

CP _ aT + b2T + c3T + d5T 
CF a5T + b3T + c2T + dT 

Figure 64. Adding series of accelerations. 

This case illustrates the fact that even identical axial combinations in both 
counterparts may be made contrasting by the reciprocation of temporal coeffici¬ 
ents. 

An obvious contrast, that of some axial combinations against their own 
magnified versions, may be achieved by means of coefficients of duration applied 
to the original group of temporal coefficients. 

An example: 

CP _ 2(ax3T -f akT + ax2T + ax2T) 
CF ax6T + ax2T + ax4T + ax4T 

Axial combination: Sf = ~r;. Hence: 
c,r a+ D + c+ d 

CP = a3T + bT + c2T + d2T + a3T + bT + c2T + d2T 
CF a6T + b2T + c4T + d4T ' 

Figure 65. Applying coefficients of duration. 
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G. Correlation of Pitch-Time Ratios of the Axes 

After correlation of temporal coefficients has been established, correlation 
of pitch ranges of both counterparts is the next step.* 

Secondary axes that are otherwise identical may have different rates of 
speed. In terms of pitch ranges, it means that a greater range in one axis may 
be covered in the same period of time required by another axis to traverse a 
smaller range. 

Use of identical axes having -different pitch-ranges produces a noticeable 
amount of contrast. 

CP axT2P 
CF 1=1 axTP • ^et a ^ axis in both parts. 

Then: §£ 
aT2P 

aTP * 

Figure 66. Different pitch, ranges for identical axes. 

When the two counterparts are represented by axes identical with respect 
to balance, but non-identical in structure, the contrast becomes still more obvious. 

m ££ 2 
W CF “ B ’ 

£E = ^P.£2P.b3f.c3P b3P c3P 

CF cP ’ bP ; cP ’ bP * c2P ’ b2P ' ‘ ' 

Figure 67. §* 

*The student should be cautioned that these 
—and similar—passages in the text as to the 
calculation of music in advance of writing it 
are not simply mathematical curiosities, hut 
are the very core of Schillinger's system. 

Maximum efficiency and fluent coordination 
of all the factors involved in “good” music 
cannot be achieved without just such exact 
planning as is being illustrated in these portions 
of the text. (Ed.) 

CORRELATION OF MELODIC FORMS IN TWO-PART COUNTERPOINT 
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The 0-axis need not detain us in calculations aimed at correlating the pitch- 

ranges of the two counterparts. 

As pitch-ratios may be in direct, oblique or inverse relations with the time- 
ratios in each part, the correlation of the two counterparts offers the following 

fundamental possibilities: 

CP _ T-S-P direct _ T-r-P oblique . T-S-P inverse 
CF — T-S-P direct * T-r-Pdirect ’ T-r-P direct 

T-5-Poblique T4-P inverse , T-S- P inverse 
T4-P oblique ’ T4-P oblique ’ T-r-P inverse 

The second, the third, and the fifth forms have another variant, each by 

inversion. The total number of the above relations is 6+3 = 9. 

^P1681 CP _ T-PP direct 
CF “ T-5-P direct 

•CP bTP + c2T2P -1- a4TiP . 
CF " d4T4P + b3T3P » 

(2) § 
aTP -f b2T2P + a3T3P + x!4T4P 
04T + a3T3P + c2T2P + bTP 

i isssgsassE sassssssa 
■■^■■■■■■■■■■aaaaBBB^aB! 

■■■■■■■*ho|uihh*bbbb*b 

■■BIHBIIIIBIIIBBBBBBBBB 

CP T4- P direct 
Figure 70. Inverting various forms ^ = T4. P direct 
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CP T-S-P direct 
CF ™ T-rP oblique 

,n CP. = a4T4P + c2T2P_ 
1 ; CF dT3P + c2T2P +d3TIP : 

CP __ T-S-P inverse 
CF T-r-P direct 

f1v CP a6T2P + b3T4P 
'•i' CF b4T4P + d2T2P + c2T2P + dTP ’ 

(2) — = a2T2P + d2T2P -f aTP + dTP + a2T2P + d2T2P 
K } CF C4T1P 4* c3T2P + c2T3P + cT4P 

See the corresponding illustrations on the following page. 
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CP _ T-rP oblique 
CF ~ T-f-P oblique 

m CP _ a3T!P + a2T2P + bT3P + b3T!P + b2T2P + aT3P 
W CF “ c3T5P + d4T4P + cST3P 

CP bT5P + a2T4P + d3T3P + b4T2P 4- aSTIP 
w CF = a7T3P 4- bST5P 4- c3T7P 

CP _ T-t- P oblique 
CF = T*5* P inverse 

m CP b3T2P 4- c3T3P + b2T3P 
W CF “ aT2P + b2T!P 4- c2TlP + d3T!P 

... CP a4T3P + d3T3P + a3T4P 
W CF ~ cT4P + b2T3P + b3T2P 4- c4T!P 

(1) (2) 

CP 
Figure'74. = 

T-t- P oblique 
T4S- P inverse 

i 
i 

CP __ T-t- P inverse 
CF T-r* P inverse 

CP _ a3TlP + cT3P 4- c3T!P 4- aT3P 
^ CF “ a5T3P 4- b3T5P 

££ _ cT2P4-c2T1P -f b2T!P 4- b4T2P 
W CF ” d6T3P + d3T6P 

See the corresponding illustrations on the following page. 
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!Bii8!BSI8 
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■■li <■■■■■■■■■■■■■ 
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Figure 75. 
T-5-P inverse 
T-s-P inverse 

Example of Application 
CP _ T-3-P direct 
CF ~ T-5-P inverse 

CP = a4T4P + b3T3P -f a3T3P + b2T2P 
CF bSTIP + d4T2P 

T(CF) - (4+3+3+2)1 - (16+12+12+8) + (12+9+9+6) + 
+ (12+9+9+6) + (8+6+6+4). 

T(CP) = (Q3+1+1+1+1+1+1+1+1+1+1+1) o 

Axial combination of in its general form: 

irillli?l|riii II 

Figure76. ?t^direct 
T-s-P inversi 
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Let CF be constructed from C-maj. net. d0 scale and CP—-from Ab-maj. 
nat. da scale.* Let P — 5p with approximation. Under such conditions, the 
range of CF will be about an octave and a half, and the range of CP—about 
two octaves. 

Figure .77. Melody for preceding figure. 

C-maj. not. da scale means—to refer to the 
catena! on pitch-scales—“key of C, the natural 
«tajor scale (the “all white keys” scale), zero 
^■placement (i.e., the tonic in C itself)." 

A b-maj. nat. da means “key of A-flatr, natural 
major, sixth displacement (i.e., the mode 
starting on G as its tonic). (Ed.) 
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H. Composition of a Counterpart to a Given Melody 
by Means of Axial Correlation 

In order to correlate counterparts by means of axial correlation, it is neces¬ 

sary just to reconstruct the axial group of the given melody.* 

After this analysis of the TP ratios of CF has been accomplished, it is im¬ 

portant to detect whether the T -*-P is of direct, oblique,or inverse form.** After 

this, the general planning of the CP axial combination must follow—first, with 
respect to the T-s-P correlation; second, with respect to the axial combination 

itself and its own T-s-P ratios. 

The following graph is a transcription of the first four measures of the common 

musical setting of Ben Jonson’s “Drink to Me Only With Thine Eyes.” 

Figure 78. Graph of Drink to Me Only with Thine Eyes. 

On analysis, we .find, that this melody contains a modal modulation, for 
P.A.i is Phrygian (dj), and P.A., is Ionian (do). The entire axial group gradual¬ 

ly gravitates toward P.A.j, where it reaches its absolute balance. If we take 
into account all the minute crossings, an analysis of the axial group will appear 

as follows: 

P.A.i — a6t + b2t -j- dt + ct + a2t •+• b3t •+- d3t 
P.A.j = b3t + 05t + [tj. 

The modulation here from one mode (dj) to another (d0) is performed b> 

establishing a correspondence between d3t (P.A.i) and b3t (P.A.j). We can sa^ 
that d3t (P.A.i) = b3t (P.A.j). As the pitch ranges are approximately equal, 

the TP ratio may be regarded as constant. 

♦This Is a technique indispensable in modern Composers seeking to perfect a style basc< <» 
“arranging"—and in virtually all good or- tastes they have already formed will nna 
chestration of any style. (Ed.) useful to analyze, say, a hundred ot tne 

“favorite melodies, ’ noting the axes—o, a- • 
♦•The pitch-time ratio (“TP" ratio, or T-r P) c and d—, the sequence of axes in grojJP'; 

means just what it says: The duration of the the durations (T) of each axis, the P«tcn*™»K 
particular axis divided by its “height’' or (P) of each axis, and the TP ratios mvo \ 
“depth" measured vertically in semitones. (Ed.) 
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Let us now devise a counterpart in 1 -5-4 time-ratio, meaning that CP will 

have only one secondary axis. As the general tendency of the CF is that of 
gradual gravitation toward balance in the course of two oscillations (which cor¬ 

respond to four directions and eight individual axes), we shall introduce a b-axis 
for the counterpart.* Then CP will consist of one direction, consistently gravitat¬ 

ing toward balance. Under such conditions, ^ represents a complete cycle of 

development. 

This counterpart corresponds to case (2) in group (a) of Figure 39, where 

CP has an Aeolian P.A. (d&). 

Figure 79. Counterpart in 1+4 time-ratio. 

•That is, in this case, the over-all, general the P.A.) axis, which same axis is here chosen 
trend of CF, regardless of the oscillations, is as the form for the entire CP. (Ed.) 
•n the genera! form of a b (downwards to 
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CHAPTER 6 

TWO-PART COUNTERPOINT WITH SYMMETRIC SCALES 

UNITY of styie requires that both the cantus firmus and its counterpart be 

based on symmetric scales if one of them is. 
Scales of the third group and scales of the fourth group, mostly in contracted 

form, serve as material for counterpoint. It is acceptable to have one counterpart 
in the third group and another in either the third or the fourth group.* When 
the two counterparts are in scales which belong to different groups, two cases 

may be distinguished: 

(1) both scales have an identical set of pitches; 
(2) each scale has a different set of pitches. 

Example: 

Ti T, T, Ti 
c — f — ab — db—e — a^—c 

Ti T, T, T, 
c-db-e—f — g#—a-c 

T, Tj Ti 
rS7*- c-d-eb-f-f#-g#-a—b-c 

j -- l— 

T, T, T, Tx 
-S7* = c — d — f — g — ab — bb — db — eb — f# — a — b-~c 

Figure 80. Identical and different sets of pitches. 

The relations between the harmonic axes of the two counterparts may be 
carried out in all four of the forms previously used. Their meaning with regard 

to symmetric scales appears as follows: 

Type 1 (U.U.) {Unitonal-unimodal]: both scales have the same Ti, the same 

number of tonics, and an identical set of pitch-units. 

Type II (U.P.) [Unitonal-polymodal]: both scales have the same number of 
tonics, their sets of pitch-units are identical, but their har¬ 

monic axes are on different tonics. 

Type III (P.U.) [Polytonal-unimodal]: both scales have an identical form of 
symmetry (the quantity of tonics) and an identical set of pitch- 

units; none of the tonics of one scale has pitches in common 

•Third group scales are one octave in range one octave in range, and of 2 or more sym- 
with 2, 3, 4, 6 or 12 symmetrically arranged metric tonics. (Ed.) 
tonics; fourth group scales are of more than 

[772] 

y' 

with the tonics of the other, i.e., the two sets of tonics belong 
to the mutually exclusive sets of pitches. 

Type IV (P.P.) [Polytonal-polymodal]: the two scales belong to either identical 
or non-identical forms of symmetry; their sectional scales are 
of non-identical structure, yet they belong to one family (ac¬ 
cording to the classification offered in my discussion of the 
first group of scales*); the two sets of tonics belong to mutually 
exclusive sets of pitches. 

Scale; 

Type I 

4? hr fep , r-TT-[ 
y - - ■ r r +-■ P l- —*-1-*-1- —4-1- 

n •et- II 

Figure 81. Two-part counterpoint in scale of third group. Type I. 

Scale: 

Figure 82. Two part counterpoint in scale of third group. Type II (continued). 

*See Book II, Theory of Pitch-Scales, 



Figure 82. Two part counterpoint in scale of third group. Type II {concluded). 

Figure 83. Two-part counterpoint in scale of fourth group. Type III {continued 
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Figure 83. Two-part counterpoint in scale of fourth group. Type III {concluded). 

Scale of CF: 

Scale of CP contracted and transposed to F-axis: 

FtgUre 84‘ Two-part counterpoint in scale of fourth group. Type IV {continued). 
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Figure 84. Two-part counterpoint in scale of fourth group. Type IV {concluded). 

CHAPTER 7 

CANONS AND CANONIC IMITATION 

'"PHE source of continuous imitation, usually known as canonic, is the well 

known phenomenon of acoustical resonance which bears the name of the 
Hellenic nymph, Echo. Before any composer existed on this planet, nature 
created, by chance, a quintuple echo-the “Lorelei” (which can be justly called 
a five-part canon) discovered on the Rhine river. The Russian Admiral Wrangel 
described a place in Siberia where the river Lena enters a canyon about 600 feet 
high and where a pistol shot rapidly repeats itself more than a hundred times. 
How would you like that for a canon? 

But music theorists, as is typical of the species, think the canon is a purely 
esthetic development. Whatever they think, canon is actually a natural phe¬ 
nomenon and is the most ancient form of musical continuity. 

The common belief is that it requires great skill to write a canon; but the 
real cause of whatever difficulty is encountered in writing in this form is simply 

methodological incompetence. Both the music theorists and the composers are 
guilty, for neither have been able to formulate the principles of continuous imita¬ 
tion. I shall not discuss the case of Sergei Ivanovich Taneiev, as his interpreta¬ 

tion of canon requires knowledge of his work, Convertible Counterpoint in 

Strict Style—a highly complicated system which deals only with the strict 

style and which fails to bring us any solution to melodic and rhythmic forms; 

it is preoccupied with vertical and horizontal convertibility of intervals in the 
harmonic sense. 

A canon is a complete composition written in the form of continuous imitation. 

The usual academic approach to this form is such that the student is taught 
first how to write an “ordinary” imitation (scientifically: discontinuous imitation). 

After not getting anywhere with this form of imitation, the student next begins 
to struggle with the canon. Inasmuch as, from the very start, the principles of 
imitation have not been disclosed to him, it does not make any difference whether 

the imitation is discontinuous or continuous. But once such principles are 
defined and the technique is specified, it becomes obvious that discontinuous 

imitation is merely a special case of continuous imitation. 

With this in mind, let us now establish the actual principles of continuous 
imitation., Continuous imitation consists of one melody coexisting in two or more 

different parts in its different phases and at a velocity that remains constant in any 

given part. This melody, being of identical structure in both parts, may vary in 

intonation; such variance occurs only when the scale-structure itself varies. 
The temporal organization of continuous imitation has no direct influence 

on the duration of a canon. Longer rhythmic groups are preferable, however, 

as continuous recurrence of the same rhythmic structure eventually becomes 
monotonous. 

[777] 
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The main source of continuous self-stimulation in a canon is its mdodtc 

form i e the axial group. With the devices offered in my theory of melody 

discussed'earlier* it is possible to evolve an axial group of great exte"s*°" an^ 

. necessary, without repetitions. In this way the continuance of the melodic flow 

may be completely insured. . , 
The correlation of harmonic types and the treatment of harmonic intervals 

remain the same as for all other forms of contrapuntal technique. This permits 

us to compose canons in unitonal as well as in polytonal types. 

A. Temporal Structure of Continuous Imitation 

' A complete composition based on continuous imitation is known as a canon 

The duration of continuous imitation-or of a canon-is some multiple 

” r»- - - ■ rs -k; pz 
the second entering voice as F?,, the first announcement as CP„ he first porh^ 

of cou;, terpoint as CP„ and the second portion of counterpoint CP„ • 

temporal structure of a canon then appears as follows. 

P1 = CPi + CP, + CP« The continuatjon of the temporal structure does 

not alter the pIoLI "merely increases the subnumerals of CP in the original 

relation: 

Pi CP* + CP, + CP, CP4 + CP» + CPi-I-CPt + > 

P n “ CPt + CP, CP, + CP4 CP, + CP« 

The temporal structure of any two-part canon is based on two 

which appear as reciprocal permutations. All forms of variation of two elemen^ 

are applicable therefore to two-part canons (see my earlier discu 

Tittory of Rhythm).** Let a and b be two elements each representing an. 

of duration-group. Then, 

Pi = ? + b±l and the continuation of the temporal structure assumes 

Pt, a + b ’ 

the following appearance: 

Pj_ = a + b + a b + a + b + a + 

Pti a + b a + b a + b 

•See Book IV. ♦♦See Book I. 
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The duration of some temporal structure is the factor really controlling 
the flow of the canon. The longer the structure (not as to speed, but as to the 
number of attacks), the greater the fluidity of the canon. Duration-groups of all 

kinds are acceptable as temporal structures for continuous imitation and for 
the canon. 

1. Temporal structures composed from the parts of 
resultants. 

(D f 3 J- I J J J I J- 
r rr 

f2,4 j j nn j j j j n 
< )T r r LTLrr r 

Figure 85. Temporal structures based on resultants. 

2. Temporal structures composed from complete 
resultants. 

(1) r4~S 

4 l J J JJ JJJ JJ- J- J J JJ 
4 r r r rr rrr rr 

^2)r5-4 

5_ o J J1 J J J- Jo o J J* J 
4 ~ r r r rr r° 

Figure 86. Temporal structures based on complete resultants {continued). 
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(3)r6ifi 

jj] j j jjjjijj jjy J I J> 
prTr cffTcrcrr rlrcrtrcrrTrp 

)ra^ a_, b , 

j.j3 jj jjjij- JjijW- j 
rtrdftrrrtprr r rffrrrlrcrr r 

j^j jj. i/jj. j.j 
~ ~ r^rp r pr 

(5)r8i8 

9 JJ > jjj J- J- 
8 

j j>j. jj>. j^j j» J^JJ J. JJ ju. 
r~ r r rft* rprT rr rpr prr 

lL 

Figure 86. Temporal structures based on complete resultants (concluded). 

3. Temporal structures evolved by means of 
permutations. 

i JJJJJ JJ3JJ J JJJJ JJ JJ3 JJJJ J JJJJJ 
4 crrrr rcrrr rrcrr rrrtr 

Figure 87. Temporal structures based on permutations. 
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4. Temporal structures composed from synchronized 
involution-groups. 

(1) 8(2+l>+(3+D* 

4o j j j j j j jij n o j j 
* ° r r f r r r nrr cr 

C3) (8+l+2)3+6(8+l+2)3 

rr 

_^ J* J* 

rlrl r rpr rrfr 
Figure 88. Temporal structures based on involution groups (continued). 
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Figure 88. Temporal structures based on involution groups (concluded). 

5. Temporal structures composed from acceleration-groups 
and their inversions. 

nr" 

o «LAL{JVM* UJUifUL 
I T 

J J i Jij. i0 

r f iffif f~if\is 
o u i j j n n 
c/c/r rTr rt□’TrTjTTr rrr 

lSl 

Figure 89. Temporal structures based on acceleration-groups and their inversions. 
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B. ( anons in All Four Types ok Harmonic Correlation 

As a canon is a duplication of melody at a certain time interval, differences 
of intonation in the two counterparts are due to scale-structures. Counterpoint 

of Type I (U.U.) produces identical intonations; type 11 (U.P.), non-identical 
intonations; type 111 (P.U.), identical intonations; and tvpc IV (P P) non- 

idcntical intonations. The choice of axes for all four forms of correlation remains 

based on the original principle, consonance between the two axes of the two coun- 
terparte. In Types II and IV, the starting P.A. may be in a dissonant relation 
with the P.A. of the first voice, but it must end on a consonance. 

As continuous imitation can go on indefinitely, we need to know the exact 

technique of bringing such an imitation to a close. Cadences are produced by 
leading tones moving into the primary axis. Since in canon, what happens in 

the first moving voice defines what happens in the second voice, all that is neces¬ 
sary, if we wish to cadence, is to produce a leading tone in the first moving voice. 

When this portion of melody is transferred to the second voice, the first voice 
produces its own leading tone, after which both voices close on their respective 
primary axes. 

Symmetric pitch-scales may be used in canons. 

Examples of two-part canons in all four types 

of harmonic correlation 

Figure 90. Two-part canon in four types {continued). 



THEORY OF COUNTERPOINT 

Figure 91. Two-part canon in three types (continued). 

Figure 91. Two-part canon in three types (continued) 
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Type I symmetric 

CANONS AND CANONIC IMITATION 787 

C. Composition of Canonic Continuity by Means 

of Geometrical Inversions 

The original version of a canon may be considerably extended by means 

of geometrical inversions. 

The voice entering first produces an axis of inversion for the positions (§) 

and (3). The final balance of the last cadence must not participate in the sequence 
of inversions, as this would disrupt the continuous flow of the canon. It must 

be used only at the very end of the composition if the canon ends in position 

(a) or (3)- Otherwise a new balance must be added. 

Under such conditions, the canon consists of several contrasting and in¬ 

dependent sections of continuous imitation. 

Example of a canon developed through the 

use of geometrical inversions. 

@ 

Figure 93. A canon developed by geometrical inversion (continued). 
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Figure 93. A canon developed by geometrical inversions (concluded). 

Each geometrical inversion allows the use of two vertical permutations of 
the counterparts. Octave readjustment of the parts becomes a necessity under 

such conditions. 



CHAPTER 8 

THE ART OF THE FUGUE 

JN the generalized sense a fugue may be defined as a complete com,>osition 
based on discontinuous imitation. 

A fragmentary (incomplete) composition based on discontinuous imitation 
constitutes a fugato. A fugato usually appears as a polyphonic episode in an 
otherwise homphonic composition. 

All other names established in the past—such as sinfonia, invention, prae- 

!^ulil,^^r(SO,nCti,nCS), fu*hetta“rcfcr to the same fundamental form, the fugue. 
I he difference lies mainly in the magnitude of the composition or in the type of 

' harmjin,c correlation of the counterparts. A fugue which is unitonal-unimodal is 
called an invention, a praeludium, or a sinfonia—praeludium being the loosest 
term of all, as in many cases it has nothing in common with the fugue. A fugue 
(in ibis general sense) which is unitonal but polymodal (and of a specified poly- 
modality) is called a fugue (in the specific sense). 

I t is my opinion that the presence or absence of polvmodality or of poly- 
tonality is a matter of harmonic specifications which vary with time and place. 

I herefore, 1 feel that any complete composition based on discontinuous imitation 
may rightly be called a fugue. 

A. This Form of a Fuguk 

. ,J!.he ,t!mP°ral structure of a fu*ue depends on the number of themes ("sub- 
j s ). It is customary to call a fugue with one theme a "single fugue”; the 

a'rea, Trinl T “d°UbIe fugUe’’ TriPle fl*ues ^e very rare; indeed, 
a real triple fugue requires many parts (voices) if the idea that each part is a 
theme is not to become nonsensical. 

»~ “ isd,“ **— '■ •—-> 
-.11 Ke"era‘ Chani"eriStic of a" fu«ues » the appearance of the theme in 
?! Z " Sequence- Thls comPlete thematic cycle is known as an exposition. 
rail 1, 'Pf.r counterP°,nt. the first voice entering announces the theme (we shall 

voir, rnr ’ f ^ f e °f uniforn,'ty in terminology ), after which the second 
, . .*‘3 ‘he imitation—the imitation is usually called “reply” and 

Z “rZl eCh°'' faCt' the ‘notation is the same theme, some- 
ones with differences caused by the form of harmonic correlation. The reply in 

types 1 and 111 is identical with the theme, whereas'in types 11 and fV it is 
non-identical because the scale-structure is modified. 

Atthe time the second voice entering makes its announcement (CF), the 

V°ICe CV°1VeS a C0UnterPart (Cp) to it. The form of the first ex¬ position (Ei) is— 

_ Pi CF + CP 
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—and the form of any other exposition (En) is— 

{?_?!__ CF -f- CP 

n Ph CP + CF ’ 

In both cases the voice entering first (Pt) and the second voice entering 
(Pn) may be inverted. 

In a fugue in which CF and CP represent the only thematic material and 
no interludes are used, the entire composition acquires the following form: 

F — Ei 4- E2 + Es 4- . . . + En. 

In homophonic music this would correspond to a theme with variations. In 
the fugue the variation technique consists of geometrical inversions of the original 
exposition. 

The counterpoint to the theme may be either constant (i.e., the CP is carried 
out through the entire fugue), or variable (i.e., a new CP is composed for each 

exposition). Statistically, the use of constant or variable CP is about 50 percent. 

In the 17th and 18th centuries a constant CP was something of a luxury, for 
counterpoint which we may now consider to be general technique was at that 
time known as “vertically convertible counterpoint," which was believed to be 

more difficult to execute. On the other hand, the older composers did not know 

the technique of geometrical inversions; they used tonal inversions instead and 
merely as a trick on some special occasions. 

With the systematic use of geometrical inversions, the fugue becomes greatly 
diversified, with the result that constant CP becomes merely a practical con¬ 
venience. Once the theme and the counterpoint are composed (which we will 

call the preparation of one exposition), one may develop the entire fugue by means 

of quadrant rotation arranged in any desirable sequence. If rotations refer to 
the entire E, the fugue assumes the following appearance: 

F = Ei©-h E2®4- E3®4- .... where m, n and p are any of the geo¬ 
metrical inversions. 

For example: 

(1) F = Ei® -f- E2® -f- Es© 4* E4® 4- Ej® 

(2) F = Ei® 4- E2® 4- E»® 4* E4© 4- Es® 4- Efl© 4- E7® 

0) F = Ei® 4- E2® 4* Es© 4- E4© 4- Es® 4- Ee® 

Such schemes are subject to variation according to the composers’ in¬ 
ventiveness. 

Quadrant rotation may afFect each appearance of the theme; in that case, 
the theme and reply appear in different geometrical positions. 
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For example: 

(1) e-BL- CFg>+cp 
pii CF® 

(2) E - „ CF(E)+CP 
Pii CP +CF® 

(3) p _ Py _cfr® 

P, CF© + CP 

It is important to note that the position is always identical for two simul¬ 
taneous parts; CF® means that CP set against it is also in position (3). 

Quadrant rotation applied to theme and reply produces altogether 16 geo¬ 
metrical forms of exposition. 

B. Forms of Imitation Evolved Through Four Quadrants 

Figure 94. Imitation evolved through four quadrants. 

All those cases which involve one geometrical position for the entire E 
form the diagonal arrangement (heavily outlined) on the above table; the)' are 
special cases of the general rotary system. 

It is easy to see that with this technique a fugue of any length may be com¬ 
posed with little effort. 
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An example of fugal scheme employing quadrant rotation: 

p—fCF®+CP®\E /CF®+CP®\ 

V CF@;El + VcPa+CFjE! + 
, fCF® + CPgA„ , /CF® + CP®\„ , 
+ \CP® + CF®) t*+VciP®+ CF®) E,+ 

, /CF©+ CP©\, fCF®+CP©\„ . 
+ \CP© + CF©) Ei + \CP® + CF©) El + 

_l (CP(B>+ CF®\ ^ , /'CP® + CF©\ ^ , 
+ \CF® + CP®) e’-Hcf® + cp©) e‘+ 

_1_ (CF® + CP©\ 
+ \CP®+CF®)Es 

Figure 95. Quadrant rotation in a fugal scheme. 

As this example shows, the CF may appear in the same voice successively 
when its geometrical position alters. 

The form of a fugue in which the counterpoint is varied with some, or with 
each, of the expositions may also be subjected to quadrant rotation. 

The general scheme of such a fugue is: 

CF + CP 

) CF 

'CF + CP 
KCP3 + CF 

Ae. I (CF + cpAr , (CF +CPA 
/ E + \CP, + CF ) Ez + \CP2 + CF / Ei 

iE<+ • • ■ 
An example with application of the quadrant rotation 

.(2L±cPi)@E, + (cP_tcP,)(tE| + 

♦®SS8S-+(S3&)«~ 
+(S^S‘)©E'+(ifT@|)'!- 

Figure 96. Quadrant rotation. 

In the old fugue form, the elimination of monotony was usually achieved 
by means of interludes. An interlude (we shall term it: I) is a contrapuntal 

sequence of either the imitation or the general type. Statistical analysis of 
actual fugues shows that about 50 of every 100 interludes are thematic (i.e., 
based on elements of CF or CP); the others are neutral, i.e., they use thematic 
elements of their own. 
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As in the case of counterpoint itself, an I may be composed once and rotated 
afterwards. In other cases, a new I may be composed each time. In the old 
classical fugues, the interludes served mainly as bridges between the E's, each 
I leading into a new key. 

In our fugues of types I and II, the I’s may serve the same purpose, but 
in types III and IV the interludes are hardly necessary, for key variety is already 

inherent in the group of different symmetric tonics. As we shall see later, the 
lact that we have two parts does not limit the number of tonics. 

The general scheme of a fugue with interludes appears as follows: 

F » Ei + U + Ef + Ij + E» -f I, -f , . . + En 4* In- 

This form is equivalent to the first rondo form of homophonic music. 

Ii, I», Is, . - . may be either identical (although in different geometrical 
positions) or totally different. In, i.e., the last interlude, is a rather common 

feature m the old fugues and has the function of a conclusion (coda). By rotating 
the same interlude, we acquire new modulatory directions. 

C. Steps in the Composition of a Fugue 
♦ 

The method of composing a fugue by this system consists of the following 
stages: 

(1) Composition of the theme; 

(2) Composition of the counterpoint (one or more) to the theme; this is 
equivalent to the “preparation” of an exposition; 

(3) Preparation of the exposition (or of all expositions if there is more than 
one counterpoint) in four geometrical positions: 

cp®; cp © ; © ; §£ <2) ; 

(4) Composition of the interlude(s), if there are to be any; 

(5) Preparation of the four geometrical positions of the interlude(s)’, if any: 
(o) Composition of the scheme of the fugue; and 
(7) Assembly of the fugue. 

D. Composition of the Theme of a Fugue 

In a fugue the theme (or “subject”) is of the utmost importance; it consti¬ 
tutes at least one half of the entire composition. It is therefore odd that no one 

has hitherto defined dearly the requirements for a fugal theme. 

A good fugal theme is usually ascribed to the composer’s “genius,” and 

this neither helps nor consoles a student of the subject, for what we want to 

know, precisely, is: what makes the melody a suitable fugal theme? Experience 

shows that not every “good" or expressive melody makes a suitable fugal theme, 

and that not every suitable fugal theme is a good melody for any other purpose. 

Many composers who were outstanding melodists nevertheless failed to show 

any important achievements as contrapuntists—e.g., Chopin, Schumann, Liszt, 
v-haikovsky, and others. 
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The first requirement of a fugal theme is that it be an incomplete melodic 
form. In the best and most typical fugues by J. S. Bach, we find that such 
incomplete melodic forms used as themes are succeeded by their completions during 
the counterpoint which evolves in the course of the announcement of the theme 
in the second voice. 

An incomplete melodic form in this case means that at the moment the second 
voice starts the theme, the first voice has not arrived at its own primary axis. 

For an illustration, take Fugue 11, Vol. 1, The Well Tempered Clavichord 
(later to be referred to by the abbreviation, "W.T.C.”) by J. S. Bach. 

reply _ 

Figure 97. Fugue II of W.T.C, 

This particular theme ends on the first sixteenth note of the third measure, 

while the melodic form completes itself on the third quarter of the same bar. 
It is interesting to note that the theme (and the whole melodic form) is con¬ 

structed on the binary axis: 

Jn order to present his announcement clearly, Bach used | ( = J*) at the 

very point where the theme might otherwise have stopped; he reserves the 
use of the eighth note until the reply is well on its way of development. In this 

way, Bach eliminates the danger of stopping—which, indeed, had it occurred, 

would have spoiled the entire fugue. Another important detail is the juxtaposi¬ 
tion of the db-axis in CP versus the 0-axis in CF. 

All the other requirements of a fugal theme actually derive from the first 
one: all such resources of temporal rhythm and axial forms may be used as will 

demonstrate an unfinished melodic structure in the very process of formation. 

The presence of any one of the following structural characteristics, as well 

as of any combinations of the latter, will increase its suitability as a fugal theme. 

(1) The presence of rests; particularly a decreasing series of rests, combined 

with an increasing number of attacks; “stop-and-go” effects; the effect 
of “gaining momentum.” 

(2) A sequence of decreasing duration-values: rhythmic acceleration in the 
broadest sense. 

(3) Dialogue effects achieved by mean* of binary axes, and by means of 

attack-groups contrasting in form, such as a legato-staccato contrast. 
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by J. S. 
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Figure 99. Fugal themes by J. S. 

W. T. C. by J. S. Bach Vol. I, No. XI 
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Vol. I, No. XXIV 

Figure 102. Fugal themes of W.T.C. 
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W.T.C. by J.S. Bach Vol. I, No. II 

:k 
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Figure 104. Fugal themes of W.T.C. 

by J.s. 
=4 -L -t i v li. ~ 1-ri . . * P 
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Figure 105. Fugal themes by J. S. 

Figure 106. Fugal themes of W.T.C. (continued). 
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Figure 106. Fugal themes of W.T.C. (concluded). 

by J. S. 
(Symmetric; 1/2 ) 

Figure 107. Fugal themes by J. S. 
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As indicated by the above examples, the total duration of a theme (in terms 
of the number of attacks, or in terms of measures) largely depends on the com¬ 
poser’s own decision. However, the following generalization is true for most 
classical fugues: the duration of the fugal theme in inverse proportion to the 
number of parts. Indeed, the first theme of Fugue IV, Vol. I, W.T.C. has but 
five attacks; the theme in Fugue XXI1, Vol. I, W.T.C. has six attacks. Both 
of these fugues are written in five parts. On the other hand, Fugue X of the 
same volume, written in two parts, has a theme of twenty.-six attacks. 

It is not important that the reply should enter on the same time-unit >f the 
measure as the theme; on the contrary, a difference in the starting moments (in 
relation to the measure divisions) adds interest to the whole composition as it 
produces an element of surprise. 

Themes which are unsuitable for fugues may be subjected to alterations 
which will make them suitable. 

it can be demonstrated, by reversing the procedure, that the simple addition 
of a 0-axis to any melodic form will render it suitable as a fugal theme. J. S. 
Bach’s thefne from his Toccata and Fugue in D-minor for organ, if it is deprived 
of its 0-axis, loses all its fugal quality. When the 0-axis is taken out, the axial 
combination becomes b+a-fc+a, ancj the theme seems to have nothing but 
rotation in relatively narrow range. But the inclusion of the 0-axis produces an 
effect of growing resistance, and the axial combination becomes: 

0 

d + c + c 

The number of measures in a fugal theme is optional; it may be even or 
odd; it may be integral or fractional. Both odd and fractional are preferable to 
even and integral, because the latter two suggest a cadence at the end of the 
theme. I believe that one of the iactors that influenced Buxtehude and all the 
Bachs is their awareness of cantus firmus (in a strict sense) as a theme—cantus 
firmi usually had an odd number of attacks, as noted earlier. 
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E. Preparation of the Exposition 

After selecting the theme, the composer must prepare the fugal exposition. 
As it is easy, with this method, to write four types of fugues on one theme, 

so it becomes desirable to prepare four expositions for future fugues. In a two- 
part fugue, the entire preparation of E consists simply of writing a CP to the CF, 
It is advisable that the exposition prepared for each type should be written out 
in all four geometrical positions; this saves time during the process of assembling 

the fugue. Fugues of type IV often require preparation of two expositions, for 

when the axes exchange in ^p, CP may not fit, and a new counterpoint must be 

written (CPjj). 

To make the demonstration of all techniques pertaining to fugue concise, 
I shall use a very brief theme. 

CF (Theme) 

Figure 109. A brief theme and the various Sutal techniques (continued). 
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Figure 109. Technique of the fugue {continued). 
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F. Composition of the Expositions 

Composition of the expositions in type I involves no special considerations, 
for both parts have an identical P.A. 

In type II, the modal modulations of CF and its respectively related CP 
must be in one system of modal sequence. For example, if P.A. of CFX is c and 

P.A. of CPi is e, the axis of CF* (“reply”) must be a and CPj (counterpoint to 
“reply”) must have P.A. on c in order to retain axial unity in the first part for 

the course of one exposition, and in order to preserve the vertical relation of S 
* • ♦ tt • Cr 

as it was originally conceived. 

The entire structure of the fugue (from the above relations) appears as 
’ follows: 

where c, a, /, d, are the primary axes of the respective parts. 

CF c 
Likewise, if = j, then the sequence of P.A.’s becomes: - +^-5 H—+... 

In type 111, the tonal (key) modulations of CF and of its respectively re¬ 
lated CP, must be in one system of symmetric sequence. This sequence preserves 

its constant relation only when CP2 (the reply) forms its P.A. in symmetric 

inversion to the original setting. 

Let us take the symmetry of ^2; for example: = 7- In order to pre¬ 

serve the axial relation where CP is 3 semitones above CF, the reply must appear 

from the opposite equidistant point, i.e., from a. This permits a relative stability 
of both parts, as CP 1—being three semitones above CF—requires the c-axis. 

The structure of such a fugue, evolved on four points of symmetry (tonics), 
appears as follows: 

(CFX + CPi 
CF2 

, [~(CF8 -f CP 

* L CP2c+CF 
•)£Ll p , |~(CFS + CPS)/si , 
4/d 2+lcp40+cf8 *Je,+ 

(CF7 + CPj 
. CP5/3+ CFs 

A similar case evolved from three points of symmetry (v/2)« where ~ 

gives the following sequence of P.A.’s: 
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In type IV, in order to carry out the sequence of P.A.’s in symmetric in¬ 
version of the original setting, it often becomes necessary to prepare two in¬ 

dependent expositions— 

F = CPi an(j tri _ CP11 
E CF d E CF1 

—as CP may be in an intervallic relation to CF2 different from the relation 

to CFX. The difference usually appears in variations of a semitone or whole 
tone, which results in the most disturbing relations—such as a second instead 
of a third. For this reason, the example in Figure 109 offers two expositions. 

It is easy to see that CPi is unfit to be a counterpoint to the reply, by ex¬ 

changing it with P.A. or CF. 
The sequence of symmetric P.A.’s in type IV of Fig. 109 would develop 

on the basis of its pre-set expositions: 

F - £El » and E* = ^ = c- 
E — CF c CF* e*’ 

Considering the enharmonic equality of e# and f, a# and bb, etc., and the 

fact that CF is evolved in natural major d0 and CF1 in natural major d«, we 

obtain the following structure for the fugue: 

■(CF + CPn)c Ip , RCF+CP„)/~ 
yEl + L(CP!+CF> )a#. 

"(CF + CP u)b>~ 

„(CPi+ CF1) d*m 

In the old classical fugues the reply appears on the dominant (i.e., seven 
semitones above or five semitones below the theme). If there was a sequence of 

expositions before the interlude took place, the theme would usually return to 

the tonic. According to our type II, if CFi = c and CF2 = g, CF3 should have 

been d, CF4 should have been a, etc. However, this was not the case in the 
fugues of the classical period, and there was a good reason for it: the tuning of 

mean temperament (the two-coordinate system: f and -J) developed an aber¬ 

ration in pitches deviating from the tuning center ( = 1), and so it was not 
possible to get satisfactory intonation in the course of a sequence traveling 

through Ci or C-* P.A.’s. Although equal temperament has since overcome 
this defect, the habit remained with composers until the end of the 19th century, 

century. 

G. Preparation of the Interludes 

Interludes (L, I2, . . . Ira) serve as bridges between the expositions. The 
last interlude, if the fugue ends with one, would be called a postlude or coda. 

Interludes serve one or both of two purposes: 
(1) to divert the listener’s attention away from the persistence of theme; 

(2) to produce a modulatory transition from one key^axis to another. 

Interludes of the first form are confined to one key but may have any number 
of successive P.A.’s, thus producing modal modulations (U.-P.) between the two 
adjacent expositions having the same key-axis (U.-U. and U.-P.). The second 
form contains different key-axes (P.-U. and P.-P.) and connects the two adjacent 

expositions having different key-axes (P.-U. and P.-P.). 
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Both forms of interludes may be either neutral or thematic. Neutral interludes 
are based on material of rhythm, or intonation, or both, which does not appear 
in any of the exposition. Thematic interludes borrow their material of rhythm, 
or intonation, or both, from either the CF or the CP of the exposition. Any of 

the above described types of interludes may be executed either in general or in 
imitative counterpoint. 

The duration of an interlude depends on the duration of the exposition and 
the number of interludes. The form of an interlude itself has an influence upon 
its duration. In order to construct a perfect fugue, the duration of interludes 

must be put into some definite relationship with the duration of expositions. 
Assuming that one exposition is the temporal unit (T), we arrive at the following 
fundamental schemes for the temporal organization of interludes: 

(1) T (E) = T (1), i.e., the duration of an interlude equals that of an exposition. 
This presupposes an equal duration for each of the interludes. 

(2) T (E) > T (1), i.e., the duration of an exposition is longer than that of an 
# interlude. An exact ratio must be established in each case. 

(3) T (E) < T (1), i.e., the duration of an interlude is longer than that of an 
exposition. An exact ratio must be established in each case. 

(4) I = IiT -f- Ij2T •+• I*3T + . . . , i.e., each successive interlude be¬ 
comes longer. The durations of consecutive interludes may evolve in any 

desirable type of progression (natural, arithmetic, geometric, involution, 
summation, etc.). The resulting effect of such fugue-structures is that the 
interludes in the course of time begin to dominate the theme. Thus, the 
persistence of the theme diminishes. 

(5) I ~ IinT + ij(n«l)T -f Is(n-2)T + . . - , i.e., each successive inter¬ 
lude becomes shorter. The resulting effect is opposite to that of (4); the 

domination of theme over interludes grows in the course of time. 

(6) 1 , i.e., the sequence of interludes develops according to some form of 
rhythmic grouping. 

As convertibility and quadrant rotation are general properties, the same 
interlude may be used several times during the course of a fugue. This, in com¬ 

bination with key-transpositions, offers an enormous variety of resources—and 
at the same time conserves the composer’s energy. 

H. Non-Modulating Interludes 

(Types I and II) 

Non-modulating interludes may be either neutral or thematic and they can 
be evolved in either general or imitative counterpoint. 

(1) An example of Interlude type II executed in general counterpoint. Non- 
thematic (Neutral). 

(2) An example of Interlude type 11 executed in imitative counterpoint. This 
one is thematic with reference to CF of Fig. 109. 

See the corresponding musical illustrations on the opposite page. 

oat 
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(1) 

Figure 110. Interlude type II. 

I. Modulating Interludes 

1. Modulating counterpoint evolved through harmonic 
technique. 

Contrary to the general notion, J. S. Bach’s counterpoint is less "contra¬ 
puntal" than it is generally believed to be. This is especially true of his tonal 

(key-to-key) modulations. It is obvious that Bach, as well as many other im¬ 

portant contrapuntalists, thought of key-to-key transitions in terms of modulating 

chords; see, for example, J. S. Bach’s W.T.C., Vol. I, fugue No. X (a two-part 

fugue) in E-minor—the harmonic background of this fugue is very distinct, 
and this fugue is typical rather than exceptional. 

It is easy to convert any modulating chord-progression written in four-part 
harmony into two-part harmony. 

The chord structures in two-part harmony have the following functions: 

(1) S(3) = l, 3; used instead of the S(5) of three-part structure; 
(2) S(5) — 1, 5; used instead of the S(5) of three-part structure; 
(3) S(7) =1,7; used instead of the S(7) of four-part structure.* 

Figure 111. Chord structures in two-part harmony. 

*Or a two-part incomplete S(7) — 3, 7 harmony—as in the fourth chord in the example 
may be used instead of the S<7) in four-part of. translation that follows. (Ed.) 
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In order to obtain an interlude from a four-part chord-progression, it is 
necessary to select those corresponding chordal functions which will translate 
the four-part structures into two-part structures. The voice-leading pertaining 

• to two-part harmony will not be discussed here, as all positions of the two func¬ 
tions are equally as acceptable for the present purpose. Both parts are more 
or less in the vicinity of the four-part harmony range. The final step consists of 

developing melodic figuration in both parts, with somewhat contrasting rhythms 

of durations and attacks. 

Modulating interludes may be either neutral (general counterpoint) or 
thematic (imitative counterpoint). In the latter case, thematic material is either 

borrowed from the CF or the CP of the expositions—or it is entirely independent. 

(1) Neutral and (2) Thematic. 

Modulating progression evolved in four-part harmony 

Transcription of the above into two-part harmony 

Interlude (1) 

Figure 112. Modulating interludes (continued). 
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Interlude (2) 

Figure 112. Modulating interludes (concluded). 

An interlude may be used in the same fugue more than once, appearing in 
the different geometrical positions. It may also be transposed to any desirable 

key-axis in any of the four quadrants. 

2. Modulating counterpoint evolved through melodic 
technique. 

I offer this new technique in order to enable the composer to compose in 

pure contrapuntal style even when a key-to-key transition is desirable. 
Modulating counterpoint consists of two independently modulating melodies 

(see my earlier discussion of modulation in the book dealing with the Theory of 

Pitch-Scales)* whose primary axes are in a constant, simultaneous relationship 
at any given key-point of the sequence. After vertical dependence has been 
established (the harmonic interval between CP and CF), it becomes necessary 
to assign to the primary axis of CP the meaning of that tonic which is nearest to CF 
through the scale of key-signatures. 

Let the exposition end in the key of C, and let CF end on c and CP end on a. 
Then a becomes a-minor (as the key nearest to the key of C through the scale of 

key signatures; A- major would be far more remote). Thus, we have established 
a constant dependence where CP is the minor key three semitones below CF. 

The next step consists of planning the modulation of Pi (originally: CF) 
Let the modulation be to the key of f- minor. 

Then: 

Pp ~ C + d + G+ f 

Now we assume that in order to retain the original vertical dependence 
between Pi and Pji, each axis of a major key must be reciprocated by a minor 

*Set* Book II. 
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key, and vice versa. Then: 

£l_ = C 4d 4G4 f_ j>e.M while Pj modulates from C to d, Pn modulates 
Pn* a 4 F4 e 4 Ab 

from a to F, and when Pj modulates from d to G, Pn modulates from F to e; 

finally both parts arrive at CF having an Ab-axis and CP having an f-axis. 
The period of modulation from key to key in both parts is approximately 

the same. 
(1) Neutral and (2) Thematic 

Figure 113. Modulating interludes. 

The earnest way to compose modulating interludes by contrapuntal tech¬ 

nique is through a sequence of procedures: 

(1) Pi modulates to the first intermediate key; 

(2) Pri ” ” ” ” 
(3) Px ” ” ” second 

(4) Pn " ” ” ” 
and so on, until the entire modulation is completed. 

...
...
 

J
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J. Assembly of the Fugue 

The process of assembling a fugue consists of planning the general sequence 

of expositions, interludes, their geometrical positions and their primary axes 

(key-axes). 

In the following group of fugues only such materials were used as had been 

prepared in advance (see Fig. 109, 110, 112, and 113). 

The first three fugues have interludes (of both harmonic and melodic type), 
while the fourth has none, as the key-variety is sufficiently great without inter¬ 
ludes. The last fugue has independent counterpoints for the theme and the reply. 

The latter are interchanged in E6. 

The form of Fugue I (Fig. 114) 

Ei® + Ii + E»® 4 Ej<3) 4 Is© 4 Eg®© 4 I3© 4 E&© 

The form of Fugue II (Fig. 115): 

C F_ C 

E,® 4 E2 <D 4 li 4 Ej® 4 E«® 4 E8®© 4 Is 4 Eg®© 

The form of Fugue III (Fig. 116) 

Ab Ab-EbC 

(Ei 4 Es) ® 4 (Eg 4 E4) ® 4 11 4 (E6 4 EB) ® 4 E7<] 

The form of Fugue IV (Fig. 117): 

(Ei 4 E2 4 Eg 4 E* 4*Efi) ® 4 Eg © 4 E7 ® 4 Es © 

(1) Fugue Type I 

Figure 114. Fugue of type 1 (continued). 
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Figure 115. Fugue of type II (continued). 
Figure 116. Fugue of type III (continued). 



Figure 116. Fugue of type III {continued). Figure 116. Fugue of type 111 (continued). 



Figure 117. Fugue of type IV (continued). 
Figure 117. Fugue of type IV {continued). 
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Figure 117. Fugue of type IV {concluded). 

(Editor’s note. The original manuscript included material on the generaliza¬ 
tion of 2-part counterpoint into 3 or more part counterpoint. This is omitted 
because it was largely in outline form. Various students who studied privately 
with Schillinger have presented their notes to the editors, and have made it 
possible to complete Schiilinger’s outlines. This material will be published at a 
later date.) 

CHAPTER 9 

TWO-PART CONTRAPUNTAL MELODIZATION OF A 

GIVEN HARMONIC CONTINUUM 

JE are now to concern ourselves with the technique of writing two correlated 
* ’ melodies (two-part counterpoint) to a given chord-progression. The 

counterpoint itself must satisfy all the requirements applying to harmonic in¬ 
tervals. Each of the melodic parts (to be designated as Mj and Mn, or as CPi 
and CPu) must also satisfy the requirements pertaining to melodization of 
harmony. 

The sequence in which such a two-part melodization should be accomplished 
is: 

(1) the writing of H- 
(2) the writing of the M with a fewer number of attacks per H; 
(3) the writing of the M with the greater number of attacks per H. 

It does not matter which of the two melodies is selected to be Mj and which 
is to be Mn. 

In view of the fact that the natural physical scale of frequencies increases 

in the upward direction of musical pitch, we shall first produce that melody 
which has the fewer number of attacks in a position immediately above harmony, 

and the melody with the greater number of attacks we shall develop above the 
first melody. Such an arrangement will be considered to be fundamental; it 

may later be rearranged. 

We arrive at the two possible settings: 

Mi Mn 
(1) Mn and (2) Mj_ 

H~* H“* 

Octave-convertibility (exchange of the positions of Mj and Mu) is possible 

only when the harmonic intervals of both melodic parts are chosen with an eye 
to such convertibility—and this is mainly a matter of supporting certain higher 

functions (such as 11) by the immediately preceding function (such as 9). 
All forms of quadrant rotation «S), ©, © and ®) are acceptable on the 

condition that Mi and Mn always remain above the chord progression, H~ 

Just as melodization of harmony by means of one part produced different 
types of melody in relation to the different types of harmonic progressions, 

the same possibilities still exist for fwo-part melodization. 

It is to be remembered that some types of melody in one-part melodization 
were the outcome of new techniques. For instance, the technique of a modulating 

symmetric melody above all forms of symmetric harmony, or the technique of 
a diat' ic melody evolved from a quantitative scale above all forms of chromatic 

ham -both are forms not known in music prior to my development of the 
pri r these procedures. All such new techniques may be applied now 
tc elodization. This, naturally, will result in new types of counter- 

[823] 
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The distribution of attacks of MIt Mn and FT* is a matter of considerable 
complexity and will be discussed more fully later. For the present we shall 

“of mu“ f°r ^ ^ ^ (Ml' ^ ^ Unif0rm,y -d by 

S°me elementary forms of the distribution of attacks. 

a 2a a 3a a 4a a 4a 2a 6a 2a 8a 2a 6a 3a 8a 4a 

Mn a a 2a a 3a a 4a 2a 4a 2a 6a 2a 8a 3a 6a 4a 8a 

hhhhhhhhhhhhhhhhh 

12a 4a 15a 3a 16a 4a 

4a 12a 3a 15a 4a 16a 

H H H H H H 

Figure 118. Distribution of attacks. 

Here the quantities of attacks in ^ are designated as the attacks per chord. 

Each original setting of two simultaneous melodies accompanied bv a chord 
progression offers seven forms of exposition: 

(1) M„ (2) Mu; (3) H—>; (4) gL (5) («) ^ (7) £ 
n 

A' ^IT'r''710" °F DlATONIC Harmony by Means of Two-Part Dia- 
tonic Counterpoint (Type I and II) 

lv With th* 'OWer number 0f attacks an° "toll appears immediate- 

derivattan lhis comm ' ^ melodies mus( >>ave a common source of 

of harmony-*Any 

mony is'p'Semble ‘forth^T « f°Ur °r in five ^-part har- 
what heavy ^ * * 6 °f “ dUet accomPani«1 by five parts is some- 

harmonfc^rte!* Sh°U'd Pr0dUCe consecutive “taves with any of the 

conwoLg’tt fSfcfg “ A Hornes, when 
Its zero expansion (E0). For examole th* }°, E°’ the third displacement or 
chord (reading upwards in thirds) C - G - E^Fjj^cf-A SCale'C “ D " 
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Mi should be written as a counterpoint to Mn and as a melodization of the 
given chord-progression. 

Identical as well as non-identical scales (which derive through permutation 
of the pitch-units of do) may be used in Mi, Mn and H“*. Under such conditions, 

any do produces 35 possibilities of modal relations between the above-mentioned 
three components. 

As we are employing seven-unit scales, and as— 

r 7! _ 5040 5040 

7 3 3! (7-3) ! 6-24 144 ~ 35 

—the number of possible two-part melodizations to one chord-progression 
(written in one definite d) is: 

r - 71 - 5040 - 5040 o,-; 
7 2 2! (7-2)! 2-120 . 240 21 

(1) M, 

Figure 119. Diatonic iwo-part melodization.(continued). 
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B. Chromatization of Diatonic Two-Part Melodization 

In order to produce a greater contrast between Mi and Mu either one can 
be subjected to chromatic variation. If desirable, both melodies can be used in 

their chromatic version. 

Chromatic variation is achieved by means of passing or auxiliary chromatic 

tones. 

By means of combining the two variations of Fig. 120, we obtain a new version 

in which chromatic sections alternate with the diatonic ones. 

Theme: Figure 119 (3) 

Var.I 

Var. II 

1 j Li) !■ g-M 
J M° t ' '-■= 1 1 ===1 —I-1-- 
g i (f « ,.-_q -J-J-1 

t 48- = 

-6,- 

Figure 120. Chromatic variations. For. I, II and III {continued). 

Figure 120. Chromatic variations. Var. I, II and III (concluded). 

C. Melodization of Symmetric Harmony 

{Type II, HI and Generalized) by means of Two-Part Symmetric Counterpoint 

Symmetric melodization is based on the pitch-scale which is a contraction 

of the particular 2 13 that corresponds to each individual H. Theoretically, each 
chord requires a new scale. The quality of the melody, however, depends on 

the number of tones there are in common among the successive 2 13 s upon w »ic 
the S~*'s are based; this is true of both Mr and MIX of two-part melodization. 

The requirements for two-part symmetric melodization may be stated as 

follows: . , . , 
(1) Adherence of one M to a particular set of pitch-units, producing a sea c. 
(2) Graduality of melodic modulation, which is executed by means of com¬ 

mon tones, chromatic alterations and identical motifs. 
(3) Strict adherence to contrapuntal treatment of the harmonic intervals 

between Mj and Mu- 



Figure 121. Symmetric two-part melodization (continued). 
Figure 121. Symmetric two-part melodization (concluded). 
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D. Chromatization of a Symmetric Two-Part Melodization 

This technique is identical with chromatization of diatonic counterpoint. 
The passing and auxiliary chromatic tones are not part of the 2 13. Either of 

the two contrapuntal parts may be chromatized. Alternation of chromatic and 
symmetric sections in both melodies is fully satisfactory. 

Theme: Figure 121 (2) 

Var. I 
M, 

Var. H 

Figure 122. Chromatization of a symmetric two-part melodization (continued). 

TWO-PART CONTRAPUNTAL MELODIZATION 



m
il 

--— 

r jtwb/hhm 

■M 
1--=———-- -  -———* ■  -' 

■■ ■HI I 

Figure 123. Mdodization of chromatic harmony {conchided]. 



CHAPTER 10 

ATTACK-GROUPS FOR TWO-PART MELODIZA TION 

Ml 
HE number of attacks as among M» may be either constant or variable 

H 

We say it is a constant form of the attack-group when each individual H 
has a definite corresponding number of attacks in Mj and Mn, which number 
remains the same for every consecutive H. 

Mi 

Mil = A const. 
H 

* 

Constant-A does not necessarily mean an even distribution in - An 
a (Mn) 

even distribution may be considered as merely a special case of this relationship. 

Examples of an even distribution of A: 

Mi 4a 6a 6a 8a 8a 9a 12a 12a — — •— — — 

M„ 2a 2a 3a 2a .4a 3a 3a 4a 

H a a a a a a a a 

Examples of uneven distribution of A: 

2a+3a 4a-f2a 4a-f2a 4a-f6a 

a+a a-fa 2a-fa 2a-f2a 

a a a a 

Mi 4a-f 2a-f3a-f6a 

Mu 2a-fa-f a-f 2a 

H a 

We have a variable form of the attack-group when A emphasizes a group of 

chords, and when each consecutive H has a specified number of attacks for a 
definite number of chords. 

6a-f3a-f6a-f4a+2a-f 9a 

3a-fa-f 2a-f 2a-fa-f 3a 

a 

M|_ 

Mil 

H 

1836] 
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For example: A = Ai -f A2 -f A* 

Mx _ 2a-fa Mi _ 4a4-3a 

Let Ai = Mu = a-fa and let A2 = Mu _ 2a-fa 

H a Ha H a H 

Mi 4a-f 6a-f 3a 

*nd let A 3 = Mu 2a+2a-fa then: 

H a 

Mi /2a-fa\ /4a+3a' 

Hi + 1 2a-fa 

\ a 

\ 
Mn _ | 

H-* 

1 h2 

’4a-f 6a-f3a 

All other considerations concerning the distribution and the number of at¬ 

tacks are identical with those I have discussed as part of one-part melodization * 

::r 

1 

-ir 

£ 

Example of Correlated Attack-Groups 
in Two-Part Melodization 

Mi m /2a+3a\ /3a+4a\ + /4a+3a±2a\ 

Mu = y a+a j Hi + ^ a-fa j H2 + ^_a±_a4_aj H3 

H"* = 6'v/2> S(9) const.; 213 XIII; S = transformation^ 

T" = 12t in f time. 

4: 

::4 

:'Hi 
I 
i-jlr 

I.:j 

♦See Book V. 
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Figure 124. Correlated attack-groups in two-part melodization {concluded). 

A.. Composition of Durations 

Durations and duration-groups which will satisfy the attack-groups com¬ 
posed for two-part melodization may either be selected from the various series 
of the evolutum-of-rhythm families (in which case there is no interference between 

the attacks of the attack-group and the attacks of the duration-group. They 
may also be based on a direct composition of duration-groups (which may, or mav 

not, produce an interference between the attacks of the attack-group and the 
attack of the duration-group) superimposed upon the attack-groups. 

When the respective attack-groups are represented by durations selected 
from style-series, and the number of individual attacks in the attack sub-groups 

does not correspond to the number of attacks in the duration-groups, it is neces- 
sary to split the respective duration-units. This consideration concerns only the 
first technique, that is, the matching of attack-groups by a series of durations. 

The musical example of Figure 125 is a translation of its corresponding 
attack-group mto f senes, where three types of split-unit groups were used: 

£ and i. One exception to the senes was made at the cadence, where a musical 
quarter was split mto J series binomial, i.e., 3 + 1, 

folio™* nUmer5Cal rePresentation of ^is example of melodization appears as 

Mi = /l/2t+l/2t+l/2t+l/2t+tN 
Mu 

H~* V 
+ 2t H, 

3t 

+ 
+ 

_^l/3t+l/3t+l/3t + l/2t+l/2t+l/2t+l/2t\ 

_+.?t Hs 
3t / 

+ 
+ 

'l/4t+l/4t+l/4t+l/4t+l,'3t + l/3t + l/3t+l/2t+l/20 

—±_ + t + t 

3t / 

Figure 125. Numerical representation of Figure 124. 

H3 
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The abundance of split units and split-unit groups in this instance is due 
to the abundance of attacks over each H and to a relatively low value of the 
series. With a senes of higher value, the splitting of units would be greatly 
reduced. 3 

We shall next translate the same example into $ series: 

Ml 

Mu _ ($t+St 
^t+3t+t+3t+t\ /t+2t+t+t+2t+t+t 

_ . -) + *t +5t 1 H2 

H \ 9t / + \ 9t / + 

+ 

+ 
+ 

ft+t+t+t+t+t+t+t+t\ 
4t +3t +2t 

9t 
Hs 

sN 

r 

—n- ■—F-*- 

^ 1 = = 

^-■PT p 

■= 

J • — —*- 

Figure 126. The attack-pattern of figure 125 translate* into% series. 
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We shall next take a case in which the attack-groups and the duration- 
groups are composed independently. Let rs-j.4 represent the number of attacks 
of Mj to each attack of Mq. and let every 2 attacks of Mu correspond to one 
attack of H”\ The distribution of attacks for all three parts will be as follows: 

a (Mi ) 

a (MU) 

a(H"*) 

Superimpose the following duration-group: 

T ” r4-A-3 = 16t; 10a 

a(A) 20» 2 1(20) 

Then: im = 10= t ; 2(10 
Hence, V = 16t-2 = 32t 

Let T" « 8t, then: NT" = ¥ = 4 

• Each a(Mj) corresponds to an individual term of T; each a(Mfl) corresponds 
to the sum of the respective durations of Mj; each a(H~>) corresponds to the 
sum of 2 durations of Mjj. 

The final temporal scheme of this two-part melodization takes the following 
form: 

Mi 

Mn 
H~* 

+ 
+ 

r3t+t+2t+t+f 

7t +t 

k 8t 

(3 t+t+2t+t+tf 

4t +4t H, 

8t 

8t 

't+t+2t+t+3t>> 

t+7t_ 

8t ) 

H4 

+ 
+ 

Figure 127. Two-part melodization. Attack-groups and duration-groups 
composed independently {continued). 

B. Direct Composition of Durations 

Direct composition of durations becomes particularly valuable when one 

desires a proportionate distribution of durations for a constant number Of attacks 
among the component parts (MIf Mn and H~*). Distributive involution of 
three synchronized powers solves this problem. 

It follows from my theory of rhythm* that the cube of a binomial produces 

an eight-term polynomial, the square of a binomial produces a quadrinomial 
and the first-power group remains a binomial. Thus, the ratio of attacks in any 

pair of adjacent part ^ and is two. Cubing of a trinomial gives a twenty- 

seven-term polynomial, the synchronized square producing nine terms, and the 
first-power group producing three terms. The ratio of attacks between pairs 

of adjacent parts remains three. The number of terms of the original poly¬ 
nomial thus equals the number of attacks between each pair of adjacent parts. 

We shall devise now a correlated proportionate system of duration-groups. 
The distributive cube will serve as T for Mj, the synchronized distributive square 
as T for Mn and the synchronized first-power group as T for H”\ 

We shall operate from the trinomial of the | series. This yields the following 
attack-group correlation: 

a(Mi ) _ 9a 

a(Mii) __ 3a The entire temporal scheme assumes the form shown on 
a(H”*) a 

the following page: 

•See Book I. 
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T(Mi ) = [ (8t+4t+4t) + (4t+2t+2t) + (4t+2t+ 2t)) 

T(Mn) = JJ6t_+ 8t + 8t ) 

T(H~"*) 32tHi 

[ (4t+2t+2t) + (2t+t+t) + (2t+t+t) ] 

, J?t_+ 4t + 4t ) ]] 

16tHs 

+ 1 (4t4-2t+2t) + (2t+t+t) + (2t+t+t) ] 

+ J8t_-f 4t + 4t ) 

16tH* 

In addition to this technique, coefficients of duration may be used for cor¬ 
relation of durations in two-part melodization. 

Example: 

Mi_ _ (3t+t+2tH-2t)+(3t+t+2t+2t) + (3t+t+2t+2t)+(3t+t+2t+2t) 

Mu (6t+2t+4t+4t) -f (6t+2t+4t+4t)__ 

12tHj + 4tH2 + 8tH2 + 8tH, 

Figure 128. Direct composition of durations through distributive involution 
of three synchronized powers (continued). 
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Figure 128. Direct composition of durations (concluded). 

C. Composition of Continuity 

The seven forms of exposition previously classified may be now incorporated 

into a continuity of two-part melodization. The meaning of these seven forms 

as applied to composition may be expressed as follows: 

(1) Mi - 

(2) M„- 

(3) H~**— 

(4) \ H— 

Solo melody: theme A; 

Solo melody: theme B; 

Solo harmony: theme C; 

Solo melody with harmonic accompaniment 
(theme A accompanied); 

Solo melody with harmonic accompaniment 
(theme B accompanied); 

Mu 

Mi 

(7) Mn 

— Duet of two melodies 
'Theme AN 

Theme B, 

Duet of two melodies with harmonic accompaniment 

/Theme A\ 

( Theme B j 

\Theme C/ 

The above seven forms serve as thematic elements of a composition in which 

they appear in an organized sequence producing a complete musical whole. 
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Themes A, B and C must be considered as component parts of the whole 
in which they express their particular characteristics. The particular character¬ 

istics which distinguish A from B and from C are: 

(1) High mobility of A (maximum quantity of attacks); 
(2) Medium mobility of B (medium quantity of attacks); 
(3) Low mobility of C (minimum quantity of attacks)—combined with 

maximum density (four or five parts). 

The planning of the continuity must be based on a definite pattern for 

variation of the density, combined with variation in the quantity of attacks. 
The scale of density may be arranged from low to high density, as follows: 

(1) A 
A 

B’ 

A 

B ; or as 

C 

(2) B 
A 

B’ 

A 

B 

C 

The relatively extreme points of any such scale produce contrasts; for 

instance: 

AAA A 

C C C C 
A A 

C C 

Durations corresponding to one individual attack of the component of lowest 
mobility (mostly H~*) become time-units of the continuity. Such units (we 
shall call them T) may be arranged in any form of rhythmic distribution. 

Correlation of the thematic duration-groups (T’s, with their coefficients) 

with the different forms of density constitutes the composition. 
Assuming that there are three forms of density and three forms of mobility, 

we obtain the following combined thematic forms (low, medium, high): 32 - 9. 

Density Low Low Medium Medium Low High 

Mobility Low Medium Low Medium High Low 

Medium High High 

High Medium High 

For instance: 
Density 

Mobility 

Low Density High __ 0-> 
-= Mn ; ———~ == -— ri , 
Low Mobility Low 

Density _ High __ Mu ^ 

Mobility ~ Medium “ H- 
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Let us now devise a composition in which gradual and sudden variations 

of both mobility and density will be combined. 
It is desirable to use a scheme of two-part melodization which will be cyclic 

and recapitulating, i.e., one permitting a correct transition from the end to the 

beginning for all three components. 
For the present, we shall not resort to any additional techniques (such as 

inversions, expansions, etc.); the complete synthesis of all these and other pro¬ 
cedures will be accomplished in my later discussion of composition* as such. 

Let Figure 127 serve as the fundamental scheme for two-part melodization, 

as this material is both cyclic and recapitulating. 
Let us adopt the following scheme of density and mobility: 

Density _ Low Low + Medium + High + High + Medium + High 

Mobility ” Low + High + High Medium Low High High 

A sequence of thematic elements and their combinations, corresponding to 

the seven forms of expositions and satisfying the above scheme of thematic forms, 

may be selected as follows: 
/Mi \ 

E-* = MnE, + M,Ej + ^ E, + gS E. + H^E, + gj- E. + E,. 

Let us make T correspond to H, and establish the following sequence for 

the T’s: T = rs-s-3. 

= Ti3H + Tj2H + T,H + T43H + T6H + T62H + T73H 

T~* = 7T 15H. 

The 7T of T-* produce no interference in relation to the 7E of E"*. But 

there is an interference between T E and H , however, for H = 8H. 

T~* - 1 • = 7-8 = 56 TE. 
H" 8 ’ 7(8) 

As 7 TE corresponds to 15 H, there will be 7 TE*8 ~ 56 TE and 15 H*8 = 120 H. 

The complete composition after synchronization evolves into the following 

form: 
T“*■' E”*' = 56 TE 120 H; V = H; NT" = 120. 

As, in Figure 127, T" = TH, the entire composition consumes 120 measures 

—which is 15 times the duration of the original scheme of melodization.** 

•See Book XL 
••Observe that the original source material (MS), whereas the same composition in score 

plus the formula requires about 2Yi pages requires 8 pages. (Ed.) 
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Here is the final layout of the composition: 

T E - (Mu (Hi 4 H* 4 Hs) T1E1 4 Mj (H4 4- Hs) T*E2 4 ^(H6)T,E3+ 
H 

+ ga (H, + H. + HO T.E, + H-(H,) TSE4 + j£-(H,+ H.) T.E, + 
Mu 

+ Mil (H6 4 Hs 4 Hr) T7E7] 4- {Mu (H8 4 Hi + H2)T8E8 4 
H~> 

4-M, (H14H4}T,E14ji;(Hi)T1oEi„4p (H,4H74H8) 

TnEu 4 H (Hi) TijEij 4 (h2 h5) TuEu 4 
Mn 

+ Mn (H4 4 H5 4 H«) T:4Ei4] 4 [M„ (HT 4 H» 4 Hi) T16Ei6 4 
H~* 

+ Mi <H* + H») Ti.Ei« 4 (H4) T17Ei7 4 
H 

4 (H5 4 He 4 H7) TME»4 H^fHg) TwEM4^L-(Hi4HJ)T2flEao4 
n Mn 

Mg (H, 4 H4 4 Hfi) TiiE*i] 4 [M„ (H. 4 H7 4 H8) T22E„ 4 
H 

+ Mx (Hi 4 Hj) T„E„ 4 % (Ha) T24E24 4 
H 

+ jpS (H, + Hs + H.) TmEk + H-‘ (H,) r„E„ + 

Mi —t- 
+ jT- <H» + HO T„E!7+ Mn (H, + H, + HO TMEB] + 

11 H-* 

+ [M„ (H, + H, + H,) T*E» + Mi (H„ + HO T„E» + 

+ iP (HO T„E„ + ^H(H, + H, + H5) T„E„ + H~* (He) T«E33 + 

1V1T — 

+ (Hl + H,) T*,E,,+ Mu (Hi + H, + HO T«E„] + 

+ [M„ (H, + H4 + HO T„E„ + Mi (H7 + Hs) TI7EI7 + 

{Continued on opposite page). 

+ (HO T»EIS + (H, + H, + HO T»Em + H-' (HO T„E« + 
M H 

4 —E (H* 4 HO T41E41 4 Mn (H« 4 Hi 4 H,) T42E«] 4 
Mn «=* 

+ [M„ (H, + H( + HO T,aE« + Mr (H« + H>) TUE(I + 

+ (H>) T«E‘i + (Hi + H, + HO T„E„ + 
il H 

4 H“*(H4) T47E47 4 ^ (H64H6) T„E«4 MIr (H74H84H.) T«E*] 4 
Mn 

4 [Mu (H2 4 H3 4 H4) TmEso 4'MX (Hs 4 He) TjiEsi 4 

+ ps (HO T„E„ + (H, + Hi + HO TSJEtj + H“*(H0 TME„ + 

Mi - 
+ T7- (H, + HO T44E44 + Mi, (H, + H, + HO T„E„], 

Figure 129. Numerical layout of a complete two-part melodization. 

Below you will find the complete composition based on musical representation 
of the numerical layout just given: 

Figure F30. Musical representation of figure 129 {continued). 
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Figure 130. Musical representation of figure 129 {continued). 
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Figure 130. Musical representation ogfigure 129 (continued ). 
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Figure 130. Musical representation of figure 129 (continued). Figure 130. Musical representation of figure 129 (continued). 
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Figure 130. Musi al representation of figure 129 {continued). 

853 

Figure 130. Musical representation of figure 129 (continued). 
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CHAPTER 11 

HARMONIZATION OF TWO-PART COUNTERPOINT 

rT"lHE main procedure in writing a harmonic accompaniment to the duet of 
two contrapuntal parts consists of assigning harmonic consonances to be 

chordal functions. 

Each combination of two pitch-units producing a simultaneous consonance 
becomes a pair of chordal functions—this premise concerns all types of counter¬ 
point and all types of harmonization. 

Those pitch-units which produce dissonances are perceived by us, through 
auditory association, as auxiliary and passing tones. When what we might call 
“justification’’ of the consonance as a pair of chordal functions takes place, the 
harmonic accompaniment acquires a proper meaning. 

A. Diatonic Harmonization 

‘ Under the conditions imposed by Special Harmony, the kind of two-part 
counterpoint which can be harmonized by Special Harmony must be constructed 
from seven-unit scales of the first group, not containing identical intonations. 

All three components-dVL, Ms and H—must belong to one key. According 

to the definition of diatonic, the only types of counterpoint which can be dia- 
tonically harmonized are types I and II. 

It is important for the composer to realize the versatility of relations which 
may exist among the modes o’f the three components. Mj may be written in any 
of the seven modes (do, di, d2, d*, d*, d$, d$) of one scale; so may Mu, and so 

may the H . The total number of these modal variations for one scale is: 
7* = 343. This, of course, includes all the identical as well as all the non-identical 
combinations; practically, however, this quantity must be somewhat diminished, 
if we want to preserve a consonant relation between the P.A.’s of Mj and Mn. 

The number of seven-unit scales not containing identical units is 36; there¬ 
fore, the total manifold of relations of M$: Mjj: H~* in diatonic counterpoint 
of types I and II is: 

343*36 = 12,348. 

Any given combination may be modified into a new system of intonations, i.e., 
into a new scale, by simply readjusting the accidentals. All the above quantities, 

naturally, do not include the attack-relations which have to be established for 
the harmonization. 

As the attacks of ^ are fixed groups, the only relation that must be es¬ 

tablished concerns H . The most refined form of harmonization results from 
assigning each harmonic consonance to one H. If counterpoint contains many 
delayed resolutions of one dissonance, then the number of attacks of Mj is quite 
great and the changes of H are not as frequent. On the other hand, direct reso¬ 
lutions produce frequent chord changes. 

(856] 
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The assignment of two successive harmonic consonances to one H, amplifies 
the number of chords satisfying such a set, but at the same time neutralizes 
somewhat the character of the H”*. This technique, however, permits a greater 

variety of attack-relations among the three components. 
Mj 

Let us see how we would harmonize counterpoint of type II, when ^ = a. 

In such a case, all the harmonic intervals are consonances. Therefore, we can 

have the following matching of attacks: 

Mr — a Mi - 2a Mr = 3a 

Mn = a Mn = 2a Mn = 3a, etc. 

H- = a H”* = a H~* = a 

Examples of Diatonic Harmonization of Two-Part 

Counterpoint when = a. 

Theme: 

M2 do 

Figure 131. Diatonic harmonization of two-part counterpoint; ^ = a 

(continued). 



Figure 131. Diatonic harmonization of two-part counterpoint; 

(concluded). 

Examples of Diatonic Harmonization of Two-Part 

Counterpoint when ~~ = — 

Mn a 
Theme: 

Figure 132. Diatonic harmonization of two-part counterpoint; 

(continued). 
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Examples of Diatonic Harmonization of Two-Part 

Counterpoint when ^ - 7 and = f 

Theme: (l) 

HARMONIZATION OF TWO-PART COUNTERPOINT 

Figure 133. ^ = a (concluded) 

Harmonization: Theme: (2) 

Harmonization: 

Figure 133. Diatonic harmonization of two-part counterpoint: ^ *= — 

{continued). Figure 134. (icontinued) 



862 THEORY OF COUNTERPOINT 

B. Chromatization of Harmony Accompanying Two-Part Diatonic 

Counterpoint (Types 1 and II) 

Chromatic variation of diatonic harmony accompanying two-part counter¬ 
point may be obtained by means of auxiliary and passing chromatic tones. Of 
course, such altered tones must not conflict in any way with the two melodies. 

For our example, we shall take the two-part counterpoint diatonically har¬ 
monized from Figure 133 (2). 

Figure 135. Chromatization of harmonic counterpoint {continued). 

Figure 135. Chromatization of harmonic counterpoint (concluded). 

C. Diatonic Harmonization of Chromatic Counterpoint 

Whose Origin is Diatonic (Types I and II) 

The principle of this form of harmonization is that of assigning the diatonic 

consonances as chordal functions; chromatic consonances, as well as all other 

forms of harmonic interval, are to be ignored so far as the H goes. 

The number of successive consonances which should correspond to one-H 

is optional; it is practical to make T, or 2T, or 3T correspond to one H. 

When harmonizing a chromatic counterpoint whose diatonic original is 

known, one can assign chordal functions directly from the diatonic original; 

doing this obviously eliminates any possible confusion of the diatonic and the 

chromatic consonances. 

We shall now harmonize a duet in which both parts are chromatic. The 
theme is taken from Figure 50 of Chapter 4. For clarity’s sake, we shall write 

out both the original and the chromatized version. We shall choose the following 
relationship between H-* and T"*: 

H~* T~* = HT •+ H2T + HT + HT + HT + H2T + HT 

which is a modified version of the r3-i-2> and which permits us to demonstrate 

diversified forms of attacks groups of Mj and Mu in relation to H-* 
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Example of Diatonic Harmonization of Chromatic Counterpoint 

Original 
AO * 4R 3 1 m 5 19 . _ . ft 8 

Chromatic variation 

Figure 136. Chromatic counterpoint (continued). 

Figure 136. Chromatic counterpoint (concluded). 

When the diatonic origin of the chromatic counterpoint is unknown, an 

analysis of diatonic consonances must precede the planning of the harmonization. 

D. Symmetric Harmonization of Diatonic Two-Part 

Counterpoint (Types I, II, III and IV) 

The principle of symmetric harmonization of two-part counterpoint is that 
of assigning all harmonic intervals to be chordal functions. 

The fewer the attacks of Mj and Mjj that correspond to one H, the easier 
it is to perform such harmonization by means of one 213. But when a consider¬ 

able number of attacks (even in only one of the two melodies) corresponds to 
one H, it becomes necessary to introduce two, and sometimes even three, 213’s. 

The forms of the latter should vary only slightly, making sure that any change 

is for the purpose only of rectifying the particular non-corresponding pitch-unit. 
For instance, in using a 213 XIII as 2it a correction of the eleventh to ft) gives 

a satisfactory solution for most cases; 22 in this instance will differ from 2i only 
with respect to the 11. 

The selection of the original 2 13 is a matter of harmonic character. For 
example, the use of 2 13 XIII attributes to music a definitely “Raveiian” qualitv. 

However, harmonic quality still remains virgin territory awaiting the composer's 
exploration; most of the 36 forms of the 2 13 have not been utilized at all. 

The fact that counterpoint belongs to types 1 and 11, or to types I ii and IV 
does not help us select any particular 2 13. Whereas symmetric harmonization 
of counterpoint of types I and II is a luxury, it is an actual necessity for types 
II i and IV, as the latter correlate two different «feey-axes. 

The fact that two different keys, with identical or with non-identical scales, 

may be united by one chord is of particular importance. This is so because the 
quality of a selected 2 13 can influence the two melodies. In our musical civiliza- 
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tion, our ears are so much conditioned by harmony that most of our listeners 
have lost any ability to enjoy melodic line as such. If the ear of an average 

music-lover can relate one diatonic melody tp only one chord progression, the 
harmonic association of two melodies belonging to two different keys becomes 
impossible; the role of a harmonic master-structure (2 13 in this case) is that 
of synthesizer. 

The simplest way to assign harmonic functions is to relate the latter first 

to consonances. The master-structure used in the following harmonization is 
213 XIII.* 

Symmetric Harmonization of Diatonic 
Two-Part Counterpoint of Types I and II 

Figure 137. Symmetric harmonization of diatonic two-part 
counterpoint of types I and II (continued). 

Book VI ^Chapter*^ th^£^'|ow'ng ^orrn - The complete list of 2 I3’s is presenter! in 
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Figure 137. Symmetric harmonization of diatonic two-part 
counterpoint of types 1 and II {concluded). 

through the usual technique: the insertion of passing and auxiliary chromatic 
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Figure 138. Symmetric harmonization of diatonic two-part counterpoint 
of types III and IV {continued). 
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Figure 138. Symmetric harmonization of diatonic two-part counterpoint 
of types III and IV {concluded). 

OXKME.XKK, HARMONIZATION OF CHROMATIC TWO-PART COUNTER 1*01 NT 

Whose Origin Is Diatonic (Types I, II, III and IV) 

The principle of symmetric harmonization of chromatic two-part counter¬ 
point^ that of assigning all the diatonic pitch-units of both melodies to be chordal 

functions of the master-structure (2 13)—but neglecting all the chromatic pitch- 
units as not belonging to the scale; it does not matter whether the chromatic 

units belong to the master-structure or not. When the diatonic original of the 

two-part counterpoint is-unknown, then the diatonic units of both melodies should 
be isolated before proceeding. 

Original (l) 

Figure 139. Symmetric harmonization of chromatic two-part counter point 
{continued). 
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Chromatic variation harmonized (l) 

Original (2) 

Figure 139. Symmetric harmonization of chromatic two-part counterpoint 
(continued). 
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Chromatic variation harmonized (2) 

Figure 139. Symmetric harmonization of chromatic two-part counterpoint 
(concluded). 

• Counterpoint executed in symmetric scales of the third and fourth groups 
may be harmonized by means of a symmetric master-structure. This master- 

structure is independent of the system of symmetry of the pitch-scales involved. 

As in previous cases, all units corresponding to one H must belong to one 2 13. 

After the harmonization is performed, it may be subjected, if desired, to 
chromatic variation. 

tj 
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F. Symmetric Harmonization of Symmetric Two-Part Counterpoint 

Theme: 

Figure 140. Symmetric harmonization of symmetric two-part counterpoint (coni.). 

HARMONIZATION OF TWO-PART COUNTERPOINT 8 

Chromatic variation of harmony 

r f if T f . , 
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Figure 140. Symmetric harmonization of symmetric two-part counterpoint 
(concluded). 

. forms of contrapuntal continuity and complete compositions in the form 
of canon and fugue may be harmonized by this technique. Any of the corres¬ 
pondences described above between counterpoint and harmony may be es¬ 

tablished by the composer. One should remember that overloading harmonic 
accompaniments is more a sin than a virtue: for this reason, the technique of 
variable density should receive the utmost consideration. 



CHAPTER 12 

MELODIC, HARMONIC, AA'D C0ArriL4PA7v7'AZ, OST/AfArO 

"DORMS of ostinato or ground motion have been known since time immemorial. 

They appear in different folk and traditional music as a fundamental form 
of improvisation around a given theme. The characteristic of ostinato (literally: 
obstinate) is the continuous repetition of a certain thematic group—which may 
be either rhythm, melody, or harmony. As one example, the dance beat of 4/4 
in a fox-trot is one of just such fundamental forms of ostinato. And, as a matter 

of fact, a rhythmic ostinato is ever-present in all the developments in classical 
symphonies! Take, for example, the first motif of Beethoven’s Fifth Symphony, 

consisting of 4 notes, and follow it through the development (middle section of 
the first movement); the motif, rhythmically the same, changes its forms of 
intonation either melodically or in the form of accompanying harmony. 

Repetitions of groups of chords, or repetitions of melodic fragments ac¬ 
companied by continuously changing chords, are both forms of ostinato. Ostinato 

is one of the traditional forms of thematic growth and, as such, is very well 
known in the forms called chaconne (ciaconna) and passacaglia. In many Irish 
jigs, ostinato appears in the form of pedal point, as well as in repetitious melodic 

fragments. When portions of the same melody appear in succession, being har¬ 
monized every time anew, (which may be found even in such works as Chopin’s 
mazurkas), we have still another case of ostinato. 

A. Melodic Ostinato (Basso Ostinato) 

Melodic ostinato, better known under the name of “ground bass,” is a har¬ 
monization of an ever-repeating melody by continuously changing chords. Ostinato 

groups produce one uninterrupted continuity in which the recurrence of the bass 
form produces the unity and the accompanying harmony produces the variety. 
All forms of harmonization may be applied to the continuously repeating melody, 
regardless of whether it appears in the bass or in any of the middle voices, or in 
the upper voice (above the harmony). 

As every harmonic setting of chords is subject to vertical permutations, a 

basso ostinato may be transformed into tenor, or alto, or soprano ostinato, i.e., 
it may appear in any desirable voice and in any desirable sequence after the 
harmonization has been completed. 

In the following example, the ostinato of the theme is a melody in whole 
notes in the bass (the first four bars); later it repeats itself two more times. The 
form of harmonization is symmetric in this case, although it could have been 
diatonic or in any of the chromatic forms. This device may be used as a form 
of thematic development, —and in arranging it may be used with effect for the 
purpose of constructing introductions or transitions. Any characteristic melodic 

pattern may be converted into basso ostinato either with the preservation of its 
original rhythm or in an entirely new setting.* 

•See Arensky'sBoiJO Ostinato for piano. (J.S.) 
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Melodic Ostinato 
Basso Ostinato (Ground Bass) 

Symmetric Harmonization of the Bass. 

Figure 141. Melodic ostinato. 

B. Harmonic Ostinato 

Harmonic ostinato might also be called, by analogy, “ground harmony.” 

It consists of the repetition of a group of chords, in relation to which a con¬ 
tinuously changing melody is evolved. This form of ostinato is the one which 

J. S. Bach employed in his D-minor chaconne for violin; it is also used in numer¬ 
ous other compositions—by Bach and other composers, too. Among my own 

students, George Gershwin used this device successfully in an exercise which 
later, at my suggestion, he put into the musical comedy, Let ’Em Eat Cake, 
as the song hit, Mine. 

This form of ostinato may be applied to any type of harmonic progression. 
The technical procedure is exactly the opposite of the first one. In this case we 
deal with melodization of harmony. As in the previous case, the melody evolved 
against chords may be transferred to a different position in relation to the chord 
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by means of vertical permutation. Naturally, not every melody will be as good 
in the bass as in the soprano, for the chordal functions represented by melody 
are more advantageous for an upper part than for the lower, or vice versa. 

In the following example, thtf harmonic theme of ostinato emphasizes four 
different chords (the first two bars), and is based on a 2 13 [XIII]. The melody 
evolves through the principle of symmetric melodization forming its axis points 
in relation to the chord structure itself. The main resource by which variety 
is obtained against the uniformity of the ostinato is the manifold of melodic forms. 

Harmonic Ostinato (Ground Harmony) 

Symmetric Melodization of Harmony 

C. Contrapuntal Ostinato ' 

The form, contrapuntal ostinato, is well known in the works of old masters. 
It was usually evolved against a melody, a cantus firmus. If a C.F. repeats itself 

continuously a number of times while the contrapuntal part or parts evolve in 

relation to it producing different relations with every appearance of the C.F., 
the result is a contrapuntal ostinato. 

In the following example, the theme of the ostinato is taken from Figure 141 
and the accompanying counterpoint is evolved through type II, adhering to a 

rhythmic ostinato, as well, except for a few intentional permutations. Naturally, 
both voices may be exchanged, or may be subjected to any of the variations 

through geometrical positions (a), ©, ©, and ®. 

Contrapuntal Ostinato 
Basso Ostinato (Ground Bass) 

CP Type II 
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Likewise, a counterpoint may be evolved to the soprano voice through the 
use of the same principle. In Figure 144, the same theme is employed, altered 
rhythmically; the counterpoint, in its rhythmic setting, produces a constant 
interference against the C.F., as it consists of a 3-bar group. The harmonic 
setting of this example is in type III: the C.F. is in natural C major, and the 
counterpoint is in natural Ah major. 

Soprano Ostinato (Ground Melody) 

CP Type HI 

Figure 144.‘ Soprano ostinato. 

The latter two forms of ostinato—harmonic and contrapuntal—are ex¬ 

tremely adaptable in all cases in which it is desirable to repeat one motif and yet 
introduce variety into the obligato. These characteristics make the devices 
extremely useful for introductions, transitions, and codas in arranging. 
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CHAPTER 1 

MULTIPLICATION OF ATTACKS 

"INSTRUMENTAL form will mean, so far as this discussion is concerned, a 

modification of the original melody and/or harmony which renders them fit 
for execution on an instrument. Instrumental can thus be regarded as an applied 
form of pure music. Depending on the degree of virtuosity which can be expected 

from singers, instrumental forms may be applied to vocal music as well as or¬ 

chestral. 

The main technical characteristic of the instrumental (i.e., of applied, as 

against pure) form is that it emphasizes the development of quantities {multiplica¬ 
tion) and the forms of attacks from the original attack. We shall here be concerned 
only with the former—i.e., with quantities and their uses in composition—and 

leave the latter, the forms of attack (such as durable, abrupt, bouncing, oscillat¬ 
ing, etc.), to that branch of this theory called orchestration. 

Multiplication of attacks may be applied directly to angle pitch-units as 

well as to pitch-assemblages. The number of instrumental forms available is 

dependent upon the number*of pitch-units in an assemblage. When the number 

* of pitch-units (parts) in an assemblage is few, the number of instrumental forms 
is low. When the pitch-units (parts) in an assemblage are abundant, the number 

of instrumental forms is high, permitting greater variety in a composition insofar 

as its instrumental aspect is concerned. 

The paucity of instrumental forms derivable from but one pitch-unit (part) 
often compels us to resort to couplings. By the addition of one coupling to one 

part, we achieve a two-part setting with all its instrumental implications. Like¬ 

wise, the addition of two couplings to one part transforms the latter into a three- 
part asrunblage, etc. 

What we are to discuss here is all forms of arpeggio and their applications 
in the field of melody, harmony, and correlated melodies. 

A. Nomenclature: 
% 

2—score (group of instrumental strata) 

S—stratum (instrumental stratum) 
p—part (function, coupling) 
a—attack 

Preliminary Data : 

(1) p = a ; p - 2a ; . . . p = na 
(2) S = p ; S - 2p ; . . . S = np 
(3) 2 = S ; 2 = 2S ; . . . 2 = nS 

1883] 
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B. Sources of Instrumental Forms 

(a) Multiplication of S is achieved by 1 : 2 : 4 : 8 : . . . ratio (i.e., by the 

octaves). # . 
(b) Multiplication of p in S is achieved by coupling or by harmonization. 

It is applicable to melody (p), to correlated melodies (2p, . . . np), and 
to harmony (2p . . . 4p). The material for p is to be found in my 
previous exposition of the Theory of Pitch-Scales* and the Theory of 

Melody.** The material for 2p,. . . np acting as melodies was discussed 

in the theory of correlated melodies (Counterpoint)*** The material for 
2p, . np acting as parts of harmony is presented in the previous 
Special Theory of Harmony,**** and in the discussion that is to come 

on the General Theory of Harmony***** 
(c) Multiplication of a is achieved by repetition and sequence of p’s (ar¬ 

peggio). 
(d) Different S’s and different p's, as correlated melodies of 2, may have 

independent instrumental forms. 

C. Definition of Instrumental Forms: 

I. (a) Instrumental Forms of Melody: I (M - p): 

Repetition of pitch-units represented by the duration-group and expressed 
through its common denominator. The number of a equals the number of t. 

If ^ = nt, then nt = na 

Rhythmic composition of durations assigned to each attack. 

(b) Instrumental Forms of Melody: I (M = np): 

Repetition of pitch-units (pi) and their couplings (pn, Pm, • • • Pn) and 
transition (sequence) from one p to another, represented by the duration 
group and expressed through its common denominator. Instrumental 

groups of p’s consisting of repetitions and sequences are subject to per¬ 

mutations. 

(a) Instrumental Forms of the Simultaneous Groups of Melody: 

o, o. Pm Pn Pi Pi Pm Pn 
M " 7?; S’* Pi ;*Pi ; Pn ; Pin; Pnj Pm; • • • 

™ Pn Pin Pm Pn Pi Pi 

($) Instrumental Forms of the Sequent Groups of Melody: 

M = Pi + Pn; Pn + Pi; Pi + Pn + Pm? Pi4-Pm4-Pn;Pm4-Pi4- 

4- Pn; Pn 4- Pi + Pm; Pn 4- Pm + Pi; Pm 4* Pn 4- Pi- 

M =■ Pi 4- Pn 4- Pi; Pi 4- Pn 4- Pm 4- Pi; Pi 4- Pn 4* Pm 4- Pn; 

. Pi 4- Pn 4- Pm 4- Pm. 

•See Vol. I, p. 101 ff. ♦♦See Vol. I, p. 227 ff. ♦•♦See Vol. I, p. 708 ff. ••♦•See Vol. I, 
p. 359 ff. •••••See p. 1063 ff. 

)' 
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(?) Instrumental Forms of the Combined Groups of Melody: 

M = BlL -l Pili _i_ Pm. Pn , Pm * Piy , Pm . Piy , Piv. 
Pi Pi Pn ’ Pi Pi Pi Pii Pii Pm’ ‘ 

Pm , Piv , Piy , fty . 
M = Pn , Pii^ , Pin , Pm ’ ' 

Pi Pi Pi Pn ’ * * ' 

II. Instrumental Forms of Correlated Melodies: 

(a) i — ,p\ . correlation of instrumental forms of the two uncoupled 
\Mj = p/ 

melodies (Mi and Mn) by means of correlating their a’s. 

Mi (nt — na); Mn (nt = 2na; 3na; . . . mna) 

Mn (t — a) Mn (t — 2a) Mu (t = a) _ Mn (t = 3a) 

Mi (t = 2a) ’ Mi (t = a) ! Mi (t - 3a) ? Mi (t «= a) 

Mn (t = 2a) , Mn (t = 3a) , Mn (t «■ a) . Mn (t = 4a) # 

Mi (t = 3a) ’ Mi (t*=2a) ! Mi (t = 4a) : Mi (t = a) l 

Mh (t = 2a) 4 Mn (t = 4a) _ Mn (t = 3a) t Mn (t = 4a) # 

Mi (t = 4a) ’ Mi (t - 2a) ’ Mi (t = 4a) 1 Mi (t = 3a) 1 

Mn (t = na) 

Mi (t = ma) 

: this form corresponds to combinations of (*), (0) and 

(f).of I (b). 

Mn («) . Mn ( a) Mn ( fl) . Mn ( ft) . 
Mi.(a) ’Mi (0) ’Mi (a) ' Mi (0) ? 

Mn (°0 . Mn (7) . Mn ( ft) Mn (?) . Mn (r) 
Mi (?) ’Mi (a) ’Mi (?) ’Mi ($)’Ml (?) * 

• i 

III. Instrumental Forms of Harmony: 

I (S = p, 2p, 3p, 4p): this corresponds to one-part harmony, which is 
the equivalent of M; two-part harmony, which is the equivalent of two 
correlated uncoupled melodies; three-part harmony, which is the equiv¬ 
alent of three correlated uncoupled melodies; four-part harmony, which 
is the equivalent of four correlated uncoupled melodies. 

The source of the harmony may be the Theory of Pitch-Scales, the Special 
Theory of Harmony, and the General Theory of Harmony* Parts (p’s) in their 
simultaneous and sequent groupings correspond to a. b, c, d. 

Pi = a; Pn = b; Pm = c; PiV = d. 

•See Vol. I, p. 101 ff.; p. 359 ff. and Vol. 11, p. 1063 ff. 



CHAPTER 2 

STRATA OF ONE PART 

THERE being, by definition, but one part to strata of this type, we need 
not classify the attack forms in any general way, but may proceed at once 

to discuss the instrumental forms for S = p. The material for these forms is: 

(a) melody; 
(b) any one of the correlated melodies; 
(c) one part harmony; 
(d) harmonic form of one unit scale; 
(e) one part of any harmony. 

1 = a; 2a; 3a; ma; A var. 
nt = na 

ij>tiU,aj>rrr i"[fm,r,n,rnm.c^jjp 

4 
Var. I: A=a2t+at 
flu b. . .1 mm g_ 

9- ysk x 
YP H 1 ' p 1 VP -=¥= 

i*r pr P i»r p p>r t ^ 

Figure 1. Melody. 
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lb) Theme 

Var. I (*i): a= 2t 
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ll II II II II II II 

1 1 1 1 1 

i 

w ^ 

• -r • 1 J. J. 1 

Figure 2. Correlated melodies (concluded). 

(c) Theme 
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4 
Var. I (B): A= Sa + a + 2a+2a*Fa + 3a; T": 4 series 

Cd) Bed. Paint. Theme 

J. J 

Var. I(p): a=t 

JJJJiJJJJ liJJJ UJJJ iJJJfefei 
Figure 4m Harmonic form of one-unit scale. 

(e) Theme 

L~———-——— - —-— 
•ham . 1 nn^ ^ ' /> pSnm** / ' WCSa > V 

Var. I (8): a=t + 2t+t; T~: § series 



CHAPTER 3 

STRATA OF TWO PARTS 

A. General Classification of I (S = 2p) 

{A table of the combinations of attacks for a and b.) 

A = a; 2a; 3a; 4a; 5a; 6a; 7a; 8a; 12a.* 

1 give here a complete table of all forms of I (S = 2p). Included are all the 
combinations and permutations for 2, 3, 4, 5, 6, 7, 8 and 12 attacks. 

A = 2a; a + b. 

P, = 21 = 2 
Total of general permutations: 2 
Total of circular permutations: 2 

A = 3a; 2a Ar bm, a Ar 2b. 

Each- of the above 2 permutations of the coefficients has 3 general per¬ 
mutations. 

Total: 3-2 = 6 
The total number of cases: A = 3a 
General permutations: 6 
Circular permutations: 6 

A = 4a 
Forms of the distribution of coefficients: 

4 = 1+3; 2+2 ; 3+1 
A = a + 3&; 3a + b. 

P4«i! = ?4-4 
3! 6 

Each of the above 2 permutations of the first form of distribution of the 
coefficients of recurrence has 4 general permutations. 

Total: 4*2 = 8 
A = 2a + 2b 

4! _ 24 

2! 21 2*2 
6 

The above invariant form of distribution has 6 general permutations. 
The total number of cases: A = 4a 
General permutations: 8 + 6 = 14 
Circular permutations: 4*3 = 12 

*in this chapter and several winning chapters 
we are to be concerned with tables of combina¬ 
tions; it should be said that the tables are in¬ 
cluded not merely as items of interest, but 
as actual sources on which the composer or 

arranger may draw—above all, if he is in¬ 
sufficiently familiar with the techniques of 
making permutations, combinations, and re¬ 
lated groups. (Ed.) 
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A =5a 

Forms of the distribution of coefficients: 

5 = 1+4; 2+3. 
A = a + 4b; 4a + b 

P,= 1^120 = 5 
4! 24 

Each of the above 2 permutations of the first form of distribution has 5 
general permutations. 

Total: 5*2 = 10 

A = 2a + 3b', 3a + 2b % 

Pl = JL = »J° = 10 
2! 3! 2-6 

Each of the above 2 permutations of the second form of distribution has 
10 general permutations. 

Tot^l: 10-2 = 20 
The total number of cases: A = 5a 
General permutations: 10 + 20 = 30 
Circular permutations: 5-4 = 20 

A = 6a 

Forms of the distribution of coefficients: 

6 = 1+5; 2+4; 3+3. 

A = a + 5b\5a + b. 

p. = “ = ™ = 6 
5! 120 

Each of the above 2 permutations of the first form of distribution has 6 
general permutations. 

Total: 6-2 = 12 

A = 2a Ar 46; 4a + 2b. 

_6L = _720 ^15 

2! 4! 2-24 

Each of the above 2 permutations of the second form of distribution has 15 
general permutations. 

Total: 15-2 = 30 
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A = 3a + 3b 

P( = _«L = Z?o = 20 
3' 3! 6-6 

The above invariant (third) form of distribution has 20 general permuta¬ 

tions. 
The total number of cases: A = 6a * 
General permutations: 12 + 30 + 20 = 62 
Circular permutations: 6*5 =30 

A = 7a 

Forms of the distribution of coefficients: 

7 = 1+6; 2+5; 3+4. 

A = a + 6b; 6a + b. 

P7-T!=5040 = 7 

6! 720 

Each of the above 2 permutations of the first form of distribution has 7 

general permutations. 

Total: 7-2 = 14 

A = 2a + 5b; 5a + 2b. 

P, = — = _ 21 
2! 5! 2*120 

Each of the above 2 permutations of the second form of distribution has 

21 general permutations. 

Total: 21*2 = 42 

A = 3a + 4b; 4a + 3b. 

P, . _JL = 5040 . 35 
3! 4! 6-24 

Each of the above 2 permutations of the third form of distribution has 35 

general permutations. 

Total: 35*2 = 70 

The total number of cases: A = 7a 
General permutations: 14 + 42 + 70 = 126 

Circular permutations: 7*6 =42 

A = 8a 

Forms of the distribution of coefficients: 

8 = 1+7; 2+6; 3+5; 4+4. 
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A = a + 7b; 7a + b. 

P„ = ^ 
8! 40,320 

5,040 

Each of the above 2 permutations of the first form of distribution has 8 
general permutations. 

lotai: 8*2 = 16 

A = 2a + 6b; 6a + 2b. 

_8L = 4W20,2g 
2! 6! 2*720 

Each of the above 2 permutations of the second form of distribution has 28 
general permutations. 

Total: 28*2 = 56 

A = 3a + 5b; $a + 3b. 

_8L^40i320 = 56 

3! 5! 6*120 

Each of the above 2 permutations of the third form of distribution has 56 
general permutations. 

Total: 56*2 = 112 

A = 4a + 4b 

P8=-«L =1^20=70 
4! 4! 24*24 

The above invariant (fourth) form of distribution has 70 general per¬ 
mutations. 

The total number of cases: A = 8a 

General permutations: 16 + 56 + 112 + 70 = 254 
Circular permutations: 8*7 =56 

A = 12a 

Forms of the distribution of coefficients: 

12 = 1+11; 2+10; 3+9; 4+8; 5+7; 6+6 

A = a + Jib; 11a + b. 

P = I!! = 479,001,600 

11! 39,916,800 

Each of the above 2 permutations of the first form of distribution has 12 
general permutations. 

Total: 12*2 = 24 
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A = 2a 4 10b; 10a + 2b, 

n 12! 479,001,600 _ 
Pij — - — ————— — oo * 

2! 10! 2-3,628,800 

Each of the above 2 permutations of the second form of distribution has 

66 general permutations. 

Total: 66-2 = 132 

A = 3a 4- 9b; 9a 4* 3b. 

= 479,001^9 = 220 
3! 9! 6-362,880 

Each of the above 2 permutations of the third form of distribution has 220 

general permutations. 

Total: 220-2 = 440 

A = 4a + 8b; 8a 4* 4b. 

p 12! _ 479,001,600 

11 4! 8! 24-40,320 

Each of the above 2 permutations of the fourth form of distribution has 
495 general permutations. 

Total: 495-2 = 990 

A = 5a + 7b; 7a + 5b. 

P = __12]_ = 479,001,600 = yg2 

“ 5! 7! 120-5,040 

Each of the above 2 permutations of the fifth form of distribution has 792 
general permutations. 

Total: 792-2 = 1584 

A = 6a 4 6b 

PlJ = J1L _ 479,001,600 = . 

6! 6! 720-720 

The above invariant (sixth) form of distribution has 924 general permu¬ 
tations. 

The total number of cases: A = 12a 

General permutations: 24 4* 132 4* 440 -4 990 4 1584 4 924 = 4094. 
Circular permutations: 12-11 = 132 

The interval of an ockwe may be changed to any other interval. For the groups 
with more than 6 attach, only circular permutations are included. See figures 
6-12 inclusive. 
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A = 7a: 6a+b; 5a+2b; 4a+3b; 3a+4b; 2a+5b; a+6b 

7 forms (general or 

circular) 

7 forms (circular) ; 
21 forms (general) 

7 forms (circular)1; 
35 forms ^general) 

7 forms (circular); 
35 forms (general) 

Total: 7+21+35+35+21+7 = 126 

Figure 10. A = 7a. 
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A = 8a: 7a+b; 6a+2b; 5a+3b; 4a+4b; 3a+5b; 2a+6b; a+7b 

8 forms (circular)^ 
8 fdrms general) 

8 forms (circular); 
■ 28 forms (general) 

8 forms (circular); 
56 forms (general) 

8 forms (circular); 
70 forms (general) 

Figure 11. A = 8a. (continued). 

STRATA OF TWO PARTS 899 

8 forms (circular); 
8 forms (general) 

Total: 8+284-56+70-1-564*28+8 = 254 

Figure 11. A = 8a. (concluded). 

A-12a: lla+b; 10a+2b; 9a+3b; 8a+4b; 7a+5b; 6a+6b; 5a+7b; 4a+8b; 
3a+9b; 2a+10b; a+llb 

12 forms (circular); 12 forms (general) 

12 forms (circular); 66 forms (general) 

12 forms (circular); 220 forms (general) 

Figure 12. A = 12a. (continued). 



■ - - H 12 forms (circular); 4?5 forms (general) 

—fl 12 furms (circular); 792 forms (general) 

■v:fl 12forms(circular);924forms (g*neral) 

ff -= ---M 12 forms (circular); 792 forms (general) 

ip—-—- 12 forms (circular); 495 forms (general) 

r ti 12 forma (circular); 220 forms (general) 

II 12 forms (circular); 66 forms (general) 

41 12 forms (circular); 12 forms (general) 

A = r3-S*2 A = ^4+3 

----—-_ 
B*-  -*—M-— 

STRATA OF TWO PARTS 901 

A = Summation Series 1 

A — Summation Series II 

A = 3(24-1) +(24-1)* 

A = (34-1-4-D -t- (1+34-1) + (1+1+3) 

(a) Var. 



Figure 14B. Harmonic forms of two-unit scales (continued). 
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(c) Theme* S= 2n 

Figure 15. Two-part harmony (continued) 
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When the progression of chords (H has an assigned duration group, instru¬ 
mental form (I) can be carried out through t. 

'Theme 

Figure 16. Two parts of any harmony, {continued). 

STRATA OF TWO PARTS 907 

Var. I = (a* + bg+a*) Ht + (bs + aa + b*) H* 

Var.: the two preceding variations combined 

Figure 16. Two parts of any harmony (continued). 
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Vnr T /pCL PIV\ _ + kg + a* + 2bg . ♦= 
Vpl, pn / ~ Zbz +ag +bg + 2&z ' 

Figure 17. / (5 = 2p.) (continued). 

STRATA OF TWO FARTS 

_ b b b b 
Var.; aaa a;H=4a=4t. 

Figure 17. I (S * 2p) {concluded). 



CHAPTER 4 

STRATA OF THREE PARTS 

A. General Classification of I (S = 3p) 

{A table of the combinations of attacks for a, b, and c) 

A = a; 2a* 3a; 4a; 5a; 6a; 7a; 8a; 12a. 

The following is a complete table of all forms of 1(S = 3p). It includes 
all the combinations and permutations for 2, 3,4,5, 6, 7, 8 and 12 sequent attacks. 

(1) I =* ap (one part, one attack). 

Three invariant forms; a or b or c. 

A * ap, 2ap, . . . map. 

This is equivalent to I(S = p). 

(2) I - a2p~> (one attack to a part, two sequent parts) 

Three invariant forms: ab, ac, be. 

Each invariant form produces 2 attacks and has 2 permutations. 

This is equivalent to 1(S = 2p). 

Further combinations of ab, ac, be are not necessary as it corresponds 

to the forms of (3). 

(3) I = a3p“* (one attack to a part, three sequent parts). 

One invariant form: abc. 

The invariant form produces 3 attacks and has 6 permutations: 

abc, acb, cab, bac, bca, cba. 

All other attack groups (A = 3 + n) develop from this source by means 

of the coefficients of recurrence. 

♦Here, as on other occasions, Schillinger 
uses convenient and brief rather than the full 
mathematical expressions to indicate relation¬ 
ships. For example, in an expression like S - p 
the coefficients are understood to be 1, i.e., 
I S - 1 p. It does not mean, as it would tn 
strict mathematical form, that the number— 
any number—of strata equals the number of 

parts. Nor does the juxtaposition of, say, a 
and P as in ap imply multiplication; on the 
contrary, it means, as the text makes dear, 
“one attack to one part”—which would be 
expressed in rigid mathematical form as 

[9101 
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B. Development of Attack-Groups by Means of the 

Coefficients of Recurrence 

A = 4a; 2a+b+c; a+2b+c; a+b+2c. 

p< = ^ = « = 12 
2! 2 

Each of the above 3 permutations of the coefficients has 12 general per¬ 

mutations. 

12 general or 4 circular permutations 

12 general or 4 circular permutations 

12 general or 4 circular permutations 

Figure 19. A = 4a; 2a+6+e; a-\-2b-\-c; a-\-b-\-2c 

Total in general permutations: 12+ 12+12 = 36 
Total in circular permutations: 4+4+4 = 12 

A = 5a. 

Forms of the distribution of coefficients: 
5 = 2+2+1 and 5 = 1+1+3 

A = 2o+26+c; 2a+6+2c; a+2b+2c 

p, = -5L = m = 30 
2! 2! 2-2 

Each of the 3 permutations of the first form of distribution has 30 general 
permutations. Total: 30*3 = 90. 

30 general or 5 circular permutations 

30 general or 5 circular permutations 

30 general or 5 circular permutations 

Figure 20. A = 5a; 2a-\-2b+c; 2a-\-b-\-2c; a-j-2b-j~2c 

Total in general permutations: 30+30+30 = 90 
Total in circular permutations: 5+5+5 = 15 

STRATA OF THREE PARTS 913 

A = a+6+Jc; o+36+c; Ja+5+c. 

p. = s-| = 120 = 20 
3! 6 

Each of the above 3 permutations of the second form of distribution has 20 
general permutations. Total: 20*3 = 60. 

20 general or 5 circular permutations 

20 general or 5 circular permutations 

20 general or 5 circular permutations 

Figure 21. A = 5a; o+6+Jc; a+56+c; Ja+6+c. 

Total in general permutations: 20+20+20 = 60 
Total in circular permutations: 5+5+5 = 15 

The entire total for 5 attacks: in general permutations: 150 

in circular permutations: 30 
A = 6a. 

Forms of the distribution of coefficients: 
6 = 1+1+4; 1+2+3; 2+2+2. 

A = a+6+4c; a+46+c; 4o+6+c. 

Each of the above 3 permutations of the first form of distribution has 30 
general permutations. 

30 general or 6 circular permutations 

30 general or 6 circular permutations 

30 general or 6 circular permutations 

Figure 22. A = 6a; o+5+4c; a+4b+c; a+b+4c. 

Total in general permutations: 30*3 = 90 
Total in circular permutations: 6*3 = 18 



The entire total for 6 attacks: in general permutations: 540 
in circular permutations: 60 
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A = 7a. 

Forms of the distribution of coefficients: 
7 « 1+1+5; 1-f-2+4; 2+2+3; 3+3+1 

A = a+6+5c; a+56+c; 5a+5+£t. 

Pj =+' = — - 42 
5! 120 

Each of the above 3 permutations of the first form of distribution has 42 
general permutations. 

42 general or 7 circular permutations 

42 general or 7 circular permutations 

42 general or 7 circular permutations 

Figure 25. A = 7a; a+6+5c; a+56+c; 5a+6+c. 

Total in general permutations: 42-3 = 126 
Total in circular permutations: 7*3 * 21 

A = a+2b+4c\ a+4b+2c; 4o+d+2c; 2a+b+4c; 2a+4e>+r; 4o+2b+c 

P, - — = - 105 
2! 4! 2-24 

Each of the above 6 permutations of the second form of distribution has 
105 general permutations. 

105 general or 7 circular permutations 

105 generator 7 circular permutations 

105 general or 7 circular permutations 

105 general or 7 circular permutations 

Figure 26. A « 7a; a+2b+4c; a+4b+2c; 4a+b+2c; 2a+b+4c; 2a+4b+c; 

4a-\-2b-\-c (continued). 
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105 general or 7 circular permutations 

105 general or 7 circular permutations 

Figure 26. A = 7a; a-{-2b-\-4c; a-\-4b-\-2c; 4c-\-b4r2c; 2a-\rb-\-4c; 2a-\-4b-\-c; 

4a-)r2b+c (concluded). 

Total in general permutations: 105• 6 = 630 
Total in circular permutations: 7*6= 42 

A = 2a+2b+3c] 2a+3b+2c\ 3a+2b+2c. 

p7 = _*1-= =210 
2! 3! 24 2.6*2 

Each of the above 3 permutations of the third form of distribution has 210 
general permutations. 

210 general or 7 circular permutations 

210 general or 7 circular permutations 

210 general or 7 circular permutations 

Figure 27. A = 7a; 2a+2b+3c; 2a+3b+2c; 3a+2b+2c. 

Total in general permutations: 210*3 = 630 
Total in circular permutations: 7*3= 21 

A 

Pr 

Each of the above 3 permutations of the fourth form of distribution has 
140 general permutations. 

See Figure 28 on the following page. 
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140 general or 7 circular permutations 

140 general or 7 circular permutations 

140 general or 7 circular permutations 

Figure 28. A — 7a; 3a-\-3b4rc; 3a~\-b-\~3c; a-\-3b-\-3c. 

Total in general permutations: 140*3 = 420 
Total in circular permutations: 7*3 = 21 

The entire total for 7 attacks: in general permutations: 1806 
in circular permutations: 105 

A = 8a. 

Forms of the distribution of coefficients: 

8 = 1+1+6; 1+2+5; 1+3+4; 2+2+4; 2+3+3 

A = o+d+dc; a+dd+c; da+d+c. 

p. _ 8! = 40,320 = ,6 

Each of the two above 3 permutations of the first form of distribution has 
56 general permutations. 

Total: 56*3 = 168 

56 general or 8 circular permutations 

56 general or 8 circular permutations 

56 general or 8 circular permutations 

Figure 29. A = 8a; a+6+dc; a+66+c; da+6+c. 

Total in general permutations: 56*3 = 168 
Total in circular permutations: 8*3= 24 
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280 general or 8 circular permutations 

280 general or 8 circular permutations 

280 general or 8 circular permutations 

^ ^ ' 9 s 280 general or 8 circular permutations 

Figure 31. A = 8a; o+3b+4c; a+4b+3c; 4a+b+3c; 3a+b+4c; 3a-\~4bJrc; 

4a+3b-\r c (concluded). 

Total in general permutations: 280-6 = 1680 
Total in circular permutations: 8*6 = 48 

A = 2a+2b+4c; 2a-\-4h-\-2c; 4a+2b+2c 

-?!_ = M=420 
2J 2! 4! 2-2-24 

Each of the above 3 permutations of the fourth form of distribution has 
420 general permutations. 

420 general or 8 circular permutations 

420 general or 8 circular permutations 

420 general or 8 circular permutations 

Figure 32. A = 8a; 2a4r2b4r4c; 2a-\-4b-\-2c; 4a+2b-\~2c. 

Total in general permutations: 420-3 = 1260 
Total in circular permutations: 8-3 = 24 

A = 2a+3b+3c; 3a+2b + 3c; 3a+3b+2c 

P.-«i_ = » = S60 
2! 3! 31 2-6-6 

Each of the above 3 permutations of the fifth form of distribution has 560 
general permutations. 

See Figure .33 on the following page. 
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560 general or 8 circular permutations 

560 general or 8 circular permutations 

$60 general or 8 circular permutations 

Figure 33. A = 8a; 2a+36+3c; 3a-\-2b-\-3c; 3a-\-3b-\-2c. 

Total in general permutations: 560*3 = 1680 
Total in circular permutations: 8*3 = 24 

The total number of cases: A = 8a 
General permutations: 168 + 1008 + 1680 + 1260 + 1680 = 5796 
Circular permutations: 244-48+48+24+24 = 168 

A = 12a. 

Forms of the distribution of coefficients: 

8 = 1+1+10; 1+2+9; 1+3+8; 1+4+7; 1+5+6; 2+2+8; 
2+3+7; 2+4+6; 2+5+5; 3+3+6; 3+4+5; 4+4+4. 

A = a+6+iOc; a+i06+c; lOa+b+c 

Pm ,«!, = 132 
10! 3,628,800 

Each of the above 3 permutations of the first form of distribution has 132 
general permutations. 

132 general or 12 circular permutations 

132 general or 12 circular permutations 

132 general or 12 circular permutations 

Figure 34. A = 12a; a+6+10c; a+i06+c; i0a+fi>+c. 

Total in general permutations: 132*3 = 396 
Total in circular permutations: 12*3= 36 
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A — a+2b+9c; o+PJ+^c; Pc+6+2c; 2a+J+Pc; 2a-\-9b-\-c; Pb+26+c, 

P - J3L - , 660 
2! 9! 2*362,880 

Each of the Above 6 permutations of the second form of distribution has 
660 general permutations. 

660 general or 12 circular permutations 

660 general or 12 circular permutations 

660 general or 12 circular permutations 

660 general or 12 circular permutations 

660 general or 12 circular permutations 

660 general or 12 circular permutations 

Figure 35. A = 12o;a+2b+9c;a+9b+2c;9a+b+2c; 
2a-\-b+9c; 2«+Pi+c; Pa+26+c. 

Total in general permutations: 660*6 = 3960 
Total in circular permutations: 12*6 = 72 

A — a+36+£e; a+36+Jc; #a+6+3c; 3a+5+£c; 3a+<?6+e; £a+36+c. 

r„ - - 4-^owoo = 19g0 
3! 8! 6*40,320 

Each of the above 6 permutations of the third form of distribution has 1980 
general permutations. 

1980 general or 12 circular permutations 

~ ~ — |[ 1980 general or 12 circular permutations 

Figure 36. A = 12a; a+3b+8c; a+8b+3c; 8a+b+3c; 3a+b+8c; 3a+8b+c; 
8a~\-3b-j-c (continued). 
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1980 general or 12 circular permutations 

1980 general or 12 circular permutations 

1980 general or 12 circular permutations 

1980 general or 12 circular permutations 

Figure 36. A = 12a; a+3b+8c; a+8b+3c; 8a+b+3c; 

3a+b+8c; 3a4r8b-\-c; 8a-\-3b-\-c. 

Total in general permutations: 1980*6 = 11,880 
Total in circular permutations: 12*6 = 72 

A = a-\-4b+7c; a-\-7b-\m4c; 7a+b-\-4c; 4a-j-b-j-7c; 4a4~7b-t-c; 7a4r4b4rc. 

J2l = 479!00L600 = 3960 
4! 7! 24*5,040 

Each of the above 6 permutations of the fourth form of distribution has 
3960 general permutations. 

3960 general or 12 circular permutations 

3960 general or 12 circular permutations 

3960 general or 12 circular permutations 

3960 general or 12 circular permutations 

3960 general or 12 circular permutations 

Figure 37. A = 12a; a+4b+7c; a+7b+4c; 7a+b+4c; 4a+b+7c; 4a+7b+t; 

7a-\-4b’\-c (continued). 
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3960 general or 12 circular permutation# 

Figure 37. A = 12a; a+4b+7c; a+7b+4c; 7a+b+4c; 4a+b+7c; 4a+7b+c; 

7a4r4b4rc. {concluded.) 

Total in general permutations: 3960*6 — 23,760 
Total in circular permutations: 12*6 — 72 

A « o-f55+0c;a-MH-5a; 6a-f&+5c; 5a+b+6c; 5a+66-fc; 6a+56+c. 

t> 12! 479,001,600 
JTTT  -:-• =* 5544 
5! 6! 120-720 

Each of the above 6 permutations of the fifth form of distribution has 5544 
general permutations. 

5544 general or 12 circular permutations 

5544 general or 12 circular permutations 

5544 general or 12 circular permutations 

5544 general or 12 circular permutations 

5544 general or 12 circular permutations 

5544 general or 12 circular permutations 

Figure 38. A = 12a; a+5b+6c; a+6b+5c; 6a+b+5c: 

5a+b+6c; 5a+6b+c; Aa+5b+c. 

Total in general permutations: 5544*6 * 32,264 
Total in circular permutations: 12*6 - 72 
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A = 2a+2b+8c; 2a+8b+2c; 8a+2b+2c. 

12! _ 479,001,600 _007n 
P,. = 

2! 2! 8! 2-2*40,320 

Each of the above 3 permutations of the sixth form of distribution has 
2970 general permutations. 

2970 general or 12 circular permutations 

2970 general or 12 circular permutations 

2970 general or 12 circular permutations 

Figure 39. A — 12a; 2a-\~2b-\-8c; 2a-\-8b-\m2c; 8a-\~2b-\~2c 

Total in general permutations: 2970*3 — 8910 
Total in circular permutations: 12*3 -36 

A = 2a+3b+7c; 2a-\-7b-\-3c; 7a+2b+3c; 3a+2b+7c; 

3a+7b+2c; 7a+3b+2c. 

P„_12j_= 479,001,600 
2! 3! 7! 2*6*5,040 

Each of the above 6 permutations of the seventh form of distribution has 
7920 general permutations. 

7920 general or 12 circular permutations 

7920 general or 12 circular permutations 

7920 general or 12 circular permutations 

7920 general or 12 circular permutations 

Figure 40. A — 12a; 2a-\-3b-}-7c; 2c-\-7b-\-3c; 7a-\~2b-\-3c;3a-\-2b-\~7c; 3c+7b-\-2c; 

7a+3b+2c. (continued). 
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7920 general or 12 circular permutations 

7920 general or 12 circular permutations 

Figure 40. A = 12a; 2a+3b+7c; 2a+7b+3c; 7a+2b+3c; 3a+2b+7c: 
3a+7b+2c; 7a+3b-\-2c. {concluded). 

Total in general permutations: 7920*6 = 47,520 
Total in circular permutations: 12*6 — 72 

A -- 

P» 

2a4b+6c; 2a+6b+4c; 6a4-2b4-4c; 4a+2b+6c; 
4a-\-6b-\-2c; 6a-\-4b-\-2c. 

- 12! = 479,001,600 _ 
2! 4! 6! 2*23*720 

Each of the above 6 permutations of the eighth form of distribution has 
1386 genera] permutations. 

1386 general or 12 circular permutations 

1386 general or 12 circular permutations 

1386 general or 12 circular permutations 

1386 general or 12 circular permutations 

1386 general or 12 circular permutations 

1386 general or 12 circular permutations 

Figure 41. A = 12a; 2a-\-4b-\-6c; 2a+6b+4c; 6a+2b+4c; 

4a+2b+6c; 4a+6b+2c; 6a+4b+2c. 

Total in general permutations: 1386*6 = 8316 
Totalin circular permutations: 12*6 = 72 
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A ° 2a+5b+5c; 5a + 2b+5c; 5a+Sb+2c. 

Pl, _ _jil_ = mmm =16,632 
2! 5! 5! 2*120*120 

Each of the above 3 permutations of the ninth form of distribution has 

16,632 general permutations. 

16,632 general or 12 circular permutations 

16,632 general or 12 circular permutations 

16,632 general or 12 circular permutations 

Figure 42. A - 12a; 2a+5b+5c; 5a+2b+5c; 5a+5b+2c. 

Total in general permutations: 16,632*3 * 49,896 

Total in drcular permutations: 12*3 “ 36 

A - 3a+3b+6c; 3a+6b+3c; 6a+3b+3c. 

tj _ 121 _ 479,001,600 _ M 

3! 3! 6! 6*6*720 
18,480 

Each of the above 3 permutations of the tenth form of distribution has 

18,480 aeneral permutations. 

18,480 general or 12 circular permutations 

18,480 general or 12 circular permutations 

18,480 general or 12 circular permutations 

Figure 43. A — 12a: 3a+3b+6c: 3a+6b+3c: 6a+3b+3c 

Total in general permutations: 18,480*3 = 55,440 

Total in circular permutations: 12*3 — 36 
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A = 3a-\-4b-\~5c; 3a-\-5b4~4c; 5a-j~3b4~4c; 
4a+3b+5c; 4a+5b+3c; 5a+4b+3c. 

P» = = 47^1^600 = 27 720 
3! 4! 5! 6*24*120 

Each of the above 6 permutations of the eleventh form of distribution has 
27,720 general permutations. 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

Figure 44. A = 12a; 3a+4b+Sc; 3a+Sb+4c; 5a+3b+4c; 

4a+3b+5c; 4a-\-5b+3c; 5a+4b+3c. 

Total in general permutations: 27,720*6 — 166,320 
Total in circular permutations: 12*6= 72 

A = 4a+4b+4c 

Pll _ _il!_ = = 3 650 
4! 4! 4! 24*24*24 

34,650 general or 12 circular permutations 

Figure 45. A = 12a; 4a-\-4b+4c. 
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The total number of cases: A = 12a. 

Genemi permutations: 3% + 3960 + 11,88* + 23,760 + 32,264 + 8910 + 
perm + 47,520 + 8316 + 49,8% + 5S.440 + 166,320 + 

+ 34,650 = 443,312. 

Circular permutations: 36 + 72 + 72 + 72 + 72 + 36 + 72 + 72 + 36 + 36 + 
4. 72 -f 12 = 660 

(4) I = a2p (one attack to a combination or two simultaneous parts).* 

The three invariant forms of (2) become elements of the second order: 

Further combinations in sequence necessitate the inclusion of all three parts. 

Sequent combinations by two: 

a3 + b,; a* + c, *, b, -f- c. 

This corresponds to two consecutive attacks. The growth of attack-groulps is 

achieved by means of the coefficients of recurrence: 

2a, + b,; 3b, + c,; 2a, 4* 3b, ; 2a, +c,+a, + 2c, 

.he latter, in turn, become subject to permutations (general or circular), as well 

as to permutations of the higher orders. 

Sequent combination by three (there is only one such combination): a, + 
+ b, + c. The latter with its permutations becomes an element of the third 
order- a, + b, + c, ' a.. The development of attack groups by means of the 
coefficients of recurrence corresponds to figures 19-45 inclusive in classification 

and quantity. 
Table of 1(5 = 3p) = a2p. 

Figure 46. I (5 =• 3p) = aZp {continued). 

•We are here concerned no longer with the absence of the-4 denotea two simultaneous 
I - a2p~+, in which the 2p~+ denotes two parts. (Ed.) 
sequent parts, but with I «• a2p, Hi which 

A= 0a = 8aa+2b» + c* A= 8a = 8a» + 2b*+3cj5 

Combinations of the higher orders: 

A=9a=a«+bii + Ca 

Figure 4o. I (5 =r= 3p) — aZp {concluded). 



930 INSTRUMENTAL FORMS 

(5) 1 — a3p (one attack to a combination erf three simultaneous parts) 

c 
One invariant form: b = a* 

a 

Multiplication of attacks is achieved by direct repetition: A = as; 2a*; 

3a*; . . . raa*. 

Further variations may be obtained by means of permutations of the vertical 
(simultaneous) arrangement of parts. The extreme p"^ of a given position must 
serve as a limit, that is, for a position above the original, c is the limit for the 
lower function, and for a position below the original, a is the limit for the upper 

function. 

The original position, in relation to all the upper and all the lower positions, 

b 
a a 
c c 

The positions indicated by the brackets are identical but in different octaves. 

It is desirable to use the adjacent positions in a sequence. From the above vari¬ 
ations of the original position,any number of attacks can be devised. 

Table of I(S = 3p) = a3p 
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Figure 47. I (S = 3p) = a3p {concluded). 

C. Instrumental Forms of S = 3p 

Material: 

/Pm\ 
(1) . melody with two couplings: M I Pi^ J ; 

\Px / 
(2) . harmonic forms of three-unit scales; 
(3) . three-part harmony; 
(4) . three parts of any harmony. 



Figure 49. Variation: abc constant. 
Variation: a* + 6* ■+• c* (continued.). 
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Figure 54. Variations: at (continued). 

Figure 54. Variations: ar * (concluded). 

2. Harmonic forms of three-unit scales. 

Illustrated by a series of themes and variations. See figures SS, 56 and 57. 

Theme: 

Figure 55. Theme and two variations. 



«
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3. Three-part harmony. Illustrated by themes and variations. See 
figures 58 to 67 inclusive. 

Theme: 

Vhr.s T=(2+l+l>;t= J' 

Figure.58.'Theme and variations (continued}. 
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Figure 58. Theme and Variations I = 3f * (concluded). 

Var.: I — 6p~* (general permutations); A = 5a — a+2b+2c. 

Sequent circular permutations of the coefficients: 

(a+2b+2c) + (2a+c+2b) + (2c+2a+b) + 

+ (b+2a+2c) + (2b+c+2a) + (2c+2b+a). 

T - 6t - (2+1+14*1+1) + (1+1+2+1+1) + (1+1+1+1+2) 

Figure 59. Variation. I = 6p~* (continued). 

i 
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Figure 61. Variation. I — aZp (continued). 

* Figure 62. Variation. I ~ a2p (continued). 

M
il 



instrumental forms 

Figure 63. Variation. I = a3p. 
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4. Three parts of any harmony. Illustrated with a theme and variations. 
See figure 68. 

Theme: Z = 2S 
S* 

Var.: {(a +b+ 2c) + (a+2b+c) + (2a + b+c)) 8! 

Var.:I = a2p: conditions as above 
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Figure 68. Theme 2 = 25 {concluded). 

Individual attacks emphasizing one, two, or three parts may be combined 

into one attack-group of any desirable form. 

Examples 

c cc cc c c cc c 

b b b b b b bb bb 

I(S - 3p): a aa aa ; a a aa a ; 

c cc c c c ccccc c ccc 

b bbbb bbbbb b bbb b 

aaaa a ; aaa a aa ; aa a a ; 

c ccccccc - 

bbbbbb bbb 

aaaaa aaa a ; • • • 

b 
aaa 

ccccc c c c 
bb b b bb bb 
a aaaaa ; 

c 
Theme: 

Figure 69. Theme and variations (continued). 

■
■
■
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Var.:I <S=8p)= bCb b° C b 
a aa aa ^ ’ a=t 

Figure 69. Theme and Variations. 

Il.li 
im

. 
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CHAPTER 5 

STRATA OF FOUR PARTS 

General Classification of I (S = 4p) 

(Table of the combinations of attacks for a, b, c and d). 

A = a; 2a; 3a; 4a; 5a; 6a; 7a; 12a. 

The following is a complete table of all forms of I(S = 4p). It includes 

!he combinations and permutations for 2, 3, 4, 5, 6, 7, S and 12 attacks. 

(1) I = ap (one part, one attack). 

Four invariant forms: a, b, c, d. [See figure 70 (2)} 

A = ap, 2ap, . . . map. 
This is equivalent to I(S = p). 

(2) I =» a2p~* (one attack to a part, two sequent parts). 

Six invariant forms: ab, ac, ad, be, bd, cd. [See figure 70 (2)} 
Each invariant form produces 2 attacks and has 2 permutations. 

This is equivalent to I(S = 2p). 

(3) I = a3p~~* (one attack to a part, three sequent parts). 

Four invariant forms: abc, abd, acd, bed. [See figure 70 (3)] 
Each invariant form produces 3 attacks and has 6 general or 3 circular 

permutations. 

(4) 1 = a4p~» (one attack to a part, four sequent parts). 

One invariant form: abed. 
The invariant form produces 4 attacks and has 24 general or 4 circular 

permutations. [Sse figure 70 (4)] 
All other attack-groups (A = 4-fn) develop from this source by means of 

the coefficients of recurrence. 

I(S = 4p): attack-groups for one simultaneous p. 

A = 4p 

ignis 
Figure 70. I {S — 4p) (continued). 

|948) 

Each form with a corresponding number of permutations. 

Figure 70. I (S — 4p) (continued). 
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(3) 

etc. 

Each of the above forms has 6 general or 8 circular permutations 

etc. 

etc. 

etc. 

etc. 

(4) 34 general permutations 

Figure 70. I (S = 4p) {concluded}. 
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Figure 73. A = 6a. Permutations of 1 +1 +2 +2. 

Total in general permutations: 180-6 = 1080 

Total in circular permutations: 6*6 = 36 

STRATA OF FOUR PARTS 953 
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420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

420 general or 7 circular permutations 

Figure 75. A = 7a. Permutations of I-f-i +2+3. 

Total in general permutations: 42Q*12 = 5040 

Total in circular permutations: 7*12 — 84 
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A = a+2b+2c+2d; 2a+b+2c+2d; 2a+2b+c+2d; 2a+2b+2c+d 

2! 2! 2! 8 

Each of the above 4 permutations of the third form of distribution has 630 

general permutations. 

630 general or 7 circular permutations 

630 general or 7 circular permutations 

630 general or 7 circular permutations 

630 genera! or 7 circular permutations 

Figure 76. A = 7a. Permutations of J+2+2+2. 

Total in general permutations: 630*4 — 2520 

Total in circular permutations: 7*4 = 28 

The total number of cases: A = 7a 

General permutations: 840 + 5040 + 2520 = 8400 

Circular permutations: 28 + 84 + 28 = 140 

A = 8a 

Forms of the distribution of coefficients: 

8 - 1+141+5; 1+1+2+4; 1+1+3+3; 1+2+2+3; 2+2+2+2 

A » a+b+c+5d; a+b+5c+d; a+5b+c+d; 5a+b+c+d 

8!=40^20 = 336 

5! 120 

Each of the above 4 permutations of the first form of distribution has 336 

general permutations. See Figure 77 on the following page. 
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336 general or 8 circular permutations 

336 general or 8 circular permutations 

336 general or 8 circular permutations 

336 general or 8 circular permutations 

Figure 77. A = 8a. Permutations of i+i+2+5. 

Total in general permutations: 336*4 = 1344 
Total in circular permutations: 8*4 = 32 

A = a+b+2c+4d; a+2b-Mc+d; 2a+4b+c-Hi; 4a+b+c+2d; 
a+b+4c+2d; a+4bH-2c+d; 4a+2b+c+d; 2a4*b+c+4d; 
a+2b+c+4d; 2a+b4-4e-fd; a+4b+c+2d; 4a+b+2c-fd.» 

P8 = ^L = 40i320 «840 
2! 4! 2*24 

Each of the above 12 permutations of the second form of distribution has 
840 general permutations. 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

Figure 78. A = 8a. Permutations of 1 +1+2+4 (continued). 
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840 genera! or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

840 general or 8 circular permutations 

Figure 78. A = 8a. Permutations of 1+1+2+4 (concluded). 

Total in general permutations: 840*12 = 10,080 
Total in circular permutations: 8*12 = 96 

A - a+b-Hc+3d; a+3b+3c+d; 3a+3b+c-H; 3a-fb+c-f3d; 
a+3b+c+3d; 3a+b+3c+d. 

_8!_4M20 

3! 3! 6*6 

Each of the above 6 permutations of the third form of distribution has 1120 
general permutations. 

1120 general or 8 circular permutations 

Figure 79. A = 8a. Permutations of 1+1 +3-4*3 (continued). 
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1120 general or 8 circular permutations 

1120 general or 8 circular permutations 

1120 general or 8 circular permutations 

1120 general or 8 circular permutations 

1120 general or 8 circular permutations 

Figure 79. A = 8a. Permutations of 1+1+3+3 (concluded). 

Total in general permutations: 1120*6 = 6720 
Total in circular permutations: 8*6 «= 48 

A « a+2b+2c+3d; 2a+2b+3c-i-d; 2a+3b+c+2d; 3a-fb+2c+2d; 
a+2b+3c+2d; 2a-t-3b+2c-hd; 3a+2b-fc+2d; 2a+b-f-2c+3d; 

a+3b-f2c+2d; 3a+2b+2c+d; 2a+2b+c+3d; 2a+b+3c+2d. 

Ps 
8! = 40,320 

2! 2! 3!, 2*2*6 
1680 

Each of the above 12 permutations of the fourth form of distribution has 
1680 general permutations. 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

Figure 80. A = 8a. Permutations of 1+2+2+3 (continued). 
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1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

1680 general or 8 circular permutations 

Figure 80. A = 8a. Permutations of 1+2+2+3 (concluded). 

Total in general permutations: 1680*12 = 20,160 
Total in circular permutations: 8*12 = 96 

A = 2a-t-2b+2cV2d 

__»!— = _ 2Szu 
2! 2! 2! 2! 2*2*2*2 

The above invariant (fifth) form of distribution has 2520 general permuta¬ 
tions. 

2520 general or 8 circular permutations 

Figure 81. A = 8a. 2a+2b+2c+2d. 
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The total number of cases: A = 8a 
General permutations: 1344 + 10,080 + 0720 + 20,160 4* 

+ 2520 - 40,824 
Circular permutations: 32 + 96 + 48 + 96 + 8 = 280 

A = 12a 

Forms of the distribution of coefficients: 

1+1+1+9; 1+1 +2+8; 1+1+3+7; 1+1+4+6; 1+1+5+5 ;K1+2+2+7; 
1+2+3+6; 1+2+4+5; 1+3+3+5; 1+3+4+4; 2+2+2+6; 2+2+3+S; 
2+2+4+4; 2+3+3+4; 3+3+3+3. 

A = a+b+c+9d; a+b+9c+d; a+9b+c+d; 9a+b+c+d 

p ,12!s 479,001,600 = ^ 

9! 362,880 

Each of the above 4 permutations of the first form of distribution has 1320 
general permutations. 

1320 general or 12 circular permutations 

1320 general or 12 circular permutations 

1320 general or 12 circular permutations 

1320 general or 12 circular permutations 

Figure 82. A — 12A. Permutations of 1+1+1+P. 

Total in general peimutations: 1320*4 = 5280 
Total in circular permutations: 12*4 = 48 

A = a+b+2c+8d; a+2b+8c+d; 2a+8b+c+d; 8a+b+c+2d; 
a+b+8c+2d; a+8b+2c+d; 8a+2b+c+d; 2a+b+c+8d; 
a+8b+c+2d; 8a+b+2c+d; a+2b+c+8d; 2a+b+8c+d. 

12! = 479,001,600 

2! 8! 2-40,320 
5940 

Each of the above 12 permutations of the second form of distribution has 
5940 general permutations. See Figure 83 on the following page. 
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5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

5940 general or 12 circular permutations 

Figure 83. A = 12a. Permutations of /+/+<?+£. 

Total in general permutations: 5940*12 = 71,280 
Total in circular permutations: 12-12 = 144 
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A = a-f-b+3c-f7d; a+3b+7c+d; 3a+7b-fc-f-d; 7a+b+c+3d; 
a+b+7c+3d; a-f7b+3c+d; 7a4*3b4*c4'd; 3a+b+c+7d; 
a+3b-fc+7d; 3a+b+7c+d; a4-7b+c-f3d; 7a+b+3c+d. 

Pi* 
12! 

2! 7! 

479,001,600 = 

6-5040 

Each of the above 12 permutations of the third form of distribution has 
15,840 general permutations. 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

Figure 84. A = 12a. Permutations of 1 +1 +3+7 (continued). 
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15,840 general or 12 circular permutations 

15,840 general or 12 circular permutations 

Figure 84. A = 12a. Permutations of 1+1+3+7 (concluded). 

Total in general permutations: 15,840*12 = 190,080 
Totalin circular permutations: 12*12= 144 

A = a+b+4c+6d; a+4b+6c+d; 4a+6b+c+d; 6a+b-fc+4d; 
a+b+6c+4d; a+6b+4c+d; 6a+4b+c+d; 4a+b+c+6d; 
a+-4b4-c+6d; 4a+b-H>c-f-d; a+6b+c4'4d; 6a-f*b+4c+d. 

J2!. = W0 _ 27,720 
4! 6! 24*720 

Each of the above 12 permutations of the fourth form of distribution has 
27,720 general permutations. 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular ^erjnutations 

Figure 85. A = 12a. Permutations of 1+1 +4+6 (continued). 
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27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

27,720 general or 12 circular permutations 

Figure 85. A = 12a. Permutations of 1+1+4+6 (concluded0. 

Total in general permutations: 27,720*12 * 332,640 
Total in circular permutations: 12*12 = 144 

A = a+b+5c4-5d; a+5b-K>c+d; 5a+5b-fc+d; 5a+b-|~cHb5d; 
a-+-5b+c-K>d; 5a+b+5c+d. 

Pl# . J21 , - 33,264 
5! 5! 120*120 

Each of the above 6 permutations of the fifth form of distribution has 33,264 
general permutations. 

33,264 general or 12 circular permutations 

33,264 general or 12 circular permutation^ 

33,264 general or 12 circular permutations 

33,264 general or 12 circular permutations 

Figure 86. A = 12a. Permutations of 1+1+5+5 (continued). 

33,264 general or 12 circular permutations 

33,264 general or 12 circular permutations 

Figure 86. A - 12a. Permutations of 1+1 +5+5 (concluded). 

Total in general permutations: 33,264*6 — 199,584 
Total in circular permutations: 12*6 *» 72 

A « a+2b+2c+7d; 2a+2b+7c-fd; 2a+7b+c+2d; 7a+b+2c+2d; 
a+2b.+7c+2d; 2a+7b+2c+d; 7a+2b+c+2d; 2a+b+2c+7d; 
7a+2b+2c+d; 2a-f2b+c+7d; 2a+b+7c+2d; a+7b+2c+2d. 

p — -I— — 479,001,600 = 23 ^50 
2! 2! 7! 2*2*5040 

Each of the above 12 permutations of the sixth form of distribution has 
23,760 general permutations. 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular’permutations 

Figure 87. A = 12a. Permutations of 1+2 +2 +7 (continued). 
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23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

23,760 general or 12 circular permutations 

Figure 87. A = 12a. Permutations of 1+2 +2+7 (concluded). 

Total in general permutations: 23,760*12 = 285,120 
Total in circular permutations: 12-12= 144 

A = a+2b-f3c+6d; a+2b-j-6c+3d; a+6b+2c+3d; 6a+b+2c+3d; 
a+3b+2c+6d; a+3b+6c+2d; a-f6b+3c+2d; 6a+b+3c+2d; 
3a-fb+2c+6d; 3a+b-f6c+2d; 3a+6b+c+2d; 6a+3b+c+2d; 
2a+b+3c4*6d; 2a+b-f-6c+3d; 2a-f6b+c+3d; 6a4-2b+c+3d; 
2a+3b+c-H5d; 2a-f3b+6c-fd; 2a+6b+3c+d; 6a+2b+3c+d; 
3a+2b+c+6d; 3a+2b+6c+d; 3a+6b+2c+d; 6a+3b+2c+d. 

Pu = - 55,440 
2! 3! 6! 2*6*720 

Each of the above 24 permutations of the seventh form of distribution has 

55,440 general permutations. 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

Figure 88. A = 12a. Permutations of 1+2+3+6 (continued). 
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55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

Figure 88. A = 12a. Permutations of 1+2+3+6 {continued). 
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55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

55,440 general or 12 circular permutations 

Figure 88. A = 12a. Permutations of I+2+3+6 (concluded). 

Total in general permutations: 55,440*24 = 1,330,560 
Total in circular permutations: 12*24 = 288 

A = a+2b+4c+5d; a+2b+5c+4d; a+5b+2c+4d; 5a+b+2c+4d; 
a-+-4b-f2c+5d; a+4b+5c+2d; a+5b+4c+2d; 5a+b+4c-f2d; 
4a-f-b4*2c-f5d; 4a+b+5c+2d; 4a+5b+c-f2d; 5a+4b+c+2d; 
2a+b+4c+5d; 2a+b4-5c+4d; 2a+5b+c*f4d; 5a+2b+c+4d; 
2a+4b-fc+5d; 2a+4b+5c-H; 2a+5b-f4c+d; 5a+2b+4c+d; 
4a+2b-fc+5d; 4a4-2b+5c+d; 4a+5b-f2c-fd; 5a-f4b-f2c+d. 

Pl< = —12:_479»°Pf?6Qg « 83,160 
2! 4! 51 2-24*120 

Fyh of the above 24 permutations of the eighth form of distribution has 
83,160 general permutations. See Figure 89 on next page. 
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83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

Figure 89. A = 12a. Permutations of 1+2+4+5 (continued). 
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83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

Figure 89. A = 12a. Permutations of 1+2+4+5 (concluded). 

Total in general permutations: 83,160*24 = 1,995,840 
Total in circular permutations: 12*24 = 288 
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A = a+3b+3c+5d; 3a-+*3bH-5c+d; 3a-H5b+c-f-3d; 5a+b+3c+3d; 
a*+*3b+5c+3d; 3a+5b+3c+d; 5a+3t>-4~c-|-3cl; 3a+b+3c+5d; 
5a+3b+3c+d; 3a+3b+-c+5d; 3a+b+5c+3d; a+5b+3c+3d. 

P* = - ^g-001’600 = 110,880 
3! 3! 5! 6-6*120 

Each of the above 12 permutations of the ninth form of distribution has 
110,880 general permutations. 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 genelral or 12 circular permutations 

Figure 90. A = 12a. Permutations of 1+3+3+5 (continued). 
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110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

110,880 general or 12 circular permutations 

Figure 90. A = 12a. Permutations of (concluded). 

Total in general permutations: 110,880*12 = 1,330,560 
Total in circular permutations: 12*12 — 144 

A « a4-3b-f4c-f4d; 3a+4b+4c-fd; 4a+4b+c-f3d; 4a+b-f3c+4d; 
3a+b+4c+4d; a+4b+4c4-3d; 4a+4b+3c+d; 4a+3b+c+4d; 
a+4b*f3c+4d; 4a+3b+4c+d; 3a+4b+c+4d; 4a-fb+4c-f3d. 

12! 479,001,600 

3! 4! 4! = 6*24*24 
138,600 

Each of the above 12 permutations of the tenth form of distribution has 
138,600 general permutations. 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

Figure 91. A = 12a. Permutations of 1 +3+44*4 (continued). 
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138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

138,600 general or 12 circular permutations 

Figure 91. A *- 12a. Permutations of 1+3+4-W. (concluded). 

Total in general permutations: 138,600*12 = 1,663,200 
Total in circular permutations: 12*12 = 144 

A = 2a+2b+2c+6d; 2a+2b-f6c+2d; 2a-f6b+2c+2d; 6a-f2b+2c+2d 

D _ 12! 479,001,600 . 

P" ~ liTTUT! “ -5^7i5 = M-160 

Each of the above 4 permutations of the eleventh form of distribution has 
83,160 general permutations. 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

83,160 general or 12 circular permutations 

Figure 92. A = 12a. Permutations of 2+2+2+6 (continued). 
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166,320 general or 12 circular permutations 

166,320 general or 12 circular permutations 

166,320 general or 12 circular permutations 

166,320 general or 12 circular permutations 

Figure 93. A = 12a. Permutations of 2+2+3+5 (concluded). 

Total in general permutations: 166,320-12 = 1,995,840 
Total in circular permutations: 12-12 = 144 

A = 2a+2b+4c+4d; 2a+4b+4c+2d; 4a+4b+2c+2d; 4a+2b+2c+4d- 
•2a+4b+2c+4d; 4a+2b-f4e+2d. 

t> _ 12! 479,001,600 . 

P” aTiilflj = TmTS = 207'900 

™Ch 0f the above 6 Permutations of the thirteenth form of distribution has 
207,900 general permutations. 

207,900 general or 12 circular permutations 

207,900 general or 12 circular permutations 

207,900 general or 12 circular permutations 

207,900 general or 12 circular permutations 

207,900 general or 12 circular permutations 

Figure 94. A ~ 12a. Permutations of 2+2+4+4 0continued). 
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207,900 general or 12 circular permutations 

Figure 94. A — 12a. Permutations, of 2+2+4+4 (concluded). 

Total in general permutations: 207,900-6 — 1,247,400 
Total in circular permutations: 12-6 = 72 

A = 2a+3b+3c+4d; 3a+3b+4Q+2d; 3a+4b+2c+3d; 4a+2b+3c+3d; 
2a+3b+4c+3d; 3a+4b+3c+2d; 4a+3b+2c+3d; 3a+2b+3c+4d; 
4a+3b+3c+2d; 3a+3b+2c-}-4d; 3a+2b+4c+3d; 2a+4b+3c+3d. 

Pit = 
2! 3!'3! 4! 

479,001,600 

2.6-6-24 
= 277,200 

Each of the above 12 permutations of the fourteenth form of distribution 

has 277,200 general permutations. 

277,200 general or 12 circular permutations 

277,200 general or 12 circular permutations 

277,200 general or 12 circular permutations 

277,200 general or 12 circular permutations 

277,200 general or 12 circular permutations 

277,200 general or 12 circular permutations 

277,200 general or 12 circular permutations 

277,200 general or 12 circular permutations 

Figure 95. A = 12a. Permutations of 2+3+3+4 (continued). 

The total number of cases: A = 12a 

General permutations: 5280 + 71,280 + 190,080 + 332,640 + 199,584 + 

+ 285,120 + 1,330,560 + 1,995,840 + 1,330,560 + 1,663,200 + 332,640 + 
+ 1,995,840 + 1,247,400 + 3,326,400 + 369,600 = 14,646,024 

Circular permutations: 48 + 144 + 144 + 144 + 72 -t- 144 + 288 + 288 + 
+ 144 + 144 + 48 + 144 + 72 + 144 + 12 = 1960 
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(5) I = a2p (one attack to a combination of two simultaneous parts;. 

The six invariant forms of (2) become elements of the second order: 

Table of 1(5 = 4p) = a2p 

Combinations of these forms in sequence, within the limits of a to c or b 
to d, require the inclusion of the three lower or the three upper parts. 

Combinations of these forms in sequence, within the limit of a to d, require 

the inclusion of all four parts. 
Sequent combinations by two: 

a* 4 b*; a* 4 c*; a* 4- d*; a* 4 e*; a* 4 ft; 
bt 4 c*; bj 4- dt; bi 4 es*, bt 4 ft; 

ct 4d*; ct 4e*; ct 4- ft; 
dt 4- e*; dt 4 ft; 

€t 4" ft- 

Figure 98. Sequent combinations by 2. 

The table above corresponds to two consecutive attacks. Each of the above 

combinations has 2 permutations. 
Further development of attacks is achieved by means of the coefficients 

of recurrence: 

2at 4* bt; 3at 4- 2ct; . . . 
2bt 4- dt 4- bt 4" 2dt; 3ct 4" ft 4* 2ct 4- 2ft 4- ct 4- 3ft*, . . . 

Figure 99. Coefficients of recurrence. 
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The latter, in turn, become subject to permutations (general or circular), as 
well as to permutations of the higher orders: 

at 4~ bt; b* 4- at; at. 4- c*; ct 4* at; . . . 

at 4* bt «= at; b* 4 at = b*; . . . 

Sequent combinations by three: 

at 4- bt 4- Ct; a* 4 b* 4 dt; at 4“ bt 4* e*; at 4- bt 4* ft; 
at 4- ct 4- dt; at 4- ct 4- e2; at 4- ct 4- ft,* 

at 4- dt 4* e2; a2 4* dt 4 ft; 
, at 4- et 4* ft; 

bt 4- ct 4- dt; bt 4- ct 4- et; bt 4- ct 4- ft; 
bt 4~ dt 4- et; bt 4* dt 4" ft; 

bt 4-et 4-ft; 
ct 4- dt 4- e2; ct 4“ dt 4- ft; 

ct 4- et 4* ft; 
dt 4- ea 4- ft. 

The above corresponds to three consecutive attacks. Each of the above 
combinations has 6 general or 3 circular permutations. The latter may develop 
still further through permutations of the higher orders: 

a* 4 b* 4 c* = a*; a2 4 c2 4 b2 = b*; . . . c* 4 b2 4 a* = fj; 
or: 

at 4 bt 4 c* = at; b2 4 c2 4 a* » bt; c* 4 aj 4 b» = ct. 

Further development of attacks is achieved by means of the coefficient- 
groups, which may assume any form. i.e., trinomials, polynomials whose terms 
are divisible by 2, or interference groups: 

3a2 4 bt 4 2ct; 3a* 4 cs 4 2e* 4 2a* 4 c* 4 3et; 

2b* 4 d* 4 2f* 4 bs 4 2d* 4 f*; . . . 

See Figure 101 on the following page. 



Figure 101. Coefficients of recurrence. 

The latter, in turn, become subject to permutations (general or circular) as 
well as to permutations of the higher orders. 

Sequent combinations by four: 

a8 4 ba 4 c8 4 dj; a8 4 ba 4 c8 4 ea; a* 4 bs 4 ca 4 fj» 

a8 4 b* 4 da 4 ea; aa 4 ba 4 da 4* fa; 

a8 4 b8 4e8 4 fa; 

a8 4 c8 4 d8 4 e8; a8 4 c8 4 da 4 fa; 

a8 4 Ca 4 e8 4 fa; 
aa Hh da + ea 4 fa! 

ba 4 Ca 4 d* 4 ea; ba 4 ca 4 da 4 fa; 

bs + ca + ea Hh fa; 

ba + d, + e, +fa; 

Ca 4 da 4 e8 4 fa* 

Figure 102. Sequent combinations by 4. 

The above corresponds to four consecutive attacks. Each of *the above combina¬ 
tions has 24 general or 4 circular permutations. The latter may develop still 
further through permutations of the higher orders: 

aa *4 ba 4* Ca 4* da = a»; a8 4 b8 4 da 4 c8 = b»; . . . 
or: 
aa Hh ba 4" Ca 4" da = aij ba 4“ Ca 4" da 4" aa — ba! • • • 

Further development of attacks is achieved by means of the coefficient- 
groups, which may assume any form, i.e., quadrinomials, polynomials divisible 
by 4, or interference groups: 

4aa 4- ba 4“ 3ca 4- 2da; 2aa 4- ba 4“ Ca 4- 2da; 3aa 4- ba 4“ 3ca 4- d§; 
4aa 4* ba 4- 3ca 4” 2d$ Hh 2aa Hh 3ba 4" ca 4* 4da; 
3aa 4" ba 4" 2ca Hh 3da Hh aa 4- 2ba 4- 3ca 4- da 4* 2aa 4- 3ba 4" ca Hh 2da; . . . 

See Figure 103 on the following page 
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The latter, in turn, become subject to permutations (general or circular) r as 
well as to permutations of the higher orders. 

Sequent combinations by five: 

aa 4- ba 4- ca 4 da 4 e8; aa 4 ba 4 ca 4 da 4 fa; aa 4 b# 4 c8 4 e8 4 fa; 

aa 4 b* 4 da 4 e8 4 ft; 

ba 4 Ca 4 da 4c» 4 fa* 

Figure 104. Sequent combinations by 5. 

The above corresponds to five consecutive attacks. Each of the above combina¬ 
tions has 120 general or 5 circular permutations. The latter may develop still 
further through permutations of the higher orders: 

a* 4 ba 4 c* 4 da 4 e* «= a*; at 4 ba 4 ca 4 e8 4 da =* ba; . . . 
or: 

at 4 ba 4 ca 4 da 4 ea a*; b8 4 c8 4 d8 4 e8 4 a8 = bi; . . . 

Further development of attacks is achieved by means of coefficient-groups, 
which may assume any form, i.e., quintinomials, polynomials divisible by 5, 
or interference groups: 

2at 4 ba 4 2ca 4 da 4 2e8; 
5a8 4 ba 4 4ca 4 2dt 4 3et 4 3a8 4 2ba 4 4ca 4 da 4 5e8; 
3a8 4 b8 4 3c8 4 d8 4 3ea 4 a8 4 3b8 4 c8 4 3da 4 e8; . . . 

See Figure 10S on the following page 
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Figure 105. Coefficients of recurrence. 

The latter, in turn, become subject to permutations (general or circular), as 
well as to permutations of the higher orders. 

The sequent combination by six (a* 4“ ba 4* c* + di 4- e* + f*) has 720 
general or 6 circular permutations. 

Figure 106. Sequent combinations by 6. 

The latter may develop still further through permutations of the higher orders: 

a« + b* + c* + d* + e» + f* = n«1 aa 4- ba 4- ca 4* da 4~ fi 4* ea = b*; . . . 
or: 
aa + ba + ca + da + ea + f» = aa; ba + Ca + da 4* ea + fa + at = bj; . . . 

Further development of attacks is achieved by means of the coefficient-groups, 
which may assume any form, i.e., sextinomials, polynomials divisible by 6, or 
interference groups: 

3aa 4-bt 4- 2ca 4* 2da 4” ea 4“ 3ft; 
3aa 4" ba 4" 2ca 4" 2da 4“ 3ea 4- f» 4~ 2aa 4* 2ba 4" 3ca 4" da 4* 2et 4*'2f«; 
5aa 4- 4ba 4- 3ca 4* 2da 4" ea 4" 5fa 4* 4aa 4- 3ba 4- 2ca 4- da 4- 5ea 4- 4f* 4* 
4“ 3aa 4" 2ba 4" ca 4“ 5da 4“ 4ea 4“ 3fa 4“ 2aa 4" ba 4“ Sea 4- 4da 4" 3ea 4* 
4* 2fa 4^aa 4" 5ba 4- 4ca 4- 3da 4- 2ea 4- f*; • • • 

Figure 107. Coefficients of recurrence (continued). 
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The latter, in turn, become subject to permutations (general or circular), as 
well as to permutations of the higher orders. 

(6) I =* a3p (one attack to a combination of three simultaneous parts). 

The four invariant forms of (3) become elements of the second order: 

c d d d 
= a8; - bj; S. = cj; c = d*. 

a a a b 

Any combination of these forms in sequence requires the inclusion of all four 
parts. 

Sequent combinations by two: 
aa 4* ba; aa 4* Ct; aa 4- da; 

ba 4“ Ca; ba 4" da; 
Ca 4- da. 

fi_ 
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Each of the preceding combinations has 2 permutations. The latter may 
develop further through permutations of the higher orders: 

a* 4 b* = a*; bi 4 a* = b*. 

Further development of attacks is achieved by means of the coefficient- 
groups, which may assume any form, i.e., binomials, polynomials divisible by 
2, or interference groups: 

2a* 4 b*; 3a* 4 2b*; . . . 
2a* 4 b* 4 a* 4 2b*; . . . 
3a* + 2b* 4 a* 4 3b* + 2a* 4 b*; . . . 

Figure 110. Coefficients of recurrence. 

The latter in turn become subject to permutations (general or circular), as well 
as to permutations of the higher orders. 

Sequent combinations by three: 

a* +• b* 4 c*; a* 4 b* 4 d*; a* 4 c* 4 d*; b* 4 c* 4 d*. 

Figure 111. Sequent combinations by 3. 

These correspond to three consecutive attacks. Further development of attacks 
is achieved by means of the coefficients of recurrence. Each of the above com¬ 
binations has 6 general or 3 circular permutations. The latter may develop 
further through permutations of the higher orders: 

a* 4 b* 4 c* = a*; a* 4 c* 4 b* = b#; . . . 
or: 
a* 4 b* 4 c* — a*; b* 4 c* 4 a* = b*; . . 

Further development of attacks is achieved by means of the coefficient- 
groups, which may assume any form, i.e., trinomials, polynomials divisible by 
3, or interference groups: 

3a* 4 b* 4 2c* ; . . . 
3a* 4 b* 4 2c* 4 2a* 4 b* 4 3c*; . . . 
2a* 4 b* 4 c* 4 a* 4 2b* 4 c* 4 a* 4 b* 4 2c*; . . . 

See Figure 112 on the following page. 
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Figure 112. Coefficients of recurrence. 

The latter, in turn, become subject to permutations (general or circular) r as 
well as to permutations of the higher orders. 

The sequent combination by four (a* 4 b* 4 c* 4 d*) has 24 general or 4 
circular permutations. 

Figure 113. Sequent combination by 4. 

The latter may develop further through permutations of the higher orders: 

a* 4 b* 4 c* 4 d* ~ a*; a* 4 b* 4 d* 4 c* = b*; . . . 
or: 
a* 4 b* 4 c* 4 d* = a*; b* 4 c* 4 d* 4 a* » b«; . . . 

Further development Of attacks is achieved by means of the coefficient- 
groups, which may assume any form, i.e., quadrinomials, polynomials divisible 
by 4, or interference groups: 

4a* 4 b* 4 3c* 4 2d*; 
5a* 4 b* 4 4c* 4 2d* 4 2a* 4 4b* 4 c* 4 5d*; . . . 
2a* 4 b* 4 c* 4 2d* 4 a* 4 b* 4 2c* 4 d* 4 a* 4 2b* 4 c* 4 d*; . . . 

Figure 114. Coefficients of recurrence. 

(7) I = a4p (one attack to a combination of four simultaneous parts). 

One invariant form: d 

a 
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Multiplication of attacks is achieved by direct repetition: A = a*; 2as; 

3a*; . . . ma*. 

Further variations may be obtained by means of permutations of the vertical 
(simultaneous) arrangement of parts. The extreme * of a given position must 
serve as a limit, that is, for a position above the original, the function, d, is 
the limit for the lower function. For a position below the original, the function, 
a, is the limit for the upper function. 

The original position in relation to all the upper and all the lower positions 

is as follows: 

c 
b b 

Figure 116. Relation to original position. 

Positions indicated by the brackets are identical in the different octaves. 

It is desirable to use the adjacent positions in sequence. 

From-the above variations of the original position, any number of attacks 

may be-devised. 

987 STRATA OF FOUR PARTS 

Voice-leading from the adjacent positions 
(long durations) 
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Figure 118. Multiplication of attacks (concluded). 

C. Instrumental Forms of S = 4p 

Material: 

(1) melody with three couplings: 

M 

Piv 
Pm 
Pii 

Lpi J 
(2) harmonic forms of four-unit scales; 

(3) four-part harmony; 
(4) four part stratum (S) of any compound harmony (2) 

Piv 

I - a: (24 general or 4 circular permutations) 
Pii 
Pi 

d, 
D 

b* 
(24 general or 4 circular permutations) 

a* 

md* 4-nd* 4. pd* 4. qd* 

me* 4. nc* 4. pc* 4- qc* (24 general or 4 circular permutations of the coefficients 
mb* 4- nb* 4. pb* 4- gb* m, n, p, q). 

raa* na* pa* qa* 
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1. Melody with three couplings* Illustrated .by theme and variations. 
See figures 119 to 125 inclusive. 

Figure 121. Variation I. 
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2. Harmonic forms of four-unit scales. Illustrated by theme and ten 

variations. See figures 126 to 136 inclusive. 

STRATA OF FOUR PARTS 

Figure 128. Rhythmic variation of the theme, 



Figure 136. Variation X. 
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3. Four-part harmony. Illustrated by a theme and six variations. 

See figures 137 to 143 inclusive. 

Figure 140. Variation III. / = o, + ft, + c, + -f g, -f/,. 
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Figure 142. Variation V. 

Figure 145. Variation I. 
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Figure 147. Variation III. 

■I
lf
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Individual attacks emphasizing one, two, three or four parts can be com¬ 
bined into one attick-group of any desirable form. 

Examples: 

d d 

c c ccc 
b b b bbb b 

I(S = 4p): aaaaaa ; aa a a ; 

d dddd ddd 

ccc cccc 

bbb bbbb 

aaa aa ; aa a ; 

d ddd ddddd 

ccc ccc ccc 
bb b bbbbb b 

aaaaaa aaa] 

ddddddd 

cc ccccc 
bbbb bbb 

aaaaaa a ; 

d d ddd 

c ccc c 
bbb b b 

aa a a a ; 

d d ddd; 

c cc ccc 
bbb b bb bb b 

aa a a ; aa aa a ; 

d c 
c d 

dddddd 

ccccccc 
bbbbbbb 

aaaaaa 

a 
dddd d d 

ccc ccc cc 
bb b bbb b 

a aaaaaa ; . . . 

d 

Figure 148. Combining individual attacks, 
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CHAPTER 6 

THE COMPOSITION OF INSTRUMENTAL STRATA 

A. Identical Octave-Positions 

TN order to employ various instrumental groups as strata (S) in a simultaneous 
A coordinated performance, it is necessary to arrange these instrumental strata 
into identical octave-positions—a requirement which must be carried out with 
utmost rigidity, as any deviation from it will result in a loss of acoustical quality, 
particularly when one is dealing with orchestration. 

When simultaneous pitch assemblages are in identical positions, their har¬ 
monics and their combination-tones (tones of the difference)* are similar. 

When such assemblages are in non-identical positions, their harmonics and their 
combination-tones do not appear in acoustical balance, the latter being achieved 

only when the ratio between all audible tones bearing identical names equals 
2 or 4 or 8, etc. 

This principle refers to all cases when the strata constitute a multiplication 
of one harmonic stratum. However, when different harmonic strata are used in 

superimposition (as I shall shortly show when I discuss my general theory of 
harmony),** their positions are independent; but if any of the superimposed 

harmonic strata of a harmonic 2 (compound harmonic structure) are duplicated 

in adjacent octaves as instrumental strata, the principle of identical positions 
for one harmonic stratum holds true. 

To achieve acoustical balance between clockwise (“open") and counter¬ 
clockwise (“close") positions of the assemblages, it is necessary to align both 
instrumental strata in such a way that their upper instrumental functions will 
be identical. 

If we designate the lower instrumental stratum as Si and the upper adjacent 
stratum as Sj, then the instrumental score (2) takes on the following form: 

S = 2p; 2 = 2S 

“s*l b 

J a i! 
sA b 1 

L a J 

identical positions 

•Tones of the difference—or _ differential a real tone and may be heard clearlv on instru- 
tones—are tone* produced by pairs of other ments producing nearly “pure” frequencies, 
tones. The frequency of a differential tone is -—(Ed.) 
equal to the frequency of the higher tone minus 
that of the lower tone. The differential tone is **See pp. 1074 ff., 1110 ff., 1139 ff. 
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Superimposition of two non-identical positions for S = 2p is obviously im¬ 
possible; there is, however, another variant foi the identical positions: 

Figure 150. S = 2p. 

Theme: 

Instrumental octave-coupling 

Instrumental Variation I. 

Figure 151. Theme and instrumental variations {continued). 

THE COMPOSITION OF INSTRUMENTAL STRATA 1005 

Instrumentaljyariation II. 

Figure 151. Theme and instrumental variations. (concluded) 
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S2 

Si 

Figure 153. Non-identical positions. 

The principles on which close and open positions of the same assemblage, 
S, can be brought into octave coordination, may be expressed as follows: 

(1) both instrumental strata are in close position; 
(2) both instrumental strata are in open position; 
(3) the lower instrumental stratum (Si) is in open position, and the upper 

instrumental stratum (Sa) is in close position. 

Theiue: 

Sa 

Sa 

Si 

Figure 154. Theme and instrumental octave-coupling. 

The reversal of (3) conflicts with the normal distribution o£ harmonics, 
which will deprive the 2 of its acoustical clarity. This means: whatever the 
number of instrumental strata aligned in octave coordination, there must never 

he an open position above a close. 
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All the above described principles and regulations hold true for the four- 

part assemblages as well. 

S = 4p; 2 = 2S 

See Figure 157 on the following page. 
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TT TT 

Figure 157. Identical Positions. 

The above table shows all cases of identical positions. The forms marked 
by the asterisk are the practical ones for general use, as the distribution of all 
four functions is confined to .a one-octave range. This permits more than one 

octave-duplication when necessary. All o&er positions of this table are practical 

mostly for one stratum instrumental forms, particularly for fingerboard and key¬ 
board instruments. 

Non-identical positions with identical upper functions are most practical 
when constructed from the preceding forms marked by the asterisk (the latter 
are clockwise circular permutations when read upward): 

See Figure 158 on the following page. 
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The above table represents matched pairs of S, the upper (Si) being in 

dose—and the lower (St) in open position. The choice of one or another form 
depends on its suitability to the type of orchestration—considerations of range, 

register, and adaptability to instrumental execution. 

It is desirable that, in the case of octave duplication of an open position, 

all instrumental strata (in the open position) be identical. 

If extra parts are added to a three-part or a four-part assemblage, such in¬ 

dividual consecutive parts form their own instrumental strata and may be sub¬ 

jected to couplings for such a purpose. Whether the added part appears below 
or above the assemblage, its couplings must be always constructed xn Ike outward 
direction. Thus, melody appearing above harmony must have couplings above 

its original functions: 

Pin 
M _ Ell. } where pi is the original function- of melody and Pn, 

’ pf 
Pin, ... are its couplings. 

The bass, on the contrary, must have couplings below its original functions: 

Pi 
B =» EL- p^~. . . , where pi is the original function of the bass and 

PlI> E5 
Pn. Pin. • • • are its couplings. 

Forms of instrumental strata appearing in simultaneous coordination may 

assume different degrees of density. For instance: 

(2) 

I (S4) - a4p 

I (Sa) = a3p 

I (Sa) = ap 

I (Sa) - a2p 

B. Acoustical Conditions for Setting the Bass 

The form, S = 3p, either appears independently or in octave duplications. 
To such three-iinrl harmony, a fourth part may be added and it is usually the 
harmonic bass, which is actually an added part and must be treated as an inde- 

pendent S = p when it has no couplings. This fourth part may also be subjected 

to outward couplings. Neither the bass nor any of its couplings should ever cross 
anj’ of the functions of the adjacent upper assemblage. 

S = 4p appears independently or in octave duplications. In hybrid five- 
part harmony, the bass is an added part and must be treated as an independent 

S = p; as in the preceding case, it may acquire outward couplings, but neither 

its original functions nor the couplings should ever cross any of the functions of 
the adjacent upper assemblage. 

When four-part harmony appears independently, that is, without a bass 

as such, the entire S must be subjected to octave-coupling, but never any in¬ 

dividual functions nor any combinations thereof. This principle applies to close 
positions. Harmony appearing in open position and in the lower instrumental 
stratum may have an octave doubling of its lower function (i.e., the bass voice 

of four-part harmony), whichever meaning this function may assume harmonical¬ 
ly. This does not prevent us from doubling the entire stratum in the adjacent 
upper stratum either in open or in close position. 

Theme: 

Figure 159. Theme and instrumental octave-coupling (continued). 
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Figure 160. Instrumental variations (continued). 

Figure 160. Instrumental variations (concluded). 

It is obvious that instrumental variations of Figure 160 are complete and 
self-sufficient scores of harmonic accompaniments. They may be subjected to 
orchestration without their forms being changed. 



CHAPTER 7 

SOME INSTRUMENTAL FORMS OF ACCOMPANIED MELODY 

NOW that a systematic classification of all instrumental forms-I (S - p, 2p, 
3p and 4p)—and their applications to individual fields of melody and har¬ 

mony has been completed, we shall evolve some of the most-typical formf? 
combined applications. The most universal of the latter is, undoubtedly, wriody 
with harmonic accompaniment, and this involves both harmonization and melo- 

dization. 

A. Melody with Harmonic Accompaniment 

The following considerations specifically pertain to this problem: 
(1) The melody should not cross any of the harmoruc parts; it may be 

placed above, between, or below any of the harmonic strata—the various 
styles of melodization and harmonization being each subject to limita¬ 

tions. When the melody is below the lower instrumental stratum of 

harmony, any harmonic bass must be completely eliminated. The 
number of instrumental strata depends on the range of melody (or 

of melody with its couplings). None of the couplings of melody should 
ever cross any of the parts of the adjacent harmonies, whether above 

(2) Couplings added to the original melody may be placed above it, or 
below it, or they may surround it. The number of couplings is optional. 
The most common form of coupling is the octave. Other intervals-as 

well as the filling in of the octave with other intervals—may also be 
used. Consonant as well as dissonant harmonic intervals may be used, 

the selection of one or the other being a matter of style. The 19th century 
favored thirds and sixths; the 20th century, on the contrary, features 

fourths, fifths, sevenths, and seconds as couplings. All couplings of 
melody accompanied by harmony must be diatonic, i.e., they must 
conform to the pitches of accompanying harmonic structure (auxiliary 

tones being neglected). Thus, if a third is selected as the coupling, it may 
be major against some chords and minor against some other chords. 

Instrumental Variation of Accompanied Melody 

Figure 161. Theme. Melodization of harmony of figure 108 (continued). 

(10181 
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Figure 164. Instrumental variation III (continued). 
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Figure 164. Instrumental variation III (concluded). 

B. Instrumental Forms of Duet with Harmonic Accompaniment 

The principles on which instrumental variations of an accompanied duet 
may be devised are: 

(1) If and Mu do not cross each other at any point, then 1iaUmic coup¬ 

lings may be used in either or in both parts. If both parts are coupled, 

their respective couplings may be either identical or non-identical. 
Neither of the two melodies nor any of their couplings may cross any 

of the parts of accompanying harmony. Crossing melodies should have 
no couplings. 

(2) The harmonic bass may be used only if both melodies are placed above 

the harmony; in all other cases, s* ch a bass must be eliminated. All 

the following positions are acceptable (H * referring to harmony with¬ 
out bass): 

Mi 
Mi Hr Mi 

(a) 

Mil 
(c) Mi 

Mu "l; 
(e) — 

Mu 
Bass Mu H~* 
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Instrumental Vkri&tion 

»| y fff ? f f f jk ± 

" _ 

j n - n - n „ .n , , 
* ii L 1 * JjJ 
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• 

V V V y h y —' h Y IP 

Figure 165. Theme. Two part mdodization of figure 3. 
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Figure 166. Instrumental variation (concluded). 

% 

CHAPTER 8 

THE USE OF DIRECTIONAL UNITS IN 

INSTRUMENTAL FORMS OF HARMONY 

f"V^CE the auxiliary tones to be used have been pre-set, they may be used 

_ as a part of the general technique of instrumental forms. There are no 
limitations to the sequent use of auxiliary tones in instrumental strata. Any 
instrumental stratum may or may not have directional units. In the case of 

one instrumental stratum, this proposition will always hold true; in the case 
of several instrumental strata broken into various forms of arpeggio in sequence 
(single, double, triple and quadruple attacks), it is preferable to adhere to the 
acoustical set, i.e.,- to use directional units in the uppermost stratum. 

In simultaneous groups of strata, directional units may be used in strata 
of identical octave-duplication of simultaneous assemblages only when such 
strata belong to different tone-qualities; otherwise the subsequent orchestration 

will lack clarity. In some instances, a compromise may be affected by juxta¬ 

position of contrasting attacks or by extremely contrasting speeds in the two 
respective instrumental strata. For example, a part with directional units may 
be played legatof and a part with neutral units only may be played staccato; or 
one part may move by sustained half-notes while the other produces instrumental 
figuration in eighth-notes, with the latter using the directional units. 

All other forms of melodic figuration—such as suspensions, anticipations, 
and passing tones—must either not be used at all, or else be treated as chordal 

functions, which would mean they should be in the instrumental strata evolved 
through octave-duplication. 

Examples of the Instrumental Forms of Harmony 

Containing Melodic Figuration 

Figure 167. Theme and instrumental variations (continued). 

f10271 
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Instrumental Variation H. 

Instrumental Variation HI. 

Figure 167. Instrumental variations (continued). 

USE OF DIRECTIONAL UNITS 1029 

Instrumental Variation IV. 

Theme: appended, passing and anticipated tones applied to a given 
chord-progression. 
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Instrumental Variation 
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CHAPTER 9 

INSTRUMENTAL FORMS OF TWO-PART COUNTERPOINT 

THE principles we have already established for instrumental forms of ac¬ 
companied duet, apply to an unaccompanied duet as well. Thus, a canon 

or a fugue may be subjected to instrumental variation. However, as polyphonic 
duets have a considerable degree of mobility, the main aspect of this technique 

lies in the utilization of couplings, as such. 

When correlated melodies are unaccompanied their couplings become auto¬ 

matic, i.e., once the coupling has been selected, its form—or their forms does 
not vary throughout the entire composition. Couplings of Mr and Mu may 
have independent forms. Selection of the automatic couplings is left to the 
composer's discretion. Such couplings attribute , to the counterpoint a certain 
persistent harmonic flavor. It is to be expected that the two contrapuntal parts 
supplied with couplings will frequently clash with each other; but without this, 

the music would lack harmonic contrasts. 

The number of couplings added to each part is also optional. The two 
contrapuntal parts may each have a different number of couplings. For ordinary 
purposes, the addition of one or two couplings to each part suffices, and doing 

this attributes to the polyphonic texture a definite and individual harmonic 

quality. 

With a considerable number of couplings added to each contrapuntal part, 
composition of continuity based on variable density (low, medium, high) becomes 
possible. Schemes of density variation may be worked out in a fashion similar 
to that used in the treatment of density as described in my earlier discussion 
of two-part melodization.* All the more detailed and elaborate forms of con¬ 
tinuity based on coupled polyphony will be discussed when I come later to the 
general theory of composition. For the time being, many valuable results 

may be obtained through the use of initiative in combining factorial continuity 

with couplings and instrumental forms. 

Below is a table which suggests in detail the system by which more forms 

of couplings may be obtained. As in most cases there is a definite predominance 

of a certain harmonic interval occurring as between Mj and Mu, it is advisable 

to select a specific coupling wjjich satisfies some particular occasion in relation 
to this predominant interval; then the chances of producing this particular har¬ 

monic sonority will increase. 

Couplings, as in all earlier cases, may be distributed below or above the 

original pitch unit. Pitch units as well as their couplings are subject to octave- 

couplings. 

•See Vol. 1, p. 700. 

110321 

Figure 169. Exemplary table of automatic couplings. 

The couplings are marked by the black notes. Similar tables may be de¬ 
veloped witii regard to other harmonic intervals. We shall now refer to examples 
of application of this technique. 
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Fugue with Automatic Couplings 
(Two Parts) 

5T-JL+ 5T 
CP 

Two Part Fugue* 
Type III: Superimposed Coupling 

CF giy CF + cpl Qy eto. 
OP CP CP+opI 

INSTRUMENTAL FORMS OF TWO-PART COUNTERPOINT 1035 

by Richard Benda 
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Figure 173. Variation (conclude#). 

CHAPTER 10 

INSTRUMENTAL FORMS FOR PIANO COMPOSITIONS 

WAITING for pianoforte requires a highly specialized technique be- 
cause of peculiarities in execution of music for this instrument. Human 

beings are bi-fold; they have right and left arms and hands, and they have two 
sets of fingers arranged in bi-fold symmetry. Because of the strength of the 

thumb and the relative weakness of some of the other fingers, an extensive 
exercise system has been developed for the purpose of equalizing the striking 

poJJ!erJ’f “ various fingers. But this equalization has never been completely 
achieved. The better pianists, however, have a fair approximation to uniformity 
m this respect—close enough for practical purposes. 

Nevertheless, certain characteristics remain invariant owing to the bt-fold- 
ness of the finger arrangement. One of these characteristics is the excessive 
staking power of the thumb; it leads to an adaptation of some patterns of instru¬ 

mental forms to piano writing. For example, it is easy and natural in a con¬ 

secutive group of arpeggio figures to single out the lower instrumental function 
(producing the effect of self-accompanied melody) when such figures are played 
by tiie nght hand, or to single out the upper function, when played by the left 
hand. 

This fact and existing pia literature- to which techniques of execution are 

more or let, adjusted (e.g., the convention that instrumental forms of har- 

P yed M8tly With ** !eft h“d)-ha« created a whole system 
of digital habits which are so crystallized by now that very few composere— 
particularly if they are pianists themselves—can develop any really independent 
style of piano writing. 

The purpose of this discussion is to demonstrate the inexhaustible resources 
of instrumental forms and possibilities, so as to enable the composer to develop 
any number of his own individual styles. 

The principles of natural acoustical arrangement, i.e., the contraction of 
harmonic intervals in the direction of increasing frequencies (upward direction 
of pitch) and the octave duplication of identical positions of assemblages com¬ 
bined with the principle of outward coupling, hold true in piano writing as well, 
i he use of directional units remains the same as in all other instrumental forms 
previously described. 

, Jh<l onIy Peculiarity which is typical of piano writing is the execution of 
melody in octave coupling filled out by other functions of the same assemblage, 
n some cases, not all of the functions of an assemblage are used, although certain 

lingers will remain unengaged. The most customary forms are the thirds from 

[10431 
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the upper or the lower instrumental function, or the third from one function 

and the fourth from another. However, these conventional forms of duplication 

are influenced by their common origin, which is harmonic, i.e., the use of b(5) 

and its inversions. 

This viewpoint is well confirmed by present-day American.dance music 

(it has many trade names: jazz,* swing, blues, boogie, etc.), in which it is cus¬ 

tomary to fill any octave coupling with the remaining functions of S(7), or 5*5) 

with added 13th. This method of coupling melody has become so universal that 

its use is a permanent feature of many arrangements and orchestrations under 

the trade name of “block-harmony.” This leads me to the belief that the first 

arrangers and orchestrators of such music were pianists, for the orchestral con¬ 

ception of these instrumental strata couplings is acoustically much more sound; 

the latter correspond to the forms described in this branch. 

Many pianist-composers of the past, such as Chopin and Schumann, had 

very chaotic styles of piano writing, from both the acoustical and the harmonic 

standpoints. This is due to the fact that their compositions emerged from piano- 

improvising—and the latter was based, in their cases, on comfortable positions 

of hands, which in many instances conflicted with the standards of voice-leading. 

And although the piano acoustically can stand almost anything because it is 

primarily a percussive instrument (i.e., an instrument whose sounds fade out 

very rapidly), the orchestral works of these pianist-composers show how they 

had to pay the penalty. Chopin’s own scores of his piano concertos, for example, 

are not played in the composer’s own orchestration! 

As the piano is a frequent participant in ensembles and orchestra, being 

used both as a solo and as an accompanying instrument, it is very desirable 

indeed to apply only such instrumental couplings as are used in orchestral writing. 

It would be of great advantage, both harmonically and acoustically, if the 

amateurish "block-harmony" were eliminated and piano writing were restricted 

to the general forms of instrumental couplings. 

This requirement may be met by following either of these two procedures: 

(1) an octave coupling of melody may be used only in the absence of other 

couplings of the same melody; 

(2) any assemblage may be coupled in identical positions in the adjacent 

octave; all units of the assemblage must be included in the instrumental 

octave coupling if the latter takes place. 

Octave coupling df melody or bass is a comfortable interval for most hands. 

It can be struck without much danger of being missed—hence the popularity 

of octave coupling on the keyboard. 

•Schillinger has suggested that, inasmuch as 
pre-swing jazz is performed in rhythms deriv¬ 
ing from | series, and swing—although written 
in g——is actually performed in || series rhythms, 
the term “jazz'f be reserved for $ style and 
“Swing” be ftsed to denote H style. See his 

article in Metronome, July, 1942. The out¬ 
standing feature of boogie-woogie is the basso 
ostinato, .it must also always be in H Beri.eflT7 
i.e., the characteristic group is (as written in f} 

the triplet, fPf, instead of the eighth, Lf 
(Ed.) 

III! 
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Examples of Conventional Instrumental Piano Forms. 

Figure 174. Theme. Mdodization of harmony. 

Instrumental Variation I. 

Figure 175. Instrumental variation I. 

m
u
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Instrumental Variation II. 

Figure 176. Instrumental variations II, III and IV (continued). 

m
il 
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Figure 176. Variation (concluded). 

The reader may use his own researches to verify how the problem of the 
instrumental form for piano writing was solved by Chopin, Mendelssohn, Schu¬ 
mann, Liszt, Rachmaninov. Scriabine, Debussy, and Ravel. Observe the evolu¬ 
tion of piano styles toward normal acoustical forms* from Scarlatti, Clementi, 
etc., down to Liszt and Rachmaninov. Particular attention should be paid to 
the piano compositions bf Nicholas Medtner.** 

All problems pertaining to the piano’s possibilities as to tone qualities, 
forms of attacks, and dynamics will be discussed when we come to a discussion 
of orchestration. 

The maiu subject of the present study is the systematization of piano forms 
in their relation both to hands and the keyboard. 

*Sce p. 1043. 
••Nicolas Medtner is a contemporary Rtissian a period of years and has toured England, 
composer who was horn in Moscow in 1880 and France, ami the United States as concert 
is now Irving in London. He served as professor pianist. His best-known compositions are for 
of pianoforte at the Moscow Conservatory for the piano. (Ed.) 
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A. The Positions of Hands (R and L) with Respect to the Keyboard 

Designating the right hand as R and the left hand as L, we shall evolve and 

demonstrate the inexhaustible possibilities and diversity of piano styles. 

Fundamental principles: 

(1) L is located below R; or 

(2) L is located above R, crossing over it; or 

(3) R is located below L, crossing over it; 

(4) there are different registral positions for both L and R, and each such position 

emphasizes and corresponds to one instrumental stratum. 

(5) The reasons for crossing R and L are: 

(a) excessive mobility of the instrumental form; 

(b) more comfortable control over a certain instrumental stratum (often 

the melody); 

(6) avoidance of overloading each hand with too many scalewise passages. 

The latter principle was strictly followed by Debussy, but was neglected 
by his predecessors. The utilization of five fingers (and therefore five points) 

in one passage is a very sound and economical principle, quite in contrast to the 
old-fashioned, conventional finger-twisting. To be sure, not too much can be 
done toward revising the fingering in old compositions, but we are here con¬ 

cerned with the writing of new works rather than with the execution of old ones. 

The positions of R and L in their different distributions through the strata 

may refer either to melody, or to harmony, or to a combination of both, as well 
as to two or more correlated melodies; the following examples of positions, 

in other words, may be applied in more than one way. 

The different levels in the table represent the different instrumental strata 

The time sequence of the different positions is represented in the usual manner 
i.e., from left to right. Time periods for the different sequent positions are not 

specified. The entire scheme is evolved geometrically and is based on level, 
ascending, and descending directions—and on the number qjf instrumental strata 

involved. 

Form: 

Gassification of R and L with Respect to Keyboard, Time 
Sequence and the Number of Instrumental Strata. 

S — 2S; Two Staves 

R L R R 
(1) (2) (3) (4) 

L R L L 

L L 

(5) „ (6) „ R R 
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2 «= NS; Two Staves 
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Form: 

R 
R 

R 
(1) R L (2) L R (3) R (4) L 

R L L R 
L R 

L R 

R 
(5) R L 

R L 
L 

R L 
L 

L 

L 
(6) L R 

L R 
R 

L R 
R 

R 

Form: 

R 
R 

R 
R 

(1) L R (2) R L (3) L R (4) R 
L R R L L 

L R L 
L R 

R 
(5) L R 

L R 
' L 

R 
R 

(6) R L 
R L 

R 

Form: 

R L 
R L 

(1) R (2) L 
R L 
LLLL RRRR 

R L 
(3) R (4) L 

R L 
L L L R R R 

R 

(5) R 
R 

L L L 
(6) L 

R R 

Form: 

RRRR 
L 

(1) L 
L 

L 

LLLL 
R R R R 

(2) R (3) L 
R L 

R L 

L L L 
(4) R 

R 
R 

(5) L 
R R R 

(6) R 
L L L 

R 
L R 
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(11) L 
RR R R F 

(12) L (13) L (14) L 
L L L 

LL LL LL LL LL 
(15) R (16) R (17) R (18) R (19) R 

R R R R R 

L L LL LL L L 
(20) R (21) R (22) R (23) R 

R R R R 

LL LL LL L L 
(24) R (25) R (26) R (27) R 

R R R R 

LL L L , L L 
(28) R (29) RR (30) RR (31) R R (32) R R 

R L I L L 

L L L 
(33) R R (34) R R (35) R R 

L L L 

L 
(36) RR 

L 

L L L L 
(37) RR (38) RR (39) R R (40) RR 

L L L L 

L L 
(41) RR (42) R R 

L L 

R 
(43) L L 

R 

R 
(44) LL 

R 

R R R r 
(45) L L (46) L L (47) L L (48) L L 

R R R R 

R R R R 
(49) L L (50) LL (51) LL (52) LL 

R R R R 

R R R R 
(53) L L (54) LL (55) LL (56) L L 

R R R R 
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In a similar way, simultaneous and sequent groups of R and L may be 
developed from the following forms: 

Figure 176. Positions of R and L. 

A still greater degree of complexity may be achieved by means of four- 
staff positions for R and L. It is not necessary to tabulate such forms; they are 

not likely to be used frequently and may be selected for each particular use, 
if and when desirable. 

Many of the cases, which contain several instrumental strata, become suf¬ 

ficiently complex to be represented on more than the two customary piano staves. 

Depending on the position of hands which predominates in each particular 
rase, different combinations of staves with regard to R and L may be con- 

siuered practical. For instance, a harmonic accompaniment, emphasizing two 
or three instrumental strata played by the L, with melody above it played by 

the R requires three staves, the lower two (bass and treble clefs) being executed 
by L; the upper, by R. The case in which L plays the lower and the upper strata 

while R plays the middle stratum requires three staves also, the two extreme 
staves should refer to L; the middle staff, to R. 

A number of composers have utilized the three-staff arrangement. We find, 
moreover, a four-staff arrangement in Rachmaninov’s Prelude in Cft-minor, 
and a five-staff arrangement in N. Cherepnin’a First Piano Concerto. In the 
latter rase, in my opinion, three staves would have been entirely adequate. 
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Examples of Positions of R and L 

Theme: 
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Ju, 
Instrumental Variation: RRRRR 8 staves 

I,*- 
H1=T= 15tj H#+H8 =0t + 6t;_ 
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INTRODUCTION TO STRATA HARMONY 

My general theory of harmony denotes the whole manifold of techniques, 
which enable the composer to write directly for groups of instruments or voices. 

Every score (chamber music, symphonic, choral or operatic) consists of parts 
for such individual instruments as piano, harp, or organ, and for those instru¬ 
ments which generally appear in groups, such as clarinets, violins, or trombones. 

To'evolve the required techniques for composing these scores, it is necessary 
to discover, first, the principles which control the behavior of individual parts 

and groups; and, second, the principles by which these individual parts and 
.groups may be coordinated. 

We also know that the field to which the theory of the behavior of groups 
or assemblages of pitch-units belongs is the field we call harmony. Therefore, 

the solution to .this whole problem lies in the generalisation Of harmonic prin¬ 
ciples. This generalization must emphasize structures, .their coordination in 

simultaneity and continuity, progressions, and directional units; it must general¬ 
ize structure to such an extent that sequent structures will be convertible into 
simultaneous structures and vice versa. This means the introduction of scientific 
system in place of the old musical dualism of melody and harmony. Our theory 

must also enable us to coordinate any number of melodies, the derivation of 

which is harmonic. Thus we see that the manifold of harmonic techniques, 

although it is immense in its scope per se, becomes merely a subsidiary pro- 
pedeutics to the art of composing for groups. 

My general theory of harmony, I may say, satisfies all of the requirements 
just stated; it is the first scientific system crossing the threshold of the sanctum 
sanctorum of musical creation. 

Contrary to what was the case in my special theory of harmony, this sys¬ 

tem has not been based on observation and analysis of existing musical facts 
only; it is entirely inductive. General harmony does not conflict with any of the 

principles of special harmony, but it gives them a broader interpretation instead. 
As a system, then, special harmony is but one case of general harmony. 

The General Theory of Harmony discloses the real principles of harmonic 
creation.* It is particularly gratifying to me that, being an inductive system, 

this theory gives us direct interpretations of musical facte found in such remote 

regions of musical creation as the polyphony of Palestrina, the synjphonic style 

of Mozart, the bizarre” harmonies of Ravel, or the tone-clusters of some of our 

of*SiS?1 IEGTerALhcory ™°hUity of the instrumental form of a part 
writ™d*fines the quantity of harmonic parts”: ce., 

l? Chapter 7 of the present book, “is where one instrument may perform an instru- 
w 8COrin/ of ■“ ***- form of 2, or 3, or 4 pS harZiy. 

wble combinations of instruments, voices, or Nevertheless, the arrangements made by 
wVC ‘ w°rd8- the present book students who had completed this book were 
Jays the groundwork and presents some of the so rich and arresting that other students, who 

? ^P,n?er 8 of °r_ had not reached this h°ok, assumed that 
tifwL orchestration not such arrangements had been made on the basis 

included m this book is the assigning of instru- of the Theory of Orchestration. (Ed.) 
mental combinations to harmony “where the 

(1063] 
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contemporaries. Besides covering all known styles of music, both in folklore 
and in the creations of individual composers, it shows that an inexhaustible 

number of new individual styles is available, and that the possibilities of the 
twelve-unit equal temperament scale can outlive the life-span of music itself. 

The nomenclature I shall use is: 

p, 2p, 3p, and 4p = simultaneous pitch-units (parts). 
S = simultaneous structure, stratum. 

2 (sigma) = compound structure of strata. 
2 (2) (the sigma of a sigma) = complex compound structure (compound struc¬ 

ture of sigmae). 

Pi. Pii» Phi. etc. =* parts of simultaneity s a, b, c, . . . etc. 
Si, Sn, Sin, etc. = structures of simultaneity. 
2p 2n, 2in, etc. = structures of simultaneity. 

Si, Sj, S», etc. = structures of continuity. 

2i, 2i, 2s, etc. = structures of continuity, 
i = pitch-interval unit (semitone). 
I = pitch-interval group (of semitones), 
p = ascending directional unit (a—b_+, c_», d_>). 

p--> = descending directional unit (a~*, IT*, c~*, d~*). 

p_* = sequent part (sequent pitch unit). 
S“* = sequent structure (pitch-scale, directional pitch-scale). 
2”* = sequent compound structure (pitch-scale derived from all strata of the 2). 

Hi, Hj, H», etc. = chords in successive enumeration. 

H*“* = progression of chords. 

CHAPTER 1 

ONE-PART HARMONY 

A. One Stratum of One-Part Harmony (S = p) 

'T'HE Sp represents a constant or a variable function of a potential assem- 

A blage, 2. It may also have an independent existence, in which case it re¬ 

presents a constant function a, since it is a root-tone. In both cases, it becomes a 
melody harmonically defined. 

Progressions of Sp may be evolved through any desirable scale selected 
from any of the four groups. Either tonal cycles or simply permutations of 
the pitch-units may control such progressions. It follows from the foregoing 

statement that progressions of Sp may be either diatonic or symmetric. (It is 

correct to think of all the diatonic scales as special cases of symmetry—where 

symmetric roots are 2, 4, 8, . . . n, i.e., where they are arranged in an octave 
or in a multiple-octave recurrence). 

A one-unit scale of the first (and ipso facto of the second) group constitutes 
the progression known as pedal point.* A one-unit scale of the third or the 

fourth group constitutes a progression consisting of a group of successive pedal 
points, each pedal point representing a root of symmetry.** 

All other forms of Sp progressions, in most known instances, represent a 
basso continuo (so-called general bass, figured bass, or thorough bass). Under 

the conditions of general harmony, Sp may appear in any vertical relationship 

to any other S of the 2, which means that when Sp assumes the role of a bass, 

it is simply one special case among the possible cases. In special harmony, Sp 

progressions appeared as a constant root-tone in harmony composed of S(5) 
in the classical system, and as a variable chordal function of S(5) in harmony 

of S(6) and S(f), as the third or the fifth of the chord. 

As one chordal function cannot reciprocate with itself, it has no trans¬ 
formations. Its variability depends on a potential 2, as in the cases described 

above. Yet, as we learned from the theory of melodization, a constant function, 

a, may become a constant function b, or c, or d . . . etc., which is dependent on 
the potential 2. 

The meaning of these constant chordal functions in the light of special 

harmony is confined to function a’s being the root, function b's being the third, 
function c s being the fifth, etc. But one must now bear in mind that the root, 

the third, the fifth, etc., are nothing but the degrees of certain seven-unit scales 

in their Ei. therefore, the constancy of a chordal function may refer to any 
degree of any scale in any of the four groups. 

We shall make extensive use of Sp progressions in this study as a desirable 
—and often necessary—supplement to other strata of the 2. No illustrations of 
independent progressions of Sfe are necessary. 

*That is to say, when the scale is a one-note **The reference here is to the four groups 
scale, the progressions available are: one. A of scales descrilied in Vol. I, pp, 103, 133 148 
single-note progression, so far as one-part anti 155. (Ed.) 
harmony goes, is a pedal point. (Ed.) 
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CHAPTER 2 

TWO-PART HARMONY 

A. One Stratum of Two-Part Harmony (S = 2p) 

SSEMBLAGES which serve as two-part harmonic structures are the two 
pitches of two-unit scales brought into simultaneity. As the number of two- 

unit pitch-scales is eleven * there are that many two-part harmonic structures. 

4 
Illustrations of S == 2p 

All structures of S2p 

♦ Buharnumically 
uelf-reeipioeatiiig 

Figure 1. AU structures of S2p. 

Each scale, as we know, may be expressed through the quantities of interval- 
units; if we enumerate the possible structures as Si, St, St, . . . we obtain their 

equivalents in the forms of I. 

I (Si) = i; I (St) - 2i; I(S,) = 3i; . . . I(SM * Hi) 

Progressions of S2p for any one of the eleven forms of S may be evolved 
through any desirable scale from all four groups. Either tonal cycles or per¬ 
mutation of pitch-units may control such progressions, which may be executed 

in any form of symmetry, including generalized symmetry as well. It is ex¬ 
pedient, for this reason, to develop progressions of S2p under different diatonic 

and symmetric conditions. However, only the seven-unit scales with non¬ 
identical pitches permit the use of all types of structure in diatonic progressions 
—and even then “all structures’' means all structures .within the diatonic scale. 

In this system we shall regard all the possible diatonic structures as con¬ 

sisting of adjacent pitch-units in a given scale under a certain form of tonal 
expansion. Therefore, the structures of Eo of a natural major are all seconds: 

c» I’ e» • • • » ete- L^ew^ae> ^1 structures of Ei, in the same scale are all thirds; 

f* a- !• • - etc- 

•That is, It within the limits of a 12-aemitone octave. (Ed.) 
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Structures, diatonic with respect to natural major. 

S (E0) 

'S(It) 

S(Ea) 

S(E»), S(E4), S(Es) constitute reciprocity 

Structures, diatonic with respect to Chinese Pentatonic. 

S(S0) 

S(Bt) 

S(Ea) 

S(Ej) reciprocates with S(Eo) 

Figure 2. Diatonic structures. 

As the number of diatonic structures (i.e., structures corresponding to combina¬ 
tions of musical names and not to the exact quantities of i) corresponds to the 

number of tonal expansions (including E0), the number of such structures in 
any of the above defined seven-unit scales is six: 

S(Eo) ® second; S(Ei) s third; S(Ej) m fourth; 
S(Ej) a fifth; S(E4) a sixth; S(Eb) a seventh. 

This number has to be reduced practically to three, for the six forms include 
three mutually reciprocating pairs in octave-inversion. 

Whether S(Ei) be assumed to be |—causing S(E4) to be merely an inversion 

of S(Ei), or whether it is the opposite, makes a purely theoretical difference. 

Once the transformations take place, the forms begin to reciprocate, and the 
question as to whether the sixth is an inversion of the third, or the third is an 

inversion of the sixth, is a metaphysical rather than real one. 
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It is easy to see from the above discussion that scales with fewer than seven 
units (providing they are diatonic and not symmetric) do not provide diatonically 

constant structures under any desirable tonal expansion. 

For this reason, whenever the composer wishes to use a constant diatonic 

structure in a diatonic progression, he should evolve his harmonic progressions 

from the seven-unit scales with non-identical pitches. 

In all other types of harmonic progression we shall use any of the eleven 
forms of S2p, whatever the stylistic authenticity may be with regard to the 

progression itself. 

Transformations 
< 

Transformations* of two-part assemblages of diatonically identical structures 

are reduced to one possible form: aOb, i.e., a transforms into b, while b trans¬ 
forms into a. This concerns both the positions and voice-leading. A two-part 

assemblage of any form may be called a diad. 

Transformations of two-part assemblages of diatomcaUy non-idenitcal struc¬ 

tures have an additional const, ab transformation: a —> a1 and b —* b1—i.e., the 

a-fiinction of the first structure transforms into the a-prime function of the 
following structure, and the b-function of the first structure transforms into 
the b-prime function of the following structure. Once the transformation-is 
performed, Ha is assumed to be the original structure (i.e., jj and not §)—so 

that H«, the subsequent structure, in turn may be | or depending on the dia¬ 

tonic identity with the preceding structure. 

Structures, diatonic with respect to I = 2i -f- 3i. 

S(Ro> 

S(Ej) reciprocates with S(E0) 

Figure 3. S(JSo), S{EX), and S(Et) (continued 

♦If the reader happens to have forgotten it, 
Schil linger uses the terra transformations _ to 
mean voice-leading, so far aa general (and special) 

harmony is concerned. A 2-put structure, |, 

tranaforms-i.e., its voices iead-into a structure, 
2- For example, if a**l,b-«3, and two successive 

roots are C & F, then | (-J-) on C is which 

transforms to - (-|-) on F, or f. In other words 

the upper voice leads from C to A, while the 
lower voice leads from F to C, the cycle (C, F) 
bring Cj. Transformations are the general 
form of all voice-leading, of no matter what 
kind—and the student who grasps this single 
principle will never have any trouble yttb 
even the most complex problems of this sort. 

(Ed.) 
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All the following examples are reversible. 

Examples of Diatonic Progressions in Natural Major 

cr*- c, + Cs + c7 

C ADBCF GRAB 

C“*= C, + C, + C7 

CADSCPGBAB 

Figure 3. S(Eq), S(Ei), and S(E,) (continued). 



Figure 4. Diatonic-symmetric progression. Structures I = 2i to I = 6i 

(continued). 
Figure 5. Diatonic-symmetric progressions. Structures I « 2i to I m 6i. 
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(3) Scale: 

Structure: I = 2i 

Progression: (T= 3 Cs+ C8 + 

I(S) = 3i 



1074 TWO-PART HARMONY 1075 GENERAL THEORY OF HARMONY 

I(S) = 6i 

(8) 2“> = 92, 4- 32, 4“ 32, 4“ 2,; 

(9) 2“* = 42t + 22, + 22, + 22! + Z, + S, + 22j + 2, + Z,; 
(10) 2“> - 2, + 22, -f- 32, + 52,; 
(11) 2 * = 2, -f- 22, 4- 42, 4“ 82,. 

Structures of seven-unit scales with non-identical pitches produce diatonical- 
-identical structures, Le., 2, are seconds, 2, are thirds, 2, are fourths. In other 

scales, structures of one expansion are diatonically non-identical. Yet it is 

better, and a more general method, to select diatonic structures with respect 
to their expansions. 

The choice of general structures (out of the manifold of eleven) may be 
made freely, and any combination of structures in any form of distribution is 

acceptable. Such a use of eleven structures in any combinations and arrange¬ 

ment is applicable to progressions of type II, III, and the generalized forms of 
consecutive symmetry. 

Examples of Progressions with Variable Structures 

Diatonic 

-Ti«q) ^(S,) J,(Ba) 

- II ■ n II2“*- 35.+2i+22,+2S,+21+32i+2,. 
a ^ ^ '= 2C1+C1+C1+2C7; Scale ■= Nat. Major. 

Figure 11. 7(5) = 6i. 

B. Sequence df Variable Structures in One Two-Part Stratum 

Variable structures may appear in any type of harmonic progression. 

Diatonic variable structures may be referred to the different forms of tonal 
expansion; S(E0), S(E,), S(E,).etc., which may be selected in any desirable 

quantities and forms of distribution. However, in view of our auditory habits, 

it is advisable to use low coefficients of recurrence. 

To simplify the notation, we shall represent the correspondence between 

structures and forms of expansion as follows: 

2, - S(Eo); 2, - S(Ei); 2, = S(E,); . . . 

In composing the continuity of structures, we may select a coefficient-group 

from any source discussed in the Theory of Rhythm * 

Examples of composition of the structure-groups: 

(f) 2“* = 2, 4-Z,; (2) 2"* - 2, 4-Z, 4-Z,; (3) 2“> - 2*, 4-Z,; 

(4) 2~* - 32, 4-Z, 4- 22,; (5) 7T+ = 22, 4-Z, 4* Z, 4- 22,; 

(6) 2~* = 32, 4-Z, 4- 2Z, 4- 2Z, 4-Z, 4- 32,; 

(7) 2”"* — 4Zi 4- 22, 4- 22, 4* Z,; 

•See Vol. 1. p. 12 rf. 

CAFBGABGEAPGA 

uiatomc symmetric (Ihe same scheme). 

Ai-t=ai /a =41 =51 

Figure 12. Progression with variable structures. 
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C. Two Hybrid Strata 

S = 2S;Si = p;Sn = 2p 

The addition of an Sp to any form of S2p progressions produces a hybrid 

three-part harmony. 

Actual selection of a function for Sp is a matter of the style of the harmonic 

structures. Depending on the structure of S2p, the addition of a function of Sp 

may produce either greater tension or less tension. 

It is easy to compute the actual quantity of all possible forms of the three- 
part hybrid structures. The total quantity of Sp structures is eleven. The latter 

are built from the twelve symmetric pitch units of equal temperament and 

represent all combinations by two from the original unit. Assuming that each 
of the 11 S2p structures may be accompanied by any of the 12 functions of the 

full tuning scale, we acquire the total of 11 * 12 = 132 structures. 

Out of this total number, all the diatonic structures (with respect to seven 
musical names) may be classified as well. There are six diatonic structures, 
corresponding to six expansions of the complete diatonic scale, and seven diatonic 
units which can be added to any one of ‘them. The total of the diatonic hybrid 

three-part structures amounts to: 6*7 «* 42. 

D. Table of Hybrid Three-Part Structures 

(a) General and (b) Diatonic 
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Figure 14. Diatonic hybrid three-part structures (continued). 
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S„ 

Sx 

Si 

Figure 14. Diatonic hybrid three-part structures {concluded). 

All diatonic hybrid three-part structures may acquire any one system of 
accidentals at a time. 

Sp may be placed either below or above S2p. 

As the sequence of S2p structures may be varied in a progression, the ad¬ 

dition of an Sp is a matter of the individual selection of a function for each struc¬ 
ture of S2p. 

In the following notation, we shall use this scheme: 

C-ckord 

(1) Diatonic nomenclature: 

c d e f gab 

1 2 3 4 5 6 7 

(2) Symmetric nomenclature: 

c c# d d# e f f# g g# a bb b* 

1 2 3 4 5 6 7 8 9 10 11 12 

Let us see how such numerical notation can be applied to either system of 
structures. 
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We shall take, for example, Sjj = 5i. This represents: (reading from c) |, 

or in numerical notation: If we decided to add d as Sj, the latter becomes 

const. 2. Therefore the entire 2 may be read as follows: 

2 = SH = !> 4_ 
Si = 2 const. 

which is the diatonic form of numerical notation, where a(Sn) = 1 and b(Sn) = 4, 

and where a (Si) = 2. The same case, when represented in the symmetric form 

of numerical notation, assumes the following form: 

2 s —_ where a(Sn) = 1 and b(Su) — 6, and where a(Si) = 3. 
Si = 3 const. 

In case of coincidence in pitch of the function of Si with either of the func¬ 

tions of Sn, only the fundamental form of transformation (a C b) may be used- 

otherwise consecutive octaves are unavoidable. 

E. Examples of Hybrid Three-Part Harmony 

TWO-PART HARMONY 1081 

Sn 

Sr 
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Figure 15. Hybrid three-part harmony (concluded). 

Progressions of Mixed Structures. 

£i £2 2*8 

Diatonic Progression: C~~* — 2C» + C? 4* C* + C-? 

Scale of Roots: Nat. Major. d«. 

Figure 16. Mixed structures (continued). 
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Symmetric Progression on the same Scale of Roots. 

£l £l £2 £l £s £a £i £i £2 £i £2 

Sn 

Sx 

Figure 16. Mixed structures (concluded). 

F. Two Strata of Two-Part Harmonies 

2 <= 2S; S = 2p 

Two two-part harmonic structures may be coordinated into a simultaneous 
2 and subjected to independent transformations in each stratum. The latter 

result in four-part progressions in which the two component strata act inde¬ 
pendently. This technique solves many problems in composing for two heter¬ 
ogeneous pairs of instruments. For example, two clarinets may play a stratum 

not only against another stratum of two French horns, but even against two 
violin parts. The quality of orchestration can be well affected by different forms 

of distribution of the same four-part harmony developed into X — 2S. 
The number of general structures of 2 = 2S2p equals the quantity of S2p, 

times the number of combinations of S2p in the two strata, times the number 
of possible positions between Si and Sji: 11* = 1,331. 

The number of diatonic structures (which represents a portion of the total 
quantity) equals: 6* = 216. 

It means that there are 1,331 general and 216 diatonic chord structures 
from any pitch-unit designated as a starting point (root-tone). 

As tabulation of all forms (since the quantity increases so rapidly) becomes 
impractical, we shall give some samples only of such tables. 

Examples of Structures: 2 = 2S2p 

Figure 17. General structures of 2 =* 2$2p (continued). 
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Sh 

s, 

Sn 

Si 

Sb 

8i 

Figure 18. Diatonic structures of 2 = 2S2p {concluded). 

In order to eliminate consecutive octaves between any pair of parts in strata, 
assign identical pitches to non-identical functions. If, for example, pitch d 

appears in both strata, one of them should become function ® and the other 
should become function (g). 

G. Examples of Progressions in Two Strata: 

(a) through the different forms of distribution of a given four-part harmony 

(a) Theme 
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Figure 20. Independent structures ofZ = 2S2p {concluded). 

In the above examples, the structures are defined by i and I * 

For the time being, we shall use one const. 2 for the entire progression, 
unless such a progression is the given progression, which can be traced to the 

sources of special harmony, and which is subject to strata transcription (vari¬ 
ation). 

H. Three Hybrid Strata 

Z = 3S; Si = p; Sjj = 2p; Sju = 2p 

An Sp may be added to 2 = 2S2p. This additional stratum may be either 
below both S2p, or it may be surrounded by the latter, or it may be above it. 
This permits three arrangements; 

S2p S2p Sp 
(1) 2 = S2p ; (2) 2 = Sp_ ; (3) 2 - S2p 

Sp S2p S2p 

An interchange of the positions in a written continuity is acceptable only 
when the total sonority of the 2 does not suffer from such an interchange. Often 
a high chordal function, originally placed in the upper stratum, sounds un¬ 

satisfactory when moved to the bass; such a rearrangement of parts often changes 
the very meaning of the 2 itself. 

In many instances Sp may acquire a constant coupling or two. Such 
couplings are particularly practical for the extreme positions of Sp, i.e., either 

below all or above all other strata. Couplings may be constructed either upward 

or downward from a given function, provided that such coupling does not cross 
the functions of adjacent stratum. An octave coupling may be considered uni¬ 
versal, i.e., applicable to any function. Couplings by perfect fifths for the lower 

stratum, and couplings by fifths, fourths, and practically all other intervals for 

the upper stratum are acceptable. The particular choice of couplings should 
follow to some extent the natural distribution of pitches (upward contraction 
of intervals). The coupling of a root-tone with the fifth is the commonest after 
the coupling of a root-tone by its octave. 



1088 GENERAL THEORY OF HARMONY 

Some structures, seemingly meaningless by themselves, become powerful 

tools of harmonic expression when supplemented by an Sp and a coupling. 

Examples of Addition to Sp and Coupled Sp to £ 2S2p 

(Originals are taken from Figure 19. Type 1 progressions may be obtained by 

cancelling the accidentals, or by superimposing another constant group of ac¬ 

cidentals). 

TWO-PART HARMONY 1089 

— -#*- 
Jo 

- - :~i|g — 

#=•-■ ~— 

» 
% =4&= 

w- =pF= 
-B- -o- 

-k$i- bte 

t. 
_n_ -|Wr— 

0 
• Lg'■ . 

- —S- —k.«x_ A 

—v o -1- 

Figure 21. 2,2S2p -f- Sp -f- coupled Sp {concluded). 

I. Three, Four and More Strata of Two-Part Harmonies: 

Hybrid Strata 

Now that the principle of composing strata and of forming couplings for 
them has been established, we may proceed with the evolution of more complex 
forms of 2. 

Since the number of structures grows beyond the practical possibility of 
exhausting them, we shall refrain from tabulating them any further. We shall 

confine each case of 2 to a few samples of structures, and we shall choose the 
latter according to the principle established before, i.e., the structures and the 

intervals separating the strata will be conceived as forms of tonal expansions, 
or both will be evolved on the basis of interval symmetry. 

In some instances a certain degree of variety may be achieved by alternating 
the original positions in the adjacent strata. For instance: 

The first example of progressions (Fig. 22) compares favorably with six- 

part counterpoint of the type: = a. 

Figure 21. Z2S2p + Sp 4- coupled Sp (continued). 
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Examples of Harmonic Structures and 
Progressions in Three and more Strata 

TWO-PART- HARMONY 

2 = 3S2p 

Diatonic Forms Depend on the Number of Pitch-Units in the Scale 



Figure 23. 2 = 3S2p Sp. Figure 24. 2 = 4S2p (continued). 
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J. Diatonic and Symmetric Limits and the Compound 2 

of Two-Part Strata 

The diatonic limit of a sigma composed from two-part strata may be ex¬ 
pressed as Z = NS2p, where N represents the number of pitch-units of a given 

scale. 

A three-unit scale produces a maximum of three strata, or six parts (even 

seven parts if one includes a possible added root-tone). A five-unit scale produces 
2 — 5S2p, or 10 parts in 5 strata (11 with the added root-tone). A complete 
seven-unit scale produces 2 = 7S2p, or 14 parts in 7 strata (15 with the added 
root-tone). Such limit-sigmae may be arranged according to one or another 

tonal expansion with regard to structures and the intervals between the strata. * 
Selection of one or another tonal expansion controls the range of the 2. 

In practical application such limit-sigmae often require the overlapping of 
adjacent strata. In orchestration the strata which overlap are assigned to dif¬ 
ferent orchestral groups, a method of tone-quality selection which prevents the 
score from losing its clarity in actual sound. 

Only non-overlapping strata may belong to one orchestral group. For 
example, assuming that all adjacent strata are overlapping, but that no stratum 

overlaps the stratum next-but-one, we acquire the following possibilities for 

orchestration: 

Siy Strings Wind Woodwind Brass Strings Brass 

Sm Wind Strings Brass Woodwind Brass Strings 

Sii Strings Wind Woodwind Brass Strings Brass 

_Si Wind Strings Brass Woodwind Brass Strings 

More complex forms of sigmae with overlapping adjacent strata are de¬ 
veloped in the form of tutti, i.e., with participation of all orchestral groups and 

often with the addition of soloists and choirs. This device is also practical when 

one orchestral group is broken into two or more heterogeneous groups by means 
of variation of instrumental forms—such as a legato against a pizzicato and 
against a muted tremolo. 

In calculating the symmetric limit of a sigma, N represents the number of 

symmetric roots. Two tonics produce 2 = 2S2p, or two strata in 4 parts (or 
five parts with the addition of the root-tone). Twelve tonics, being the ultimate 
symmetric limit produce (2 — 12S2p), 12 strata in 24 parts, in which case the 

overlapping of adjacent strata becomes unavoidable (25 parts with the addition 
of root-tone). 
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K. Compound Sigmae 

1 introduce now the concept of a compound sigma, or tke sigma of a sigma: 
2(2). 

A compound sigma consists of more than one sigma. Each of the sigmae 
(i.e., 2j, Xu, 2iii, .... 2n) consists of diatonic or of symmetric strata and is 
combined with another sigma, also consisting of several strata and connected 
to the first sigma by some form of interval-symmetry. In most cases of 2(2), 
overlapping becomes unavoidable. The lower stratum of’ 2! and the lower 

stratum of 2n produce a definite interval, which, as a consequence, controls the 
degree of overlapping. 

In 2 (2), diatonic sigmae are connected by a symmetric interval; symmetric 
sigmae are connected by an interval which is in a mutually excluding form of 

symmetry* with the structures of strata and the intervals connecting the latter. 

The number of strata and of parts in the compound sigma equals the number 

of strata and of parts in each component sigma multiplied by the number of 

sigmae. For example, a compound sigma obtained from a five unit scale and 

three roots of symmetry for each component sigma produces a compound limit 
of 15 strata in 30 parts (or 31 with an addition of the root of 2j): 

Sy 
Siv 

2m = Sin 

Sii 
Si 

Sy 
Siv 

2ii. = Sm 

Sii 

Si 

Sy 
Siv 

2i = Sm 
Sii 

Si 

1 = ^5 

I = v^4 

Only 2j may have an added root-tone. 

•That is, the interval is such as to ensure that the pitch-units composing one 2 do not 
coincide with those composing another 2 (Ed.) 
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It follows, from the above, that the limit for a seven-unit scale evolved 
into 2 (2) through 12 symmetric points, becomes 2 (2) * 7S2p*12 =» 84S2p = 

= 168p. 

The ultimate compound sigma composed from two-part strata is (12S2p* 12 = 

= 144S2p = ) 288p. This is the ultimate limit for a score composed in twelve- 
unit equal temperament out of two-part harmonies. Such a score of 289 parts 

(with an addition of the root-tone) may be used in practice for some group of 
combined orchestras, or choirs, or both. The place and time for such an occasion 

would be some such event as a World's Fair, an Eucharistic Congress, a world 
peace celebration, or an event of similar character calling for resources of such 
magnitude. With the knowledge of these possibilities, it is pitiful to recollect 
the experience of New York World’s Fair of 1940—with the dozen or so pianos 

playing the Second. Rhapsody of Liszt—a la “Roxy” in unison! 

Examples of the Limit-Structures 

and the Compound Structures; 2 (2) 

Diatonic Limit 

Si 

Figure 26. Limit-structures of 2 (2). 
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CHAPTER 3 

THREE-PART HARMONY 

A. One Stratum of Three-Part Harmony (S - 3p) 

A SSEMBLAGES which serve as three-part harmonic structures are the 

pitches of three-unit scales brought into simultaneity. Since the number 
of three-unit pitch-scales is 55, there are that many harmonic three-part struc¬ 
tures. Each structure may be used in its original or in an expanded form, (E© 

and Ei). 
All other conditions remain the same as for S2p. 

In one stratum, with or without addition of a constant Sp or Sp with a 
coupling, we shall use either one constant structure Or a group of structures 

belonging to one family. In the latter case, the added Sp must be assigned to 

each structure individually. 

Table of Structures; 2 = S3p 

1+1 1+2 1+8 1+4 1+5 1+6 1+7 1+8 1+9 1+10 

2+2 

F= 

2+8 2+4 2+B 
F== 

2+8 2+7 2+8 2+9 

U ^ ■"—Oollj^cru 

8+2 
F= 

8+8 
¥V ' 

8+4 8+6 8+e 
|R= 

8+7 8+8 

TO - Uf.——l 
III Mgr Mgr Hire* 0 fl 

4+2 4+8 4+4 4+6 4+8 4+7 

J *iuU'ui *i'*i'*i 

Figure 31. 2 = S3p (continued). 
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7+1 7+2 7+8 7+4 

8+1 8+2 8+3 

9+1 9+2 

Figure 31. 2 - \S3p {concluded). 

It is particularly important to approach the study of structures of S3p 
from the viewpoint of tonal expansions of the complete seven-unit scales. Such 

an approach makes it possible to acquire six diatonic forms of structure per 

stratum. 

Three-part assemblages of any form may be called triads. For this reason 

it is correct to state that there are 6 forms of diatonic triads which derive from 
the complete seven-unit scales. Each form of a triad corresponds to the re¬ 

spective expansion. 

(1) S3p - E0; (2) S3p - Ei; (3) S3p a E,; 

(4) S3p a E*; (5) S3p s E<; (6) S3p s E*. 

Structures, diatonic with respect to: I(S) = 2i +* 3i 

SCE0> S(K4) 

Structures, diatonic with respect to Chinese Pentatonic. 

S<Hq) S(Ei) 

Figure 32. Diatonic structures {continued). 
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B. Transformations of S = 3p 

Transformations which control three-part assemblages are identical with 

those described in my discussion of hybrid four-part harmony in the Theory of 
Special Harmony* They control the positions, (the first two transformations) 

i.e., the distribution of pitch-units, now serving as chordal functions, and they 

control voice-leading, (all rax) i.e., the transformation of chordal functions in 
time continuity. The following forms may be used with discretion, depending 
on the cycles and the possibilities of instrumental execution. 

Transformations of S3p 

Const, a, Const, b, and Const, c permit the isolation of a heterogeneous 

instrument from the remaining two, as an independent function, and this solves 
many important problems in orchestration. 

When the structure is constant, a' = a, b' = b, c' =» c. 

Progressions of 2 = S3p are evolved through the previous means: type I, 

II, III and the generalized symmetric. 

Examples of Transformations 

(a) Positions (b) Voice-leading 

(a) 

■orb 

Figure 33. Positions (continued). 

•See Vol. I. p. 478. 
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ub 

Figure 33. Positions {concluded). 

(b) 

Si " 

Figure 34. Voice-leading. 

It follows from the example—(b) above—that the second chord of the con¬ 
nection appears in all six posable positions developed from any one position 
of the first chord when all six transformations are applied. For this reason, 
progressions may be written by selecting any position for the second chord 
which is adjacent to the given position of the first chord. However, a thorough 

knowledge of the patterns of motion through all cycles and through all trans¬ 
formations remains very desirable. 
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Examples of Progressions of S — 3p 

Constant and Variable Structures. 
Hybrid Four-Part Structures (added Sp and coupled Sp). 

S(Ej), nat. major 

1(S) = 5i -f- 5i; Type II; Scale of root tones: d< of nat. major 

The same with addition of coupled Sp. 

1(S) = 6i + 5i; the same progression and scale of root-tones; new coupled Sp 

The second structure combined with the first Sp; 

Sp is symmetrically superimposed through 

_ 

THREE-PART HARMONY 
1109 
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C. Two Strata of Three-Part Harmonies 

2 = 2S; S = 3p 

Three-part harmonic structures may be coordinated into a simultaneous 2 

and subjected to independent transformations in each stratum. As the number 
of transformations for S3p is 6, the number of transformations for 2 2S3p is: 

6* = 36. 
It is practical to study the fundamental forms first: 

2 2S3p offers solutions to all problems in orchestration in which two groups 

of three identical instruments are used. 
Positions of Si and Sn may be either identical or non-identical. The variety 

of forms of transformation even permits the use of partly-identical pitch-as¬ 
semblages in the two strata without producing consecutive octaves as between 

some of the parts of the two strata. 
The number of possible general structures of 2 2S3p equals the quantity 

of S3p, times the number of combinations of S3p in the two strata, times the 

number of positions between Si and Sn: 55*-11 = 33,275 (identical positions of 

Si and Sn are excluded). 

Of these, 216 are diatonic; 6* -* 216. 

Examples of Structures of 2 2S3p. 

(1) Diatonic (all scales of three and more units); 

(2) Symmetric (all three-unit scales in all forms of symmetry): (General) 

tl) 

t 

Figure 37. Structures of 2 2S3p (continued). 
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*) A useful fora, of 8(b) with added 18, for a combination of two groups by 
three, like 8 Trumpets and 8 Trombones. 

(2) 

Figure 37. Structures of 2 2S3p {continued). 
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Figure 38. Progressions of 2 2S3p and hybrid forms (continued). 
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The same with an added coupled Sp. and identical transformations in both strata 

SCB,) 
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Figure 39. Identical transformations in both strata {concluded). 

D. Three Strata of Three-Part Harmonies 

Z = 3S; S = 3p 

Structures of 2 3S3p may be evolved from diatonic scales with three or more 

units, and from three-unit symmetric scales having three or more symmetric 

roots. 

Since all principles remain the same as in harmony of the 2S3p type, we 

shall proceed with the illustrations. 

THREE-PART HARMONY .5 

Examples of Structures of 2 3S3p. 

(1) Diatonic; 

(2) Symmetric: 

(General) 

Figure 40. Structures of 23S3p (continued). 
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Figure 41. Progressions of 2 3S3p and hybrid forms (concluded). 

E. Four and More Strata of Three-Part Harmonies 

Structures of 2 — 4S3p are available from all diatonic scales having three 
units and more. They are desirable when it is advantageous to distribute the 
latter in groups of 3. 

In the example presented below, structures of thirds and fourths-are offered 

as characteristic structures and typical forms of arrangement. Structures de¬ 
rived from symmetric scales lend themselves particularly well to distribution 

in four strata when there are 4'tonics with 3 unit sectional scales. When the 

number of tonics exceeds 4, the 6 tonic system, also with 3 unit sectional 
scales, is practical when 4 out of 6 tonics are used. The same concerns scales 
constructed on 12 tonics with 3 unit scales from each tonic. 

2 - 4S; S = 3p 

Figure 42. Structures of 2 = 4S3p {continued). 



Figure 42. Structures of 1 = 4S3p {concluded). 

When 2 ** 5S and S = 3p, the diatonic arrangement of the groups of 3 

usually adheres to the 3rds or the 4ths- 

In order to build symmetric strata in five groups, it is necessary to consider 

the <fl> and the Kfl as the practical forms of symmetry without duplication 
of strata. The following table illustrates the general procedure of building 25 *=> 5S. 

2 - SS; 
Diatonic Structures 

THREE-PART HARMONY 1119 

S =3p 
Symmetric Structures 

Figure 43. Structures of X — 5S3p. 
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F. The Limits of Three-Part Harmonies 

1. Diatonic Limit 

By increasing the number of strata in any diatonic scale, we eventually 

reach the limit. In any diatonic limit the number of strata equals the number 
of pitch units in a given scale. When a scale has 3 units, the 2 limit ** 3S. When 
the scale consists of S units, the 2 limit = 5S. The commonly used 7 unit dia¬ 

tonic scales have their limit in 7 strata, or 21 parts. The chord structures de¬ 
veloped from any diatonic scale for each stratum are derived through tonal ex¬ 

pansion. The following table illustrates: 

/=!78(Bi) 

BSCBt) 

THREE-PART HARMONY 1121 
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3. Compound Symmetric Limit: The 2 (2 S 3p) 

A compound symmetric limit depends on the number of symmetric points 

from which each individual Z is constructed. In the following example, 2 con¬ 
sists of 3 strata and is developed from a 3-unit scale, thus representing the diatonic 

limit for such a scale. The second bar of the example represents a simultaneous 
vertical arrangement of the original 2 taken thrice through the symmetrical 

points of the two octave range, (v^); thus the first 2 evolves its strata from c, 

the second evolves its strata from a>, and the third 2 evolves its strata from e. 

Figure 46. Compound symmetric limit 2(2S3p). 
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The limits of 2 (2)’s go beyond the practical possibilities of today. It js 
possible to construct a 2 limit consisting of 12 strata in 36 parts and to arrange 
12 of such structures in simultaneity; the 2 (2) for such a case, being the absolute 

compound limit for the groups of 3 parts, equals 12 X 36 = 432 parts. The 
addition of Sp would make it 433 p. 

The practical significance of this kind of strata technique is mainly in its 

application to choral or to orchestral scoring, which is concerned with the in¬ 
dividual development of groups and parts, and with a better acoustical quality 

for the whole sonority of the score. 



CHAPTER 4 

FOUR-PART HARMONY 

A. One Stratum of Four-Part Harmony 

(S = 4p) 

ASSEMBLAGES which serve as four-part harmonic structures are the pitches 

of four-unit scales brought into simultaneity. 
There are 165 general S4p structures, which correspond to the 165 four- 

unit scales. The distribution of functions in any one S4p structure corresponds 

to E0, Ei and E*. 
Four-part assemblages of any form may be called tetrads. There are 6 forms 

of tetrads evolved from the complete seven-unit scales. Each form of a tetrad 

corresponds to the respective expansion. 

(1) S4p b E0; (2) S4p a Ei; (3) S4p e E*; 

(4) S4p b E*; (5) S4p b E«; (6) S4p ■ E». 

Table of General Structures of S4p 

1+1+1 1+1+2 1+2+1 2+1+1 1+1+8 1+8+1 8+1+1 

Figure 47. General structures of 4Sp (continued). 
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2+1+5 2+5+1 6+2+1 1+2+6 1+6+2 6+1+2 2+1+6 

Figure 47. General structures of S4p {continued). 
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1 +8+7 1+7+8 7+1+8 8+1+7 8+7+1 7+8+1 1+4+5 

1+5+4 5+1+4 4+1+5 4+5+1 5+4+1 1+4+8 1+6+4 

6+1+4 44*1+4 4+6+1 6+4+1 2+8+4 8+4+8 4+2+8 

8+2+4 8+4+2 4+8+2 2+8+5 2+5+8 5+2+8 8+2+5 

a+B+2 5+8+2 2+8+6 2+6+8 6+2+8 8+2+6 8+8+2 

6+8+2 2+4+5 2+5+4 5+2+4 4+2+5 4+5+2 5+4+2 

Figure 48. Diatonic structures of S4p (continued). 
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Structures, diatonic with respect to Natural Major 

Figure 48. Diatonic structures of S4p (concluded). 

Of these, the following pairs contain identical pitch-units, in their respective 
tetrads, in a different form of distribution: 

(1) S(E0) and S(Eft); (2) S(E,) and S(E4); (3) S(E,) and S(E,). 

B. Transformations of S = 4p. 

The classical system of harmony, based on the postulate of resolving 7th, 

emphasizes only one form of transformation with each tonal cycle. For example, 

C, requires a O transformation; and C7, Q. But in general forms of 

transformation not bound to the classical system—i.e., discarding the resolution 

of the 7th all forms of transformation may be used with each cycle, giving us 
three forms for each cycle. In addition to this, one function (either one) of an 

assemblage may become a constant, producing hybrid 4-part harmony, where 
the remaining functions are subject to transformations of 3 elements. This 
produces 4 additional transformations with the Q direction for the three func¬ 
tions and one constant, and 4 Q transformations for the three functions and 
one constant. 
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In addition to this, two functions may become constant, permitting the 

other two to produce their only possible transformation. 

There are six combinations with two constant functions. When the struc¬ 
tures are variable, a constant transformation of all 4 functions may become 

practical. Summing up all forms, we get altogether 18 forms of transformations 

for each cycle. The following table includes all forms. 

Transformations of S4p 

)TN 
Const, abc 

a —» b' a —»c' a —*dr a —* a' 

b —* c' c-*a' d —* c' b —»b' 

c —> d' b-> d' c —> b' c —>c' 

d —* a' d —»b' b —* a' d —»d' 

Const, a Const, b Const, c Const, d 

a —► a' b—* b' c —♦c' d —>d' 

b-+c' a-+c' a —* b' a —►b' 

c-*d' c-*d' b —d' b —* c' 

d->b' d —► a' d —► a' c —»a' 
r~*. /—a 

IL/ 

Const, a Const, b Const, c 

a —► a' b-» b' c —k' d —»d' 

b — d' a — d' a d' a —>c' 

d —*c' d —► c' d —» b' c-^b' 

c —> b' c —> a' b —>a' b —Ka' 

s_jr 
tr-\ 
\-jr 

Const, ab Const, ac Const, ad Const, be Const, bd Const, cd 

a —> a' a —> a' a-»a' b—► b' b-*b' c —>c’ 

b-+b' c —»c' d —► d' c —► c' d —>d' d->d' 

c->d' b —»d' b—*c' j a—»d' a —* c' a->b' 

d->c' d —> b' c-»b' d —* a' C —* 2l b—► a' 

The above transformations are applicable to all structures of S4p. 

The following table represents ail transformations in application to S(7). 
When there is a crossing of voices, a respective crossing pair may be transposed 

into a different octave as shown on the table. 
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Certain cases that are undesirable from the viewpoint of orchestral selection 
may be eliminated. When one has so many cases, it is easy to select the most 
desirable ones, as well as to cope with all situations of 4-part orchestration of 
a melody. 

const, a const, b const, c const, d 

const, a const, b const, c const, d 

Figure 49. AU transformations of 5(7) {continued). 



1130 GENERAL THEORY OF HARMONY 

const, a const, b const, c const, d 

const, ab const, ac const, ad const, be const, bd const, cd 

i 

Figure 49. AU transformations of S(7) (concluded). 
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It will be desirable to evolve similar tables for S4p structures in one stratum 
in all cycles for the following chord structures. An extra Sp may be added to 
any of these structures in order to obtain a hybrid 5-part harmony. 

•After completing the tables, compose continuity selecting any of the following forms as a 
constant 2. (—J.S.) 

tZPHJ6 of th€ to" "homework " directions included in the MS, which it has been 
thought wise to append here as a footnote. (Ed.) 
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C. Examples of Progressions of S = 4p 

Constant and Variable Structures. 
Hybrid Five-Part Structures (added Sp and coupled Sp) 

At this point, we may observe that the number of transformations can be 

increased by a new positional arrangement of the four functions (a, b, c, d). This 
is practical for 'S(Es) and the wider expansions, where crossing of parts is admis¬ 

sible, since in many instances it becomes unavoidable. The; main advantage o 
having these new transformations in addition to the 18 already offered lies in 
the fact that in some cases these additional forms give the smoothest voice¬ 
leading, i.e., voice-leading with a maximum of common tones and nearest posi¬ 
tions. The additional transformations are of the clockwise, the crosswise, and 

the counterclockwise forms. 
For the sake of drawing comparisons between the three fundamental trans¬ 

formations (0,<- O) in the original positional arrangement of the four func¬ 

tions (abed) and the*two new forms (aedb and acbd), we offer a complete table ■ 
of 9 transformations for the three positional arrangements. 

CAGCDGASC 

Figure 50. Progressions of S — 4p (continued). 

Figure 50. Progressions of S « 4p (concluded) 

Fundamental Transformations of S4p in the 
Three Positional Arrangements of Functions. 

Some of these forms are used in Fig. SO, (4), (5) and (6). 



CHAPTER 5 

THE HARMONY OF FOURTHS 

HARMONIES built on the intervals of a fourth—which is equivalent to the 
second tonal expansion of the complete seven-unit scales still remain 

practically an unexplored region of musical harmony. 
Some composers (Scriabine, Ra\el, Hindemith) have used such chord- 

structures, but they have never subjected the latter to any systematic treatment. 
Neither have they discovered the principle upon which the progressions and 

the voice-leading are based. 
We have seen, in three-part harmony, that 6 forms of transformation control 

all the possibilities of voice-leading. Existing music offers more evidence as to 
the correct way of handling progressions of S3p than the way of handling S4p 
when they both evolve in E*; for this reason it is highly practical to present 

the real foundation for composing four-part harmonies built on fourths. 
According to the definitions given in the Special Theory of Harmony * the 

positive form of structures is the respective tonal expansion of the original scale 
(E, in this case), whereas the scale of chord progressions corresponds to the same 

set in position <£), i.e., in backward motion. For this reason the functions of the 
assemblage become 1,4,7, 10 and the tonal cycles of the positive form become 
cycle of the fourth (C4), cycle of the seventh (C7) and cycle of the tenth (C»). Cadences 

evolve as the first and the last steps of the cycles and their combinations. 
We shall present now a comparative table of S3p and S4p as they evolve 

in Ej of the complete seven-unit scales. Only the fundamental transformations 

will be used in order to present the matter with the utmost clarity. 

HARMONY OF FOURTHS 

Triads Chordal functions 

i .. -o g —*—s 1-”-II-- 

§ « w ° 11 -»l 

Tonal Cycles (Positive Form) 

Cycle of 4th Cadences 
ivni i h i ivnni 

Figure 51. Harmony of fourths (continued). 

•See Vol. I, p. 361 ff. 

111341 
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clockwise 

Cycle of the 10th 

counterclockwise 

Figure 52. Voice-leading, cycle of the 4th, 7th, and 10th (concluded). 

Tetrads 

Voice-Leading 
Cycle of the 4th 

G6DA8BFC 

Figure 53. Tetrads. Voice-leading, cycle of the 4ths (continued). 

_ A. 
41- o n o o n — 

Figure 53. Tetrads. Voice-leading, cycle of the 4ths (concluded). 

Cycle of the 7th 
1 

10 4 

’ t 

v ^ XT 

-J‘ ii-e-2-o o R 
-g-n-n O « O-O-- 

C DEPOABC 

- 
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Cycle of the 10th 

Figure 55. Voice-leading, cycle of the 10th. 

CHAPTER 6 

ADDITIONAL DATA ON 4-PART HARMONY 

A. Special Cases of Four-Part Harmonies in Two Strata 

1. Reciprocating Strata 

V\7HEN the number of parts in a harmonic stratum reaches four, it becomes 
practical to evolve Sn to a given Si by means of inversion of the original 

stratum. Either the upper or the lower stratum may be*considered original. 

Tonal inversion (tonal (3)) is appropriate for the diatonic progressions; 
geometrical inversion (3) is appropriate for all other types of progressions. How¬ 
ever, type II, III and the generalized may be assigned to a common 2 for both 
strata (as in figure 56). 

The axis of inversion is common for both strata. The cycles are common 
for both strata but have opposite signs. If one of the strata has a positive progres¬ 
sion, the other has a negative progression. However, this does not circumscribe 

the form of the structure. The structure of a certain stratum may be positive, 

while its progression may be either positive or negative. The reverse is also true. 

If Sn has the form of S(7), read 1,3,5, 7 from the c-axis (i.e., c — e — g — &), 

Si, being in the tonal inversion (3), acquires the form of a negative S(7), read 
1, -3, -5, -7 from the same axis (i.e., c—a—f—d, downward). 

It is interesting to note that both strata, when moving through any one 

cycle, coincide in structure on the dominant (the G-chord in the key of c), which 
is always an S(7). 

In using this technique for progressions type II, III and the generalized, 
assign one const. 2, whichever you choose. 

The technique of inversions for evolving the second stratum can be extended, 
to all 165 structures. 

Examples of Two Mutually Reciprocating Strata. 
2 = 2S4p. 

Figure 56. Two mutually reciprocating strata. 2 = 2S4p (continued). 

111391 
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2. Hybrid Symmetric Strata 

There is a special case of two strata which deserves particular attention. 
It offers a technical interpretation of many not quite satisfactory attempts made 
by Rav**l (particularly in the Daphnis ei Chloe suite) and by Stravinsky (in 
Petrouchka, Le Sacre du PHntemps and Les Noces) in their urge for harmonic poly- 
tonality. The latter, in fact, is a superimposition of two symmetric strata—to use 
the terminology of this system. I mention these two composers because they 
are che only originators of such a harmonic style and because, in the above 

mentioned works, this tendency of theirs is the more apparent. Ravel is more 
consistent than Stravinsky in this respect; but neither of the two composers 
has succeeded in achieving real consistency and clarity in this style—qualities 

which become possible now with the development of this theory. 

Theirs is a special case of adding Sp constant as an upper stratum, mostly 
in 1 = '\/~2, and often with symmetric couplings. The main characteristic of 

this style, which is to be expected, is the large S(7) as a permanent fixture of 

Si (the lower stratum). 

We shall use this style merely as a basis for building Sji os a symmetric 
superimposition upon Si of Sp, S2p, S3p and, finally, S4p, when we accumulate 

the full 2 2S4p. We shall also adhere to the large S(7) as the structure for 

At the same time our Sn will be developed in two basic ways: 

(1) the structure of Sn is a part of 2(13) XIII, applied from one root-tone 
j in the various possible roots of symmetry; 

(2) the structure of Sll is a part of 2(13) XIII, transposed to the respective 
root of symmetry. 

Examples of the Special Case of Harmonic Polytonality. 

Figure 57. Special case of harmonic polyUmalUy (continued). 
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S8p VsT" + /£~ +VP" 

S4p Va*" + /F" + VT" 

Figure 57. Special case of harmonic polytonalily (continued). 
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Si 

St 

All other cases of two strata belong to the next chapter. 

Sp VZ'+W- 

Figure 57. Special case of harmonic poly tonality (concluded). 

B. Two Strata of Four-Part Harmonies 

Generalization of the 2 = 2S; S = 4p 

Four-part harmonic structures may be coordinated into a simultaneous 2 
and subjected to independent transformation in each stratum. As the number 
of all transformations for S4p is 24 (18, and the six additional ones), the number 

of transformations for 2 2S4p is 24* = 576. Combinations of the 9 fundamental 
forms alone are sufficient for general use since their quantity amounts to: 

^ 9! _ 362,880 
8 2 2! (9—2)! 2-5040 

The latter represent the combinations of C, <—J > and O distributed through 

two strata and having three forms of the positional arrangement of functions: 
abed, aedb and aebd. 

All other transformations serve the purpose of isolating one or two parts 
from the stratum of 4p. 

Positions of Si and Sn may be either identical or non-identical. The variety 
of the forms of transformation permits the use even of completely identical 

pitch-assemblages, without causing consecutive octaves between any pair of parts 
of the two strata. 

The number of possible general structures of 2 2S4p equals the quantity of 
S4p, multiplied by the number of combinations of S4p in the two strata, multi¬ 

plied by the number of positions between-Si and Sn: 165** 11 = 299,475 (ex¬ 
cluding identical positions between Si and Sn). Of these 216 are diatonic; 
6* = 216. 
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Examples of Structures of 2 2S4p 

(1) Diatonic (all scales with four and more units); 

Sn 

8* 

Figure 58. Diatonic structures of 2 2S4p. 

(2) Symmetric (all four-unit scales in all forms of symmetry): (General). 

Bn 

8. 
Figure 59. Symmetric structures of 2 2S4p. 

For the time being, use one constant 2, when 2>S. 

Examples of Progressions of 2 2S4p and Hybrid Forms Result?” g 

from the Addition of Sp. 

(uncoupled or coupled) 

Figure 60. Progressions of 22S4p (continued). 

ip
*

- 
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C. Three Strata of Four-Part Harmonies 

2 = 3S; S = 4p 

Structures of 2 3S4p can be evolved from the diatonic scales with four or 

more units and from symmetric scales having three or more symmetric roots. 

All principles remain the same as in the 2 2S4p. 

Examples of Structures of 2 3S4p 

(1) Diatonic; 

Figure 61. Diatonic structure of 2 3S4p. 

(2) Symmetric: 

(General) 

ADDITIONAL DATA ON FOUR-PART HARMONY 

Examples of Progressions of 2 3S4p and Hybrid Forms Resulting 
from the addition of Sp 

(uncoupled or coupled) 
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D. Four and More Strata of Four-Part Harmonies 

Structures of 2 = 4S4p are available from all diatonic scales having four 
units or more. They are desirable when it is advantageous to distribute the 

latter in groups of 4. Four-unit sectional scales in four and more tonics serve 

as material for symmetric structures. To this group belongs one of the forms 
gaining considerable popularity today. It is the large S(7) distributed through 

the 
We shall now offer a few examples of multi-strata structures. 

Examples of Structures of 2 4S4p 

(1) Diatonic; 
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E. The Limits of Four-Part Harmonies 

Diatonic limit for S4p is defined by the number of pitch-units, which in this 

case correspond to the number of strata. The minimum number of units is 4. 
The limit for a four-unit scale is 2 4S4p, i.e., 4 strata in 16 parts (or, with 

the addition of Sp, 17 parts). The diatonic limit for a seven-unit scale is 2 — 7S4p, 
i.e., 7 strata in 28 parts (or 29 with the addition of Sp). 

Overlapping in most cases is unavoidable. Seale* 7p 

Example of the Diatonic Limits of S4p . w'o 

9-* 

Seale: 5p 

Scale: 4p Scale: 4p 

5 /= 
J= 68 

Figure 66. Diatonic limits of S4p. 

/= 78 T= 48 
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2. Symmetric Limit 

Symmetric limit of a 2 is defined by 

the number of symmetric roots. 2 = Ns4p 

represents the symmetric limits of four- 
part harmony, equivalent to four-unit 

scales distributed through N, i.e., the 

number of symmetric roots. 

The symmetric limit for two tonics 

is: S = 2S4p, i.e., two strata in 8 parts 

(or 9 with the addition of Sp). 

The ultimate symmetric limit for 

S4p is built on 12 tonics: 2 = 12S4p, 
i.e., twelve strata in 48 parts (or 49 with 

the addition of Sp). 

Example of Symmetric Limits of S4p. 

»-■, 

*) A hypothetical ease 

Figure 67, Symmetric limits of S4p. 
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3. Compound Symmetric Limit: 2 (2S4p) 

A compound symmetric limit depends upon the number of symmetric points 

from which each individual 2 is constructed. Thus, for example, the diatonic 
limit of a four-unit scale, being used as a 2 structure and being coordinated with 

another identical 2 from the y/~i, would produce a compound 2(2) = 224S4p, 
i.e., two sigmae of four strata each, 16 parts to each sigma, making a total of 

32 parts. The same structure, being coordinated through the 2, would pro¬ 
duce: 2(2) » 1224S4p, i.e., twelve sigmae, four strata each, 16 parts each: 
12*4 => 48 strata; 16*12 = 192 parts. The same procedure being applied to a 

complete seven-unit scale would produce: 2(2) = 1227S4p, i.e., 12*7-4 = 336 
parts. 

The ultimate compound limit of S4p can be obtained from a twelve unit 
scale set through twelve points of symmetry: 2 (2) = 12212S4p, i.e., 12-12*4 = 
= 576 parts in 144 four-part strata of the twelve sigmae (or 577. parts with 
the addition of Sp). 

Such is the incredible number of parts possible within the twelve-unit equal 
temperament scale. 

The practical uses of compound symmetric limits require overlapping and 

serve the purpose of alternate arrangement (distribution) of the superimposed 
orchestral or vocal groups, in the same way as was described for the compound 
limits of S2p. 

Overlapping is unavoidable because of the limitations of auditory response 

to a certain frequency range. For this reason it would not be sensible to construct 
musical instruments (possible through electronics) for musical purposes, which 
exceed the range of audible pitch. 

We shall limit the table of structures of the 2(2) to a few practical illustra¬ 
tions; See Figure 68 on the following- page. 
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Examples of 2 (2). S4p 

T(/>= 8/= 128= 48p 
S'--■*. 

Figure 68. 2 (2)S4p. 

/(/>-42=128= 48p 

CHAPTER 7 

VARIABLE NUMBER OF PARTS IN THE 

DIFFERENT STRATA OF A SIGMA 

A S the main purpose of the General Theory of Harmony is to satisfy demands 

for the scoring of all possible combinations of instruments, or voices, or 
both, it should be flexible enough to make any instrumental combination prac¬ 
tical. 

If the score must, for some reason, consist of several orchestral groups 
represented by a different number of instruments in each group, harmony must 
be evolved few the corresponding number of strata and parts. 

A score of 4 violins, 3 clarinets and 2 trombones, fundamentally, requires 
a 2, where Sj *» 2S, Sji *** 3S and Sui =“ 4S. 

There are two ways of assigning instrumental combinations to harmony: 
(1) the fundamental way, where each instrument corresponds to one part, and 
(2) where the mobility of the instrumental form of a part defines the quantity 

of harmonic parts; in the latter conception one instrument produces: Sp, S2p, 
S3p or S4p. 

The first form is illustrated by the above case of violins, clarinets and 

trombones. In the second form one violin may perform an instrumental form 
of 2, or 3, or 4 part harmony, depending on the degree of mobility required. 
For this reason, in cases where chords change at a low rate of speed and the 
instrumental form implies high mobility, it is desirable to evolve more than one 
harmonic part for one individual orchestral part (which may be an individual 

instrument tike the clarinet, or a group-unison like that of the violas). 

Later on these considerations will be developed into basic principles of the 
Theory of Orchestration. At present, we shall look upon this problem as a purely 
harmonic one: correlation of strata into sigma in simultaneity and continuity. 

' There is no specific order per se in which the number of parts in the various 
strata may be distributed. This means that the lower S may have only one or 
all four parts. The same is true for any other S. There may be denser harmonic 

assemblages in the upper register and more rarified in the middle or lower register, 
but the opposite is equally true. 

So far as types of structures are concerned, there are several considerations 
which dictate the means of evolving sigmae: 

(1) const, or var. E’s as components of the strata structures; 
(2) const, or var. E’s as intervals between the strata structures; 

(3) symmetric arrangement of the strata roots in the vertical monomial 
or group symmetry; 

(4) identical or non-identical structures in the different symmetric arrange¬ 
ments of roots; 

(5) different strata having a different number of parts; 

(6) the mirror 2 (inversion of structures by means of an axis of symmetry). 

111551 
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Examples of the Types of Stgmae 
(evolved through the above six classifications) 

(1) „ Bb const. 
Bt const. Eg const. * cons • const. 2 

NUMBER OF PARTS IN THE DIFFERENT STRATA OF A SIGMA 
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*" <tr% 

= la 
SK ? 

Figure 70. Progressions of 2 (concluded). 

A. Construction of Sigmae Belonging to One Family (Style) 

1. 2 « S. 

We shall consider 2=Sasa special case of 2. The structure of an assem¬ 

blage representing a chord is defined by the interval-units CO constituting such 
a structure. In the case of 2 = S all structures belonging to one family are ob¬ 
tained by means of permutations of interval-groups of the original 2. ThuB a 

group of sigmae belonging to one family derive from the original 2 as permuta¬ 

tion-groups... Therefore: 2i s 2po, 2* ^ 2p,, 2„ m 2pn_i. 
We have used this method already in evolving pitch-scales of one family 

through the permutation of intervals (see Theory of Pitch-Scales)* and have 

applied the same procedure to structures of Ei (Special Theory of Harmony). 
For this reason, there is really nothing essentially new in extending the same 
technique to all Sp, S2p, S3p and S4p structures. . . , , 

In diatonic classification, all structures of one particular expansion tpso facto 

belong to one family, regardless of the number of parte. Thus Sp(Eo), S2p(Eo), 
S3p(E«) and S4p(Eo) belong to one family even if their corresponding interval- 
groups are not identical. Likewise Sp(Ei), S2p(E,). S3p(E,) and S4p(Ei) belong 

to one family. The same is true of all other expansions. 

♦♦See Vol. I, p. 361. ♦See Vol. I, p. 117 ff. 
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Examples of the Diatonic Families of 2 
Sigmae of one Family 

Scale 
/(Bo) 

A 

/(Ei) 

/m 

Mutually Reciprocating Pairs: 2(Eo) and 2(E,); 2(E,) and 2(E4); 2(E,) and 2(E,). 

Figure 81, Diatonic families of 2 = S. 

. In the general classification of 2 = S, Sp and S2p do not evolve any structural 
families: Sp has no interval to go by and S2p has one I(S), thus being invariant 

in each case. Families of triads (S3p) are based on permutations of two interval- 
groups in each 2. Families of tetrads (S4p) are based on permutations of three 
interval-groups. 

The number of families of triads equals the number of combinations of the 

interval-groups by two and not exceeding eleven semitones as a sum: I > mi H- ni. 
There are 29 such families, 5 of which contain only one member (2). 

The number of families of tetrads equals the number of combinations of the 
interval-groups by three and not exceeding eleven semitones as a sum: I > mi + 

+ ni + pi. There are 40 such families, 3 of which contain only one member (2). 

Examples of Triads Belonging to One Family 

(1) 1(2,) i 2i + 3i; 1(2,) - 3i + 2i. 

(2) 1(2,) - 5i + 3i; 1(2,) - 3i + Si. 

(3) 1(2,) - 4i + 3i; 1(2,) -31+48. 
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Examples of Tetrads Belonging to One Family 

(1) l(2i) = 3i 4* 3i + 2i; I(2i) = 3i 4* 2i 4-3i; 

I (2,) = 2i + 3i + 3i. 

(2) 1(20 = 2i + 3i + 5i; I(2a) =* 2i 4* 5i 4- 3i; 

I(2a) = 5i 4* 2i 4* 3i; 1(20 = 3i 4- 2i 4* 5i; 
1(2*) = 3« + Si 4- 2i; 1(2*) = 5i 4- 3i 4- 2i. 

The number of members of one family depends on the number of possible 
permutations of the interval-groups. If the number of interval-groups is one, 

there is but one member to a family. If the number of interval-groups is two, 

and both interval-groups are identical, there is but one member to a family. 
If both interval groups are non-identical, there are two members to a family. 
If the number of interval-groups is three, and they are all alike, there is but one 

member to a family. If the number of interval-groups is three, two of which are 

identical, there are three members to a family. If the number of interval-groups 
is three and all three are different, there are six members to a family. Full in¬ 

formation on this matter is to be found in my book “Kaleidophone."* 
Continuity of variable 2 can be composed from combinations of the members 

of one particular family, arranged in any desirable order and accompanied by 

coefficients of recurrence. 

For instance: 2~* = 22j 4* 2i 4" 32*. 

2. 2 = NS. 

In a compound structure (2), all the substructures (S) and the intervals between 

the latter belong to one family. The different members of one family of com¬ 
pound structures have interval-groups in the substructures, identical with the 

corresponding original substructures, and interval-groups between the sub¬ 

structures, identical with that of the original compound structure. The difference 
between the various members of one particular family of the compound struc¬ 
tures lies in the arrangement of the original interval-groups; this refers to both 

the substructures and the intervals between the latter. 
It is assumed that the interval between the adjacent strata is either one 

of the interval-groups of the 2 or Oi (zero i). This Oi refers to the interval between 

the upper function of S placed immediately below the adjacent upper S and the 

lower function of the latter, or between the lower function of S placed immediately 

above the adjacent lower S and the upper function of the latter. 

Examples: 
£ 

Sill- a) Sii*. b 
\ I =0i ai 

c) 
(1) Sji : b (2) d1 

o t\ 1 - Oi 
Si : c 

b 
Si : 

a a 

•Published by M. Witmark and Sons, 1940. 
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We shall evolve now a family of compound structures in which the Master- 

Structure (the original structure) is represented by 1(S) = Si 4- 3i 4- 3i. 

The compound interval-group, which, in this case consists of the variants 

of three permutations, offers 2 = 3S as the most natural solution. From the 

original Master-Structure we evolve the Compound M aster-Structure in three 

substructures, in which the adjacent functions of adjacent strata are connected 

by 1 — Oi. 

The following is a complete table of the members of this family: I(S) = 

= 5i -f 3i 4* 3i. 

All numbers express interval-groups. 

2» 2, 2. Zs 2s 2, H 
D 

2, 
(Master) 

■ H 

3 3 5 3 3 3 
KB IB 3 

3 5 3 5 3 3 
B9 SB 3 

S 3 3 3 5 5 U 1 5 

-0 - 0 - 0 -o 

3 3 5 3 3 3 3 5 3 

3 5 3 3 5 3 3 3 3 

5 3 3 $ 3 5 5 3 5 

-r 0 -0 ‘ --ail -0 CD \ UM -0 - 0 -0 
3 3 5 3 3 3 3 3 5 

3 5 3 3 3 5 3 3 3 

5 3 3 5 5 3 5 5 3 

2 io 2U 2 is 2« 2m- 2» pr. 2 IT Zis 

1 5 3 3 3 3 3 i a. j] 3 3 

3 5 5 3 5 5 3 3 

3 3 3 5 3 3 H 5 5 
m - 0 - 0 - 0 - 0 

3 5 3 3 3 3 3 5 3 

5 3 5 5 3 5 3 3 3 

3 3 3 3 5 3 5 3 5 
-o -0 e -0 

3 3 5 3 3 3 3 3 5 

5 5 3 5 5 3 3 3 3 

3 3 3 3 3 5 5 5 3 

This table is continued on the following page. 
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This table has four more variants as the interval-groups between the adjacent 

strata offer the following possibilities: 

The total number of 2 — members of this family is: N(S — 5+3+3) = 27*5 = 

= 135. 

It is hardly necessary, or desirable, to use such an enormous number of 
structures in one musical composition. Two or three members are perfectly 

sufficient for such a purpose. It is equally true, however, that one such family 
may constitute the life-time harmonic manifold of one composer, expressing him¬ 

self in one harmonic style. The harmonic vocabulary of such a composer would 

positively dwarf that of Bach, Beethoven and Wagner put together. 

(The Master 2) Some examples from the table 

li 2*88 2*49 2*81 2*108 

Figure 82. Some examples from table of Master structure. 
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B. Progressions with Variable Sigma 

Different sigmae belonging to one family, which can be used in one harmonic 

continuity, may have a different number of parts in each stratum, but the 
number does not vary for each individual stratum. For instance: 

2b = 4S; Si = p, Sfj = 4p, Sm = 3p, SIV = 2p; 

2, = 4S; Sj = p, Sn - 4p, Sm = 3p, Siv = 2p; 
2a <= 4S; Sj = p; Sn = 4p, Sm = 3p, Siv — 2p; . . . 

We shall now present this case in harmonic progression. 

Example of a Progression with Variable Sigma and a Different 

Number of Parts in the Different Strata. 
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C. Distribution of a Given Harmonic Continuity Through Strata 

Strata arrangement of a given harmonic continuity serves as an auxiliary 

technique for the orchestration of music which has been already written. The 
common notion of assigning parts existing in the sketch of a Composition directly 

to the instruments and groups of- the orchestra is rather primitive. Since the 
average sketch contains 2, 3 or 4 and seldom S parts, and an average orchestra! 
score contains between 20 and 30 parts, it is no wonder that there is so much 

duplication of parts. Many instruments are compelled to play identical notes 
because of the composer’s lack of mathematical judgment. Such scores lack 

acoustical clarity and consume an enormous amount of rehearsing time in order 

to be made to sound acceptable. 

Many prominent composers of the past and present have felt the necessity 

of individualizing the orchestral parts in a score. Not all of them solved this 
problem with success. In Mozart’s scores we witness a tendency toward rhythmic 

independence of the duplicated parts, attained by the variation of instrumental 
forms. In Wagner, the struggle for the individualization of orchestral parts is 

often achieved by the technique which I call “contrapuntal variation of har¬ 
mony’’. But since the advent of the so-called “French Impressionists” (Debussy, 
Roger-Ducasse, Delage, Ravel)r the individualization of orchestral parts by 

means of segregation of the harmonic groups has become a prominent tendency 

of orchestral writing. 

A student of this system can compose his scores directly in harmonic strata. 

However, whether he plans to use it for the purpose of composing or not, it is 
necessary for him to know, for the purpose of orchestrating, how to convert a 

given part-continuity into strata, or how to convert his own sketch of an ar¬ 

rangement into strata, prior to scoring it for the instrumental or vocal combina¬ 

tion of parts. 

The greater the number of parts in the original continuity, the greater the 
number of strata which can be developed therefrom. For this reason, if a given 
harmonic continuity contains too few parts to permit development into the 

number of parts required by the selection of a larger orchestral combination, 
it becomes-necessary to add one or two more parts to the original harmonic pro¬ 

gression before converting it into strata. The selection of functions which are to 

be added is a matter of harmonic style. But, in the field of transcriptions, 
paraphrases and arrangements, one style has not infrequently been trans¬ 

formed into another. 

Inspecting the trends of existing music, we find that the development of 

harmony from the few parts into many, which happened in the course of the 

past few centuries, has relied on two fundamental devices: 

(1) the acceptance of auxiliary tones as chordal functions; 

(2) the addition of new chordal functions and groups. 
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Both devices undoubtedly derived from alternation of an auxiliary unit 
with the respective chordal function (tremolo, legato, trill). In slow motion 
the auxiliary units often formed suspended tones which later-crystallized into 
chordal functions. In fast motion, alternation of the groups of auxiliary units 
with chordal functions produced psychological continuity of two superimposed 

assemblages. This gave birth to the simultaneous harmonic polytonality used 

intentionally by Stravinsky, Malipiero and myself. Facts reveal the systematic 
use of the strata technique, which I introduced in the United States about 1931 
soon became the favorite style in the field of radio and motion-picture music. The 

sparkling quality of orchestrations, which can fee immediately detected by 
listeners, is due primarily to harmonic factors: reharmonization and strata. 

A bold example of the first device (crystallization of auxiliary units into 
chordal functions) is the cadence in the first movement of Prokofiev’s Piano 
Sonata No. 5, which cadence sounds Mozartian when the auxiliary units are 
discarded. 

The chordal functions of a given harmonic continuity (including the new 
functions or groups of functions, if such have been added) must be assigned 

before the original continuity is converted into strata. This is particularly im¬ 
portant when the original continuity has a variable Z. As the number of parts in 

the Original remains constant, there is a constant set of letters corresponding 
to chordal functions. A function may change structurally in its interval value 
in relation to other functions, yet its functional meaning in the entire 2 as¬ 
semblage remains constantly represented by the same letter. 

For examide, ZXS(5) = 1, 3, 5, 13 and Z*S(7) = *, 3, 5, 7 can both be re¬ 
presented by the same assemblage of functions ZS - a, b, c, d. However, while 

the a, b and c funcbons retain their structural meaning [which in this case is 

the diatonic S(Ei) ] of 1, 3 and 5 respectively, function d changes its structural 
meaning, being the seventh in 2, and the thirteenth in Zi. For this reason, trans¬ 
formations in the respective strata are performed by their functional and not 
by their structural meaning. 

The superimposition of a whole new assemblage upon a given one (sym- 
metnc super.mpos.tion of strata) is equivalent to harmonization of harmony by 
another harmony While the original sequence of assemblages in this cm* remains 
intact, the new added assemblage usually attributes a new quality, in which the 

original ingredient is still perceptible and yet appears as if it has been differently 
flavored Its presence is often detected as timbre and not harmony. This ex¬ 
plains why, in scores evolved through strata, the listener often mistakes harmony 
tor orchestration. 
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Transcription into Strata: 2 = 6S = Up. 

Figure 85. Harmonic continuity into strata 2 = 63 « Up (concluded). 

The Original: 2 «= S4p. 
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Further Strata Development: 2 = 4S = lOp. 

Addition of Two Harmonic Strata to the Original: 2 = 5S = 12p. 

A MV __ 

Sv 

Sir 

V 
S8p 

^ »» TO «/: 

sr 
I sap 

« .<fi ■ ^ 

S2p 

Sn 

tr 
Sp const. 

a «> jT^ Ho TT 

= *" = '*"«> XT 

Figure 86. Harmonic continuity into strata. 2- = 54p (concluded). 

CHAPTER 8 

GENERAL THEORY OF DIRECTIONAL UNITS 

(Melodic Figuration) 

^ACCORDING to our analysis in the field of the Special Theory of Harmony, 
passing, suspended and anticipated units actually belong to the assemblage, 

i.e., they represent either a function present in the chord, or a function which 
is a potential unit of the sigma. Suspended and anticipated units can be obtained 

by mere rhythmic variation of harmony which we shall discuss in full detail in 

the Theory of General ("Textural") Composition.* Chromatic passing units are 

always to be regarded as elements (to be inserted a posteriori) of chromatic vari¬ 
ation, applicable to anv type of harmonic progression. 

This leads us to the conclusion that the dnly authentic element of melodic 
figuration is the auxiliary unit. The latter is not bound to bear any relation 

either to 2, or to any substructure of it. An auxiliary unit is selected to be the 

leading tone to a chordal function. The interval of the leading unit from the 

respective chordal function is limited by the arrangement of the adjacent chordal 
functions of one S. In the structures of wide expansions it may be 3i, 4i or even 

greater. However, for practical reasons it is advisable not to exceed I =* 2i, 
as habits, partly inherited and partly developed of listeners, obstruct the as-’ 

«>ciation of remote pitch-units as leading tones. Our charts, for this reason, will 
be limited to two forms: I = i and I = 2i. 

From the viewpoint of melodic figuration, chordal functions will be con¬ 

sidered neutral units and the auxiliaries will be considered leading units. The 

combination of both, developed into any repetitive form, will be considered a 
directional unitj A directional unit may start with either the neutral or the 
leading unit, but it must end with the neutral unit. 

Thus the study of melodic figuration as a branch of the General Theory of 
Harmony is confined to the study of directional units in the various forms of S 
and the coordination of assemblages containing directional units. 

A. Directional Units of Sp 

(a, a_>, a—*) 

Considering the neutral unit to be a special case of directional units we 
obtain the following three forms: a, a_> and a->, i.e., the neutral unit, the di¬ 

rectional with the lower leading unit (ascending auxiliary) and the directional 
with the upper leading unit (descending auxiliary). 

•See p. 1305. 

tSeeKaletdophcme by Joseph Schiflinger, M. Witmark and sons, 1940. Revised edition, 1945. 

[11691 



1170 GENERAL THEORY OF HARMONY 

The last two forms may have the interval of ascending of i or 2i and the 
interval of descending also of i or 2i. Thus there are four forms of directional 

units of Sp: 
(1) / » : fe -*c; (3) \ i : db-+c 

(2) /2i : bb—>c; (4) \2i : d -»c 

Illustrations of Directional Units of Sp 

Original: 2C7 + C-| + G-r + C* + C# 

Figure 87. Directional units of Sp. 
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B. Directional Units op S2p 

(a, b, a_» b_>, a~>, 6"*) 

In tabulating the directional units and groups of S2p we shall resort to 

geometrical representation: neutral unit:—; ascending directional unit: / 
and descending directional unit: \. 

Using the terminology of the Theory of Melody, we can call these three 
forms: 0, a and b respectively. The three forms in combinations by 2, correspond¬ 
ing to S2p, give: 3* - 9, as each form is combined with itself and with the two 

remaining forms. The first of these 9 forms represents neutral units in both parts. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

The first form has no interval variation. The second, the third, the fourth 
and the fifth forms have an interval variation in one part. The remaining forms 
have an interval variation in both parts. 

(1) 
b-Oi 

a —Oi 

(2) (3) (4) (5) 
b 

i;2i b —Oi \i; 2i b — 

b/ i; 2i a —Oi a\ 
a — Oi a/ 

(6) (7) (8) (9) 

✓ i; 2i 

b 'y i; 2i 
a ' 

bv . m; 2i 

A\2i 
a S 

✓ i;2i 
b* 

a\. • 
M;2i 

b\. . 
ayi; 2i 

Xi;2i 

Thus the total number of directional units for any S2p is: one for (1), eight 
for (2 — 5) and sixteen for (6 — 9), since each of the latter has four variations. 
i.e.# 1+8 + 16-25. 

In some structures, whose own interval-group is small (they usually belong 
to Eo and seldom to Ei), some directional units containing inward motion have 

to be excluded in order to avoid crossing of the parts. In diatonic progressions, 
the 8emitonal precision of directional intervals is not compulsory. 
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An Exemplary Table of Directional Units Evolved to I(SZp) = 4i 

Figure 88. Directional units of I(S2p) = 4i. 

Each of the 25 forms of directional units has its own distinct character. 
Various forms can be selected as a continuity-group of directional units, where 

each selected form has a definite coefficient of recurrence. It is very desirable, 
however, to restrict each case to one form, as only such a limitation guarantees 

perfect unity of style. For this reason our examples will be confined to one form 
at a time. The following variations should be considered as samples of different 
styles, and not as one sequence. 

It is obvious that the directional units must be assigned to each structure 
when more than one structure is employed. 

Directional Harmonic Continuity of SZp and Hybrid 
(through addition of Sp) 

(l) Original I. 

(3) 1 Var. II. Form (8) and(4): a > FT*". 

Figure 89. Directional harmonic continuity of SZp (continued). 

GENERAL THEORY OF DIRECTIONAL UNITS 1173 

(4) Original I. I(S)=2i. 
. Type II 

(7) Original II. 
Type I 

(9) Var. H. Form (7):f^4 Si <I=4i)and S2 (I = 8i). 

(10) Original H. I (S) = 4i. 

Type II 

Figure 89. Directional harmonic continuity of 2Sp (continued). 
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(12) Var. H. Form (8):]^f. 

(14) Var. I. Form (8): - 

(17) Var. I. Form (8)i ^=4. 

Figure 89. Directional harmonic continuity of SZp (continued). 
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S = 2S; Si «= p; Sn ®* 2p 

Figure 89. Directional harmonic continuity of S2p (concluded). 

Original j (4) with added Sp. 

Figure 90. Hybrid harmonic continuity, addition of Sp to S2p (continued). 
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Table of Directional and Neutral Units of S3p 

0 & b 

0 a b 

0 a b 

0 0 a 0 0 b 

0 a 0 _0 b 0 
a 0 0 b 0 0 

a a 0 a a b 
a 0 a S b a 
0 a a b a a 

■■ 
b b 0 b b a 

b 0 b b a b 

0 b b a b b 

b a a b 0 0 

a b 0 0 b a 

0 0 b a a b 

(1) (2) (8) 

/ \ 

— 
'/ 

\ 
\ 

(4) (5; (6) (7) (8) (9) 
*—• 

/ \ 
/ \ _ 

/ \ — — 

(10) (41) (12) (18) (14) (15) 

/ / / \ 

* / 
/ \ / 

/ / \ / / 

(16) (17) (18) (19) (20) (21) 

\ \ \ / 
\ \ / 

\ \ \ 

\ \ / \ \ 

(22) (28) (24) (25) (26) (27) 

\ / / \ 

/ \ 
— \ / 

\ / / \ 

Of these 27 forms, (1) has no semitonal variations; the (2) and* (3) have 8 

variations each (i and 2i participating in each part); the (4), (5), (6), (7), (8) 
and (9) have 2 variations each; the (10), (11) and (12) have 4 variations each; 
the (13), (14) and (15) have 8 variations each; the (16), (17) and (18) have 4 

variations each; the (19), (20) and (21) have 8 variations each; the remaining 

6 forms have 4 variations each. 

Thus the 27 ‘forms together with the possible i and 2i variations produce 

125 forms of intonation for each given S3p structure. 

1; 2-8 - 16; 6-2 = 12; 3-4 = 12; 3*8 =- 24; 3-4 = 12; 3-8 = 24; 6-4 * 24. 

1 + 16 + 12 + 12 24 + 12 + 24 + 24 - 125 
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An Exemplary Table of Directional Units Evoked 
to I(S3p) - 4i -f 3% 

1179 

One movement 12 cases 
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Figure 94. Directional units. I(S3p) — 4i + 3i. Three movements. 
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Similar tables can be devised for any other S3p structure. In spite of the 
abundance of resources, the composer will do well to assign just one combination 

to each structure used in a certain continuity. When the structures, of one con¬ 
tinuity differ in their form, an individual directional group must be assigned 
to each structure. 

Examples of Application of Directional Units 

to S3p Progressions 

Original 
A 
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D. Directional Units of S4p 

(a, b, c, d, a_*, b_*, e_+, a—*, GT\ cr*t d~*) 

Directional units of Sip consist of the combinations of 0, a and b. As each 
form is combined with itself as well as with all other forms, die total number of 
the forms of directional and neutral units is: 3* = 81. 

In die case of variable 2, it is necessary to assign die directional units to 
each 2 individually. 

See graph presentation of above' table on the following page. 
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(i) (a) (a) 

: v \ 

(4) (5) (6) (7) (8) (8) (10) (11) (i») (18) (14) (IB) (16) (17) (18)(18) 

/-\-/ z' /X / ^ ^ 

(80) (81) (88) (88) (84) (86) (88) (87) 

x \ \ 'v ^ / 
\\_~\/ 
X XX/ \ 
v — \ X \ \ 
_\NN/\NX 

(88) (89) (80) (81) (88) (88) (84) (85) (88) (87) <8B) (89) (40) <4l) (48) (48) (44) (46) 

/ \x/ 

-\\-N N X V \ / 

\ 

(48) (47) (48) (49) (60) (61) (68) (68) (64) (66) (66) (57) 

z_/\z_\/_/_\ 

(68) (69) (60) (61) (68) (68) (64) (66) (66) (67) (68) 69) 

/ X / / / 
V/1\//\_ / 1 / \ 

(70) (71) (78) (78) (74) (76) (76) (77) (78) (79) (80) (81) 

/ X \-X\ / /X\X 
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Semi tonal variations occurring in one p: 

i 2i 2 variations 

Semitona! variations occurring In two p’s: 

i 2i i 2i 
i i 2i 2i 4 variations 

Semitona! variations occurring in three p’s: 

i i 2i 2i 2i i 2i 
i 2i i 2t i 2i 2i 

2i i i i 2i 2i 2i 
8 variations 

Semitonal variations occurring in four p's: 

i i i 2i 2i 
• 
l i 2i 

v 
i 2i 2 

• 
l 2i i 

• 
l i 2 

2i i i i i 

2i 2i *2i i 2( 

2i 2i i 2i 2i 
2i i 2i 2i 2i 

i 2i 2i 2i 2i 

On the basis of the above table we find that the 81 forms, tabulated on 

pages 1183-4, produce the following number of semitonal variations: 

(1) has 1 form; 

(2) and (3) have . . ... % 16 variations each 

( 4—11) have . * .... 2 
M II 

(12—»15) have . . . . . . 8 »» f> 

(16 —19) have . . .... 16 »» rt 

(20 — 23) have . » 
t» tl 

(24 — 27) have . * .... 16 »* »* . 

(28 — 39) have . . .... 4 w »» 

(40 — 45) have . . .... 16 ft *\ 

(46 —57) have . . .... 4 »» »» 

(58 — 81) have . . ... 8 
»> H 
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By multiplying the number of forms in each subdivirion by its respective 
number of variations, we find the following: 

1 Total: 1+ 32 + 16 + 32 + 64 + 32 + 64 + 48 
2.16 = 32 + 96 + 48 + 192 - 625 
8*2 = 16 
4-8 = 32 The latter figure represents the number of posribil- 
4*16 = 64 ides for each S4p structure. 
4*8 = 32 
4*16 =64 It is easy to evolve musical tables for any of 

12*4 =48 the 165 possible S4p structures, taken in any of their 
6*16 = 96 three expansions (E«, Ei and E*)» by following the 

12*4 = 48 chart of 81 forms and the table of semitonal varia- 

24*8 = 192 dons. 
It is interesting to learn that the manifold of structures of S4p supplied 

with all the possible directional units produces: 165*3*625 = 309,375 forms of 

the c -chord. 
Examples of Application of Directional 

Units to S4p Progressions 

GENERAL THEORY OF DIRECTIONAL UNITS 

Var. ='&-•% 6"~, <w. 

Figure 96. Directional units of S4p progressions (<concluded). 

E. Strata Composition op Assemblages Containing Directional Units 

Selection of directional units for a 2 depend on several factors: 

(1) whether the number .of parts is the same or different in the different 
strata; 

(2) if the number of parts is the same in the different strata, it depends on 
whether the structures in the different strata are identical or not; 

(3) whether it is desirable in each individual case to neutralize or to single 
out the Character of the directional units in the different strata. 

In case No. 3, the predominant characteristics of the groups of directional 
units accompanying assemblages are: the identity and the reciprocity of the pat¬ 
terns. The identity can be carried out with diatonic (with the precision up to 2i) 
or with general (with the precision up to i), i.e., chromatic precision. Reciprocity 
can be achieved by means of the axis of inversion. The axis of inversion of a 2 

is located at the level of For example, if a 2 = 2S3p, it means that 2 = 6p. 

Hence y = f = 3, i.e., the axis is between the two strata. 
Under the conditions of such reciprocity, the axis-inversion yields a sym¬ 

metric arrangement of the directional units throughout the sigma. 
If the number of parts in a sigma is: 2 = 2np + 1 (i.e., an odd number), 

the part representing the center of the vertical arrangement in a sigma, becomes 
the axis of inversion. 

In such a case, if perfect symmetry is desired in the distribution of direc¬ 
tional units throughout the 2, it is better to leave this part as a neutral unit. 

Thus, depending on whether 2 = 2np, or 2np + 1, the axis of inversion is 
located between strata, or coincides with a p of the central stratum respectively 
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Examples of Composition of Directional Units in 

Strata; Graphic Representation 

Sn ^ 

s, ^ 

8, ^ 

s. ^ 

I 

s'l 

JT = 2S; S= 2p. 

S„ _ 

Sx 
\ 

Sn 

8, 

/ 
\ 

/ 
\ 

/= aSj S- 8p. 

81 " 8- ^ 

\ _ 
8* — 8, / 
\ / 

8^ 

8.N, 

/ 
8. \ 

/ 

\ 
8. / 

\ 

8i 

/= 2S} S= 4p. 

/ 
— 

* 
/ 

S” / 8, Sn \ 

\ / 

/ 

Si ^ Si 

\ / 

* 

Si ^ 

\ \ 

Figure 97. Directional units in strata (continued). 

8b ^ 

Sn Z 

Sm 

s. 

J=8S; S= 2p. 

\ 

/ 
/ 

\ 

>B 

\ 
/ 

Sn 

\ 
8b y 

So _ 

8, ^ 00
 

\
 
/

 

Si / 
\ 

V 

Sn ^ 

/= 8S; 

8. 'S 

S= 8p. ^ 

8b 

\ 

/ 
8b — 

/ 
80 - 

\ 

/ 
8n — 

\ 

\ 
Sn 

/ 

\ 
Sn — 

/ 

8.^ s,/: 

V 

8, ~ 

\ 

Sn, 

/ 

8, \ 

/ 

l~ 8S} S” 4p. 

Si 

\ 
/ 

8m ^ 

\ 

/ 
\ 
/ 
\ 

Sn 

8, ^ 

8, 

8, 

\ 
/ 

\ 

/ 

\ 
/ 

Figure 97. Directional units in strata \ (continued). 
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Musical Representation 

In the sigmae with a different number of parts in the different strata, the 
composer can use his discretion in attempting to evolve symmetric, or nearly 
symmetric forms, by assigning an axis of inversion. 

In many instances directional units are reversible. Whether the structure 
S is of higher tension than the directional assemblage (i.e., the group of leading 
units) or vice-versa, both forms can be used. It is analogous in effect to moving 
from a consonance to a dissonance, or in reverse. As our harmonic progressions 
are always reversible, the reversal of directional units does not affect the quality 
of a progression but merely changes its character. Such progressions in position 
® and (£) are often useful as two themes of one composition. 

Example of the Reversal of Directional Units 

Progression 

iii;
 

fai». vt§- jjj -lin o 

. . 

Directional progression 

t. Figure 98. Directional units reversed (continued). 
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Figure 98. Directional units reversed (concluded). 

F. Sequent Groups of Directional Units 

(Leading Units of the Higher Orders) 

The leading units immediately preceding the respective chordal functions 

can, in turn, be preceded by other leading units which, in turn, can be preceded 

by still other leading units, etc. Since in most cases the interval of directional 
units is i; this technique attributes chromatic character to any strata progression 

to which it is applied. 

There are certain limitations to this technique. When the intervals of chord- 
structures are small, only inward motion of successive leading tones can be 
achieved. The opposite is true, i.e. outward motion is preferable for widely- 

spaced intervals; otherwise, the sequent groups of leading units may interfere 

with adjacent chordal functions. Parallel motion of the sequent leading units 

is acceptable in all cases, except where such units are assigned to simultaneous 

chordal functions, undesirable in parallel motion. 

GENERAL THEORY OF DIRECTIONAL UNITS 1193 

The presence of the leading unit to the leading unit, i.e., the leading unit 
of the second order, can be expressed as follows* 

c_, c—, d_t d~~ 

Likewise the leading units of the third order can be expressed by introducing 
still another arrow: 

Examples of Leading Units of the Higher Orders^ 

— ^ 5^” bu/ 
sojf am* am* 

Figure 99. Leading units of -the higher orders. 

The conversion of harmony into melody will be discussed in Applications• 
of Strata Harmony. 



CHAPTER 9 

COMPOSITION OF MELODIC CONTINUITY 
FROM THE STRATA 

EACH individual part of a stratum* can be used as part of a melodic con¬ 
tinuity. When harmonic continuity forms a cyclic recapitulating progression, 

coefficients for the number of attacks on each change of a chord (H) may be 
set to any desirable type of interference. Thus there are three fundamental 

types of melodic continuity: 
(a) where each part moves through the entire harmonic continuity from 

beginning to end, after which the next part begins. 
(b) where coefficients can be set in such a way that the entire harmonic 

continuity will serve as a divisor to its own multiple. For example, if the number 
of chords equals 8, a distribution through 3+34-2 produces one cycle. The 

above coefficients represent the number of H until p changes. 
(c) coefficients set as an interference group in relation to the number of H. 

For example, if H equals 8, and the distribution-group is rs+2. then inter¬ 

ference will take place. 
Theme 

COMPOSITION OF MELODIC CONTINUITY FROM THE STRATA 1I9S 

A. Melody from One Individual Part of a Stratum 

Distributive forms of transitions from p to p and from S to S including 2” 
as a limit. The letters a, b, c, d correspond to chordal functions. 

M - aS12”>+bS12r>+cS12^+dSI2-++aSJ2->+bSI2~>+cSs2“>+aSJ2“f+ 
4- bS&~+ 

ti y bSi | cSi 

Figure 102. Mdody from 2p, 3p, 4p, of an S (continued). 



Figure 102. Melody from 2p, 3p, 4p, of an S (concluded). 

•7 

C. Melody from One S 

Permutation of pitch-units within one S. Distributive forms of transition 

from S to S. 
a, b, c, d represent instrumental functions. 

M=ab S3Hi + ba Ss Ha+dcb SiHa+cbaSiH*+bab St Hg+bcd SiH$+ 
JL aVu> IT. /JL Iva 

Figure 103. Melody from one S. 

D. Melody from 2S, 3S 

Each section of melody incorporates a pre-selected quantity and position 

of S. Permutation of pitch-units within a pre-selected group. Distributive forms 
of positions and transitions of the groups of S. 

a, b, c, d represent instrumental functions. 

M—fsbcab S*+ab Ss) Hf+Cbc&be 8s+baSa) Hjj+(cabca 8j+ba 8s) Hr 

Figure 104. Melody from 2S, 3S . . . 

COMPOSITION OF MELODIC CONTINUITY FROM THE STRATA 1197 

E. Generalization of the Method 

3 as the limit becomes a pitch-scale or a melodic form. Permutation of the 
pitch-units. Transition to the following H occurs after a complete utilization 
of all p of the preceding H. 

a, b, c, d represent instrumental functions. 

»»c, d, ek Ma (bo St+ba S3+ beab 8* +da St) H 

Figure 105. Generalization Of the method 

F. Mixed Forms 

Derived through distributive combinations of Paragraphs A, Bt C, D, E. 

at b, c, d represent instrumental functions. 

M=bd St iH+aSg4H+dcb St2H+bSa 8H+febSt+cb Sa+d8t+bc8a+ba8a)H 

Figure 106. Mixed forms. 
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G. Distribution of Auxiliary Units Through p, S and 2 

Application of auxiliary units to sections A, B, C, D, and E. Permutation 
of directional units. Composition of continuity where some of the sections of 
melody contain directional units and some neutral units. Application of co¬ 

efficients to the above two types of groups. Application of the directional unit 

technique to Paragraph F. 

a, b, c, d represent instrumental functions. 

M « a—>b—»S*3H -f b »a ->S»H 4~b—»aS*H -fa—*bS»H 4- (bcSa 4* a-»b-»S» 4* 

4- c-»h—*S*) 2H 4* d_+c—>abSiH 4- (ac-+b—>Si 4* ac—»S» 4“ a—►Si) 3H 

Figure 107. Distribution of auxiliary units through -p, S and 2. 

Directional units are one of the most customary forms of variation. Ex¬ 
position of a theme, followed by variations of it, is a device which is particularly 
important from the standpoint of mobility. Increase in the number of attacks 

can be easily achieved through this device. 

H. Variation of the Original Melodic Continuity by Means op 

Auxiliary Tones 

a, b, c, d represent instrumental functions. 

(Theme: see Fig. 104) 

MsCabeabSg+abf^Hi+fbcabc S*+baS8)Ha4* (o&bca82+ba8&)Hs. 

COMPOSITION OF MELODIC CONTINUITY FROM THE STRATA 1199 

Variation: 
M= Cab*. <v&».b 8a +&*.b 8a) Hi+(be*a>.h*. e Sj + ba^Bs) Hg + (ea*.h» a* 

aSg+h^aSg) Ha 

Figure 108. Variation by moans of auxiliary tones {concluded). 

There are two ways of assigning a duration-group to such a melodic con¬ 
tinuity: 

(1) each unit, neutral or leading, corresponds to one attack of the duration 
* group; 

(2) directional unit originally corresponds to one attack of the duration- 

group, afterwards is changed into a split-unit group. 

See Theory of Melodization of Harmony: Composition of Durations to a 
Pre-set Attack-group.* 

*Sec Vol. F, p. 649. 



CHAPTER 10 

COMPOSITION OF HARMONIC CONTINUITY 

FROM THE STRATA 

COMPOSITION of harmonic continuity from a given 2~~* is primarily a 

method of selecting the different strata with regard to their quantity and 

the form of distribution. In applying this technique to orchestral writing, the 
different groups of instruments represent different strata, which permits one to 
obtain a superior flexibility of harmony with regard to ranges, registers and 

density. Composition of density as such is a matter of separate study and will 
be discussed later in this branch. For the time being, it is sufficient to assume 

that the density may vary gradually or suddenly as well as in an oblique fashion 
when one stratum alternates with the variable density of remaining strata. 

A. Harmony from One Stratum (Any S of the 2) 

Distributive forms of transition from S to S within 2 as a limit. Circular 

continuity. 

H~* = Sj2H + SiH + S*H -f S»2H 

Figure 109. Harmony from one stratum. 

11200] 
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B. Harmony from 2S, 3S, . . . 

Distributive method of selecting the groups of S and their sequence in time 
continuity. Circular continuity. 

H"*= (Si+ 8*) 2H+(S* + Sb)4H+(S8+Si) 2H 

/! '’H Jg Jig , 

ftgure 112. Continuity milk variable density (continued). 
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E. Application of Auxiliary Units and Instrumental Figuration of Har¬ 

mony Through Any Of The Preceding Four Forms Of Harmonic Con¬ 

tinuity Of The Strata 

Hybrid forma of distribution of the auxiliary tones through strata. 

F. Variation of the Original Harmonic Continuity Through Auxiliary 

Units 

The following example illustrates both Sections E and F, as it may be used 

in place of a variation on the original theme. 

Sa = h^ const.; S8=^C 
a 

a, b, c, d Represent instrumental functions. 

COMPOSITION OF HARMONIC CONTINUITY FROM THE STRATA 1203 



CHAPTER 11 

MELODY WITH HARMONIC ACCOMPANIMENT 

All illustrations are based on the theme of figure 100. 

(I) One S becomes a melody; same S serves as harmony in a different octave. 

M 

H 
= S constant 

(b) ^ = S, 

(c) ^ = S, 

Example: 

sn 

MELODY WITH HARMONIC ACCOMPANIMENT 1205 

= H,2T 4 HjT 4 H,T 4 H42T 

Instrumental form: (a 4 b) 2T 4 bT 4 aT 4 (a-fb)2T 

T(M) - (OD+t+t+t) 4 (t+E+t+t) 4 (t+t+(2+t) 4 (t+t+t+H) 

tied over: T(M) - (E+t+t+t) 4* (2t+t+t) 4- (t+2t+t) 4- (t4t42t) 

(2) Different individual Sfs of one 2 become melody with harmonic ac¬ 

companiment >= S variable^. 

- Si, S,, S,, . . . Stt 
H 

Example: ^ = S.H.2T + S,H,T + S,H,T + S,H.2T 
H 

(3) More than one S produce melody; one S produces harmony. 

M,_ Sj 4 S* M Si4Sj4S4 M S» 4 . . . 4 S« 

H " Si ; H " Si ; H “ Si 

Example: 

M S,4S, 

H Si 

Rhythm: f series: T = (44141) 4 (14441) 4 (14*144) 4 

4 (141424141) 4 (14241414D + 

4(241414141) 

See Figure 116 on the following page. 
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S* 
S3 

Sa 
J-L 

r* r ‘r mm 
0^ 

S3 
S2 s8 i_rf_r 

■ ■Irp-U 

S2 

PS 

> # -I- ■ — 

Figure 116. More than one S produces melody. 

(4) One S produces melody; more than one S produces harmony. 

(5) Several S's produce melody and several other S's (of the same 2) produce 
harmony. 

(6) Distribution of tension for ^ in the preceding cases (H ■= Sx, M = S*; 

H = S, + S, + . . . + S».i, M - S.; H - Si, M - St 4- S« + . . . 4* SJ. 

M Sa 
H = Sb 

c- , M Sx 
Example: ~ 

Rhythm: Foxtrot: £ and £ series 

Instrumental form: aHx2T + bH,T + bHiT + aH42T 

See Figure 117 on the opposite page. 

(7) Variable distributive transition from one individual S to another for 
melody and a constant S or a group thereof for harmony. 

(8) Constant S or a group thereof for melody and a variable distributive 
transition from one individual S to another for harmony. 

(9) 2 for melody; variable density for harmony composed through dis¬ 
tributive selection. 

(10) Melody composed through distributive selection of scales derived from 

the individual S, the groups of S or the entire 2; harmony from the entire 2. 

(11) All previous cases with application of auxiliary units. M and H with¬ 
out auxiliary units. M with and H without auxiliary units. M without and H 
with auxiliary units. Both M and H with auxiliary units. 

(12) All the previous forms of harmonic accompaniment with instrumental 
figuration.. 

(13) Hybrid forms with respect to density of both melody (scale emphasis) 
and harmony. 

(14) Hybrid forms with respect to the presence or absence of auxiliary 
units in both M and H. 

(15) Forms of alternating transformations of M into H and vice versa with 

respect to the selective distribution of strata. 

(16) Instrumental forms of melody used for the purpose of variation. 
(17) Intercomposition of the instrumental forms of melody and harmony. 

(18) Composition of continuity employing the previous devices. 
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Example: 

Figure 118. Composition of continuity based on previous devices. 

CHAPTER 12 

CORRELATED MELODIES 

/CORRELATED Melodies (Transformation of Harmony into Counterpoint by 
^ Means of Strata). 

The technique of correlating melodies consists of three fundamental proc¬ 
esses: 

(1) correlation of attacks and durations of two or more melodies; 

(2) correlation of melodic forms (axial combinations) of two or more mel¬ 
odies; 

(3) correlation of harmonic intervals between two or more melodies (dis¬ 
tribution of tension). 

The first two processes have been described in the Theory of Correlated 

Melodies (Counterpoint)* Here we shall deal with the third procedure as it 
evolves itself from the technique of strata. 

The usual classical conception of a consonance and a dissonance, and the 
necessity of resolution must give way to the assortment and distribution of 

harmonic intervals through their respective degrees of tendon. 

From the harmonic point of view there are the following forms of matching 
intervals: 

(1) a neutral unit against a neutral unit (or units); 

(2) a neutral unit against a directional unit (or units); 

(3) a directional unit against a neutral unit (or units); 

(4) a directional unit against a directional unit (or units). 

Taking as illustration the 2”* used in the previous examples, we may enu¬ 
merate the following possibilities: 

(1) 
CP! 
CP„ 

— 
~ aSj (2) 

CP, 
cp„ 

= bSi 
aS* (3) 

CP, 
CP,i 

_ C^1 
aSt 

(4) 
CP, 
CP„ 

_ dSi 
aSj 

(5) 
CPi 
CPil 

aSi 
= bS, (6) 

CPi 
CP,i 

bSi 
bS, (7) 

CP, 
CP,I 

cSi 
" bS, 

(8) 
CP, 
CP,i 

dS, 
bS* 

(9) 
CPi 
CP,I 

_ aSx 
cSj (10) 

CP, 
CP„ 

bSi 
" cSj (ID 

CP, 
CPi, 

_ cSi 
(12) 

CP, 
CP„ 

_ dSi 
cS* 

(13) 
CPi 
CPiii 

_ aSi 
aSj 

(14) CP, 
CPiii 

_ bS, 
aS* (13) 

CP, 
CPiii 

cSi 
33 aS* 

(16) 
CP, 
CPm 

- dSi 
aS* 

(17) 
CP* 
CPiii 

aSi 
" bS, (18) 

CP, 
CPiii 

bSi 
” bS, 

(19) CP, 
CPm 

cSi 
* bS, ’ 

(20) 
CP, 
CPm 

dSt 
“ bS, 

(21) 
cp„ 
CP,i, 

» aSj 
aS* (22) CP,i 

CP,„ 
• 

aS* 
(23) 

CP,i 
CPm 

cS, 
aS, 

(24) 
CP„ 
CPm 

aS* 
~ bS, 

(25) CP„ 
CP,ii 

_ bS* 
" bb. (26) CP„ 

CP„, 
cS* 

" bSj 

Each of the above rases may be either a neutral or a directional unit. 

•See Vol. f, pp. 730 and 753. 

I 1209 J 



Each stratum of harmony may be converted into a melody. The above 

case of 2~~* makes it possible to obtain a three part counterpoint. Distribution 
of attacks is the final factor in selecting matching units. Once the units are 

matched, the harmonic progression produces continuity. 

CORRELATED MELODIES 121! 

Example: r 

Composition of attacks (A — attack-group; a“individual attack): 

AS* =» 2aT 

AS* =* 3aT 

ASi = 6aT 

Composition of durations: 
TS, - 4t + 4t 

TS, ° 4t 4- 2t -f 2t 

TSi « 2t + 2t -f t + t + t + t 

Time in musical notation: 

Sa J J 
§S,j j j' 
8s,j j nn 

Selection of matched units: (a, b, c, . . . designate chordal functions of die 
respective strata). 

CPhi — b4t 4- a4t 

CPn « c4t -f- a—»(2t 4- 2t) 

CPj - c“*(2t + 2t) 4- a-*(t+t) + b~*(t+1) 

Figure 120. Developing a 2 into 3 part counterpoint. 



Figure 121. Final form of continuity. 

Composition of contrapuntal continuity can be accomplished from a theme 

such as the above progression (Figure 121) by means of various techniques. 

The most important of these are: 

(1) vertical rearrangement of parts; 
(2) variation of density; 

(3) geometrical inversions. 
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CORRELATED MELODIES 

The example in Figure 121 is a case of the constant form of duration-groups 
correlated through three parts. Any other form of distribution deriving from 

the Theory of Rhythm on the basis of compensation or contrast is acceptable 
for this purpose. The contrasts are particularly effective when several syn¬ 

chronized power-groups are used. The neutral and the directional pitch-units 
can change their respective octave position. One H may correspond to any 

tim£ equivalent. H“> may have any rhythmic distribution of its own. Contra¬ 
puntal parts which derive from strata may be coupled and subjected to instru¬ 
mental variations. 



CHAPTER 13 

COMPOSITION OF CANONS FROM STRATA HARMONY 

AS we have seen, each stratum may become a contrapuntal part. In order 
to convert a 2 into canonic (continuous) imitation, it is necessary to fulfill 

the following requirements: 

(1) Chord progression must be written in such a way as to permit regular 

occurrence of the identical chord positions, systematically moving from 
S to S. This can be accomplished by reciprocation of transformations. 
The latter must be either clockwise or counterclockwise throughout. 

(2) Chord structures must be identical in all strata. 
(3) Intervals between the roots of the different strata must be equidistant, 

i.e., only monomial symmetry is acceptable. 
(4) The progression of chords mist also be carried out in monomial sym¬ 

metry of consecutive intervals, but not necessarily in the symmetry of 
simultaneous roots through which the 2 has been compounded. 

So long as there is an interchange of symmetric roots of the stma system 

of symmetry, canonic imitation remains unitonal. Beyond this, the form of 
imitation with respect to its harmonic correlation depends on the form of con¬ 

secutive symmetry through which the chords progress. 

The advantage of evolving a canon from H~* lies in the fact that such a 
canon possesses a definite harmonic characteristic set a priori, which it is im¬ 

possible to obtain by means of purely contrapuntal technique. 

A. Two-Part Continuous Imitation 

Such an imitation is based on the reciprocation of the two functions a and b 
and on the reciprocation of the two symmetric roots of the yfi* 

The initial scheme of harmonic setting for a two-part canon is as follows: 

CP, (-S,) = b ; CP,, (eS„) - s 

The scheme of coordinated roots corresponding to the reciprocating positions 
is as follows: 

CP„ _ C 4- F# 
CPj C-fFjf + C 

The two schemes combined appear as follows: 

CP, _ C (5) + (t) 

CP„ c (b) + f# (l) + c b 

(1216) 

COMPOSITION OF CANONS FROM STRATA HARMONY 1217 

From this original scheme the canon follows any form of consecutive sym¬ 
metry, resulting in a modqfating canon. Other roots of symmetry can be used 
in similar reciprocation as well. 

Setting Continuity of harmonic strata: VsT" 
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A canon such, as this can be further extended by means of quadrant rotation 
(geometrical inversions). It can be also coupled and subjected to instrumental 
variations. Any temporal scheme can be used, and T does not necessarily have, 

to equal T". 

B. Three-Part Continuous Imitation 

Such an imitation derives from a harmonic scheme, where either clockwise 

or counterclockwise transformations are applied to both the simultaneous ar¬ 
rangement of strata in the 2 and the continuous progression of 

The initial harmonic scheme must be arranged in the following way: 

This is a clockwise scheme where the sequence of imitation follows from 
$i to Sji to Shi- Similar schemes can be devised for the remaining 5 forms of the 

sequence of imitation, as well as for the counterclockwise sequent transformations 
and the 6 forms of the sequence of imitation. Thus the total number of such 

schemes for 23S3p is 12. 

The fundamental form of symmetric root-coordination is the \^2- However’ 

other forms of symmetry may be used as well. 

Examples of Schemes of Coordinated Roots 

G# CPnr _C +G# + E + C 

(1) ^ E CPii ° C +GS + E +C 4- Gft 

C CPi “C+Gtt + E 4-C +G# + E 

B|> CPm =_C +Bt>+F + C 

(2) v"2‘F CPii C+Bb+F+C+Bb 

C CPi C + Bi> + F 4* C + Bb + F 

Figure 124. Schemes of coordinated roots. 
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The scheme of roots, after it is combined with the scheme of transformations, 
assumes the following form [Fig. 124 (1) J: 

c (b) + G#+ E (If) + C fb) 

C| I + G# | c I + E a +C | b ) + G# I o 

CP, c{l)^W + E\V+c\l) + ^)+E\V 

Figure 124A. Scheme of transformations combined with scheme of roots. 

As the scheme of the sequence of imitation for 23S3p is sufficiently.long by 

itself, such a scheme may be used as a canonic theme, and be extended further 
by quadrant rotation. This does not exclude the use of the technique applied 

to 22S2p where the original scheme of H“* was extended by some form of con¬ 

secutive root-symmetry. The application of the latter produces a modulating 

canon. 

Setting. Continuity of harmonic strata: 1 
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CP. 

CP, 

CP, 

Figure 125. Three-part canon derived from 123S3p (concluded). 

C. Four-Part Continuous Imitation 

Such an imitation derives from a harmonic scheme, where either clockwise 

or counterclockwise transformations (which correspond to C or to C circular 
permutations of the chordal functions) are applied to both the simultaneous 

arrangement of strata in the 2} and the continuous progression of H”"*. 
The initial harmonic scheme must be arranged in the following way: 

dl al b\ c) ' d a b 
Si c d a I b( 7 c d a 

b c d a( ' b c d 

L2J bj c/ d) ' a b c 

Figure 126. Initio! harmonic scheme of four-part imitation. 
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This is a clockwise scheme where the sequence of imitation follows from Si 
to Sn, to Sin, to Srv- Similar schemes can be devised for the remaining 23 forms 
of the sequence of imitation, as well as for the counterclockwise sequent trans¬ 

formations and their own 24 forms (corresponding to the number of general 
permutations) of the sequence of imitation. Thus the total number of Buch 
schemes for 24S4p is 43. 

The fundamental form of symmetric root-coordination is the \^2- However, 
other forms of symmetry can be used as well. 

Example of a Scheme of Coordinated Roots 

A CPiv 

V- F# CPiii 

Eb CPn^ 

C CPj 

,_C -FA +Jl + Eb 

_C +A + F#-FEb+C 

C+A -FFft + Eb+C +A 

C+A-FFfl + Eb-FC -FA +F# 

+ C 

+ A 

+ F# 

+ Eb 

Figure 127. Scheme of coordinated roots. 

The scheme of roots, being combined with the scheme of transformations, 
assumes the following fc (Fig. 127): 

Figure 128. Scheme of transformations combined with scheme of roots. 

Such a scheme can serve as a canonic theme, being further extended by¬ 
quadrant rotation, or through continuation of H-* evolved through some form 

of consecutive symmetry. In the latter case, the canon becomes modulating. 

For an obvious technical reason (4p is the limit of S), this method of evolving 
canons from strata is limited to four parts. 
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This does not exclude the possibility of writing correlated melodies in any 

desirable number of parts (corresponding to the number of S in a 2) in the form 

of general counterpoint, or counterpoint of discontinuous imitations. 
All canonic schemes of the type described in this chapter produce recapitulat¬ 

ing canons or rounds, providing H-* does not extend itself beyond the original 

scheme of symmetric roots. 

Figure 129. Four-part canon derived form X4S4p (continued). 

223 



CHAPTER 14 

CORRELATED MELODIES WITH HARMONIC 

A CCOMPANIMENT 

rPHE fact that harmony can be converted into melody makes it possible t:> 
develop such forms as correlated melodies with harmonic accompaniment. 

There are three main groups into which such techniques may be classified: 

Group (1) in which counterpoint and harmonic accompaniment are selected 
on the basis of identity or non-identity of strata to which the 
counterpoint and the harmonic accompaniment belong; 

Group (2) in which counterpoint and harmonic accompaniment are selected 
on the basis of neutral or directional units so that either the counter¬ 

point has directional units and the accompanying harmony, neutral 
units, or vice-versa; or both counterpoint and harmony are based 

on the same kind of units (i.e., either neutral or directional); 

Group (3) in which counterpoint and harmonic accompaniment are inter- 
composed on the basis of continuity and discontinuity so that either 
counterpoint or the harmonic accompaniment are either continuous 

(uninterrupted) or discontinuous (interrupted) , which, at certain 
times, leayes only one of the two components (i.e., either counter¬ 

point or harmony) and also makes it possible to evolve dialogue¬ 

like alternating sequences between the two components; the har¬ 

monic accompaniment as well as the counterpoint itself become 
subject to variation of density (low, medium, high), which may be 

treated in various forms of reciprocation. 

The following classification presents the most important forms of correlated 
melodies with harmonic accompaniment in their interrelation through the above 

described three groups: 

(1) Correlated melodies with harmonic accompaniment whose strata de¬ 

rivation is*identical with that of the counterpoint itself.* 
(2) Correlated melodies with harmonic accompaniment which derives from 

strata partly in common with the counterpoint. 
(3) Correlated melodies with harmonic accompaniment which derives from 

strata not participating in the counterpoint. 
(4) Counterpoint of constant density accompanied by harmony of constant 

density. 
(5) Counterpoint of variable density accompanied by harmony of constant 

density. 
(6) Counterpoint of constant density accompanied by harmony of variable 

density. 

[1224] 
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(7) Counterpoint of variable density accompanied by harmony of variable 
density: 

(a) Counterpoint in increasing density, harmony in increasing density ; 

(b) Counterpoint in decreasing density, harmony in increasing density; 
(c) Counterpoint in increasing density, harmony in decreasing density; 

(d) Counterpoint in decreasing density, harmony in decreasing density. 

(8) Continuous counterpoint with a continuous harmonic accompaniment. 
(9) Discontinuous counterpoint with a continuous harmonic accompaniment. 

(10) Continuous counterpoint with a discontinuous harmonic accompaniment. 
(11) Discontinuous counterpoint with a discontinuous harmonic accom¬ 

paniment. 

(12) Rhythmic composition of the forms of continuity and discontinuity in 
both harmony and counterpoint. 

(13) Relations of directional and neutral units in the correlated melodies 
with harmonic accompaniment: 

(a) Neutral units in counterpoint, neutral units in harmonic accom¬ 
paniment; 

(b) Directional units in counterpoint, neutral units in harmonic ac¬ 
companiment; 

(c) Neutral units in counterpoint, directional units in harmonic ac¬ 
companiment; 

(d) Directional units in counterpoint* directional unite in harmonic ac¬ 

companiment; in this case the duration-unit of counterpoint has a 
different value from the duration-unit of harmony. 

(14) Composition and coordination of the instrumental forms of harmony 
and counterpoint. 

(15) Composition of continuity based on correlated melodies with harmonic 

accompaniment, and including the above described devices. 

No musical illustrations are necessary, as previous chapters give sufficient 
guidance for executing these projects.* 

•Schillinger expected his students to work homework. Those who are using the present 
out each of these suggested procedures as text as a study-book are urged to do so. (Ed.) 



CHAPTER IS 

COMPOSITION OF DENSITY IN ITS APPLICATION 

TO STRATA 

WE have already encountered in the field of harmony and counterpoint 
certain elementary techniques pertaining to variation of density of the 

original texture. At the time we found it satisfactory to manipulate density 
by either employing some distinct degrees of it (like low, medium or high density), 

or by using harmonic parts as units of density. 

Now, in view of the strata technique, with its potential abundance of pat is 
and assemblages, we arrive at the necessity of generalizing a density technique 

so as to enable the composer to render the utmost plasticity to the density of 

texture, whether melodic, contrapuntal, harmonic, or combined. 

In this branch we shall concern ourselves with the problems of textural 
density alone, as the technique of instrumental density belongs to the field of 

Orchestration. 

The behavior of sounding texture in any musical composition is such that 

it fluctuates between stability and instability, and so remains perpetually in a 

state of unstable equilibrium. The latter is characteristic of albumen which 
is chemically basic to all organic forms of nature. For this reason, unstable 

equilibrium is a manifestation of life itself, and, being applied to the field of 

musical composition as a formal principle, contributes the quality of life to music. 

NOMENCLATURE: 

d —density unit ap, S 

D— simultaneous density-group « S, 2S, ... 2. 

D-*—sequent density-group (consecutive D) 
A (delta) — compound density-group representing density limit in a given score 

(simultaneous A.aa 2) 

A-* (delta) — sequent compound density group: general symbol for the entire 

consecutive composition of density: A-* — 2 
A-* (A-*) — the delta of a delta: sequent compound delta. 

0 (phi) — individual rotation-phase: 

0 C and 0 G in reference to t or T 
0 Q and 0 0 in reference to p or P, or d or D 

6 (theta) — compound rotation-pliase, general symbol of the continuity of rotary 

groups in a given score; it includes both forms of 0. 
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A. Technical Premise 

Depending on the degree of refinement with which the composition of density 
is to be reflected in a score, d may equal p or S. In scores predominantly using 

individual parts, either as melodic or harmonic parts, it is possible and advisable 

to make d = p. In scores of predominantly contrapuntal type, where each 

melody is obtained from a complete S, d = S is a more practical form of assign¬ 
ment. 

One of the fundamental forms of variation of the density-groups is rotation 
of phases. 

The abscissa (horizontal) rotation follows the sequence of harmony (OorG); 

in it, all pitch-units (neutral or directional) follow the progression originally 
pre-set by harmony. 

The ordinate (vertical) rotation does not refer to vertical displacement of 

p or S, but to thematic textures (melody, counterpoint, harmonic accompani¬ 

ment) only; therefore there is no vertical rearrangement of harmonic parts at any 
time. Such displacement of simultaneously correlated S would completely change 
the harmonic meaning and the sounding characteristics of the original. Tech¬ 

nically such schemes are possible only under the following conditions: 

(1) identical interval of symmetry between all strata; 

(2) identical structures with identical number of parts in all strata. 

The above requirements impose limitations which are unnecessary in or¬ 
chestral writing, as it means that each orchestral group would have to be re¬ 

presented by the same number of instruments, which is seldom practical. 

The idea of bi-coordinate rotation (i.e., through the abscissa and through 

the ordinate) implies that the whole scheme of density in a composition first 

appears as a graph on a plane, then is folded into a cylindrical (tubular) shape 
in such a fashion that the starting and the ending duration-units meet, i.e., 

” limiti «-> tp,. Under such conditions the cylinder is the result of bending 

the graph through ordinate, and the cylinder itself appears in a vertical position. 

Variations are obtained by rotating this cylinder through abscissa, which cor¬ 
responds to 0 C and 0 G. 

Therefore: A”* = 0 C (ti —> tj, 0 G (tm -> ti). 

Folding the scheme of density (as it appears on the graph) in such a fashion 

that the lowest and the highest parts of the score meet, we obtain the limits 
for p, i.e., A = lim pi «-> pm. Under such conditions the cylinder is the result 

of bending the graph through abscissa, and the cylinder itself appears in horizontal 

position. Variations are obtained by rotating this cylinder through ordinate, 

which corresponds to 0O and 00. Therefore:A~* = 0() * 0 

Here delta is consecutive as physical time exists during the period of rotation. 
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B. Composition of Density-Groups 

As we have mentioned before, the choice of p and t, or of S and T as density 
units, depends on the degree of refinement which is to be attributed to a certain 

particular score. For the sake of convenience and economy of space, we shall 

express dt as one square unit of cross-section paper. In each particular case, d 

may equal p or S, and T may equal t or mt. Yet we shall retain the dt unit of 

the graph in its general form. 
Under such conditions a scale of density-time relations can be expressed 

as follows: 
D = d, D = 2d, , . . D « md 
D~* « dt, D~* = d2t, . . . D-4 = dmt 

D~* = dt, D-4 = 2dt, . . . D~~* = mdt 

D-4 «= dt, D-* « 2d2t, . . . D~* = mdnt 

The above are monomial density-groups. On the graph they appear as follows: 

Figure 130. Monomial density-groups. 

Binomial density-groups can be evolved in a similar way: 

A~* <=» DT* 4* DT*; DT* - dt; DT* - 2d2t; 

. A-* » dt ■+■ 2d2t 

Figure 131. Binomial, density-groups (continued.) 
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DT* + DT*; DT* « d2t; DT* = 2dt; 

A-4 - d2t 4- 2dt 

DT* + DT*; DT* = 2d3t; DT* - 5d3t; 

A-4 = 2d3t + 5d3t 

Figure 131. Binomial density-group^ (concluded). 

Polynomial density-groups may be evolved, depending on the purpose, 

from rhythmic resultants, permutation-groups, involution-groups, series of vari¬ 
able velocities, etc. 

A-^ = DT* 4- DT* 4- DT*i DT* - 3d3t; DT* ** dt; DT* = 2d2t; 

A”4 - 3d3t 4- dt 4* 2d2t 

^~~* “ 4D“*; DT* - 2d4t 4- 2d2t 4- 2d2t 4- 4d2t 

Figure 132. Polynomial density-groups. 
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As it follows from the above arrangement of density-groups, the latter may 
be distributed in any desirable fashion, preferably in a symmetric one within 

the range of D. In this particular case D ** 4d. 

~ 6D"”*; Dr = 3d3t; = dt; DJ* = 2d2t; = 2d2t; 

D7" ~ dt; D74 - 3d3t 

tT* = 3d3t + dt + 2d2t 4 2d2t + dt + 3d3t 

6T+ - 4D*”*; Dr - 4dt; Dr - 2d2t; Dr = 2d2t; Dr - d4t; 

fir* » 4dt -f 2d2t 4- 2d2t 4- d4t 

Figure 133. D = 4d. 

A-* = 5D”"*; Dr “ d«t; Dr = 2d5t; Dr 55 3d3t; Dr = 5d2t; Dr - 8dt; 

AT* = d8t + 2d5t 4- 3d3t + 5d2t 4- 8dt 
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Another variant of the same scheme: 

Figure 134. Variants of A~* = 5D~* (concluded). 

In all the above cases A > D, i.e., the compound density-group is not greater 
than any of the component density groups. 

Dfenaty groups may be considerably smaller than A, in which case there 
are many more possibilities for the distribution of D’s. 

A - 6D; A-* - 4D; Dr - 2d2t; Dr - dt; Dr - dt; Dr - 2d2t; 

A~» - 2d2t -f dt + dt + 2d2t 

Figure 135. Density groups smaller than A. 
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The different distributions as in the above Figure can be specified by means 

of their phasic positions. 
If we assume that the lowest d of A designates <fa, i.e., the zero phase, then 

. . * designate all the consecutive phases. Thus the first variant of 

Figure 135 can be expressed as follows: 

A-* ~ (2d2t)4o 4 (dt)*t 4 (dt)*, + (2d2t)*4. 

where: *« — *o 

Figure 136. First variant of figure 135. 

It follows from the above that the first (<fo) and the last (*b) phases are 

identical. 

C. Permutation of Sequent Density-Groups within the Compound 

Sequent Density-Group 

(Permutations of D-* within A-*) 

Continuity where permutations of D~*’s take place can be designated as a 
compound sequent group consisting of several other compound sequent density 

groups, the latter being permutations of the original compound group. Then 
such a compound density-group yielding n permutations of the original compound 

sequent density group can be expressed as follows: A-* (A-4) = AJ* 4 AT* 4 

+ A? 4 ■ • - A7\ 

A^ » (3d3t) D74*) 4 (dt) D7**. 4 (2d2t) D^^o 4 (2d2t) D7**i 4 

4 (dt) D74*, 4 (3d3t) DJ*4o, where A — 3d. 

A-4 (A-*) = AT ' 4 at + AT- FAT 4 ■AT 4 

H 

ti 

= (or 4 pr 4 Dr 4 Dr 4 Dr 4 or> 4 

4 (or 4 or 4 or 4 Dr 4 or 4 dt4) 4 

4 (or 4 Dr 4 Dr 4 or 4 Dr 4 Dr> 4 

4 (Dr + Dr 4 or 4 Dr 4 or 4 Dr> 4 

4 (or 4 Dr 4 Dr 4 Dr 4 or 4 on 4 

4 (or 4 or 4 or 4 Dr 4 or 4 Dr> 
See Figure 137 on opposite page. 
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D. Phasic Rotation of A and A-* through t and d 

Assuming A“* = D“* = dt, we can subject it to rotation: 

(1) A-4 0 = t*, *f t* 4 . . . and 

(2) A“*0 = d*o + d*i + . . . 

The following represents scales of rotation for A~"*T—* — D T = dt; 
A = 4d; T~* =• 4t; fa ** *. T-* symbolizes the range of duration of D. 

The original position: d*, t*> 
The sequence of rotary phases of d: 

AT"*0 = d*, t*> 4 d*i t*, 4 d*a t*» 4 dfot*: 

The sequence of rotary phases of t: 

AT*0 = d$o t*, 4 d*> tfa 4 d*> tfa 4 d* tfa: 

The sequence of rotary phases of dt: 

A-*0 = d* t* 4 d^i t^i 4 d^t t$* 4 dfa t^»: 

Figure 138. Phasic rotation of A and A-*. 
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The same technique is applicable to a A“* of any desirable structure. 

For example: A-* = 3D-*; DJ* « 3d3t; DT* = dt; DT* « 2d2t; 

A^ = 3d AT* = (3d3t 4 dt 4 2d2t)*»; 
T = 6t AT* = AT**i; AT* = AT*fa; AT*. = AT**»; . . . 
0C and o Ao = (3d 4 d 4 2d)*,; 

Ai = fafal At = fafa; As = Ao^>; . . . 

Let A“*(A~*) 0 = AT* (3d*3t*, 4 d*»t*> 4 2d*,2t*) + 
-f- Aj (SdfaStfa 4 d^it*, 4 2d*i2t*>) 4 
+ AT* (3d^i3t*i 4* d^it*, 4 2d^tt*,). 

Then, A"“*(A*""*) 0 = AT* -FAT* -F AT* appears as follows: 

Let further A~*(A'^) 0 - AT* (3d*3t* 4 d*>t* 4 2d*>2t*) 4 
4* £?* (3d*3t*i 4- d*>t$i 4 2d*,2t*i) 4“ 
4* AT* (3d4»3t*i 4- d*»t*t 4- 2d*2t*t) 4 
4 AT* (36fa3tfa 4 d fat fa 4 2d*2t0,) 4 
4 AT* (3d*3t^4 4 d*,t^4 4 2d*,2t^<) 4 
4 AT* (3dfa3tfa 4 d*t$» 4 2d*>2t$»). 

Then, £“*(£“*) 6 « AT* 4 AT* 4 AT* 4 AT* 4 AT* 4 AT* appears as follows: 
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Now we shall combine the 00 and the 9C. 

Let zr*cO e = AVDOo r^0o+ + 
+ A^DOoT^e, + SfDBiT*** + A7*De*T e, 

Then A^A*-*) 9 = A^ + AT* + AT* + 4* AT* + AT* appears as follows: 

Figure 139. Phasic rotation of ST* = 3D~* (concluded). 

The diagonal and vertical lines are inserted for clarity. 
The addition of positive or negative phases of rotation to any given position 

of follows the rules of algebraic addition. Thus if the given position is 0o, 
the addition of one «Cor Q brings the density-group into position 0t, or: 
$o + 0 = $i* Likewise 0o + 20 = 0t, 0# + m0 = 0m- 

As the last phase equals the first phase, or 0n =* 0o, negative quantities of 
phases, or the counterclockwise phases, i.e., 0O or 0(3, must be added with 
the sign minus to the last phase. Thus if the given position is fo and the number 
of phases is n, the* addition of one negative phase brings the density-group into 
position tf>n_i; or, 0n — 0 = &»-i* Likewise, 0n -• 20 = 4>n~tr 0n ~ = ^n-m- 

Problem: find the phase 0 after the following forms of rotation have been 
performed from the original 0o, where 9 = 80: 20 — 30 + 50 + 0 — 4$ + 30 — 

~ 0. 

Solution: 0, = 0o+ 20 — 30 + 50 + 0 — 40 + 30 — 0 = 4*+ 114 "* 

— 80 = 4o + 30 = 4*, i.e., the density group appears in its third phase. 

This is applicable to both ordinate and abscissa. It follows from the above 
reasoning that in order to obtain the original position 0o, after performing a 
group of phasic rotations, the sum of the coefficients of 4 must equal zero. As 

we know from the Theory of Rhythm * all resultants with an even number of 
terms have identical terms in both halves of the resultants. If such terms, used 
as coefficients of 0, are supplied with alternating “plus” and “minus”, the sum 
of the whole resultant would be zero. This gives a perfect solution for the cases 
of variation of density groups, because resultants, being symmetric, produce a 
perfect form of continuity. 

Examples: 

T44-3 = 3+1+2+2+1+3; changing the signs, we obtain: 
3 — 1 +2—2+1 —3 = 6-6 = 0. 

rs-5-4 “ 4+1+3+2+2+3+1+4; changing the signs, we obtain: 
4 — 1+3 —2+2—3+1 —4 = 10-10 = 0. 

6(17-*• 2) = 4o + 20 — 24 + 2 4 — 4 + 4 — 20 + 20 — 20 =* 
= 0o + 70 — 70 = 0o+O = 0o. 

Figure 140. Applying resultants from the theory of rhythm. 

Computation of the phasic position 0„ which is the outcome of a group of 
phasic rotation, can be applied to any position 0m to which such rotations have 
been applied. The computation is performed through the use of same technique 
as before, i.e., through algebraic addition. 

Problem: Let the original 0® = 0>; find 0, after the following group of 
rotations: 20 - 30 - 0 + 60, where 0 - 80. 

Solution: 9, = 0, + 20 — 30 — 0 + 60 = 4» + 
+ 80 — 40 = 0* + 40 = 07. 

•See Vol. I, p. 10 ff. 
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The original A7*: T-* = 8t 

Variation of continuity: = t» + 2t — 3t — t +• 6t = t? 

Figure 141. Rotations: 2<t> — 3$ — $ 4- 6$ where 0 = 8+. 
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Variation of continuity: AT4 = d# + 2d — 3d — d -f fid = d7 

The next step is to combine the phasic rotation of both coordinates. Assum¬ 
ing first that both d and t are in their zero phases, we can express this as follows: 

A0 0b = do to, i.e., the notary phase of a consecutive density-group for both 
coordinated (density and time; is zero. Now we can subject the Aj^4©# to variations 

where the groups of phasic rotation are identical for both coordinates. Using 

the number values from the preceding example, we obtain the following: 
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A7*0* =* dt0i 4 dt20 — dt30 — dt0 4 dt60 = dt0T. 

When the^rotation groups are different for both coordinates, the interference 

of phases of j takes place. After a number of rotations has been performed 

through both coordinates, their respective resulting phases may be different. 

Let D = 8d and T~* — 8t. Let further 0o = d«t* 

Now let us subject this group to the following form of phasic rotation: 

d20Qt0G 4 d40()t30G + d20()t30G. 

Then: £^0, = d»ts 4 2d - t 4 4d 4 3t - 2d - 3t = 

=* djt* 4 4d —• t = d7t4. 
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Assuming 9 to be the limit of a rotation-group (cycle of rotation) and Ol 
the sum of phasic rotations, we encounter the following conditions: 

(1) 0l >0 and (2) 0i >0, 0« >20, . . . 0« > m0. 

Under the first condition, the sum of phasic rotations does not exceed the 
total range of rotafion, in which case all computations are carried out as shown 
before: 

If0! >0, then: *-f O1 = 0*.. 

Under the second condition, the sum of phasic rotations does exceed the 
total range of rotation, in which case the relations of the sum of rotations with 
the range (limit) are as shown in (2). 

In this case, computations must be carried out through use of the following 
formulae: 

If 01 > 0, then: 0o 4 01 = 0o 4 (0* - 0) = 0,lH); 

If 01 > 20, then: 0o 4 01 = 0o 4 (0l - 20) - 0tfi_» ; 

If 0l > m0, then: 0o 4 0l - 0n 4 (0* - m©) =» 0^.^. 

Examples: 

(1) 0 (read: theta to the limit from zero to three) 

0o 4 20 = 0*; 0o 4 30 = 0i = 0o: 

0o 4 40 = 40 — 30 =: 0j, where 01 — 40 ; 
0o 4 50 = 50 — 30 = 02, where 01 = 50 . 

(2) e 

0o 4 60 = 60 — 2-30 = 60 — 60 = 0o, because if 9l = 60, 01 >20; 
0o 4 70 = 70 — 2*30 = 70 — 60 = 0Sf where 01 = 70 ; 
0o 4 80 = 80 ~ 2*30 = 80 — 60 — 02, where 01 = 80 . 

w § 
0o 4 90 = 90 — 3*30 = 90 — 90 = 0o, because if 01 = 90, ©*>30; 

0o 4 100 — 100 — 3*30 *= 100 — 90 = 01, where 9l — 100 . 

(4) © ; 01 = 30 - 0 4 90 - 20 4 40 = 130; 

0o 4 130 - 130 - 2*50 = 130 - 100 = 0,. 
01 4 130 = 30 4 130 - 100 = 160 - 3*50 = 160 - 150 = 0, * 

as 01 being added to 0> equals 30 4 130 160, in which case 01>30. 

(5) 0 ; 01 = -30 4 0 - 90 4 20 - 40 = -130 ; 

0o 130 — 130 4 2*50 — —130 4 100 — —30 — 0 — j ; 
to locate 0 —i the latter must be subtracted from 0: 

® “ 0 i — 0 — 30 — 50 — 30 = 20 =» 02. 

Figure 143. Sum of phasic rotations. 
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The technique of phasic rotation of the density-groups can be pursued to 
any desirable degree of refinement. The phases of d and t can be synchronised 
when they are subjected to independent rotary groups, in which case we follow 
the usual formula: 

Od = Okl 0't (0d) 

0t 0»t : 0'd (0t) * 

In composing the original density-group (A^TiT*), it is important to take 

into consideration the character of f relations with regard to the effects such 

relations produce. In this respect we can rely on the three fundamental forms 
of correlation, which are mentioned for the first time in the Theory of Melody,* 
i.e., the parallel, the oblique and the contrary. 

When they are applied to density-groups, these three forms must be inter¬ 
preted in the following way: 

(1) parallel: identical ratios of the coefficients of $d and <£t; 
(2) oblique: non-identical ratios of the coefficients of 4>d and <^t, where— 

(a) partial coincidence of the coefficients takes place, and/or 

(b) the coefficient of one of the components (either d or t) remains 
constant; 

(3) contrary: identical ratios arranged in inverted symmetry. When the 

number of coefficients in both coefficient-groups is odd, such case should 

be classified as oblique, due to partial coincidence of coefficients. 

E. Practical Application of A~* to 2f”\ 

(Composition of Variable Density from Strata) 

In its complete form, this subject belongs to the fielcl of Textural Composi¬ 

tion and will be treated in this chapter only to the extent necessary in order to 
make the whole subject more tangible. 

The first consideration is that /ST* can be composed to a given 2~\ or 2 

can be composed to a given A""*. This means that either a progression of chords 

in strata or a density-group may be the origin of a whole composition. One 

harmonic progression may be combined with more than one density-group; the 
opposite is also true, i.e., more than ’One harmonic progression can be written 
to the same group of density. For this reason the composer's work on such a 
scheme may start either with 2“* or with A”*. 

It is practical to consider d = S as the most general form of the density- 
unit, leaving d = p for cases of particular refinement with regard to density. 

If d — S it means that one density-unit may consist of p, 2p, 3p or 4p. In actual¬ 

ity, however, harmonic strata acquire instrumental forms, in which case even 

S4p may sound like rapidly moving melodies. On the other hand, S may be 

transformed into melody, in which case we also hear one part. The implication 

*Scc Yol. I, p. 275. 

is that, in the average case, the density of a melodic line and the density of 
. harmony subjected to instrumental figuration are about the same. Physically 
and physiologically, and therefore psychologically, density is in direct proportion 
to mobility. This means, for example, that a rapidly moving instrumental form 
of successive single attacks, which derives from S4p, is nearly as dense as a 

sustained chord of S4p; the extreme frequency of attacks makes an arpeggio 

sound like a chord, i.e., in our perception, lines aggregate into an assemblage. 

In addition to this, it is important to realize that the insignificant difference, 
in the case just described, may be completely compensated for by the presence 
of directional units. In the above illustration, these would counterbalance sus¬ 

tained harmony of S4p by the highly mobile line which derives from 8 units 
(b4 directional units, corresponding to 8 attacks, and in an average tempo 
acquiring high mobility). 

As we have seen before, composition of density in its application to strata 

refers either to melody or harmony as thematic texture. Both melody and 

harmony can be present in the form of several coordinated parts. For example, 

there may be 3 correlated melodies and 2 harmonic accompaniments. Of course, 

any scheme of density may include correlated melodies alone or harmony alone. 

The technique of superimposition of A-* upon 2~~* consists of establishing 

correspondences between $d and p, and between and H, i.e., between the 
density-phase, or density-unit, and the number of harmonic parts; and between 

the duration-phase, or duration-unit, of the sequent density-group and the 
number of successive chords. 

AH subsequent techniques pertain to composition of continuity, i.e., to 
coordination of attacks and durations, instrumental forms, etc. 

We shall now evolve an illustration of A“* correlated with 2~*. To demon¬ 

strate this technique beyond doubt, we shall use the mo3t refined form of it, 
where d = p and t =« H. 

If Nt = NH, then the cycle of A~* and 2“* are synchronized a priori; 

otherwise, (i.e., if ft 1) they have to be synchronized. This shows that 

with just a few chords and a relatively brief scheme of density, one can evolve 
a composition of considerable length, since ST* itself, in addition vO interference 

with H of 2~*, can be subjected to rotational variations. 

Let the original AT* = A «■ 8d (see Fig. 141). 

Let AT =* A 0o2t -f* d^nt -j- 5d^g2t -f* 3d<£jt *4- 2d<£o2t. 

As A «* D ** 8d, 2 must equal 8p. 
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T~* = 8t and would require H~~* — 8H, unless we wish to introduce a 

case in which 1. 

We shall introduce such a case. 

Let H~* = 5H. Then gS - £; J JSj. 

Hence, T~" = 8t-5 = 40t. 

As we intend to use 5 variations of A-*, the entire cycle will be synchronized 
(completed) in the form: A-^(A*-*) = 40t 40H, where (= 5H) appears 8 

times. 

For the sake of greater pliability of thematic textures, it is desirable to 

pre-set a directional sigma. 

We shall choose the following sigma: 2 = Sj2p -f- Sn3p + Sm3p and 
2~* =» 5H. 

Let I”* = 3i + 2i + 3i + 5i and 1 (2) 
</i 

We shall now subject the A^GoSo""* to variations of density evolved in 

Figure 142. 

Further elaboration of the above scheme into thematic textures will be 
discussed in the Theory of General (Textural) Composition.* 

Similar schemes should be evolved by the student with the application 
of d = S. 

It would not. be entirely premature to convert the ET*?r* schemes into 
thematic textures, as the last nin4 chapters contain sufficient information on 

converting strata into melody and harmony, including instrumental treatment* 

COMPOSITION OF DENSITY IN ITS APPLICATION* TO STRATA 1245 

Transcription into 
Ao 00 

Figure 145. Variation of density of figure 142. A7*0s A7*96. 
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INTRODUCTION 

Unity of style evolved in one musical continuity or in a complete com¬ 

position is, under ordinary circumstances, a task consuming most of a composer’s 

life. To arrive at perfect auditory discrimination and orientation in any new 

material is a task of great difficulty. Only the greatest composers known were 

able to mold their own individual styles, and even in these cases, the crystalliza¬ 

tion of their own styles were actually prepared by a similar effort of their great 

predecessors. 

The problem of unity of style in intonation, when approached from an 

analytical angle, becomes nothing but a methodological problem. If the factors 

which contribute to unity of style can be detected, then there is assurance 

that such unity can be achieved through scientific synthesis. 

The factors determining that certain groups of intonation belong to one 

family are: (1) the identity of pitch-units, and (2) the identity of intervals. 

112531 



CHAPTER 1 

PITCH-SCALES AS A SOURCE OF MELODY 

OFTEN Styles of intonation can be defined geographically and historically. 
There may be a certain national style which, in due course,of time, under¬ 

goes various modifications. These modifications, often associated with the 
progress of a civilization, can also be looked upon as modernization of the source. 

The easiest way to illustrate this viewpoint is by demonstrating the source 
{the true primitive) and its stages of evolution (the stylized and the modernized 

primitive). For example, “Dixieland” improvised music of old New Orleans 

or plantation-songs of the Negroes of the South, or tribal songs of the American 
Indians, or ritual songs and dances and incantations of the Russian peasants 
in tfce sub-arctic north—are all true primitives. The various forms of “jazz” 
and “swing,” the “Indian” music of Mac Dowell or Cadman or Stravinsky 

{Les Noces), are stylized or modernized primitives—each, of course, in its re¬ 
spective field. 

Technically, the source of a true primitive is the First Group of Scales 
(see Theory of Pitch-Scales):* particularly, scales with few pitch-units. 

The sources of stylized primitive are: 

(1) derivative scales obtained through permutations of the pitch-units; 
(2) derivative scales transposed to one axis; 

(3) derivative scales obtained through permutation of the intervals; 

(4) derivative scales obtained through direct transposition of the intervals 
of the original scale to its own consecutive pitch-units; 

(5) directional units applied to the above 4 categories. 

The sources of modernized primitive are: 

(1) symmetric scales evolved from the primitive original, by assigning the 

interval between the extreme pitch-units as the interval of symmetry 
for the compound scale in which each sectional scale corresponds to the 

original; the family-scales of the original become the family-scales of 
the compound symmetric scale; 

(2) symmetric superimposition of sectional scales and chords derived there¬ 
from, m which progressions of chords derive from the same compound 
symmetric scale. 

An the above resources are treated independently in their own sub-classi¬ 
fications, where the usual techniques, such as composition of melodic forms by 
permutation, superimposition of durations, etc., are used. 

•See Vol. I, p. ini 

[1255 J 
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CHAPTER 2 

HARMONY 

A. Diatonic Harmony 

*P\IATONIC structures, as well as diatonic chord progressions, derive from a 
pitch scale. Chord structures can be evolved by means of the first tonal 

expansion, thus serving as accompanying harmony to the original scale. Let 
us take the fundamental Baljnese scale and designate it as Eo. Then Ei represents 
the expanded scale. By placing this scale vertically and starting with each con¬ 

secutive degree of the original Eo as a root tone, we obtain 2 (Ei) on all degrees 
of the original scale. 

Pitch scale: Eo 

q i n in iv v 

Pitch scale: E* 

.... - - ... -l ..a.,., 

Ztet) 

1 
m i 17 
•o-LPfi. 

-fcVT n 
-ftr .i;:.-o.lnx= T. tra. s t If £—41 
-|f—^i» ho - u 0 fro- 

Figure 2. Eo, Ex and 2 (221) 

From these complete forms, partial forms of S2p, S3p or S4p can be obtained, 
thus offering structures for all degrees of the scale in the form of diads, triads 
and tetrads.' 

Diatonic Cycles (Positive) 

C,(=MSBl©=HSE„) Cadences: Final Compound 
1 TV _ _ _ 

^ 17 n v in r i iv i i m i i iv m i 

j 

C*(=HSBi) 
i n m 

y 

U-o "—ILL!- 

i n i i v i 
[ m W.r« [| ■»!-- 

i n v i 
r l =a 
|| mj _«» || 

C8(=HSb8) 

nr ni n i I V I I H I i v n i 

Figure 4. Diatonic cycles (positive). Read backward for negative. 

Diatonic cycles and their mixtures are applicable to all types of harmony. 
The first illustration represents the 3 diatonic cycles-used individually and in 

combinations. The form of harmony: hybrid 3-part harmony (functions a, b, 
and constant a in the bass). 

The fundamental harmony scale is the Ei© of the original scale. As in all 
scales which do not contain all 7 musical names, expansions do not produce 

analogous musical intervals (such as 3rds or 4ths). Diatonic cycles cannot be 
determined by such names and will be indicated numerically. The fundamental 
harmony-scale will be referred to as the first cycle (Ci\ the second cycle (Cj), 

and the third cycle (Ci). The second cycle represents the first tonal expansion 
of the original harmony scale, the third cycle represents the second tonal ex¬ 

pansion of the original scale. Cadences are formed by tones adjacent to the 
tonics, thus producing directional units around the tonic. 

In the following table the initial cadences are at the beginning, the final 

cadences are in the middle and the compound cadences are at the end. The left 
side of the table represents the fundamental positive cycles of the Balinese scale. 
By reading this table backwards we obtain the negative system of cycles. 

[12581 

Figure 5. Hybrid 3-part harmony; functions a, b, and constant a in bass (,continued), 



2 Ci+Cjs + Ca 
(4) 

Figure 5. Hybrid 3-part harmony, functions a, b, and constant a in bass (concluded). 

Progressions with more parts can emphasize any desirable choice of functions 

which may or may not include a coincidence of one function with the bass. 
For example, hybrid 4-part harmony may be constructed on the basis of a— 
function in the bass, and a, b, c, in the 3 upper parts; or a in the bass, and b, c, d, 
in the 3 upper parts. 

In Figure 6, all progressions have the first form. The sequence of cycles 

corresponds to that of Figure 5. Transformations are chosen through the nearest 
pitch positions. 

Progressions Type I (Diatonic) 
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Figure 6. Progressions Type I (Diatonic). 2 - (concluded). 
Sip 

B. Diatonic-Symmetric Harmony 

Evolution of a diatonic-symmetric or a symmetric type of progression must 
be based on the following principles: the selection of chord structures must be 
confined to 2 produced by the scale itself; the number of each 2 and its sequence 
are a matter of selection and distribution. 

The best procedure to follow is: first, make a table of all diatonic 2, then 
transpose them to one axis. This produces a chart from which it is easy to draw 

comparisons between the different sonic structures. After an individual selection 
of structures, as well as their sequence, the coefficients of recurrence can be set. 
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Progressions Type II (Diatonic-Symmetric) 

The possible forms of E. 

_ i. .* k 
Transposition to C-axis. 

E% 2a Ez A fs 

A preselected group of E: 
2/5 + , E* + ,Eb 

) n UP S _ i IB: 
Ez 
Q 

& 

Figure 7. Progressions type II (Diatonic-symmetric). 

In the following form of continuity, the sequence of root tones is the same 

as in the preceding examples. The functions of the upper 3 parts are b, c and d. 

Figure 8. Functions of 3 upper parts are b, c, d. Root sequence is as in figure 6 

2C\ + C« + C,. 

C. Symmetric Harmony 

Though the choice of intervals for the progression of root-tones in pure 

symmetric harmony is free, particular satisfaction is obtained when the in¬ 
tervals for the progressions of root-tones are present in the scale itself. 

In the following example, the choice of the v^2 justified by the relation¬ 
ship c — e\> in the original pitch scale. 

HARMONY 1263 

Progressions Type III (Symmetric). 

D. Strata (General) Harmony 

For the sake of plasticity of voice leading, and when many voices are em¬ 

ployed, it is practical to convert the entire 2 representing the expanded scale 

into strata. Progressions of strata harmony may be developed through the 
intervals producing 2 itself, or based on any other form of symmetry. 

We shall convert the first expansion of the Balinese scale taken as a 2 into 

3 strata where Si ■» p, Sjj = 2p, Sin = 2p, and where the progression is based 

on a descending scale of the 2 itself. Though other forms of symmetry for the 

chord progressions may be used as well, they represent a further stage of moder¬ 
nization of music. 

The following example illustrates the strata described above. 

Figure JO. Strata harmony. 
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E. Melodic Figuration 

The problem of melodic figuration, that is, the formation of directional 

units, is of utmost importance. When such units are set by chance, or free 

selection, from the general tables of directional units, they may destroy the 
inherent character of the music as expressed by the given scale. In order to get 

the proper type of directional units, which are derivative from the original scale, 
it is necessary to produce permutations either of the pitch-units or of the intervals 
in the given scale. The procedure is as follows: the original scale, designated as 
d®, produces the respective number of derivative scales. These derivative scales 
furnish leading units to the given scale, after they have been transposed to one 

axis. 
Pitch-units, which are not present in the original scale, become potential 

leading units. By selecting those nearest the chordal tones (neutral units), a 

variety of directional units may be secured from which the choice of actual 

units may be left to the composer. 
The following example illustrates the entire procedure as it derives from 

permutation of pitch-units. See also Evolution of Scale-Families in the Theory 

of Pitch-Scales* and in Kaleidophone.** 

Derivative scales obtained through permutation of pitch-units 

dt d» 

Figure 11. Melodic figuration (concluded). 

In addition to this, another System based on permutation of intervals, will 
be found useful. 

Derivative scales obtained through permutation of intervals. 

Figure 12. Melodic figuration. Directional units derived from 

permutation of intervals. 

F. Transposition of Symmetric Roots of Strata 

Further modernization of the harmonic style 6f music may be achieved 
through transposing the symmetric roots developed from strata. This form is 

an adaptation of various native intonations to the ultimate development of 
equal temperament. This type of music is associated with modernity and is 

usually called "polytonal harmony.” Casual and often incoherent examples of 
this type may be found in the works of Auric, Poulenc, Honegger, Stravinsky, 

Malipiero, Casella, and many others. Their attempts are in most instances 

inadequate owing to the fact that thev have no definite technique of voice-leading 

in single strata, and their superimposition of strata is merely a device of placing 
different keys one above the other. They are unaware of the forms of pitch 

symmetry. There are a few consistent fragments to be found in Stravinsky’s 

Petrouchka, Le Sacre du Printemps and Les Noces. Music of the Balinese scale, 
as developed through symmetric superimposition of strata, still retains its orig¬ 
inal character in spite of the extreme modernization of harmony. 



G. Compound Sigma 

The development of a compound sigma follows the same procedure as the 

development of an individual 2. The combination of two or more sigmae can be 
coordinated through any desirable form of symmetry. 

In the following example, \/2 is such a form of symmetry. The progression 

evolves through the form of symmetry used in Figure 10. 

HARMONY 1267 
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Figure 14. Compound Sigma. 



CHAPTER 3 

MELODIZA TION OF HARMONY 

A. Diatonic Melodization * 

The general principle of melodization in the diatonic system of harmony 
is based on an application of the chordal functions with the addition of a suc¬ 
cessive chordal function which is not present in the chord. Thus the entire 
system depends on the number of functions in a given harmony and on the number 

of pitch-units in a given scale. 
In the case of two functions (a, b), melody may represent a, b and c functions. 

In the case of three functions in harmony, melody may consist of four functions. 

Thus, if harmony is a, b, c, melody consists of a, b, c, d. This is true of any 

type of harmony. 

Figure 15. Where harmony has 3 functions, melody may consist of 4. 

In the following example of diatonic melodization, the principle just pre¬ 

sented is carried out. The duration-group selected for this example is in con¬ 
formity with the characteristic Balinese rhythms and is a pure f series. 

Figure 16. Diatonic melodization (<continued). 

268 
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^ «i__*_a_i_b 

Figure 16. Diatonic melodization {concluded). 

The character of music which is an equivalent of the chromatized pitch- 
scale of European music and can be recognized through the presence of auxiliary 
and passing units, can also be developed from scales containing less than seven 

pitch-units. Not all the steps are truly chromatic, but relatively speaking they 

are, as the scale has gaps between the pitches and the filling out of these gaps 

attributes a relatively chromatic character to this music. Some of the directional 

units which derive from permutation of the original scale are actually chromatic, 
i.e., they move in semitones. 

In the following example of diatonic melodization, including melodic figura¬ 
tion, i.e., directional units, all the added functions are marked by the letter d 

as they appear in the melody. The chords consist of a, b, and c functions. 

Scale Diatonic Melodization with directional units. 

Figure 17. Diatonic melodization includes melodic figuration (continued). 
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B. Symmetric Melodization (Harmony Type II and III) 

Symmetric melodization, in matching the sonority of the chord, develops 
on the same principles as diatonic melodization. The difference is that if one 

chord structure is carried out consistently, all the intonations conform to one 
pitch scale, which follows the sequence of chords in exact key-axis transposition. 

This type of melodization accentuates the inherent character of intonations 
even more than in diatonic melodization where, owing to the different structures 

of chords, intonation varies in relation to the chord while the scale remains the 
same. 

In the following example of symmetric melodization, harmony consists of 
3 functions and melody is developed with the addition of the function d, which 
produces its own axis with every chord change. 

Figure 18. Symmetric melodization. 

Symmetric melodization which acquires chromatic character is analogous 
to the preceding form of melodization except for the use of directional units. 

When these two forms are distinctly dissociated, it is possible to use the first 
form (neutral units only) as an original melody, and the second form (directional 
units) as a variation of the original melody. The meaning of the second form is 

that it acquires a more chromatic character than in the case of the application 
of neutral units only. 

In the following figure, the added function d is indicated. The melody itself 
is constructed through circular permutation of the' original pattern. 

dm ■f’U- d ■ 
Lf^r-tr Lr rf frf l *CjUbF-H 

% - - - if*s . 

*s 
Figure 19. Symmetric melodization with directional units. 

C. Conclusion 

By reversal of the above described procedures, coupled with the previous 
experience gained from the Theory of Harmonization, it is easy to obtain har¬ 

monizations of melody which are true to style in each specified category. 

By combining the technique of the Third and Fourth Group of Pitch-Scales 

with the knowledge acquired in the branch of harmonic polytonality (General 

Theory of Harmony: S4p*), it is easy to obtain the whole either through har¬ 

monization or through transformation of harmony into melody in one of the 
strata. 

Authentic counterpoint, true to style in each of our categories (primitive, 
stylized, modernized), cannot rely on the classical system of resolutions for these 

are technically impossible in the field of incomplete scales. The variety of har¬ 
monic intervals (within a pre-selected family-set) takes the place of that tech¬ 
nique. Utilized with the coordination of attacks, durations and melodic forms 

(as expressed through axial combinations), pre-selected harmonic intervals in 
a family-set yield results which can truly be considered perfect. 

♦Seep. 1141. 
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INTRODUCTION 

A S the meaning of the word implies (cum + pono means “to put together”), 
composition is the process of coordinating raw materials and techniques 

into a harmonic whole. But the harmonic whole is the most difficult thing for a 
composer to create, and there are many good reasons for this. 

There are three basic approaches in the actual work of a composer. One 
such approach requires the preparation of all or of most important themes in 

advance, but without the visualization of the whole. Such themes, being of good 
quality per se, may not fit into the whole. They may be improperly interrelated 
with one another as to their character, proportions, etc. 

The second approach, typical of soloists and improvisers, requires the com¬ 
position of a piece in finished form, step by step, from start to finish. In this 
case the composer can hardly anticipate the whole, as he does not even know 

what will happen in the next few measures before he gets there. The outcome 

of such a method of composition, or rather lack of it, is a lack of coherence, 
lack of proportion, excessive repetition and a generally loose structure. 

The third approach involves a great deal of thinking first, the sketching 
of the whole, at least insofar as the general pace of temporal organization is 

concerned, and the elaboration of details thereafter. The tlu'rd approach can be 
compared with the molding of a sculptured piece. 

Each approach contains different ratios of the intuitive and the rational 

elements by which the process of composition is accomplished. Works of different 

quality may result from each of these three basic approaches. Often these forms 
of creation are fused with one another. 

I have found, after a thorough and extensive analysis, that the degree of 

perfection in a work of art, and hence its vitality as a factor of- the probability 
of survival, depends upon the relation of a tendency to its realization. If, for 

example,'the tendency in a given work of art is toward a certain form of regularity, 
we may compute the degree of perfection on the basis of the percentage of ad¬ 

herence of the realized form to such regularity. Of all composers, J. S. Bach 
scored 100% in some instances. It is equally true that all composers recognized 
as “great” in the course of time, yield a high degree of perfection (scoring in 

many instances 80%-90%). In the music of mediocrities (who were in some cases 
eminent during their lifetime) such scores, on the contrary, are pitifully low. 

If the degree of organization and the adequacy of the realization of a tend¬ 

ency constitute the vitality of a work of art, it is only reasonable to seek to 

evolve works which embody refinement of structural organization, mutual fit¬ 
ness of components and the complete realization of a tendency. 

Such a process of reasoning leads us to the necessity of prefabrication and 

the assembly of components according to a preconceived design of the whole, i.e., 

to the scientific method of art production—in this case, of a musical composition. 

[12771 



PART ONE 

COMPOSITION OF THEMATIC UNITS 

CHAPTER 1 

COMPONENTS OF THEMATIC UNITS 

T\7E shall define a thematic unit as a variable quantity with a constant potential 

yy of quantitative aggregation. Variable quantity in this case refers to the 
duration of any component and its potential—the tendency by which such a 

component may grow. A thematic unit, in most cases, consists of more th^n 
one component. It evolves, however, from one basic original component, as if 
from a nucleus, around which all other components (participating in the formation 
of the thematic unit) develop. We shall call the basic component—major, and 
all other components—minor. 

A major component may be evolved from any technical form. Technical 
forms, from which both major and minor components may be developed, may 
be described as follows: 

(1) temporal organization (rhythm of factorial and fractional continuity); 
(2) family-groups of pitch assemblages (pitch-scale developments); 
(3) linear composition (plotted melodies); 

(4) composition of simultaneous assemblages (chord structures and pro¬ 
gressions) ; 

(5) harmony as a source of melodization; 

(6) correlated melodies (counterpoint of attacks, melodic forms, etc.); 

(7) orchestral resources (tone-quality, dynamics, density, instrumental 
forms, attack-forms). 

These technical forms correspond to the various branches covered in the 
present work: 

(1) Theory of Rhythm (Book I); 

(2) Theory of Pitch-Scales (Book II); 

(3) Theory of Melody and Geometrical Projections (Books III and IV); 
(4) Harmony, Special and General Theory (Books V and IX). 
(5) Melodization and Harmonization (Book VI); 
(6) Correlated Melodies (Counterpoint) (Book VII); 

(7) Instrumental Forms and Orchestration (Books VIII and XII). 

The selection of one or another technique for evolving the nucleus of a 
thematic unit, i.e., its major component, depends on the technical form which 

the composer wishes to have dominate over other components of the same 
thematic unit. 

f12791 
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A certain thematic unit may evolve around the major component of tem¬ 
poral rhythm. In such a case temporal rhythm, even after the addition of other 
components, becomes the dominant characteristic of the thematic unit. In other 

cases, the dominance of melody may be desired. Then a plotted melody becomes 
the major component of the thematic unit. Such a melody may be later har¬ 

monized, in which case harmony becomes its minor component. On many oc¬ 

casions the dominance of harmony is so important that it becomes practical to 

evolve chord progressions first—in which case harmony becomes the major com¬ 
ponent of the thematic unit. A minor component may be evolved later by means 
of melodization. It is equally obvious that when continuous imitation is desired 

as the dominant characteristic of a thematic unit, it is best to start with the 

contrapuntal setting of a canon. The canon itself becomes the major component 
and its instrumental forms, harmonic accompaniment, etc., become minor com¬ 

ponents of the thematic unit. 
Certain forms of musical expression have dynamics as a dominant charac¬ 

teristic. In such cases dynamic composition becomes the major component of 
the thematic unit. Harmony and melody in this case play merely a subsidiary 

role and, therefore, become the minor components. Much of such music is being 

written for radio-scripts, motion-picture and theatrical productions, and program 

music in general. 

CHAPTER 2 

TEMPORAL RHYTHM AS MAJOR COMPONENT 

T I 'HE process of composing thematic units is both selective and cooordi- 

-native. 

When the decision is to make temporal rhythm the major component of 
one or more thematic units, the first selection refers to the series of style. As 

style can be pure or hybrid, such a correspondence must be established by 
selection of either a pure series or of a hybrid. The composer may evolve his 
own hybrids if such hybrids serve the purpose of musical expression best. In 

other instances, the selection of a hybrid is necessitated by the desire to carry 
out a certain style whose specifications require such a hybrid. 

The second selection deals with concrete techniques.* Among these are: 

(1) Composition of attacks; 

(2) Composition of durations to pre-set groups of attacks from the specified 

series of style; 

(3) Direct composition of durations from the various resources** developed 
in the Theory of Rhythm: 

(a) the resultants of interference: 

a-5-b, a -rb, a-i-b-f-c; . . . 

(b) composition of balance, expansion and contraction; 

(c) composition of instrumental interference; 

(d) extension of the T — units by permutation: durations, rests, accents, 
split-unit groups and groups in general; 

(e) extension of thematic units by permutations of the higher orders; 

(f) composition and coordination of involution-groups belonging to the 
style-series; 

(g) composition of groups of variable velocity, when the latter becomes 

the necessary characteristic of a thematic unit. 

All the above techniques apply to both the factorial and the fractional 
forms of each thematic unit, whose major component is temporal rhythm. 

•Each of these techniques is illustrated be- (a) to (g) listed above cf. the page indicated 
low. Paragraph numbers and sub-letters are after each of the following letters (all references 
correlated with illustrations. (Ed.), are to Vol. I.: (a) d. 4; (b) p. 21; (c) p. 27; 
••For details concerning each of the resources ^ P* P* W P* fe' P* 

[1281] 
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Example: £ series; summation series: 1, 3, 4, 7, 11, . . . 

(1) A « aT, + 2aTj + 3aT, + 2aT4 

(2) £ ° If r Ir r r Ir r II 

(,)T--r4+,; T" = 3t; f f | f > If f I f II 

T- = ri±1; T" = 4t; £ f T I f T T I T f T Iff 
T“* = -2-44*3 

T" = 3t; T" = 4t; T" = 7t 
T* = r'74-44-3 

(b) T“* = B4-5-3; T" - 4t; 

T~* = E44-3; T" - 4t; 

- C4-?; T" = 4t. 

(c) I2pl (A = 2a); T~* = r4^3 

T->, = 4t4-3t+2t4-3t4-4t 
[3tJ-f2t-f 3t+2t+3t+3t 

Preliminary: % J J i J 
4 r r r r - r 

Preliminary: 

Final: £ °. N- J* | ° 

4 * M-r r I r r4r f 
Figure 1. (a) Resultants of interference. (§) Composition of balance, expansion, and 

contraction, (c) Composition of instrumental interference.* 

The above is applicable to harmony or any instrumental or density-group. 

(d) - (3t+t4*2t+2t)C; 

T-*" = (3t4-t4-2t4-2t)Tx + (t+2t4-2t+3t)T8 4- 

4~ (2t+2t-F3t+t)T, 4- (2t4-3t4-t4-2t)T4 

£ rprr Icfcrprlrrrplrrpr II 

£ *rrr Ir* rr Irr* r lrrr^ II 
Figure 2. (2) Extension of T-units by permutation (continued). 

•The letters appearing here are correlated with the letters given above under (3). (Ed.). 
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£rrr*lrr*rlr*rrl*rrrll 

4 UJ J J * J J JJ* J JJj* 
4 rrr^ rr*r r*rr * rrr 

Applicable to melody with harmonic accompaniment, or to counterpoint. 

£ * rfj’r It r r I r r r I r r r « 

£ r rr ir r r I r r rTrrr r || 

iUJJIJ JJ JJ J IJ J J I 
4 rr r Ir r r r r r4r r r r I 

Applicable to — > or 
H CPn 

Also general permutations of rests in 4p. 

1 J J JJ J J JJ J J JJ J JJ J 
4 ft 11 t ft t an 111 r 

Applicable to ^ t or 
H CPn 

4 JJ J J JJJj JJjj j j j j 
4 mi r iff* irii fiii 

Combinations of the above and also general permutations of accents in 4p. 
Applicable to CP4p. 

£ errrr Irtrrr Irrcrr Irrrcrll 
£ cccrrrr Ircctrrr Ir r EEerr Ir rreesrII 

Figure 2. Extension of T-units by permutation (continued). 
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injjj jjij j jj j jjji! 
4 r rraer rr earr rcarr r earrrr I 

Applicable to ^ . and —: 
H rr* CP„ 

if crcirtcr cr i urtcrtrcr i sr trcrar i trcrartcr n 
Also T-* = 16T, where T" — 4t. 

The same developed in 2p, 3p and 4p. 

Figure 2. Extension of T-units by permutation (concluded). 

(e) T-* = 4tj** (four T of the second order): 

itjjj an jj*j an m j jj*j jjj* *jjj 
Irrrcr rrcrr rcrrr crrrr rrcrr rcrrr crrrr rrrcr 
JJ*J JJJ* »JJJ iltj J J JJ* tJJJ Hi J JJ*JI 
rcrrr crrrr rrrcr rrcrr crrrr rrrcr rrcrr rcrrr I 

Applicable to — ) or CP2p. 
H / 

Figure 3. ® Extension of thematic units by permutations of higher orders. 

<f)j j i i ra n i Ji mm j i 
° r r r r r r r r I 
c» o o o 

Applicable to: 43p; CP3p; ; m (p, 2p, 3p, . . .np) 
H2p H 

Figure 4. ® Composition of involution groups. 
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(g) t + 3t 4- 4t + 7t + lit. . . 

' G&ffiff+l) “ 1+344+3+4+3+4+3+1 

?rr 1° Ir rTr rTr rTr rTrr 
The above forms can be combined into 2p.and 3p. 

Each combination gives the corresponding number of permutations. 

Figure 5. (g) Composition of groups of variable velocity. 
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CHAPTER .1 

PITCH-SCALE AS MAJOR COMPONENT 

HERE, as in the case of temporal rhythm, the first selection refers to the 
scale-family. Such families, as we know from the Theory of Pitch-Scales,* 

can be evolved either on the basis of identity of the pitch-units or on the basis 
of identity of the interval-units. In the latter case, the sum of interval-units 

remains constant. 

All other techniques, by which further modifications can be obtained, refer 
to the second selection. Among these techniques are the following: 

(1) Permutation of pitch units in the selected 9cale ,for the purpose of pro¬ 
ducing MP (master-pattern);** 

(2) Transposition of derivative scales to one axis; 
(3) Transposition of MP to the consecutive units of the original MP (this 

also concerns scales as such); 
(4) Further modification of MP by permutations of pitch-units, combined 

with (2) and (3); 
(5) Tonal expansions applied to all the preceding techniques; 
(6) Selection of the form of distribution of sectional scales through sym¬ 

metric roots. (The form of symmetry must be constant for the entire 
family of thematic units used in one composition; such symmetry either 
is defined a priori, or is based on the limit-interval of the original sec¬ 
tional scale. All the preceding techniques are applicable to this technique. 

It is desirable to specify, before composing the thematic units, whether such 
units will be diatonic or symmetric, as the two styles of intonation conflict. All 
thematic units of one composition, evolved on the basis of pitch-scales as major 
component, must be either diatonic or symmetric. 

Since all major components require the presence of temporal rhythm as a 
minor component, it is important in this case to specify the attack-groups of 
MP in their relation to T~*. Such a relation depends on the desirability of the 

interference of attacks, i.e., whether = I- or * 1- or whether such 
an expression is a reducible fraction. Practically, it means that the repetitious 
character of MP, which may be due to the Bmall number of pitch-units in the 

scale, can be eliminated by creating interference of The same is true for 

the brief duration-groups, whose repetitiousness can be eliminated by the U9e 
of MP with many attacks and a scale with many pitch-units. 

The use of a pitch-scale as major component does not necessarily mean 
limiting the thematic unit to melody alone. Part-development can be evolved 
on the basis of Instrumental Forms, i.e., by reciprocating MP through its own 

♦SeeYol I d iUl, **In the illustration given below, figures 6-11, 
the numbers at the top of each figure are cor¬ 
related with the paragraph numbers appearing 
here. (Ed.) 

112861 

modifications, and may not require harmonization as a new minor component. 
The latter, in turn, may evolve either from scales or from harmony. 

Example: 

. MP=d* po + dipss + dopg p*. 

"UU.- = 

Figure 6. Permutation of pitch units to produce MP* 

(2) . . 
a ao dt da dg di 

- ll'^oc |0-H —u 

MP= cde (dt) +cde (d*) +ea (d*) +edcb fdo) 

'Ar-— T- L— ’ . ■ L- L , 
»» g"—«« ■ t" ♦ ..u B 

fifcr * kr't ^ rV-Yfri rf-„ r =£=P=5=I 
4 1 = 

»1 r|l»n- 

—1-1-!- 

- H1 

Figure 7. Transposition of derivative scales to one axis. 

• •JK^mbers at the top of each illustration related with the paragraph numbers on page 
in this figure and the succeeding one are cor- 1286. (Ed.). 
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T- B4f3 

Figure 10. Tonal expansion applied to preceding techniques. 
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CHAPTER 4 

MELODY AS MAJOR COMPONENT 

fTnHE use of melody as major component is particularly advantageous when 

the configurational characteristics of a melodic line are of prime importance. 
These configurational characteristics correspond to the two forms of selection. 
The first selection refers to axial combinations and the second selection refers to 

trajectorial forms. 
Melodic line as such becomes the dominant factor of a thematic unit. The 

customary minor components of a melodic line are: temporal rhythm, pitch 

scale, and, often, either harmonization or coupling. 
Composition of thematic units from melody can be accomplished either 

by plotting or by direct execution in musical notation. The latter requires an 
MP (master plan) which corresponds to the axial combination and to the in¬ 
tended trajectory. It also necessitates an a priori selection of the quantity 

of pitch-units in which such a trajectory can be realized. Composition of temporal 

rhythm usually follows this procedure. Finally, a system of accidentals can be 

chosen and superimposed upon the scale. After this is accomplished, harmoniza¬ 

tion or coupling may follow. 

Example: 

MP= Ax=p + f^.; S^h+Si+hCPBrsian); T=(0Q+i+l+i) Ci. 
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MP=Ax = 0+£; S*=(h+Si+«<U(d); T=r,*t;T"= 4t. 

Figure 13. Melody and trajectorial forms. 

To achieve unity of harmonic style for several thematic units in one com¬ 

position all master-structures must be developed from one source. The com¬ 
poser is free to make his decision on the matter of the relationship of and 2. 

If the general character of the entire composition is diatonic, then the system 

of progressions must also be diatonic. Once the style of harmonization becomes 
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symmetric, all types of such progressions are acceptable for chords. One may 
use type II, III, and the generalized. Once the symmetric style of harmonization 
is accepted, symmetric superimposition may be used as a form of harmoniza¬ 

tion. To illustrate this, we shall harmonize the thematic units of Figure 12. 

In order to achieve contrasts in harmonization of all three thematic units 

and yet retain unity of harmonic style, we shall subject the first thematic unit 
to diatonic harmonization in hybrid five-part harmony; we shall employ one of 

the structures of S“* as the form of coupling for the second thematic unit; and 
we shall use the Co of the same 2 for the third thematic unit. 

Under such conditions, the first thematic unit will have a moderate mobility 
of harmonic changes; the second thematic unit will have an extreme mobility 

of harmonic changes (as under couplings ^ - a); and the third thematic unit 

will have no harmonic changes at all. 

As all units of the MP appear four times in permutations according to the 

structure of the first thematic unit, we shall use the corresponding number of 
harmonic changes, i.e.» four. Under such conditions, any cycle would be ac¬ 

ceptable. We shall have C~* = C7 const., and assume the first extended duration 
(db) to be 13. Then the first chord is F. Hence: K~* = HiF + H2G + H*Ab + 
Hh H*Bb. 

The coupling of the second thematic unit will be the 2(S“*d0III), i.e., the 
third degree of the original scale. Each pitch-unit of the melody will become 13 
owing to the downward coupling. 

The constant structure of the accompaniment of the third thematic unit 
will be S(7)S dol, Which is a ‘major seventh-chord. 





CHAPTER 5 

HARMONY AS MAJOR COMPONENT 

HARMONY can be a self-sufficient component not requiring melodization 

when combined with temporal rhythm. The simplest and most common 
form of the rhythmization of harmony occurs when each attack of a duration- 

group emphasizes all parts, resulting in rhythmic unison. Most hymns are com¬ 
posed in such a form. The musical interest of such self-sufficient harmony lies 

in the fact that, in reality, there is a dominance of one part over the others 
(usually soprano, sometimes bass, and, originally, tenor). Through the tech¬ 
niques of the Special Theory of Harmony,* such a dominance of one part, which 

becomes a melody generated within harmony, can be obtained from various 

sources. Among them the most important are: groups with passing chords, 
generalization of the passing seventh, and chromatic variation of the latter. 

Another way of evolving thematic units from harmony, and making such 
harmony self-sufficient consists of the distribution of a duration-group (T) 
through the instrumental (I) and the attack-group (A). This technique was 

fully described in the Theory of Rhythm.** In its application to harmony, this 
form of synchronization of attacks, durations and instrumental parts (S=T + 

-j-1 A), can be accomplished in all cases of A = ap (one attack per part) 

and in some cases of A = 2ap (two attacks per part). 
The selection of a duration-group must satisfy the following requirements: 

(1) The number of terms of T must be even; 
(2) T must consist either of reciprocating binomials, or of such binomials 

with an extra binomial (usually the centra! binomiaf of ra-i-i,.) consisting 

of two equal terms. 

It is easy to find such T among the various forms of raj.b. The most 
practical ones are the resultants whose generators have a negligible difference. 

For example: 3-4-2, 4-4-3, 5-4-4, 6-4-5, 7-4-6, 8-4-7, 9-4-8, . . . 
The binomials whose first term is greater than the second produce sus¬ 

pensions. The binomials whose first term is smaller than the second produce 
anticipations. The extra binomials with two equal terms produce the balanced 

pace of chord changes. The latter is particularly practical for the bass part, 

though deviation from this principle is not always undesirable, particularly in 

variations of the original. 
Temporal binomials in reciprocation can be taken also directly from the 

evolutionary series of rhythm. For example: 

f 7+1 f 7+2 *f 11+1 
1+7 2+7 1+11 
5+3 5+4 7+5 

3+5 4+5 5+7 

Figure 17. Temporal binomials. 

••See Book 1, Chapter 8, Coordination of Time Structures. 
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•See Book V. 
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Such reciprocating binomials can be vertically re-arranged in any desirable 
fashion. 

For example: 

i 7+1 i 7+2 if 11+1 

5+3 5+4 7+5 
3+5 4+5 5+7 

1+7 2+7 1+11 

Figure 18. Reciprocating binomials re-arranged. 

If the series does not yield a sufficient number of reciprocating binomials, 
all its values can be multiplied by some common factor. For example: f series. 

The original binomials are: 2+1 and 1+2. By multiplying this series by 2, we 
acquire two pairs of binomials: 5+1 and 1+5, 4+2 and 2+4. Thus: 

5+1 
4+2 
2+4 

1+5 
3+3 

In this case the extra binomial is 3+3. Of course, the result obtained in 

this way corresponds to rg-i-S, and could have been obtained from the latter 
directly. 

The groups of reciprocating binomials are subject to permutations. This 
permits a sufficient variety for each individual part of harmony. It should be 

remembered that the balanced binomial does not participate in permutations 
affecting all other binomials. 

Illustration: 

S (5+1) + (4+2) + (2+4) + (1+5) 

A (4+2) + (2+4) + (1+5) + (5+1) 
T (2+4) + (1+5) + (5+1) + (4+2) 

Bi (1 +5) + (5+1) + (4+2) + (2+4) 

Bn (3+3) + (3+3) + (3+3) + (3+3) 

Figure 19. Permutation of reciprocating binomials. 

The principle of rhythmization of harmony by means of reciprocating bi¬ 
nomials produces a condition under which every chord in the progression ap¬ 

pearing in an odd place has a common attack in all parts. As a result there 
occurs a complete rectification of all suspensions and anticipations not extending 
beyond two successive chords. The attack in all parts falls on the succeeding 

chords of a harmonic progression: H-* — Hi + H* + H* + . . . , between 
which points the suspensions and the anticipations take place. 

The limiting of this principle to binomials is dictated by necessity. It would 

be difficult to discriminate the dependence of chord-units in a progression where 

complete rectification of the original structures extended beyond two chords. 
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Harmony, rhythmirized in such a manner, becomes a self-sufficient thematic 

unit and does not call for melodization. One of the reasons it appears to be self- 
sufficient is the presence of the resultants of instrumental interference in each 

part of the harmony. This attributes to each part an individual rhythmic 

character. . 
Rhythmization of harmony by means of reciprocating binomials works for 

any number of parts (including strata) and in any type of progression. However, 
it is particularly suited for progressions in which stationary parts are completely 

or nearly absent. The best progressions for this purpose are the various chro¬ 
matic types, and particularly the automatic chromatic continuity with altera¬ 
tions of the individual parts. In the non-chromatic types, the constancy, or at 

least the dominance, of C, gives the most satisfactory solution. 
Automatic chromatic continuity makes it possible to use T’s in addition 

to those which consist of reciprocating binomials. This principle, when general¬ 
ised, requires that alterations appear in sequence in each individual attack per 

part, or that there be an equal distribution of alterations and attacks per part. 
Thus, each part can have one or two or, on rare occasions, three attacks in 

succession. 
The sequence in which the parts appear is subject to distribution a priori. 

If more than one part moves simultaneously, involving parallel alterations, such 

harmonic parts must be treated as one rhythmic part. Thus in the following 

sequence of attacks: 

Only two rhythmic parts, i.e., 2pl (1) are necessary. 

s S S 
A A A 

T T T 
B B B 

Figure 20. Sequence with 2pl (I). 

Likewise in the following, only 2pl (I) are necessery: 

S S S 

A A A 

T T T 

B B B 

Figure 21. Sequence with 2pi (/)• 

For the same reason, the following sequence requires 3 pi (I). 

S S S 

A A A 

T T T 

B B B 

Figure 22. Sequence with 3pl (7). 

t 
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AH alterations must proceed in one direction until the synchronization of 
all components (A, T, I, H) is complete. 

Examples: 

Figure 23. Rhythmization of harmony. 

Figure 24. Rhythmization of harmony {continued). 



Figure 25. Variable densities in rhythmizatum of harmony. I Figure 26. Preliminary and final scoring. 
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Figure 27. Prdiminary and final saving (continued). 

in
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Final Scoring 
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I = 3pl.; A = a; A' = 3a; A(T) = 4a; A(T') = 12a; T' = 8t*3 - 24t; N(T") =8, 

Preliminary Scoring 
CHAPTER 6 

MELODlZATION AS MAJOR COMPONENT 

T\7HILE harmonic progressions, used as a source of melodization, are evolved 
* ^ in one style (one harmonic type) in order to give unity to the entire 

composition, such progressions may be given a desired amount of contrast in 

their different thematic units. This is achieved by varying the type of melodization. 

Thus, for example, a progression evolved in type II (diatonic-symmetric) 
can be melodized diatonically (by the quantitative scale), symmetrically (by 

the usual method of 2—transposition and modulations), or chromatically (by 
chromatization of either of the first two forms). For this reason, several different 

thematic units can be evolved from the same type of harmonic progression. 
Where the chief apparent characteristic becomes the type of melodization, we 
regard melodization as the major component. 

Diatonic harmonic progressions produce their own types of melodization, 

i.e., the diatonic and the chromatized diatonic. Likewise chromatic harmonic 

progressions, of various forms and derivation, can be melodized through the 

two basic techniques assigned to that form, i.e., the acquisition of leading tones 

from the following chord and the device of quantitative scale. 

As both of these techniques can be mixed, and as the diatonic (quantitative) 
melody can be chromatized, it is possible to devise a large number of thematic 

unitB (on the basis of chromatic melodization) which could participate in one 

composition, yet which would exhibit a noticeable degree of contrast with each 
other. 

In the harmonic strata technique, transformation of a stratum (or strata) 
* into melody is equivalent to melodization. 

Examples: 

(D 

Figure 29. Melodization of harmonic progression (continued). 

[1305] 



MELODIZATION AS MAjOR COMPONENT 

Figure 29. Mdodisation of harmonic progression (continued). 
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K+= YT | (a) 

Figure 31. Melodizaiion of harmonic progression {continued). * 
§ Figure 31. Melodizaiion of harmonic progression (continued). 
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CHAPTER 7 

COUNTERPOINT AS MAJOR COMPONENT 

'T'HE dominant characteristic of counterpoint becomes particularly noticeable 
in such formB as imitation, ostmato of a ground melody, and in the con¬ 

trasting forms of axial correlation. Thematic units evolved as correlated melodies 

furnish a major component in which the individualization of melodic lines is 
particularly prominent. 

Here major component as such is not confined to any configuration-families. 
So long as the different thematic units contain their own configurational charac¬ 
teristics, sufficient for the purpose of detectable contrasts, no other requirements 

are necessary. Unification of style is accomplished through the selection of minor 

components, such as temporal rhythm, pitch-scale or master-structure (when 
counterpoint is evolved from strata). 

Contrapuntal thematic units can be subjected to harmonization, in which 
case harmony becomes the unifying factor of style. 

It is not advantageous to evolve contrapuntal thematic units by means o» 
part-melodization, as in such a case the forms of correlation are greatly con¬ 

trolled by harmony and therefore force the counterpoint to become a minor 
component. Part-melodization may be used, however, when the second melody 
can play a subsidiary (obligato or background) role. 

We shall illustrate now the composition of thematic units from counter¬ 
point in its three characteristic aspects: 

(1) axial coordination; 

(2) canonic imitation;' 

(3) counterpoint to ground melody. 

Example: 

(1) = Type IV. 
CPt o 

Figure 32. Axial coordination, 
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(2) Type 331 

COUNTERPOINT AS MAJOR COMPONENT 1313 

Figure 34. Counterpoint to ground melody (concluded). 

All other techniques, such as inversions and expansions, constitute variation 
and therefore are not applicable to the composition of thematic units. They 

participate in building up the whole, and for this reason will1 be considered in the 

Composition of Thematic Continuity.* This statement concerns all six of the 
preceding chapters. 

•See Part II of this Book. (Ed.). 
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CHAPTER 8 

DENSITY AS MAJOR COMPONENT 

DENSITY becomes a dominant factor of the thematic unit when the quanti¬ 

tative distribution of elements (parts) and groups (assemblages) becomes 

the chief characteristic of such a unit. Nevertheless, the greatest advantage 

offered by the Theory of Density lies in the composition of continuity from the 
original group of density by means of positional rotation. It is not difficult for 
an experienced composer to conceive one density-group as a thematic unit; but 
the instantaneous composition of melodies and harmonies as textural thematic 

groups in a considerable temporal extension cannot be solved satisfactorily except 

by the scientific method. This method which includes both the composition of a 
density-group and its positional rotation was fully described in Book IX, Chapter 

15, Composition of Density in its Application to Strata. 

Composition of thematic units or of thematic continuity from density-groups 

is of particular advantage where large instrumental combinations participate in 
the score. Chamber, symphonic, choral music, and ensemble music, in general, 

require such technique. 

The student of this theory must realize that positional rotation, as was 
pointed out before, does not interchange the positions of harmonic strata or their 

parts, but refers solely and entirely to the positions of thematic textures, i.e., 

melodies and harmonies conceived as rhythmic and instrumental forms. 

The practical outcome of this technique is the projection of thematic textures 
through harmonic strata of a 2H*, which in itself remains constant. Under 
such conditions, a certain melody Mi may appear in the different strata or parts 

of the strata accompanied by another melody Mn, which also may appear at 
different times in the different strata, and which may, in turn, be accompanied 

by harmony or several harmonies (which are detectable through their temporal 

and instrumental characteristics). 

As positional rotation takes place, all these thematic textures undergo 

mutations, which change their positions, within strata and parts, individually 

and reciprocally. 

In order to illustrate this technique more fully, we shall demonstrate not 

only the composition of thematic units from density as a major component, but 
also the respective form of continuity evolved from such units as the result of 

positional rotation. 

As it was stated in the Theory of Density,* composition of Density-Groups 

may evolve either from a scheme of density or from a progression of harmonic 

strata. 

•See p. 1227. 

(13141 

We shall use, for our illustration, the S+lT* scheme offered in Figures 
141, 142, 143 and 144 of the Composition of Density.* 

Let us assume that the 3S of the 2, superimposed upon the Ao0o, are assigned 
in the following manner: 

Si b Mi; Sh s H; Sjh m Mu. 

Then the respective textures controlling the corresponding parts and strata ap¬ 
pear as follows: 

Ao0o 

Figure 35. Textures: Si b Mi; Sh b H; Sm s Mn. 

This represents a pattern consisting of two melodies and one harmonic ac¬ 
companiment. 

It is to be remembered that A-* offered in Figure 142 begins with the third 

phase of dt. For this reason we acquire the following scheme of thematic con¬ 
tinuity, based on the three original thematic textures. 

Figure 36. Scheme of thematic continuity. begins with third place of dt. 

•See pp. 1238-9, 1240, 1241, 1244. 
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In order to individualize each thematic texture, we shall assign to each of 

the textures an individually selected T: 

T(Mi) = (4+24-2) 4 (2+244) 
T(Mh) = (1+1+1+1+3+1) + (3+1+2+2) 
T(H) - 1+1+2+1+1+2 

Instrumental characteristics may be added to this. We shall equip the 

harmonic accompaniment with a certain constant form of attacks. 

Figure 37. Density as major component (continued). 

DENSITY AS MAJOR COMPONENT 1317 

r^r rrr pr ur 

—*=*—*=*— 
j£r—*• -t" .m n m 

jfcgpl-- Lj 1 — 

£££= 
ifa ill 

=ur cjt 
==. j —a—(■—« g- -— 

± - 
r 

«L--1-- 
-a- - 

^^■1 SSBHT HMI M k m 1 ■*7- 
f*F> r 

^- 

gaga 

Figure 37. Density as major component (continued). 
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Figure 37. Density as major component {concluded). 
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When such a score is orchestrated, melodies which derive from adjacent 
parts of one or more strata are assigned to one or more instruments to play the 

continuous portion of melody in unison. However, for special orchestral effects 

where extreme differentiation of tone-qualities is desired, orchestration can follow 
the fragmentary portions of one continuous melodic extension, assigning a dif¬ 

ferent timbral participant to each fragment (no matter how brief) which derives 

from an individual part. It should be remembered that this extreme refinement 
is due in our example, to the fact that d = p. This refinement associates itself, 
ipso facto with the style, where general economy of resources is the fundamental 

technical premise. Of all composers, Anton von Webern is probably the only 
one who went as far, as he did, in "splitting” thematic units. 

It is easy to see that the effort required in orchestration can be reduced to 

a minimum by making a density-group the major component of thematic con¬ 
tinuity. 



CHAPTER 9 

INSTRUMENTAL RESOURCES AS MAJOR COMPONENT 

THE musical past shows that while some composers were capable of produc¬ 
ing a real synthesis of textural and instrumental resources, the majority 

were not able to produce such a balance of the diversified techniques which 
constitute a musical composition as a whole. Thus, some creative artists, while 
in possession of numerous melodic and harmonic devices, were relatively (and 
sometimes completely) unsuccessful in handling instrumental techniques. At 
the same time othors had very fruitful instrumental ideas and lacked sufficient 

technique in melodic and harmonic composition. 

The dominating and impulsive types, among whom symphonic conductors 

are usually included, often write what may be called “conductorial music — 
for which the Germans have an appropriate term, “Kappelmeister-musik.” In 
many a composition by such men, orchestral versatility of device, coupled with 

proper use of instruments, .usually helps offset die emptiness of intonational 
forms. The greatest representative of this creative type in the past is Hector 

Berlioz. At present, however, the sins of conductorial composers might be 
regarded as virtuous accomplishments with a number of our contemporaries, 
who, possessing great harmonic and sometimes rhythmic dexterity, lack this 

particular quality. In some cases, the crudeness of harmonic and melodic tech¬ 
nique can be completely overshadowed by the expressiveness of orchestral re¬ 

sources, which in such cases become the major component of the thematic 

structure. 

It is not so much a matter of refinement and skill in orchestration, as it is the 

simple fact of such a component being prominently present. Such is the case 
with Beethoven, in whose music, and practically for the first time, dynamics 

and forms of attack played such an important part. 

At any rate, as the student of this system is most luxuriously equipped with 

all the imaginable techniques, it is time for him to become aware of the im¬ 
portance of instrumental resources, as these resources constitute one of the most 
powerful media of musical expression. The latter consideration makes us believe 
that a great deal of music written today, interesting as it may be for professionals, 

is sterile for lack of one of its most vital ingredients. 

In writing functional music, i.e., music which is capable of stimulating 

associations, as most music written for the theatre, cinema, radio and television 
must be, in order to serve the purpose, instrumental resources most frequently are 

the major component of a thematic structure. 

As details of this subject pertain to the field of orchestration, we shall 
confine ourselves to essentials for the present. The immediate goal of this dis¬ 
cussion is to make the potential composer aware of such resources as instrumental 

structure offers. 
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cornet" ^ in‘° the blowing fundamental 

(1) Density; symbol: D (density); 

(2) Dynamicssymbol; V (volume); 

(3) Tout-Quality; symbol: Q (quality) • 

(4) Instrumental Forms; symbol: I (instrumental); 
(5) Forms of Attack; symbol: A (attack). 

” ™ o, (om 
(1) configuration of time (T) and 

(2) configuration of the special component (in this case: D, V, Q, I or A) 

velXa “suchnv^leishS tW° 

high versatility. We already have used6 T' ** the ldea of low' med,um and 

one instance, ft wlsapSCw ^,ium "d hT?* tha" «*■ 
Part-Melodization* Later this elemf . d denslty' ,n the branch °f 
analytical study. Following this meth^w^hSfdM? ‘° a detailed 
sources in an elementary maZrfor then! . , eal W,th lnstrum™tal re¬ 

aspects to our analysis of orchestration ^ aU SblCtly technical 

.- ?■*"> h„- 
branch dedicated to this matter.*** * attention in the respective 

i&.issisrsyar t—“ «»v 
tanaty-continuity [the instrumental eig!r: 3(f)] ™ °Ver 3 Certain simul- 

consilt ofT^Ut'thf0r TP'!; Ty °f Iap' WhiIe “**>« unit may 
example: a3p’ ‘mP'""S defimte “ definite relations. For 

T^Iap = 4T and T^I g - 12T. In this, case their ratio is 1 -3 The 

r — • 
ntental resources: dynamic,, ton^uaUty and °f in8trU' 

“See Vol. I, p, 700. 
**See p. 1226 ff. 

***See p. 883. 
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A. Dynamics 

Dynamic scales can be composed within, the range of intensity associated 

with music. As the excitor (amplitude) and the reaction (volume) are, according 
to the Weber-Fechner law, in logarithmic dependence (y = log x), we can only ap¬ 

proximate the designated degrees of volume in musical performance. 

We may generally agree that a certain standard of pp, p, mf, f and jf can 

be established for practical purposes. But even such an allowance can be ad¬ 
mitted only after we specify what instrument or group of instruments we mean. 
For / in a large symphony orchestra is quite different in volume from / in a string 

quartet. Nevertheless, even such a vague definition of dynamic degrees helps 
to a certain extent when the performer is confronted with interpretation of the 

composer’s intentions. 

We can hypothetically assume that the minimum of dynamic flexibility 
results from a one-unit (one-degree) scale. A one-unit scale can be any degree 

of the total range of volume. It can be an equivalent of pp, p, mf, f or ff. There 
are some forms of folk-music generally performed as mf. Then there are dance- 

bands in the U.S.A. that play everything/. When such dance-bands dare to 
produce two dynamic degrees, such as p and/, we witness the birth of a two-unit 

dynamic scale. 

We shall replace (only for the composer’s use) the customary symbols by 
the symbols of v and V. These symbols represent a dynamic unit (degree) and 
a dynamic group respectively. Thus we arrive at the following classification 

of dynamic scales: 

(1) One-unit scales: 

V = vsvi, vii, viii, viv, vv, - - ■ , where 

vi = pp, vn = p, vin - mf, viv - f, vv = ff. 

(2) Two-unit scales: 

V = 2v 3 vi 4- vn, vi -4- vm, vi 4- viV, vi 4- vv, 
VII + vm, VII + Viv, VII + Vy, 

vm 4- viV, vm 4- vv, 
viv 4- vv. 

(3) Three-unit scales: 

V « 3v s Vl 4- vn -f- vm, V! 4- vn 4- viv, vi 4- vn 4- vv, 
vi 4- vm + viv, vi 4- vm 4* vv, 

vi 4- viv 4- vv, 
vn'+ vm 4- viv, vn 4* vm 4- vVl 

vn + viv 4- vv, 
vm 4- viv 4- vy 
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(4) Five-unit scales: 

V =: 5v s vi 4 Vn 4* vm + viV 4- vv. 

!, 2Lth“e 8C4!!S the mOSt praCticaI are the **'«« of symmetric structure, 
arranBement of the units the total hypothetic 

is ba Jd V ~ „L l |'U?lt *cal“ are entirely omitted, as our classification 
based on so-called normal senes,” which take place in crystal formations 

and with which we are already familiar through the Evolution oTlthythm Series* 

Thus, the best selections from the above table are: 

V = v any selection 

V = 2v vi 4- vv; vn 4- viV 

V ^ 3v vi 4- vm 4* vv; vn 4- vm 4- vIV 
V — 5v one scale 

eradUr ^“ti°nffrom °n* dynamic d*8«e to another can be either sudden or 
gradual. The first form of transition can be indicated in our symbols or in the 
customary musical symbols as the sequence of the different degree* within a 
specified time period. For instance: 

vi4t 4- vm2t + Vy2t 

or: pp4t 4- mf2t 4- ff2t 

Gradual transition (leaving the form of such gradually to the performer) takes 
Place an two directions: from a weaker degree to a stronger dKoTTn 

^ ^ a Str°nger degree t0 a weaker (known as diminuendo). The latter are expressed in our notation as follows: 

t (VlII">Vl)2t' or in musical notation: 
(pp < mf)4t 4- (ff > mf)2t + (mf > pp)2t. 

The dynamic groups V must be composed with a view to their potential 
correspondence with other components. For example: ^ 

T(V) = 16(2 + 1+1) 
T(H) - 4(2 + 1 + 1)« 
T(M) = (2 + 1 + 1). 

can b<^composed Ts follLs:’ + VV' ^ V"+ ^ dynamiC contir>uity-group) 

v-* = vy32T + (vi vv)16T + (vv -» vm)16T. 

•See Vol. I, p. 84. 
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B. Tone-Quality 

By the same method, scales of tone-quality can be established. Each degree 
of quality (q) becomes a unit of the quality-scale (Q). From such scales, thematic 
units can be composed as timbral groups. Intonation and temporal structure 

can be devised later in order to conform to the temporal organization of the 

Q-group. 

In evolving the scales of quality, we shall consider the following forms: 
Q = q, Q = 2q, Q = 3q, Q = 5q. In some special cases, as in writing for a 

stringed-bow ensemble, even Q = 9q may be practical. 

Since in this chapter we are concerned only with the general forms of timbral 
composition, our thematic units will be expressed only in terms of Q and not in 

any concrete selection of instruments. The latter can be superimposed upon any 
Q~*, i.e., quality continuity-group, and technically belongs to a study of Or¬ 
chestration. Neither shall we deal with acoustical matters now: they, too, belong 

to the field of orchestration. 

For the present, without attempting to explain quality as phenomenon, 
we shall resort to the most obvious and, at the same time, the most fundamental 

conception of the quality-range. 

The limits of perceptible quality-range can be defined as open tone (lower 
limit) and closed (muted) tone (upper limit). Open tone is characterized by a 
small quantity (sometimes none) of partials and is associated with the tuning fork, 
flute-stops of an organ, various types of flutes and the upper range of a French 

horn; also with the string-bow instruments, when played over the fingerboard 

(sul tasto). 

Closed tone is characterized by an excessive aggregation of partials within 
a certain acoustical range and is associated with the heavily muted brass instru¬ 

ments and the string-bow instruments, when the latter are muted and played 
near the bridge (sul ponlicello). 

It is important to note that the tone production of the open tone is immediate 

(like blowing into the mouth-hole of a flute), while the tone production of the 
closed tone is mediate (as besides the mouthpiece, there is an “acoustical screen” 

produced by the mute). 

In the quality-range of five degrees, the remaining three intermediate de¬ 
grees appear as follows: 

(1) The single-reed quality, which is associated with the clarinet and with 

string-bow instruments bowed in the customary manner. Some physical 
characteristics affecting this quality are: single-reed mouthpiece, cylin¬ 

drical bore, and, as a consequence, the presence of odd partials. 

(2) The stopped quality, which can be associated with stopped French horn 

and the slightly nasal character of the single-reed instruments with a 

conic bore, such as the saxophones. 
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(3) The nasal quality of prominence, which is associated with the double¬ 
reed instruments, such as oboes, bassoons, and with stringed bow instru¬ 

ments when played at the bridge but without a mute; it is also present, ir 
the customary form of execution, in the high register of the 'cello. 

Thus, we arrive at the basic quality-range of five degrees: 
(1) open q qj; symbol: O 

(2) single-reed s qn; symbol: R 
(3) stopped s qm; symbol: © 

(4) double-reed (nasal)- qIy; symbol: RR 
(5) closed (muted) a qv; symbol: # 

fCXtreme 5kiU in orchestration, a certain degree of gradually, in 
transition from one q to another can be accomplished, but it is more practical 

In ^e ’ Q, gfemtB With *** f0rms 0f sudden transitions only, 
n the year 1932, as a result of my collaboration with Leon Theremin, an elec- 

tronic organ was constructed (at present it is in the possession of Gerald F 
Warburg) on which the closing of an open tone could be accomplished a, con- 
tmuity by means of condensers controlled by pedals. 

is !m.P°rtfnt to.reaU“ ‘b®1 the natural instrument of the human voice 
is capable of such continuous transitions from one q to another by modification 
of vowels and consonants. This topic will be discussed in orchestration. 

witheh yrSC^« Can be'laBSified in the 8ame fashi°» « the dynamic scales, 

r«^cdvely y ** 1he 6ymb°'S Q ^ « «■>* place of V and v 

An example of Q~* evolved from Q - 3q = q„ + qn, + qiy. 

= qIV 3T + 9li x + qm 2T + SB? 2T 

ordinated IthM prT°“8 “P^ation, such Q-* schemes can be co- 

be^coordinated “th"^ °n °f T' S"d a" °f them-can 

There is a substantial amount of material which can be used for such ul- 

Zrrrfn0T^teTral, COOrdination in the Tha"y of MyOm. parti- 
and Mom (LmtTm “ Utl°n “d ** ^oni^on of Three 

potelT in.^=^rn^ 

C. Forms op Attack 

to V^Tq' attaCk alS° 116 cla88ified by method which we have applied 

mavtlol”tHe m^la88ifiCtti0" °f tbe-attack-range is established, the composer 
may evolve a selective scale of attack-forms (A and a). These attack-forms 

T conltit :Tged;nto attack-fcra5 continuity-groups (A-*) and coupled with 
T, constitute thematic units, conceived from the viewpoint of a and A 

•See Voi. I4 p. 70 and p. 24. 



1328 THEORY OF COMPOSITION, PART I 

The basis on which we establish the fundamental classification of attack- 
forms is the durability of attack. Again, as in the case of V and Q, this subject 
cannot be subjected to scientific scrutiny, for the present, as, in actuality, no 
attack-form can be dissociated from its dynamic characteristic. Nevertheless, 

the composer may derive important benefits from the concept and method of 

attack-scales, even in their elementary and approximate forms. 

We shall define the lower limit of the attack-form range as uninterrupted 
continuity of sound resulting from one attack and extending over a certain time- 

period (legaiissimo, in musical terminology). Then the upper limit of this range 
becomes a percussive form of attack with a minimum durability {staccatissimo, 

in musical terms, an equivalent of hard staccato, marked as i ). 

Between these two limits we find the basic three intermediate degrees of 

attack-forms, which are: 

(1) the legato form, which minimizes the intensity of attack, like the de¬ 

tached (detach^) manner of bowing the stringed-bow instruments. 

(2) The portamento form, which is discontinuous but not abrupt (marked 
for orchestral instruments, and C ^ for the Piano). 

(3) The staccato form, which is abrupt and therefore percussive, but is 
associated with low dynamic degrees. It corresponds to soft staccato 

(usually marked . . . ). 

All further refinements of this range would be practical only for the stringed- 
bow instruments, and will be discussed in Orchestration. 

As in the case of other instrumental resources, we can establish scales of 
attack-forms from which thematic units may be composed. 

It should be remembered that this component is fairly new, as compared 

to the others. It usually has been left to the initiative of the performer. 

Scales of attack-forms follow our usual classification: A =* a, A = 2a, 

A — 3a, A = 5a, . . . 

The respective correspondence of the attack-form degrees are: 

(1) legaiissimo: aj 

(2) legato: an 

(3) portamento: am 

(4) staccato: arv 

(5) staccatissimo: ay 

As all known music is quite flexible with regard to the time-periods of ever- 

hanging a, time units can be specified either in t or T, depending on the degree 

refinement which the composer intends to impose. 
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An example of A~*, evolved from A — 3a = an + am + aiv 

A = an2t + aJV2t + ani4t + aiV4t + ain2t -f aiI2t. 

Th‘® equipment is fully sufficient for the student-composer to proceed with 

compoation of thematn: umts as they have been defined in this theory. He may 
choose any technical form as the major component. He must synchronize thfe 

Srr" min°r C°”P°nentS 1,6 may 5elect- 14 the coordina tion itself that is of prime concern. He is free otherwise in making his decisions 
and selecting his techmcal resource - choice being controlled only by the com 
poser s decision to evolve this or that type of music. * V 

The next stage of this technique consists of coordinating thematic units 
into an a priori planned musical whole. 



PART II 

COMPOSITION OF THEMATIC CONTINUITY 

CHAPTER 10 

MUSICAL FORM 

THE term “musical form” is usually applied to casually contrived schemes 

of thematic sequence. Such schemes are both vague and dogmatic. They 
are devised solely on a trial-and-error basis. Schemes of thematic sequence 
usually include two components: the sequent arrangement of subjects and the 

sequence of keys in which the subjects must follow one another. 

While the succession and the recurrence of subjects are intended to achieve 
some form of symmetry, without regard to the temporal relations of the subjects, 
the succession of keys in which such schemes are presented is based entirely on 
antiquated conceptions of tonality. The most convincing proof that such thematic 
schemes are unsatisfactory, with regard to both their symmetry and key-sequence, 

lies in the outstanding compositions of the classics. Even Beethoven, who 
followed these dogmatic schemes more closely than others, had to deviate from 
the schemes in order to get satisfactory results. This is true of his selection of 

recurrences, distributions and key-time relations. 

Of course, there is no one form that is specifically “musical.” Form, con¬ 
ceived as temporal structure evolved from thematic units, most obviously must 
possess the characteristics inherent in all forms of temporal regularity. But 

temporal regularity implies both the form of the sequence of units involved 

and the periodic relationship among such units. 

So. far as classical schemes of thematic sequence are concerned, we find a 
few prototypes of such schemes. The latter can be generally classified as mono- 

thematic (one subject) and polythematic (more than one subject). In the mono- 

thematic schemes, the subject (thematic unit) repeats itself several times and is 
usually subjected to variations. Such a form of thematic sequence is usually 
known as “theme and variations.” Polythematic schemes consisting of two 

subjects usually appear in two forms: in the form of direct repetition: (A + B) + 
d- (A + B) 4- . . . , like the “lower forms of rondo” and the “old sonata form”; 
or in the form of triadic symmetry: A + B + A, as in the “three-part song 
or the “complex three-part song.” In shorter compositions, and particularly 

in the structures of thematic units, a two-subject scheme adapts itself to the 
series binomial, i.e., 3 + 1. It is usually known as a "two-part song" and may 

have the following scheme: Ai + Aj + B + Aj. This form of thematic sequence 
was commonly used for themes from which variations were to be devised, and as 

a complex structural unit in the form of triadic symmetry—in which case it was 

used either for A or for B. 
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It is interesting to note that none of the classical schemes contain symmetric 
inversion, except in the case of the old sonata form, where symmetric inversion 

of keys takes place—but not of the sequence of subjects. Designating the key 
o the tonic as T and the key of the dominant as D, we can represent this scheme 
as follows: A(T) + B(D) + A(D) + B(T). 

Certain schemes of polythematic sequence containing three subjects are 
referred to as “the higher forms” of the rondo. Whereas the “lower” rondo 
usually appears in the place of the slow movement in the larger forms (symphony 

sonata, quartet, or other chamber ensemble), the “higher” rondo usually is 

employed for the finale in these forms. What I call the “higher” rondo usually 
conforms to the following scheme of thematic sequence: Aj + Bx + C + At + B,. 

It is generally agreed that C is longer than A or B taken individually, but not 

necessarily as long as A + B. The chief difference between At and A„ and B* 

and Bs, respectively, is in the key-relations. The main tendency is the conflict 

of keys between Ai and Bi, and the reconciliation between As and B,. As these 
relations are workable only in certain forms of tonality, we shall not be con¬ 
cerned with further details pertaining to this matter. 

This "higher” rondo may be looked upon as a pcntadic form without ail 
axis of inversion. Pentadic forms ’on a smaller scale are also to be found in some 

compositions of dance character. In Chopin’s waits No. 7, the scheme could 

have been a perfect pentadic symmetry, i.e., A + B + C + B + A, if not for 

die comp^r s passu," for repetition, which spoiled the form by adding a “coda” 
(literally, tail ) consisting of an additional repetition of B 

A special version of triadic symmetry appears as the first movement of a 
symphony or sonata and is known as “the sonata form,” or “the sonata-allegro 

ionu . This sectional scheme generally consists of Ai + B + A*. On the other 

hand the thematic scheme resembles the pentadic form of the "higher” rondo 
with the difference that instead of subject C, there is the so-called “development.” 

I he development usually consists of harmonic transpositions of a continuously re- 

fT*? (°r StrUCtures) h0™™1 fn»n any of the subjects 
oi section A, The latter often consists of a large number of subjects. There 

e, for example, eight of them in the piano sonata No. 4 by Beethoven. Section 

A, is usually known as “exposition!section B, as "development"; and section 

unifi“tio^aP at,°n’ Wh'Ch iS “ abbreviated “position with a greater key- 

thev(;Tm^raryt.CO,n^r haVC deVel°Ped manV individual schemes. What 
TI„L^ a , TPh°ny d0e8 "0t necessarily resemble the classical scheme. 
Unification of all movements of the sonata form was attempted by Liszt in his 

than I/!"0 ®°nata ln B m,nor- Contemporary composers often have more 

positions TP° i!n' ank the deVelopme[it3 are often dissociated from hei r ax- 
PMitrons. In some other cases, each theme undergoes immediately its own 
development, as in the later sonatas of Scriabine. 

,P°lypbonlc *orms have schemes of thematic sequence similar to those of 
the homophomc forms. Thus, a fugue with one subject 'corresponds to a theme 

thUwni r8 °r.K° a , Ti" r0nd0, A fugue with two "“hi**48 i8 written in 
the same scheme; the only difference is that both subjects appear simultaneously 
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and are temporarily treated as one subject. In other instances, a fugue with 
two subjects (see: The Well-Tempered Clavichord, Vol. II, No. XVIII) is evolved 

according to Hegel’s triad, i.e., as thesis, antithesis, synthesis, or: A + B + g. 

The manifold forms of thematic sequence in European musical civilization 

range from continuous repetition of brief thematic structures, which remind one 

of the repeat-patterns of visual arts, like tiles or wallpaper (Chopin wrote much 
“wallpaper” music); through continuously flowing broad linear design, con¬ 

stantly varied and syntactically dissociated by cadences, like the Gregorian 

Chant; to the temporal schemes containing no repetitions and embodying 

no syntactical cadcncing before the end, devised by contemporary Germans 
(Schoenberg and Hindemith), recognized as a type of durchkomponierte Mttsik 
(through-composed music) and adopted by contemporaries of other nationalities. 

(Shostakovich). The “through-composed" music is a logical development of the 

so-called “twelve-tone system,” where any repetition of any pitch-unit is taboo 

until the whole chromatic set has been exhausted. 

CHAPTER 11 

FORMS OF THEMATIC SEQUENCE 

Forms of thematic sequence can be classified into four main groups: 

(1) groups of direct recurrence; 
(2) groups of symmetric recurrence; 

(3) groups of modified recurrence; 
(4) groups of progressive symmetry. 

Monothematic continuity can be evolved in the form of direct recurrence 
only. In this case the form of thematic sequence is monomial periodicity: 

A+A+A+... 

Polythematic continuity based on two subjects can be evolved through all 
four groups? 

Group one: (A + B) + . . . binomial periodicity 
Group two: A + B +A 

Group three: (A + B) + (B + A) 
Group four: A + (A + B) + B 

Polythematic continuity based on three subjects may assume the following 
forms: 

Group one: (A + B + C) -f . . . trinomial periodicity 
Group two: A + B + C + B +A 

Group three: (A+B+C) + (B+C+A) + (C+A+B) 

Group four: A + (A+B) + (A+B+C) + (B+C) + C 

Polythematic continuity based on four subjects may assume the following 
forms: 

Group one: (A+B+C+D) + . . . guadrinomial periodicity. 
Group two: A + B + C + D + C+ B+ A 
Group three: (A+B+C+D) + (B+C+D+A) + (C+D+A+B) + 

+ (D+A+B+C) 
Group four: 

(1) A + (A-f-B) + (A+B+C+D) + (C+D) + D, i.e., 1+2+4+2+1 

(2) A + (A+B+C) + (A+B+C+D) + (B+C+D) + D, i.e., 
1+3+4+3+1 

Polythematic continuity based on five subjects may assume the following 
forms: 

Group one: (A+B+C+D+E) + . . . quintinomial periodicity 

Group two: A + B+ C + D+ E + D + C + B+ A 
Group three: (A+B+C+D+E) + (B+C+D+E+A) + 

+ (C+D+E+A+B) + (D+E+A+B+C) + 
+ (E+A+B+C+D) 

11333] 
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Group four: 
(1) A + (A+B) 4* (A+B+C) -f* (A+B+C+D+E) 4- (C+D+E) + 

4- (D+E) 4- E, i.e., 1+24-34-54-3+24-1 
(2) A + (A+B+C) + (A+B+C+D+E) + (C+D+E) + E, i.e., 

1+3+5+3+1 

Polythematic continuity based on six subjects may assume the following 

forms: 
Group one: (A+B+C+D+E+F) + . . . sextinomial periodicity 
Group two: A+B+C+D+E+F+E+D+C+B+A 

Group three: (A+B+C+D+E+F) + (B+C+D+E+F+A) + 

+ (C+D+E+F+A+B) + (D+E+F+A+B+C) + 
+ (E+F+A+B+C+D) + (F+A+B+C+D+E) 

Group four: 
(1) A + (A+B+C) + (A+B+C+D+E+F) + (D+E+F) + F,i.e., 

1+3+6+3+1 
(2) A + (A+B) + (A+B+C+D) + (A+B+C+D+E+F) + 

+ (C+D+E+F) + (E+F) + F, i.e., 1+2+4+6+4+2 + 1 

Polythematic continuity based on seven subjects may assume the following 

forms: 
Group one: (A+B+C+D+E+F+G) + . . . septinomial periodicity 
Group two: A+B+C+D+E+F+G+F+E+D+C+B+A 

Group three: (A+B+C+D+E+F+G) + (B+C+D+E+F+G+A) + 
+ (C+D+E+F+G+A+B) + (D+E+F+G+A+B+C) + 
+ (E+F+G+A+B+C+D) + (F+G+A+B+C+D+E) + 
+ (G+A+B+C+D+E+F) 

Group four: 
(1) A + (A+B+C) + (A+B+C+D) + (A+B+C+D+E+F+G) + 

+ (D+E+F+G) + (E+F+G) + G, i.e., 1+3+4+7+4+3 + ! 

(2) A + (A+B+C) + (A+B+C+D+E) + (A+B+C+D+E+F+G) 
+ (C+D+E+F+G) + (E+F+G) + G, i.e., 

1+3+5+7+5+3+1 

The above forms of thematic sequence range from the most elementary 
recurrence to the most refined forms of progressive symmetry. Probably the 

most important characteristic of the latter is the symmetric interpolation of 

subjects. While one subject appears in its last phase, some other subject makes 

its first appearance. Under such conditions the interpolation of events is similar 
to that of interpolation of generations. While somebody is in his infancy, some¬ 

body else is fully mature, and somebody else is ready to die. The neighboring 
position of subjects of the different ages makes this form closer to the schemes of 
actuality than any other form of thematic sequence. It is also important to note 
that the subjects are symmetrically arranged and form their own hierarchy and 

ranks. In some of the more developed schemes, different subjects appear a 

different number of times in the course of entire continuity, the extreme subjects 
having higher ranks than the middle ones. 

CHAPTER 12 

TEMPORAL COORDINATION OF THEMATIC SEQUENCE 

'T'HE next step in evolving thematic continuity consists of coordinating 

thematic sequence with temporal forms of regularity. The latter represent 
the various forms of duration-groups discussed in the Theory of Rhythm* 

We shall look upon these groups as forms of the temporal organization of 
thematic sequence. They come from four main sources and serve different pur¬ 
poses respectively: 

(1) The resultants of interference; 

(2) The permutation-groups; 

(3) The involution-groups; 
(4) The acceleration-groups. 

As any type of duration-group may be superimposed upon any form of 
thematic sequence, it is important in selecting a temporal group to consider the 
following points. 

If the form of thematic sequence is simple and such simplicity is to be 
maintained in its temporal organization, the temporal group should be chosen 

from the simplest forms of temporal regularity, such as monomial or binomial 

periodicity. If, on the other hand, it is desirable to introduce temporal refine¬ 

ments into a simple form of thematic sequence, any other more complex form 

of temporal regularity may be used. In order to make such forms of temporal 

regularity detectable in a monothematic sequence, it is necessary to subject the 
thematic unit, in each of its appearances, to some form of variation. The latter 

may be based on quadrant-rotation, tonal expansion, density, instrumental form 
or modal transposition. 

Under such conditions each appearance of the thematic unit is associated 
with one or another temporal coefficient. Even if the sequence is monothematic 

and the temporal group is a monomial, each appearance of the thematic unit 
is recognizable due to the above-described variations. 

More complex forms of thematic sequence may be coordinated with the 
simplest forms of temporal groups when it becomes desirable to accentuate the 

complexity of thematic sequence by contrasting it with its temporal relations. 
Yet in some other instances the desired form of expression is such that both the 
thematic sequence and the temporal form require refinement and complexity. 

This theory repudiates the academic point of view, according to which some 

themes are so unimportant that they function as mere bridges tying the main 
themes together. If a certain thematic unit is unimportant and insignificant 
and merely consumes time, it should not participate in a composition. Looking 

•See Vol. I, p. 4 to p. 95. 
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upon thematic continuity as an organic form, the only viewpoint we can accept 
is: thematic units haw their relative temporal characteristics under which they appear 

in the sequence. This implies that whereas in one portion of a composition a 
certain thematic unit may dominate over others owing to its high temporal co¬ 
efficient, in another portion of the composition the same thematic unit may 

become subordinate owing to its low temporal coefficient and the relatively higher 
temporal coefficients of other thematic units; ultimately, the first thematic unit 

may vanish completely, being overwhelmed by other thematic units (this we 
have already witnessed in the groups of progressive symmetry). 

Thus, through selection of temporal coefficients, we can vary the relative 
importance of any one of the thematic units in any portion of a composition. 
If the permanent subordination of certain thematic units is desired throughout 
the entire composition, such thematic units must be assigned to low temporal 

coefficients. 
In the following applications of temporal groups to the forms of thematic 

sequence, T"~* represents the entire period of a composition and T, coupled with 
the various coefficients, represents the relative time-values of thematic units 
in their individual appearances. Thus T is not necessarily one measure, but a 

unit by which the relative durations are represented. In translating the T * 
into actual measures, additional coefficients are required. These coefficients (or 

coefficient, speaking of each individual case) are constant for any one l 
For example, a temporal continuity-group T”* may originally have the 

following form: T~* = 3T + T + 2T + 2T. At the same time, T may be 
equivalent to T", 2T", 3T", . . . NT". Then, in the actual realization of such 
a continuity group, we ma^ have a variety of solutions, depending opt the cor¬ 
respondence we establish between T and T". 

(1) T = T", then: T“* = 3T" *f T" + 2T" + 2T"; 
(2) T = 2T", then: T“* - 6T" + 2T" + 4T" + 4T"; 
(3) T = 3T", then: T~* = 9T" + 3T" + 6T" + 6T"; 

(4) T = NT", then: T4 = 3NT" + NT" + 2NT" + 2NT". 

We shall now illustrate the coordination of T~*with the various forms of 
thematic sequence. 

A. Using the Resultants of Interference 

The simplest form of thematic continuity results from coordinating a mono- 
thematic sequence with a monomial form of temporal regularity. 

T~* (A) = AiT + A,T + A,T + . . . 

The same form of thematic sequence may be coordinated with a binomial 
form of temporal regularity. Then: 

T~* (A) = (AiMT + ASNT) + . . . 
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S:" M " depfnd °n the rty'MW** of the respective composition, 

variante ^ ^ 40 * 8Uch * form °ffers the f°U°wing four basic 

(1) T-* (A) = (Ai3T + A,T) + . . . 

(2) T-> (A) = (A,T + A,3T) + . . . 

(3) T-* (A) = (Ai3T + AiT) + (A,T + A.3T) + . . . 

(4) T~* (A) = (A.T + A.3T) + (A,3T + A.T) + . . . 

. Further refinement, variety and complexity can be achieved through the 

Th °f “B?c“ted With the reaP«tive style of temporal orjkniza- 
The f°>lowlnB are a few examples which derive from the second summation- 

senes, and therefore are associated with f series in the evolution of style. 

(1) T^ = r*+3; 

(A) - Ai3T AiT 4- A,2T + A,2T + A.T + A,3T. 

(2) T- = r±u; 

T_> (A) = Al3T + A«T + A,2T + A(T + A,T + A.T + A,T + 
+ A.2T + A.T + Aio3T. ^ 

(3) £ = r7+4:> 

T-^ (A) - Ai4T + A.3T + A,T + A.4T + A.2T + A.2T + 
+ Ar4T + A.T + A.3T + A104T. + 

Figure 38. Derived from second summation-series. 

B. Permutation-Groups 

fo»owing illustration refers to permutation-groups. Selecting 3 + 1 + 

. + 2 as an aPProPnate form of temporal regularity, we Shall subject it to 
circular permutations, thus quadrupling the original period of duration: 

T“* = (Aj3T + AjT + A*2T + A42T) + (AST + A„2T + At2T + A,3T) + 

+ (A,2T + Au>2T + AU3T + A„T) + (A„2T + AU3T + A«T + 

+ A«2T+ 

drcumsXrl°T th^latiC COntinuity are hard,y necessary under ordinary 
circumstances. In the above case, one thematic unit makes 16 appearances. 
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C. Involution-Groups 

The use of involution-groups as forms of temporal regularity is of particular 

value, when the proportionate relations between thematic units become the chief 

characteristic of continuity. 
Individual and synchronized involution-groups of different powers can be 

used in sequence as forms of temporal regularity of T~\ 

Examples: 

(1) = (3+1)*; 
T~~* (A) = Ai9T + A,3T + A,3T + A4T. 

(2) T* - (2+1+1)*; 
(A) = (A:4T + A*2T + A,2T) + (A*2T + A*T + A.T) + 

+ (A72T + A*T+A#T). 

(3) = (1+1+2)* + 4(1+1+2); 
T“> (A) = [ (AiT + A*T + A*2T) + (A«T + A*T + A«2T) + 

+ (Ai2T + A§2T + A*4T) ] + (Aw4T + A„4T + Alt8T). 

Figure 39. Involution-groups of different powers. 

The use of various forms of acceleration (positive and negative) becomes 
necessary when temporal regularity expresses consistent growth or decline. 

In monothematic continuity, a thematic unit either builds itself up with 

each consecutive appearance or goes into gradual decline. 

Examples: 

(1) T“* = l+ 2+ 3+ 4+ 5+ 6 + 7.+ 8; 

T”* (A) = AiT + Aj2T + A*3T + A44T + A*5T + A»6T + 
+ A77T + A118T. 

(2) T~* = 8+ 4+ 2 + l; 
T”* (A) - A18T + A*4T + A*2T + A*T. 

(3) T~* = 1+ 3+ 4 + 7; 
T~* (A) = A»T + A*3T + A,4T + A47T. 

Figure 40. Growth and decline in monothematic continuity. 

Each form of thematic sequence may assume various forms of temporal 

coordination, in the same way as indicated for the monothematic thematic 
sequence. In the form of sequence based on more than one subject, an additional 
technique may be used : interference between the number of terms of the temporal 
group and the number of terms of the thematic sequence. This technique Is 

appropriate whenever it is desirable to obtain a rather long continuity for an 

entire composition, with relatively few thematic units and relatively few ap¬ 

pearances of the latter. 
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We shall now apply some of the forms of temporal regularity to thematic 
sequences based on two subjects. 

Thematic sequence: (A + B) + . . 
* = 3 + 1; 

T~* (A + B) = Ai3T + + A,3T + B,T + . . . 

In this case A is always 3 times longer than B. 

= r4±3 ; 

T_* (A+B) = Ai3T + BjT + Aj2T + B,T + A*T + B,T + 
+ A4T + B42T + AST + B*3T. 

In this case the period of A goes into decline, while the period of B grows. 

Thematic sequence: A + B + A. 
= 3 + 1+4; 

T~* (A+B+A) = Aj3T + BT + A*4T. 

If B is a bridge, such a temporal group is acceptable; otherwise a different 
variant of the same group would be preferable. For instance: 

= 3 + 4 + 1; then: 

T^ (A+B+A) = Ai3T + B4T + A*T, in which case 

T“*(Ax+A*) = t-(b). 

The use of interference necessitates the recurrence of the entire thematic 
sequence. For instance: 

1 * =3+1; 

T-* (A+B+A) = (Ai3T + BrT + A,3T) + (A,T + B,3T + A.T). 

The use of involution-groups, when applied to thematic sequences, yields 

ThuiT+R pr's?*rto^te.t™P^ expansion or contraction for each subject. 
Thus A + B coordmated wrth T~ = (3+1)* produces the following result: 

(A+B) = Ai9T + Bi3T + A,3T + B,T. 

- r,F^°PP?Slite e"“t8;Athe aame scheme ca" be used in reverse, i.e„ T~* = 
(1+3) . Then: T (A+B) = AtT + Bi3T + A,3T + Bi9T. 

of hi!hlen m°rert^rre“Ce3aredesirableinP™I»rtionatedistribution,involution 
of higher powers becomes necessary. For instance: 

£-<3+l>*; 

T (A+B) = (Aj27T + B79T + A*9T + B,3T) + 

+ (A.9T + B*3T + A43T + B4T). 

the JV!S imp°rtant tc;.Btudy effects of coefficient-groups upon schemes of 
thematic sequence in direct recurrence as compared to permutation-groi, ob- 
tamed from the same schemes. 
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For example: 

Thematic sequence: 3(A + B -f- C); 

T“* = 2 + 1 + 1; 
[3(A+B+C) ] = (Ai2T + BiT + CiT) + (A,2T + B,T + C2T) + 

+ (A|2T + B*T + CjT). 

Thematic sequence: (A 4- B 4“ C)Ol 

T-* =2 + 1 + 1; 
T“* (A+B+C) C = (Ai2T + BiT + CjT) + (B,2T + C2T + A*T) + 

+ (C,2T + A,T + B»T). 

Figure 41. Effect of coefficient groups. 

There is a general way of selecting temporal groups, which becomes partic¬ 
ularly practical for the symmetric schemes of thematic sequence consisting of 
many subjects. As the general characteristic of symmetric, groups is reversibility 

from the center, temporal groups constructed on the same principle and with a 
corresponding number of terms fit the respective thematic sequence perfectly. 

Example: 

Thematic sequence: A + B + C + D + E + D+ C + B+ A 

As this scheme has five subjects, it requires a five term temporal group. 
Let it be: r4.-f.3- Then the temporal group assumes the following appearance: 

T“* = 3-4-14-2 + 1 4- 1 4- 1 4- 2 4-1 + 3 

Hence: T“* (A-fB4-C+D4-E4-D-fC+B4-A) = 

= Aj3T 4- BiT 4- Cj2T 4- DiT 4- ET 4- D2T 4- C,2T 4- BST 4- A23T/ 

Another important form of correlation of the groups of temporal regularity 
with the groups of thematic sequence consists of the application of involution- 

groups to the permutation-groups of thematic sequence. For comparison's sake, 
we shall offer an illustration of the application of involution-groups to both 

direct and modified recurrence. 

Thematic sequence: A4-B +C; 

T“* = (24-14-1)*; 
T~+ (A4-B4-C) = (Ax4T 4- Bi2T 4- Ct2T) 4- (A*2T 4- B*T + C2T) 4- 

4- (A*2T 4- B,T + C,T). 

In this case: Ai = 4T; A* = 2T; A> = 2T; 
Bx - 2T; B, = T; B, = T ; 

Cx = 2T; C2 = T; C* = T ; 

TEMPORAL COORDINATION OF THEMATIC SEQUENCE 
1341 

Thematic sequence: (A + B + C) O; 

T = (2-H 4-1)*; 

T- (A+B+C) C - (AJT + W.WT1 + (B.JT + C,T + A.T) + 

In this case: Ai = 4T; As = T; A* =« T; 
Bx = 2T; B, - 2T; B, = T; 
Ci 4- 2T; C2 = T; C| = 2T. 

Figure 42. Application of involution groups. 

SecT yiddS * greato ten,POral Variability with r“P«t to each individual 

D. Acceleration-Groups 

however, other forms oi up 3ra, regularity may refinement' 

Example: 

Thematic sequence: A+(A+B) + (A+B+C) + (B+C) + C 

szx: r.itrh it-”’ 
causing interference, can be used ^ 08,8 °f 9 °r 3 terms> and therefore not 
T~* =» T; 

T- (A, B, C Progressive) = A.T + (A,T + B T, + (A,T + B.T + C.T) + 

= 1+2 + 3; + + C,T) + C.T. 

T7 B, C progressive) - A,T + (A,2T + B,3T) + 
... + (A.T + B,2T + C,3T) + (B.T + C.2T) + C,3T 

In this case: Ai = T ; A, = 2T; A, = T ; 

Bi = 3T; Bj = 2T; B, = T ; 

T^ = (2H-14-l)*f1 " 3Tl Ct = 2T; C‘ " 3T* 

T; + 
In this case: A, = 4T; A2 = 2T; A, = 2T- 

Bi = 2T; B2 =* T ; B2 =* 2T; 
Ci = T ; c2 = T ; c, = T . 

Figure 43. Application of involution groups. 

sub™: Ia9t °ffera 3 Characteristic arrangement of the individual 

aources and different senes should be thorough^„X7edTd,,stu^.d,,fere,,t 



CHAPTER 13 

INTEGRATION OF THEMATIC CONTINUITY 

TN order to integrate thematic continuity in accordance with a temporally- 
coordinated form of thematic sequence, it is necessary to transform thematic 

units into subjects (themes) and their modifications, and to correlate such 

thematic groups with a group of key-axes. 
Each of the above defined operations can be performed by means of special 

techniques. 

A. Transformation of Thematic Units into Thematic Groups 

An exposition of a subject (theme) or its modification constitutes a thematic 

group. The subject itself, or theme, can be defined as the maximal thematic unit, 

i.e., a thematic unit at its maximal duration. 
As we have seen before, the period of a subject varies in its different ex¬ 

positions. If the subject is composed as the maximum of a thematic unit ap¬ 

pearing in respective continuity, it can later be subjected to temporal modifica¬ 

tions, such as shortening of its period. 
In the thematic sequence with 3 subjects and 9 thematic groups in pro¬ 

portionate distribution, each subject has 3 thematic groups corresponding to 

3 expositions. Thus, in a scheme: (Aj4T + B*2T -f Ci2T) -f (Aa2T + BaT + 

-+-CjT)-f (Aa2T-f B«T+CjT), Ai constitutes subject A; Bi constitutes subject 
B; and Ci constitutes subject C—since all three subjects have their maximal 
temporal coefficient in their first exposition (indicated by the subnumeral 1). Hence: 

A2 and Aa are the shortened variants (temporal modifications) of subject A; 

B* and B» are the shortened variants of the subject B; and C2 and Cs are the 
shortened variants of the subject C. 

Let us assume that the T of this scheme corresponds to 4 measures, or 

T = 4T". Then subject A must be composed from its respective thematic unit 
as A16T"; subject B, from its respective thematic urit as B8T"; and subject C 

has, in this case, the period equivalent of B, i.e., C8T". 

If the case under discussion is evolved on the basis of £ series, then the 

actual transformation of thematic units into subjects may be realized in the 

following form: 

A16T" = 4(4T"); 

B8T" = 2(4T"); B8T" = 4(2T"); 

C8T" =* 2(4T"); C8T" = 4(2T"). 

Let us take another scheme having different proportions from the one we 
have just discussed. Let it have two subjects whose time ratio is 3. Then: 

Ai9T + Bi3T -f AS3T + BST. Here, too, Ai and Bi constitute the original 
subjects (as having maximal coefficients of duration), and A* and Bj, their 

respective modifications. Thus As and B* appear to be the temporal contractions 

of At and Bt. 
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Assuming T = 4T", we obtain the following thematic groups: 

A = 36T"; A* = 12T"; 
B - 12T"; B2 = 4T". 

followmgtrnm0rmati0n °f thematiC in‘° S“bject5 ma* be "“Used in the 

A = 9(4T"); B = 3(4T") 

Now we shall take a case where the full subject does not aonear in it, 

ex^mon^Ut AeBchemeof thermic continuity be: (A+B+C) + (B+C+A) + 
-t- and the temporal coefficient-group be: 3 -f 1 +2 

""+ss«s:s+<bi,t+c-t+a-t>+' 
In this case: At = 3T; Aj = 2T; Ag = T ; 

Bt = T ; B, = 3T; B, =* 2T; 
C, - 2T; C, - T ; Ca = 3T. 

Thus each thematic unit has a maximal duration in a different exposition. 

Therefore: 

At b A; Bj s B; C* m C. 

£ s-r ?= 
appears only in its last (third) exposition and ’the^fme C inTfirsttrL 

posi 10ns appears in the form of temporal contractions of the original C. 

B. Transformation of Subjects into their Modified Variants 

A subject can be modified with resnect to it« two 
and pitch. respect to its two basic components: time 

1. Temporal Modification of a Subject. 

its tSfoSSon" The ^ but **** 

(a) by reducing the value of the duration-unit; 

f™lTLtiDg Ah“Ubi.eCt into its oriPnal 'hematic units, or even shorter 
fragments, and by using such units instead of the entire subject. 
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The first technique must be applied in full accordance with the style of 
temporal organization of the subject. If such style is associated with 2 or any 
multiple thereof, the coefficient of contraction must be 1/2, 1/4, . . .; if it is 
associated with 3 or any multiple thereof, the coefficient of contraction must be 
1/3, 1/9, . . .; in the case of hybrid series, any of the multiples constituting 

such a series can be used as the coefficient of contraction. For example, if the 
set of coefficients controlling temporal organization of thematic continuity is 

associated with 6, not as the determinant of the f series but as a product of 2 

by 3, either 1/2 or 1/3 may be used as the coefficient of contraction. It is also 
appropriate to rely on any of the members of one gummation-series if one of its 

members is the determinant. 
For example, a temporal organization evolved from rs_j_3 can be contracted 

by means of such coefficients as 1/3,1/5, and also 1/2 or 1/8, as 2 and 8 participate 

in the same (first) summation-series. 
Empirically this form of temporal contraction can be performed directly in 

musical notation. In Symphonic Rhumba* by Paul Lavalle, a student of this 
system, the entire subject consisting of 64T", is contracted in its second ex¬ 
position by the coefficient 1/2, thus resulting in a 32T" structure. The style of 

the temporal organization of this composition is a hybrid of J- and -J- series. 
The second technique consists of fragmentation of the subject. Such.frag¬ 

mentation must be performed in accordance with the characteristics of the 

respective temporal structure. In some cases the thematic unit itself may be 

dissected further into the units of measures (T"). The most perfect results of 

fragmentation of the subject are obtained in all cases where temporal coefficients 

are the terms of an involution-group. 
While performing the fragmentation of a subject, it is important to consider 

which particular fragment is most appropriate for a certain exposition. With 

regard to this, we offer the following method of selection: if a fragmentary ex¬ 
position of the subject is at the beginning (or close to the beginning) of the 
entire thematic continuity, it is preferable to use its first fragment; if such an 

exposition of the subject is located in the center (or close to the center) of the 
entire thematic continuity, it is preferable to use the middle fragment of the 

subject; if a fragmentary exposition of the subject appears at the end (or near 

the end) of the entire thematic continuity, it is preferable to use the last fragment. 
We shall demonstrate this technique in practical application. Let us apply 

it to the case of three subjects in direct recurrence where the temporal coefficients 

are (2 -f-1 -f- !)*. Then: 

(Ai4T + Bi2T + Q2T) + (A*2T + B2T + C*T) + (A,2T + B,T + C,T). 

This calls for the following forms of fragmentation: 

n n'r _ A4T ^ _ B2T ^ _ C2T 
A2I - —; HI - —2~; LI - 

■•Performed by the N. Y. A. Symphony on phony under Frank Black, and by the NBC 
WNYC 8-11-40 and later by the NBC Sym- Symphony under Leopold Stokowski. 

Figure 43. Fragmentation schemes. 

This can be expressed as follows: 

Var. I: Ai4T + . . . + A,(Ti + T,) + A,(T, + T.) 

Var. II: A,4T + . . . + A,(T, + T.) + . . . + A,(T, + T.) 

Variant I may be preferable because of its symmetry. Likewise: 

Figure 44. A symmetrical variant. 
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The entire thematic continuity (using Var. I for A) can be expressed as 

follows: 

(Ai4T + Bi2T + Ci2T) + (A*TiT* + BsTx + C,T0 + 

+ (A,T,T* + BiTj -f C,TS). 

We shall now apply this technique to three subjects in circular permutations, 
and have T = (1 -f-2Then: (AiT + Bi2T + CiT) + (B*2T + C*4T + 

+ Aj2T) + (CaT 4- AS2T + B,T). 

This scheme requires the following forms of fragmentation: 

AT = BT = 5|I; CT = 

These forms of fragmentation may be graphically presented as follows: 

C3 I-1 

Figure 45. Forms of fragmentation. 

The entire thematic continuity can be represented as follows: 

(AtTi + Bi2T + CaTi) + (Bj2T + C,4T + At2T) + (C,T4 + A»2T + B,T*). 

Forms of progressive symmetry yield perfect results from the subjects of 

equal period, like T(A) — T(B) = T(C) = . . . ; nevertheless fragmentation is 

applicable to such cases as well. 
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Let us take die form of progressive symmetry baaed on three subjects, and 
let us subject A, B and C to the same form of fragmentation: 2 + 1 + 1. Then: 

Ai = 2T = Ti + Tt; A, = T = T«; A, = T = T4; 

Bt- - 2T - T, + T,; B, - T - T,: B, - T = T4; 
C, = 2T = T, + T,j C, = T - T,; C, « T - T4. 

The entire continuity assumes the following appearance: 

AiTiTj + (A,T| + BiTiTi) + (A4T4 + B>Tj + CiTiTi) 4- 
+ (B,T4 + CiTj) + C,T4. 

• a- °ane ?uhe m°9.t ?ru‘tful {orms ot fragmentation is the one which creates 
individual characteristics in the temporal behavior of the subject and, at d^ 

'*'"*,*£!*’ °fferS temporaI for the entire thematic continuity. For 

A, = 2T; A, = T ; A, - T ; 
B, = 4T; B, -4T; B, = 4T; 
C, = T ; C, = T | C. = 2T. 

™S*h^meT?0f fragmentation can be arranged into a form of sequent temporal 
symmetry. For example: 

AlTlT* + ggj + B‘4T> + <A>T* + + CiT,) + (Bi4T + CjTt) + 

In this case subject A, in its consecutive groups (expositions), undergoes 
an increasing fragmentation (decline); subject B remains constantly at its ™ 

■n • °" (perl0d) m a lts conBecutive groups (expositions); and subject C 
in its behavior, reciprocates subject A, i.e., its consecutive groups (expositions) 
undergo a decreasing fragmentation. * P8 V pos ons) 

,uManI.0ther acheme8 of fragmentation can be evolved for the various forms 
of thematic sequence. The preceding illustrations are sufficient to start the 
future composer on his way to further exploration. 

2, International Modification of a Subject. 

modification0^ i! of a subject can be combined with intonational 
modification of it. Intonational modification takes place even in the 
of fragmentation. The experience of our musical past shows that when bject 

has several expositions, in the course of the entire thematic continuity it usuallv 
undergoes intonationid modification. These modifications depend „ the chO?- 

rrT°nf l'e-mUfCa. culture-«»technical equipm t in harmony, composition 
etc. In plain chant, for example, intonational modification results in themodai 
vanahon; in the 18th Century-in “musical curls” of the Baroque" i e X 

Z w ^ Wagn£r his rocceseor^n^harmonisati™ 
and even before Wagner—in modulatory key-changes. Thus, in the traditional 
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sonata form of the early 19th Century, the second subject, usually appearing in 

the key of dominant in the exposition, reappears in the key of the tonic in the 

recapitulation. 

With the technical equipment in the possession of a student of this theory, 

numerous intonational modifications can be applied to the successive expositions 
of a subject, thus making possible a sufficient variety even when the same subject 

reappears many times. 

Among the techniques devised for the intonational modification of a subject, 

these are most essential: 

(a) permutation of pitch-uhits within thematic units or within the entire 

subject; such permutations affect M, H and jj-, as well as CP; 

(b) modal transposition and scale-modification in general; this is accomplished 

by direct change of accidentals; 

(c) tonal expansion; 

(d) quadrant rotation: geometric and tonal inversions; 

(e) variations achieved by means of directional units and other resources 

of melodic figuration (chromatization of the original, which is not 

chromatic, is one of the most important techniques); 

(f) variation of jy tension, which is equivalent to reharmonization. 

It is advisable to use the above resources very sparingly in order not to 

overwhelm the listener, to whom an overabundance of technical devices may 
appear chaotic. The best path to follow within such limitations is to leave some 

of the subjects without any intonational modifications, and to subject others to 

individually specialized techniques. For instance, a certain theme A may be 
modified in the course of its various expositions with respect to quadrant rotation; 

another theme B may be left without any changes whatever; while a third theme 
C may be subjected, in its consecutive expositions, to modal variations, etc. 

Besides the temporal and the intonational modifications of a subject, other 

forms of modification take place in the course of thematic continuity. These 
other modifications are based on the techniques of instrumental resources, and 

are inevitable in every composition. As this matter was sufficiently discussed in 

the Composition of Thematic Units,* and as we are now not discussing the tech¬ 
nique of orchestration, initiative in using instrumental resources, as the tech¬ 

nique for modifying a thematic group, must be left to the composer. He can 
make his decision on the matter of distribution of density, instrumental forms, 
dynamics, attack-forms, etc. 

•See p. 1279 ff. 

C. Axial Synthesis of Thematic Continuity 

Axial synthesis corresponds to intonational coordination of thematic con¬ 
tinuity on the basis of the selection of key-axes for all thematic groups as they 
appear in final continuity. 

In classical music the key-axes followed what are known as tonic, dominant, 

subdominant, mediant, etc. Academic theorists prescribe such a key-selection. 
But the point is that a great many classical themes were based on the arpeggio 

forms of major and minor triads, i.e., Si(5) and Ss(5) and their inversions, and 
for this reason such rules are of no consequence today when the forms of tonality 
are so diversified. Yet in the case of classical composers, rules or no rules, such 
a key-selection is thematic; and that is what really counts. 

As an example we may refer to Beethoven’s "Pathetique” piano sonata 
where the second subject of the first movement is based on S,(J); the first subject 

of the second movement has a harmonic arrangement in the three upper parts 
of an Si(2); and the first subject of the final movement is also based on an ar¬ 
peggio of S*(J). This in itself would not be of any consequence. But it is to be 
noted, first of all, that it is very typical of Beethoven to build important melodic 

patterns on the instrumental forms of S(J); and secondly, such a choice on his 
part is thematic and not based on any academic prejudice. Indeed, in the above 

mentioned Sonata in C-minor, the key-sequence of the first movement follows 
the pitch-units of cS*(5), i.e., c, eb and g. The first subject is in C-minor (with 

c-axis as the pedal point in the bass); the second subject is in Eb-minor; the third 
subject is in Eb-major—and so is the following subject. At the end of what is 

usually called an exposition, there is a bridge in G-minor. The introduction is 
in C-minor. 

This type of evidence leads us to the conclusion that to regard any system 

of key-axes as universal, is basically wrong. The only correct way to select a 
key-axis system is to derive such a system from the thematic material of in¬ 

tonation, which, being individually different in each particular case, results in 
an individual key-axis system for each individual composition. The intonational 

interdependence between some important thematic unit, or master-pattern of 
melody or harmony, and the sequence of key-axes is a necessary characteristic 
of intonational unity of style. An excellent example of such unity—overlooked 

by all critics and analysts—is the intonational interdependence between the 
key-sequence of the second section of the first subject and the master-pattern 

of the subject with which "Venusberg” music begins in Wagner’s overture to 
Tannhttuser. The pattern is based on the symmetry of the (four tonics), 
or a diminished seventh-chord, if you wish. 

To follow such a principle of thematic interdependence of intonations 
between the part and the whole, is to select a set of pitch-units from a character¬ 
istic thematic unit, and to assign such a set as a system of key-axes. 

It is necessary to indicate at this point that the real key-axes do not always 
coincide with the officially established tonalities. If a subject or a thematic 

group appears in the do of a natural C-major, and the next portion of continuity, 

or the next thematic group, represents the position @ of that group, key-axes 
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are on c in both cases, though the second thematic group acquires four additional 
accidentals (4b). The reason for this is our definition of scale and axis-trans¬ 
position, as offered in the Theory of Pitch-Scales.* We consider a scale with a 

c-axis, though read c - db - eb - f - g - ab - bb, which happens to be 

Phrygian (i.e., da), in the key of C. 

So long as the composer adheres to the method of key-axis selection, through 

thematic interrelation of intonations, the concrete choice of an individual key- 

system is his. 

•See Vol. I, p. Ill to p. 125. 

CHAPTER 14 

PLANNING A COMPOSITION 

'T'HE chief practical advantage of scientific planning over intuitive creation 

lies in the fact that, regardless of the value of intuition per se, scientific 

planning can be accomplished at any time and is independent of inspiration. 
For this reason, scientific method is more to be associated with professional per¬ 
formance, as such performance requires the achievement of high quality with 

regard to time consumed. Intuitive creation is beyond the artist’s control. He 
cannot guarantee the amount of time which will be required in order to write 
a certain composition, nor can he guarantee the quality of the prospective work; 

moreover, even though the first two requirements may be satisfactorily fulfilled, 

the character of the work, when completed, may not possess the required charac¬ 
teristics. 

The elements of an intuitively conceived composition, in actuality, are not 
elements, but a priori synthesized complexes. Their fitness is a matter of chance, 

and the remolding or fitting of such complexes, in order to meet specific require¬ 
ments, usually calls for considerable effort. 

Planning of a musical composition begins with “time.” But “time” is one 

of the most elusive notions of humanity. Contemporary physics is lost in the 
maze of “times” it has created to solve its problems—the maze of definitions 

and classifications of time with respect to motion. But in addition to all these 

concepts of “subjective” and “objective” time (with which the student may 

acquaint himself through the lucid presentation by Sir Arthur Eddington in 
The Nature of Physical World) there is a concept of “psychological time” which 
we encounter in our daily existence. 

Empirical time with which the composer has to deal, like everything else 
the composer has to deal with, has two sides. One aspect is physical, constitutes 

the excitor and is subject to measurement; the other, psychological, constitutes 

the reaction and is subject to experience. The quasi-objective, physical or clock¬ 

time, as encountered by the composer, is but an artificially isolated fragment of 
temporal manifold. This form of empirical time constitutes a concept by which 
events and their sequence are measured. It is conceived as one-dimensional and 
empirically irreversible. 

When we think we reverse time, in actuality we only reverse the course of 
events. The direction of perceptible time remains irreversible. In the end, every¬ 

thing is subjective, as we cannot perceive time as such, but only as temporal 
configurations (events), taking their course in time. We perceive music as motion 

because there are in music continuous changes of temporal configurations. But 

we know from physics that motion perceived as "continuous” (in the mathe¬ 
matical sense) actually consists of an infinite number of phases, each of which, 
taken by itself, is stationary. 

[13511 
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The physical constitution of music, as perceived temporally, is not the 
composer's concern, as he deals with the perceptive side of music, its psychological 
form, which is always a continuum. The only knowledge of practical importance 

to a composer, involves two concepts of time: the physical and the psychological. 
The physical time of musical composition is measured by the clock. The psy¬ 

chological time of musical composition is measured by the degree of saturation 
of physical time, by the temporal configurations of sound {or sound in its relation 
to silence). 

We know from a study of psychology that the intensity of a reaction is in 
direct relation to the frequency of impulses stimulating such a reaction. Ex¬ 
perience shows that it is equally true of reactions to impulses of a more complex 
form. If we look upon the subjects of a musical composition as complex impulses, 

the frequency of such “thematic impulses” has a similar effect upon the formation 
of psychological reactions. The effect of hearing a few thematic groups, each 
characterized by a relatively high temporal stability in a relatively long period 
of “physical” time, produces an effect of psychologically “empty” time, i.e., 
time during which few events take place, or “uneventful” time. The opposite 

may also be true. The effect of time being eventful is due to the presence of many 
thematic impulses in a relatively brief period of clock-time. In this case, time 

appears to be saturated with events. 
It follows from this reasoning that the length of a relatively short musical 

composition (as measured by the clock) psychologically largely depends upon 
the degree of its thematic saturation. This is the basis on which rests the quan¬ 

titative characteristic of musical composition, i.e., the number of subjects and 
thematic groups necessary to produce certain effects contemplated by the com¬ 
poser. 

Crowding of events into a relatively brief time-period was successfully ac¬ 
complished in the polyphonic compositions of the 18th Century in the form of 

stretto, which is a form of thematic overlapping. In J. S. Bach’s Fugue No. 5, 
WeU-Tempered Clavichord', Vol. II, the entire composition consists of successive 

groups (expositions) with systematically progressive overlapping. The interval 

between the theme and the reply contracts itself in the following way: 12t -f 8t *f 
-f- 4t + 2t; this contraction is carried out in both major and minor, major pre¬ 
ceding minor. 

Temporal saturation achieved by means of overlapping of the thematic 
groups is quite an ancient device. It was successfully employed by the Roman, 
Lucius Apuleius in his novel “The Golden Ass.” 

Thirty years of my own life have been devoted to a study of temporal 
structures as they appear in various phenomena, including literature, plays, 

cinema, and music. I would like to refer to two examples of the temporal satura¬ 
tion of musical form, as they appear in two of my compositions for piano. One 
of them is “Heroic Poem” from “Five Pieces, Op. 12.”* In this composition, 

which requires only three minutes 6f performance, events are so crowded that 

even experts greatly overestimate the actual clock-time of performance. In 

•Published by U.S.S.R. State Publishing Dept, and in Universal Edition of Vienna. 
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another composition, “Sonata-Rhapsody, Op. 17,” events, besides being numer¬ 

ous, temporally overlap one another and merge one into another—one event 
taking another’s place (like the “dissolve” in cinematic montage). This com¬ 

position, in its temporal structure, more resembles a novel than a sonata. It at¬ 
tempts to project a whole epoch into 9 minutes of performance.* 

I shall add to the observations above that it is a virtue to make a brief 

composition appear more eventful than its clock-time period would seem to per¬ 
mit, but that the opposite is the greatest sin a composer can commit. 

The planning of a musical composition can be generally accomplished in 
10 successive stages: 

(1) Decision as to the clock-time duration of the entire composition. 
(2) Decision as to the degree of temporal saturation. 

(3) Decision as to the number of subjects and thematic groups. 
(4) Decision as to the form of thematic sequence. 

(5) Temporal definition and distribution of thematic groups. 
(6) Organization of temporal continuity. 
(7) Composition of thematic units. 

(8) Composition of thematic groups. 

(9) Intonational coordination (axial synthesis) of thematic continuity. 
(10) Instrumental development. 

A. Clock-time Duration of a Composition 

Clock-time duration of a composition represents its dimensional aspect. 

In architecture we define the space needed for a structure by the type of 
Structure we plan to design. It may be an office building of many stories, it may 
be a cathedral, it may be a one-family house, or it may be a tent. 

Likewise, in music, we define the necessary amount of clock-time, depending 

on the type of composition. An opera may occupy several hours of performance; 

a cantata or an oratorio may occupy a half or a whole of the concert program- 

a symphony usually lasts between 20 and 40 minutes; short instrumental or 

vocal compositions range from one to ten minutes; cues in radio-plays often are 
only a few seconds long. Thus, the first decision the composer has to make 

concerns the temporal dimension of a composition. If the form is “cyclic,” i.e. 
consisting of several movements (like sonata, suite, symphony, oratorio, opera)" 
the duration of the total composition must be determined first. 

The next step consists of the definition of a common duration unit. It is 

my belief that in order to achieve perfect temporal coordination of the whole, 
it is necessary to work out the entire composition from homogeneous temporal 

units instead of the customary “tempo” modifications. It is over-optimistic for 

a composer to expect a performer or conductor to achieve the tempo he had in 

mind. Most performers are neglectful of the metronome indications provided 

17 S'* P‘a.n° w?,°-J»■ overwhelming power, and has been performed 
been widely acclaimed by critics (since its first on symphonic programs. (Ed.) ** 
performance in 1925) as a composition of ' ' 
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by the composer. For this reason the most practical thing to do is to establish 
one tempo for the entire composition (even if it consists of several movements), 
and -to produce the apparent effects of mobility by assigning different coefficients 
of duration to the common duration-unit (t). Thus, one subject, or movement 

will appear in a fast tempo because the coefficient of duration is one, i.e., t' = t; 
another subject will appear in an intermediate tempo due to the respective 

value of the coefficient of duration (t' = 2t; t' = 3t); . . . In the same way 

the effect*of a very slow tempo can be achieved by using a still greater coefficient 

of duration, such as t' = 4t; t' = 5t; t' = 6t; . . . 
I used this form of notation instead of the tempo changes in my Symphonic 

Rhapsody, October (1927), and found it very profitable, fn this particular com¬ 

position, the shortest t' = t =* ^ and the longest t' = 16t = J . Of course, 
ultimately, t (the original duratioh-unit) has to be defined by the clock and, 

together with all forms of t' (derivative duration-units), translated into the 
appropriate symbols of musical notation. Thus, for example, if the total duration 
of a composition is 3 minutes, and t = 1/4 second, such a composition contains 

180*4 = 720 t. 

B. Temporal Saturation of a Composition 

Temporal saturation is in direct relation to the quantity of thematic groups. 

This is true of both monothematic and polythematic continuity. 
Thus, a monothematic composition consisting of one thematic group has a 

minimum of temporal saturation. Among the numerous compositions of this 

kind, J. S. Bach's Aria on the G-string for Violin can be mentioned as an out¬ 
standing example. Such forms belong to the category of “through-composed” 

music and have been extensively exploited by our outstanding contemporaries. 
It must be obvious to students of this system that an extensive temporal 

form, which is monothematic and homogeneous, can be easily accomplished by 
means of various forms of interference. Its intonation can be evolved from any 

of the sources, such as MP designed from a scale or a set of scales, from a plotted 
melody (in this case being the entire composition), from melodization, rhyth- 

micized harmony, counterpoint, etc. 
Higher degrees of temporal saturation can be achieved either through the 

development of thematic groups, or through introducing more subjects. 
Temporal saturation of a subject depends on the quantity of attacks. Sub¬ 

jects containing more attacks must be considered more saturated subjects. Thus, 
for example, if two adjacent movements of the same composition (as in a suite) 

have the same total period and are both monothematic, there is still a way to 
make one of them appear longer, i.e., by assigning to this particular movement 

a greater number of attacks. 
In order to produce an effect of considerable saturation in a monothematic 

composition, it is necessary to evolve a number of thematic groups from the 
subject. This can be accomplished by various means, such as geometrical in¬ 

versions, modal transpositions, tonal expansions, reharmonizations, instrumental 

variations, etc. 
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In polythematic compositions, a considerably higher degree of temporal 
saturation is due to the presence of a greater number of subjects. In this case, 
while each of the subjects may have a more limited number of thematic groups 

than is necessary in monothematic continuity, the appearance of a higher degree 
of temporal saturation may nevertheless be produced. 

Further increase of temporal saturation in a polythematic composition can 
be accomplished either by increasing the number of subjects, or by increasing 

the number of expositions of each subject without increasing the number of the 
latter. 

C. Selection of the Number of Subjects and Thematic Groups 

After the composer has made his decision as to the form of temporal satura¬ 
tion of the prospective composition, his next step involves selection of the number 

of subjects and thematic groups. There are several situations which may be 
encountered in this selective process. 

The first question is: shall all subjects have only one thematic group. The 
second question is: shall all subjects, or only some of them, have more than one 

thematic group. The next question is: how many thematic groups shall each 

subject have respectively. The last question implies the dominance of certain 

subjects over others, as the subject which has more thematic groups will ipso 
facto become a stronger thematic impulse. 

Interrelations of the number of subjects and their respective thematic 
groups become a problem of temporal ratios. For example, the composer has 

decided to have two subjects: A and B. He wants A to dominate over B in 2 -J- 1 

ratio. Then the number of thematic groups of A is 2, and the number of thematic 

groups of B is 1. Under the same ratio, however, the absolute quantity of thematic 

groups can be doubled, tripled, quadrupled, etc. Then the composer would have 
the following possible forms of selection: 

2 A, B; 
4A, 2B; 

6A, 3B; 
8A, 4B; 

In each case there are several forms of distribution of the thematic sequence, 
but this we shall discuss later. 

Now let us imagine that the composer has arrived at the decision to have 
four subjects: A, B, C and D. The next decision he has to make concerns the 

selection of a quadrinomial ratio. Suppose he chooses: 3 1 + 2 + 2 for A, B, 

C and D respectively. Then he may select any of the following schemes, re¬ 
presenting the absolute quantities of thematic groups and equivalent to the 
above quadrinomial ratio: „ 

3A, B, 2C, 2D; 

6A, 2B, 4C, 4D; 
9A, 3B, 6C, 6D; 

12A, 4B, 8C, 8D; 
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It is easy to see that either the number of subjects in a composition dom¬ 

inates the number of thematic groups, or the number of thematic groups 
dominates the number of subjects. In planning this particular aspect of a 

musical composition, we may arrive at various propositions which will prove 
valuable in different situations. For example, we may arrive at a condition 
(useful in a certain special case) in which the maximum number of thematic 
groups of one individual subject must not exceed the total number of subjects— 

so that in the event of three subjects, none of the subjects is allowed to have 
more than three expositions. 

This is just an indication of the type of situation which the composer is 
compelled to work out for himself in each individual case. My system does not 

circumscribe the composer’s freedom, but merely points out the methodological 
way to arrive at a decision. Any decision which results in a harmonic relation 

is fully acceptable. We are opposed only to vagueness and haphazard speculation. 
Other illustrations of the conditions which control the relation of the number 

of subjects and their expositions. 

(a) The quantity of exposition corresponds to the order of appearance of 
the subject: 

Three subjects: A, B and C. 

If the sequence is A -f- B + C for the subjects alone and does not in¬ 
volve the problem of temporal distribution of all thematic groups, then 

A, appearing first, is assigned to one exposition; B, appearing next, 

is assigned to two expositions; C, appearing last, is assigned to three 
expositions, i.e., A, 2B, 3C. 

(b) The same proposition can be reversed: 3A, 2B, C. 

(c) The quantity of exposition of each subject is one half of the total number 
of subjects: 

Four subjects: A, B, C and D. 

2A, 2B, 2C, 2D, as £ = 2. 

(d) The quantity of exposition for each respective subject is assigned on 

the basis of the arithmetical mean. Let us have 3 subjects, and let the 

number of expositions of the subject B be an arithmetical mean. Let 
A have four expositions, and let C have one half of this number; then 

B acquires 3 expositions, as: = 3. Then the quantities of respective 
exposition are: 4A, 3B, 2C. 

D. Selection of a Thematic Sequence 

After the number of subjects and the quantity of their respective expositions 

have been defined, we obtain the total number of thematic groups. Thfe next 

procedure deals with the form of thematic sequence into which all the thematic 
groups must be arranged. 
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Each individual case of the number of subjects and their respective exposi¬ 
tions offers several possible forms of distribution. Let us start with a simple 

case first. Suppose the thematic selection is: 2A and B. In attempting to match 
the possible forms of distribution with the above quantities, we acquire the 
following solutions: 

(a) Ax -f- B + A*; 
(b) Ai + A* + B ; 
(c) B +Ai+ At. 

Obviously, case (a) is preferable because it offers a symmetric arrangement. 

Under the same binomial ratio we may have: 4A and 2B. These can be 
distributed in the following manner: 

(a) (Ai 4“ Bj 4- At) 4- (A* 4* Bt 4" A*); 
(b) (At + At 4- Bi) 4- (B, 4- A, 4- A4); 
(c) (Bt 4- At 4- At) 4- (At 4- A* 4* Bt); 

(d) Ai .4- Bi 4~ Bt 4- At 4* At 4- A<. 

The first three cases are desirable since they are symmetric. 

Let us discuss another case: 3A, B, 2C, 2D. This is a more elaborate quan¬ 

titative group and requires a more elaborate distributive form. In order to 

evolve a symmetric form of distribution of the sequence, we must assign sym¬ 
metric places to each letter individually: 

A ... A ... A 
B 

C . . . . C 

D . . . . D 

In this case perfect symmetry is impossible, as B has no recurrences to recip¬ 
rocate. But forms of nearly perfect symmetry are possible: 

(a) Ai Ci 4- Dt + B 4- A, 4- D, 4- C, 4- A, 
(b) Aj 4* Di 4- Ci 4- B 4* A* 4- C» 4- Dt 4- A« 

(c) Ai 4- c, 4* Di 4- A, 4- B 4* D, 4- C, 4- A* 

(d) Ai 4" Di 4* Ci 4" A* 4" B 4* Cs 4" Ds 4* A* 

As soon as these quantities are doubled, symmetry becomes possible: 6A. 
2B, 4C, 4D. ' 

(a) (Aj 4- Ci 4- Dx 4- As 4- Da 4- Cs 4- At) 4- 4- Bs 4- 
4- (A< 4- C* 4- Di 4- As 4- D< 4- C4 4- A*) 

(b) (Ai 4- Ci 4- Ct 4- As 4- Di 4- Dt 4- A») 4- Bx 4-*Bt 4- 

4- (A4 4" D| 4- D4 4- Ai 4- Ci 4" C4 4- A#) 
(c) (Ai 4- Bi 4- Ci 4- As 4- Di 4- D* 4- A,) 4- Cs + C« 4- 

4- (A4 4- D» 4- D4 -f- Ai 4- C4 4- B» 4- A«) 

(d) (Ai 4- Ci 4* Cs 4* As 4- Bi 4- Di 4- A*) 4“ D* 4- D* 4- 
4-(A4-f D4 4-B, 4-A, 4-C, 4-C4 4-A.) 
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Let us now distribute the case: 4A, 3B, 2C. 

A. ..A.A. ..A 
B.B.B 

C . . . C 

' From this we obtain the following forms: 

(a) (Ai 4 Bi -f- Aj) 4 (Ci 4 B* 4 Cs) 4* (As 4- Bs 4- A«) 
(b) (Ai 4- Bi 4- Ci 4- A*) 4* Bj 4- (As 4- C* 4 B» 4* A4) 

Inititative in constructing symmetric forms of distribution is the ability 

which composers must cultivate. 
The composer can also make his choice directly from the forms of thematic 

sequence as they were presented in chapter 9 of Part Two of the Theory of 
Composition. Of course, such schemes have a pre-conceived quantity of ex¬ 

position for each subject. 

E. Temporal Distribution of Thematic Groups 

The sum of durations of all thematic groups constitutes the duration of the 

entire composition. As each subject may have one or more expositions, the 

temporal coefficient of each subject, at first, must include all the expositions 

of such a subject. The temporal ratio consists of the number of terms corres¬ 

ponding to the number of subjects. 
Thus, a thematic selection of A and B requires a binomial time ratio, regard¬ 

less of the number of expositions of each subject. Temporal ratio in this case 

expresses the relation of the period of all expositions of A to the period of all 

expositions of B. 
The simplest instance of temporal relations is that in which all the expositions 

of all subjects have the same period. In such a case, the dominance of some 
subjects over others is expressed solely through the number of expositions of 

such subjects in relation to other subjects. 
In a scheme of 4A 4- 2B, with identical periods for all expositions of A 

and all expositions of B, the ratio of temporal dominance of the subject A over 
subject B is still 2. Assuming that the thematic sequence of this composition 

is symmetric, we obtain the following as one of the possible schemes of temporal 

distribution: 

(AiT 4- BiT 4 AST) 4 (A»T 4 B*T 4 A4T) 

Such a scheme can be expressed as: T~* => 4A4T 4- 2B2T. The realization 
of this scheme consists of division of the period of the entire composition by 6. 

Assuming that T~* = 3 -minutes, we obtain the following period for each ex¬ 
position: 1-§*i = 30 seconds. 

As the total duration of this composition consists of 4A and 2B, we can 

define the total duration of A as 4/6 and the total duration of B as 2/6. 

In other words, if the temporal ratio is 2*3-1 for the two subjects, A takes 
2/3 and B takes 1/3 of the entire composition. This reasoning is based on the 
fact that 2-f*l = 3, and therefore the 24*1 ratio belongs to •§• series. 

Now if we should decide that the total period of A equals the total period 
of B, such a decision would imply a different temporal distribution. In this 
case, then, T * (4A) ** T (2B). Hence: ^ * = -* § ^ = 90 seconds. Then the 

duration of each exposition of A is: A = ^* = 22*5; the duration of each ex¬ 
position of B is: B = *£■ - 45. But this is true only if all the expositions of A 

have an identical period, and all the expositions of B have their own identical 
period. In some cases, the various expositions of one subject may have different 
temporal coefficients. Then the number of terms in such a ratio equals the num¬ 
ber of expositions of its respective subject. 

34-1 424-2bethe temporal coefficient group for the four expositions 
of A; and 3 4 1, the coefficient group for the two expositions of B. As 3 4* 1 4 

ft ^ 4* 2 =8 and the period of 4A = 90, we find the following periods for the 
individual expositions of A: 

T(Ai) = mjp = = ^ 33|. 

T(Aa) = ^ ^ H 

T(A|) V = 22£; 

T(A4) =*^=^=:22i; 

Likewise the periods of the individual expositions of B appear as follows: 

T(Bi) ^ = 67 i- 

T(Bj) = 22*. 

Now we can represent the entire temporal scheme of this composition in 
seconds: 

T""* =* A,33.75 4- B,67. 5 4 A,11.25 4 A^2.-5 4B*22.5 4 A422.5 

As the period of 4A equals the period of 4B, we can represent this also in 
the ratio equivalents, by multiplying*S41 by 2. T~* = Ai3T 4 B,6T 4 A»T 4 
4 A|2T 4 B,2T 4 A42T. 

In chapter 11 (Temporal Organization of Thematic Sequence), we discussed 
many possible approaches in translating thematic sequences into temporal ratios. 
In the present discussion, we are primarily concerned with subdividing the entire 
period of the composition into temporal sections corresponding to the individual 
expositions, subordinated to a certain form of temporal oiganization conceived 
a priort. 

This makes it possible to proceed with the planning of a composition in a 
different sequence. For example, we can take some temporal group, assume its 
total duration to correspond to the duration of the whole composition and its 

single terms, to the successive expositions. After this we can proceed with the 
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selection of the number of subjects and their expositions. The latter must be 
in some simple correspondence with the number of terms of the temporal group. 
Often such groups offer more than one practical 'Solution. In such a case the 
decision of the composer must be based on the desired degree of temporal satura¬ 
tion. 

Many of the resultants of interference, particularly the r' which derives 
from ternary and quaternary synchronization, serve as practical temporal groups 
for such a procedure. 

To illustrate this, let us take ^3^.44.71 This group consists of 12 terms, 

which permits numerous solutions for the different number of subjects and 
thematic groups. This resultant consists of the following terms: r'3 _j_ 4 7 = 
= 12-f9+3-f4-f8+6-f6+8+4-f3-|-9+12. 

Assuming that our composition consists of two subjects, and both subjects 

have the same number of thematic groups, we acquire 6 expositions for each 
subject since *£> = 6. Then two basic forms of continuity become possible: 

(a) direct recurrence: 

At12T + Bi9T + A*3T + B*4T + A*8T + B>6T + A46T + 
+ B48T -f A64T + B*3T -f A89T -f B«12T; 

(b) symmetric recurrence: 

Ail2T + Bi9T + A*3T + B*4T + A,8T *f B,6T 4- B46T + 
+ A48T 4* B»4T -4- A»3T 4- Be9T 4- A.12T. 

The same temporal group can be applied to three subjects, in which case 
each subject acquires 4 expositions, as = 4. 

Two forms of thematic continuity: 

(a) direct recurrence: 

Ajl2T + Bt9T 4- C,3T 4- A*4T 4- B*8T + C»6T + 
+ A*6T 4- B^T 4- C|4T + A43T + B49T 4- C412T; 

(b) symmetric recurrence (taking the first two of the O circular permuta¬ 
tions and inverting them about the axis): 

Ail2T 4* Bi9T + Ci3T 4- Ba4T 4- C»8T 4- A»6T + 

4- A,6T -I- C«8T + B«4T 4- C43T 4- B49T 4- A412T. 

As twelve is divisible by four, we can apply this temporal group to four 
subjects. This time, however, some subjects will dominate others. 

We shall evolve our thematic sequences by arranging the letters in such a 

symmetry that four letters are supplemented by two of them, producing a group 
of six terms. By inverting this group about its temporal axis, we will obtain 
all 12 thematic groups.for four subjects. In order to make A and B dominate 

over C and D, we shall repeat A and B after all four letters appear. This produces 
the following form of thematic sequence: (A*fB4-C4-D+A-f B) 4- 

4- (B+A4-D4-C4-B4-A), m which there are 4A, 4B, 2C and 2D. 
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This thematic continuity assumes the following form: 

Ail2T 4- Bi9T 4- Ci3T 4- D*4T 4- A,8T 4- B*6T 4- 

+ B»6T + A*8T + D*4T 4- Cj3T 4- B49T 4- A412T. 

. [n fj8 case’the temporal dominance of A and B over C and D is due not 

th^ subj™ expOS,t,ons of A and B but also to the total periods of 

(A) - 12T 4- 8T 4- 8T 4- 12T - 40T 
T (B) = 9T 4- 6T 4- 6T 4- 9T = 30T 
T (C) - 3T 4- 3T — 6T 
T~* (D) = 4T 4- 4T = 8T 

An analogous treatment can be applied to the form of thematic sequence 

andcont.nu.ty, which C and D become the dominant subjects. This Quires 
the followmg arrangement of the thematic sequence: (A+B+C+D+C+D) + 

ing form•+D+C+B+A)- In this ca8e> thematic continuity assumes the follow- 

Ail2T 4- Bt9T 4- Cj3T 4- D,4T 4- C*8T 4- Dj6T 4- 
4- Dj6T + C«8T 4- D44T 4- C43T 4- B,9T 4- Aa12T. 

The temporal relations of the subjects appear as follows: 

T“> (A) - 12T 4- 12T = 24T 

(B) m 9T 4- 9T - 18T 

(c) = 3T 4- 8T 4- 8T 4- 3T = 22T 
T (D) * 4T 4- 6T 4* 6T 4- 4T = 20T 

In^this case the temporal dominance is more or less neutralized. 

AJt‘S easV to see how such temporal groups, in their application of successive 
expositions, am be made useful in monothematic continuity-in which case 

samelubjlt t61”1”"11 °f ** different «*P"M«s cf the 

In all the above illustrations, T may represent any desirable duration-group 

One point concermng the general distribution of temporal groups remains 
to be discussed: the distribution of climaxes. F ^ remains 

A musical composition may not contain any climaxes at all, or it may have 
one or more chmaxes. Once it has one or more climaxes, proper distribution of 
the latter in thematic continuity becomes of utmost importede. 

The problem of the distribution of climaxes is not limited to the climaxes 
appearing at the very beginning or the very end of a composition. It i he in 

termediate climaxes, appearing in the course of continuity that require such 

distribution. The number of such climaxes (i.e., appearing in the coX of con 
tanuity) is one less than the number of terms in the temporal ratio required for 
the respective distribution. Thus, a continuity containing one clira« re^uira 

a binomial time ratio The ratio itself must belong to the family to whSi the 

temporal structure of the entire composition belongs. Thus, in the | series 
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type of temporal structure, the position of the climax is determined by the ratio 
3-5-1, i.e., the climax appears at the beginning of the last quarter of the entire 
composition. Likewise in a structure based on f series, the ratio 5 -i-3 determines 
the position of the climax, i.e., the climax appears at the beginning of the sixth 

eighth. It is always advisable to use the original form of the binomial—in which 

the first term has greater value than the second. 
For the same reason two climaxes require a trinomial ratio, which ratio 

must be used in the form in which the values progressively decline. 
In a structure based on £ series, the respective trinomial must be: 2 -s-1 -8-1. 

Then the first climax appears at the beginning of the third quarter, and the 
second climax, at the beginning of the fourth quarter. Likewise, in a structure 

associated with f series, the trinomial should be: 3+3+2. The respective posi¬ 
tions of climaxes in this case are: the first climax begins with the fourth eighth, 

the second climax, with the seventh eighth. 
Indicating climax by the symbol Cl, we can express the two preceding cases 

as follows: 

(a) 21 + a,+!'+a. + J; 1 

3T = ci1+f+ a,+ 2T 

8 ‘ 

The placing of the climax between the time-values means that the actual 

time for the climax (and its extension) is borrowed either from the preceding 
or the following term; and in some cases, the climax may itself extend over both 

(i.e., the preceding and the following) adjacent terms. 
By taking temporal ratios with more terms, we can distribute more climaxes 

respectively. Thus, a temporal quintinomial becomes the tool for distributing 

four climaxes. For example, in the structure based on f series, 2+2+2+1+1 

(which is one of the general permutations of the original quintinomial 2+1 +2+ 
+1+2 represented in declining values) offers the proper form of distribution 

of the four climaxes: 

^ + C1, + — + ci1 + ^ + a, + ! + a4 + f 

Another basic form of the distribution of climaxes is based not on the in¬ 

dividual ratios, but on proportions, i.e., on the equalities of ratios. This form of 
distribution of climaxes contributes the utmost temporal harmony to the entire 

composition. 
Proportions are acquired in the forms of distributive involution-groups, i.e., 

squared and cubed binomials, trinomials, etc. In this case, the number of terms 

in the involution-group determines the number of climaxes. 
In a temporal structure based on £ series, climaxes can be distributed as 

(3+1)*, i.e., at 9T + Qi + 3T + Cl* + 3T + CL + T; in which case the com¬ 

mon denominator of these values is 16. 
In a temporal structure based on f series, climaxes can be distributed as 

(5+3)*, i.e., as 25T + CL + 15T + Cl, + 15T + Cl* + 9T. Here the common 

denominator equals 64. 
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If the entire continuity is evolved from one or another type of acceleration- 
series, its climaxes can be distributed according to such a series. For example, a 

continuity consisting of 32T and evolved from the first summation-series can 
have its climaxes distributed as follows: 13 + 8+5+3 +'2 + 1, i e , 13T + 

+ CL + 8T + Cl, + 5T + Cl, + 3T + Cl4 + 2T + Cl6 + T. 
This discussion leads us to the conclusion that the composer has to make 

his decision with regard to desirability of climaxes, their number and distribution 
before he completes the final planning of the temporal organization of continuity. 

The means by which the composition of climaxes can be accomplished does 
not belong to this section and will be discussed later. 

F. Realization of Continuity in Terms of t and t' 

Subjects and their expositions vary not only in their temporal dimensions, 

but also in the dimensions of their duration-units. The dimension of duration- 
units may be in either direct or inverse relation to the dimension of the respective 

subject or its thematic groups. Nevertheless, once the dimension of a duration- 
unit for a certain subject is decided upon, it remains constant through all its 

expositions. As previously remarked, the duration-units from which the different 
subjects are constructed must be either identical or in simple relations with 
each other. 

The original duration-unit (being at the same time the common denominator 
of the entire continuity) is designated as t, and all other duration-units of the 
same composition, as t'. * 

If the entire composition is associated with f, f, or other series of 

this class, the coefficients of duration for the various forms of t' usually acquire 
such factors as 2, 4, 8, , . , If the composition is associated with f, -f, or 

other series of this class, the factors of t' usually are 3, 9, 27, . . . It is in this 

sense that one subject may be constructed from t as a duration-unit, another 

from t' = 2t as a duration-unit, and still another from t' = 4t as a duration-unit. 

Once the respective t is translated into time equivalent, like 1/4 sec., all 

other forms of t' can be relatively defined, and ultimately, all forms of t and t' 
can be represented in musical notation. 

Thus, for instance: 

t'(A) - t = 1/4 sec. « ^ ; 
t'(B) = 2t = 1/2 sec. = * ; 

t'(C) = 4t = 1 sec. => J . 

Before composing any rhythmic patterns of duration-groups for the res¬ 
pective subjects, we have to know die total number of duration-units in each 
particular subject taken at its maximal period. 

Let us take a new scheme of three subjects; e.g., 

T~~*(A) = 16T; t'(A) - t =1/4 sec. 
T~*(B) = 16T; t'(B) = 4t = 1 sec. 

T“*(C) = 16T; t'(C) = 2t = 1/2 sec. 
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Then: 

T(A) = 16t; 
T(B) = 4t'; 

T(C) = 8t'; 

Hence: 

T~*(A) = 16t .16 = 256t ; 
T“*(B) = 4tM6 = 64t'; 
T~*(C) = 8t'.16 = 128t'. 

In clock-time, all three subjects have the same period of 64 seconds; but 
psychologically the degree of temporal saturation varies with each subject, B 

representing the geometric mean of the remaining two subjects. Thus, psych¬ 
ologically, the most eventful subject (if we use the same rhythmic pattern of 
durations for all three subjects) is A and the least eventful is B. 

To illustrate this in the simplest imaginable way, we shall assign T = ^4.3 

to be the thematic duration-group for all three subjects. Then: 

T'(A) = 16T 
T'(B) = 4T 

T'(C) = 8T 

This means that A has a recurrence of the thematic rhythmic pattern 16 

times. Such a recurrence can be of exact or modified form. The 16 modifications 
ran be evolved on the basis of four circular permutations of the second order: 

(8+l)+(2+l+l) +(1+1+2) +(1+8) 

a® 

FiRttre 44. V{A) = 16T. 

Subject B has only 4 recurrences of the thematic rhythmic pattern. The 
latter may have either 4 direct recurrences or four circular permutations of the 
first order. 

Subject C has 8 recurrences of the thematic rhythmic pattern. The latte? 

may have either 8 direct recurrences, or four circular permutations of the first 
order with symmetric duplication: 

abed, beda, edab, dabc, 
dabc, edab, beda, abed Or: 
abed, beda, edab, dabc, 

ebad, bade, adeb, deba. 
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If we count the number of impulses (which correspond to the individual 
terms or attacks of the thematic rhythmic pattern) in each subject individually, 
we acquire the following comparative table of temporal saturation for A, B and C. 

As Is 10a, the respective quantities of attacks (impulses) appear as 
follows: 

T'(A) a 10a* 16 a 160a; 

T'(B) a 10a«4 B 40a; 

T'(C) a 10a-8 a 80a. 

Similar reasoning can be applied to subjects constructed from different thematic 
rhythmic patterns as well. 

G. Composition of Thematic Units 

We have had a thorough discussion of this matter in chapter one of this 

book.* Here we simply approach the subject from a different angle. In our 

first discussion of the composition of thematic units, we put stress on the flexibility 
and the adaptability of thematic units to temporal expansion and contraction. 

When we approach the temporal structure of thematic groups from the viewpoint 

of the entire continuity of the composition, we have to evolve rhythmic patterns 

of duration-groups in such a manner that they will satisfy the total duration of a 
respective thematic group as it is expressed in terms of t\ This means that the 
form of a duration-group, ift its total period, must equal the total time-period 

assigned for the respective thematic group. The same concerns the possible 
number of attacks which may result from the application of a thematic duration- 
group expressed in definite t'-units. 

For example, if a thematic group consists of 20t', only certain forms of 

duration-groups are satisfactory. The easiest way to find such duration-groups 
is by finding the possible multiples producing 20 as a product. Such multiples are: 

(a) 5*4 = 20; hence: ^4.4; 

(b) 2(5*2) = 20; hence: 2^4-2; 

(c) any 5T of the series; 

(d) any 4T of the $- series. 

The composer may also use his initiative in modifying various duration- 
groups in such a way that the sum of duration-units satisfies the case. 

For example: 

r54-3 = 3+2+1+34-1+24-3 = 15; 

The modified version achieved by the addition of 5, and distributed sym¬ 
metrically (2 + 1 + 2): 

T = 3+2+3+4 + 3+2+3; 

or: r7-i-2 = 2+ 2 + 2 + 1+1+2+2 + 2=14; 

•See p. 1279 fl. 
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the modified version achieved by the addition of 6, and distributed symmetrically 

(2 + 1 +1+2): 
T = 4+ 2+ 2+ 2+ 2+ 2+ 2+4. 

Examples of section F may serve as additional illustrations. 

In a composition which contains climaxes and in whose scheme of temporal 
organization such climaxes are distributed a priori, it becomes necessary to pre¬ 

compose such climaxes for +he respective subjects. 
We have seen in the Theory of Melody* that the melodic climax is a pitch¬ 

time maximum and is preceded by a resistance. We shall discuss here other 

important resources which produce climaxes. 
As the main forms of resistance consist of rotary or centrifugal patterns, 

such patterns may be conceived as the bass of harmony (expressing some constant 
harmonic function and, thus, defining the tonal cycles, for instance); they either 

remain as bass or may be transferred into soprano (after the respective har¬ 
monization is completed). Another form of resistance produced by harmony 

consists of a group of tensions and releases, with an ultimate tension for the 
climax. Since centrifugal forms represent some of the most powerful forms of 

resistance, harmonic climaxes can be achieved by using such progressions as 

produce the respective configurations—for example, all cases of upper harmony 
ascending against a descending bass, or a pair of diverging harmonic strata. 
This, by the way, is one of the favorite devices of Beethoven, an example of which 

can be found in the third theme (Eb-major) of the first movement of the piano- 
sonata, Paiheiique. In such forms, harmonic climax is represented by the max¬ 

imum interval between the strata, usually coupled with a high dynamic degree 

(f or ft). 
In addition to growth of tension of the harmonic structure and the diverging 

patterns of strata in motion, density plays an important role as a climax-builder. 
As the form of resistance, density either grows consistently or with delays, but 

reaches its climax at its maximum (i.e., the highest degree of density corresponds 

to a climax). As tension can be expressed not only through the growing com¬ 
plexity of harmonic structures, which appear in sequence, but also through 

harmonic intensification of melodic climaxes (i.e., by making such climaxes 

become higher harmonic functions), the latter also become the climactic resources 

of the entire thematic texture. 
Dynamics as such is a powerful tool for building resistances and climaxes. 

The first is accomplished by the progressive or delayed growth of dynamic 
degrees (such as crescendo or pp < mf + p < f + mf < ff); and the second, by 

sustaining the highest dynamic degree reached (ff in this case) by the resistance. 
The ultimate climactic effect can be achieved through a combination of the 

above described devices, such as high tension of harmonic structure accompany¬ 

ing melodic climax (which in itself represents a high degree of harmonic tension) 

coupled with high dynamics and high density. 

•Sec Vol. I, p. 279. 
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Counterpoint can be successfully used for developing resistances in the form 
of a group of diverging melodic trajectories. 

The oblique patterns in both harmony and counterpoint are useful in build¬ 
ing the intermediate, secondary climaxes. 

The period of a climax must represent a definite portion of the respective 
thematic group, and may even occupy the entire group. 

To sustain a climax means to sustain the climactic conditions. Nevertheless, 

it is psychologically unavoidable that the intensity of climax goes into decline, 
j as the receiving apparatus accommodates itself to the respective degree of the 

impulse relatively quickly. For this reason prolonged climaxes, in actuality, 
cannot be continuously climactic. 

Since time periods, preceding climaxes, usually contract with each successive 
climax, the climactic periods themselves, though gaining in power, must neces¬ 
sarily contract. 

H. Composition of Thematic Groups 

In a thematic continuity which is planned from the duration of an entire 

composition, the chief probleifi of the composition of thematic groups lies in the 

j distribution of intonational modifications. These, as stated before, are ap¬ 

proached from the point of view that each subject, in its successive expositionF, 

is varied through one specified technique. The main point to be discussed here is 

that the planning of the number and forms of intonational modifications depends 
upon the pre-set form of thematic continuity. 

If each subject appears in the entire composition only once, no modifications 

have to be planned at* all. If a certain subject has three expositions, another 
subject has two, and still another subject has one, the planning of intonational 

modifications concerns only the first two subjects—and even then there are only 

two modifications to be planned for the first subject and only one for the second. 

Thus, the composition of thematic groups for a pre-planned form of thematic 
continuity can be carried out with a minimal expenditure of the composer’s time 
and energy. 

When intonational modifications require an increase of attacks in certain 
expositions of a subject, the individual duration-values of the original become a 

split-unit group. This permits retention of the rhythmic characteristic of the 
respective subjects. 

All the necessary techniques by whioh intonational modifications can be 
< performed have been fully described in the preceding chapters. 

The sequence of modifications of each subject as it appears in its successive 
expositions must grow from simple to complex. 

I. Composition of Key-Axes 

This subject, having been previously discussed, concerns us for the present 
only insofar as the number of key-axes has to be defined and distributed. 

„ The number of thematic groups does not have to equal the number of key- 
axes. After the number of thematic groups is established and the form of con¬ 
tinuity specified, the composer has to- make his decision about the number of 

I y 
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key-axes. Such a decision should be based on some one of the three fundamental 
approaches: either (a) vary the key-axis with each Thematic Group; or (b) vary 
the key-axis with each recurrence of the same Thematic Group; or (c) change the 

key-axes at points determined by some structural subdivision of the entire con¬ 

tinuity; for example, according to the symmetric groupings of the various re¬ 
currences (i.c., expositions) of the various Thematic Groups. 

Although its exploitation so far by composers has been very limited, the 

technique of symmetric recurrence of key-axes produces effective results. Ex¬ 

amples of such symmetry would be: (a) Key I + Key II + Key I; or (b) Key 
I + Key II + Key II + Key I; or (c) Key I + Key II + Key III -f Key II + 
+ Key I. All that is required is that the recurrences of the same key be sym¬ 

metrically arranged. 
In composition of systems of key-axes all the methods previously discussed 

for use in handling thematic sequences arc applicable: direct recurrence, sym¬ 
metric recurrence, modified recurrence, and progressive -symmetry. Note that 
such thematic sequences applied to key-axes need not be the same schemes 

(although they may be) as those controlling recurrence of other Thematic Groups; 
it is only the method of composition of sequences that need be the same. 

Here are some examples of the ways in which conditions of the three basic 

approaches mentioned above can be met by synchronizing a sequence of Thematic 
Groups with a sequence of Key-Axes: 

(a) The key-axis changes with the entrance of each Thematic Group 
(Supposing that the sequence of Thematic Groups is one of direct recurrence of A + B:) 

A in Key I + B in Key II + A Key III + B Kpy IV +... (etc.) 
(Supposing that the sequence of themes were a modified recurrence scheme, or (A + B + C) 
O (permuting clockwise), the requirement could be met by either of the following variations: 
Var. I below, changing to a new key each time; Var. II, exhibiting five different keys recurring 
symmetrically; that is to say, the sequence of keys is symmetric, while the sequence of themes is 
one of modified recurrence, and the two are superimposed:) 
Var. I: (A Key I + B Key II + C Key III) + (B Key IV + C Kfey V + A Key VI) + (C 

Key VII + A Key VIII + B Key IX); 
Var. II: (A Key I + B Key II + C Key III) + (B Key IV + C Key V + A Key IV) + (C 

Key III + A Key II + B Key I). 

(6) The key-axis does not change until a Thematic Group reappears 

For a direct recurrence sequence of themes, A + B + C: 
Var. 1: (A + B + C) Key I + (A +B +C) Key II + (A +B -fC) Key III + ...; 
Var. II: (A +B +C) Key I + (A +B +C) Key II (A +B +C) Key I; 
For a progressive symmetric scheme of thematic sequence: A + (A +B) + (A +B +C) + (B +C) 

+ C: 
Var. I: A Key I + (A +B) Kfey II + (A +B +C) Key III + (B +C) Key IV + C Key V; 
Var. II: A Key I + (A+B) Key II + (A+B +C) Key III + (B +C) Key II + C Key I. 

(c) The key-axis changes at points determined by some structural subdivision of the whole continuity 
For a modified recurrence group, (A +B +C) O . the key-changes might be pre-set for every 
Third Thematic Group, for instance, and the pattern of key-change could either be a single 

series.(Var. I below) or exhibit symmetry (Var. II below): 
Var. I: (A+B+C) Key I + (B+C+A) Key II + (C+A+B) Key III; 
Var. II: (A+B+C) Key I + (B+C+A) Key II + (C+A+B) Key I. 
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h Instrumental Composition 

Instrumental composition of the entire musical piece in detail depends a 

great deal on its purpose and instrumental combination. For example, the idea 

o a composition being an “etude” or a "concerto” implies that a high degree 
of virtuosity is required of the performer (whether individual or colic ' . 

A composition written for a beginner must be instrumentally simple. The idea 
of an ensemble or orchestra implies richness and diversity in the utilization of 
instrumental resources. 

are atoW aPPr°aChCS t0 inst™m*ntal composition of the entire continuity 

(a) the degree of complexity of the instrumental form of a subject is in 
direct relation to the complexity of its other components; 

(b) the degree of complexity of the instrumental form of a subject is in 
inverse relation to the complexity of its other components; 

(c) the degree of complexity of the instrumental form of a subject is in 
oUtqut relation to the complexity of its other components.1 

The meaning of the term “oblique,” as it is used in paragraph (c) of this 

discuss,on, represents a variable instrumental form (variable with respect to 

complexity047 ^ t0 3 SUbjeCt WhOSe °ther comP°nents are of constant 

The degree of instrumental complexity can be determined by the number 
of attacks, by the variety of their forms and by the general diversity of instru¬ 

mental resources. The degree of complexity of other components is determined 
by the complexity of temporal and intonational forms in a broad sense 

Empirically, it is never difficult to determine whether the subject is simole 
or complex, and to what degree, when we make such an evaluation on the basis 
of comparison with other subjects participating in the same composition 

It is highly desirable to specify the characteristics of instrumental forms 
with respect to each subject and its successive expositions individually Then 

we may arrive at highly diversified schemes of instrumental composition where 

one subject, bang simple, acquires a progressively inCreasingZst rumen tal 

fZ T Z’ h*™8 f mtermfliate complexity, acquires instrument 
forms of corresponding complexity; still another subject, being complex, acquires 
a progressively decreasing instrumental complexity, etc. q 

,ZUChJ\f *he S“C“8S “ composing depends upon the extension of the general 
method used in all branches of this theory, i.e., the method of regularity and 
coordination, and that is what the Theory of Rhythm basically repfesente 

to mlnothemZ0 d?VOted t0 practical “Potions of this theory 
to monothematic and polythematic composition. y 



CHAPTER IS 

MONOTHEMATIC COMPOSITION 

AMONOTHEMATIC composition, having one subject and one or more 
expositions, can be evolved from any technical source, which in this case 

contributes its major component. The major component must be looked upon 

as the dominant characteristic of the subject. The selection of minor com- 
pontents, their style and form of coordination with the major component, is 

subject to the composer’s choice. 

A monothematic composition, with one exposition constituting the entire 

piece, hardly requires the use of any elaborate form of variations. A mono¬ 
thematic composition with more than one exposition obviously depends on the 
variations. Variations, as such, come from different sources, and may influence 

temporal, intonational or textural patterns. The selection of quantities and types 
of variations, as well as the distribution of the latter, are left to the composer's 

discretion, as by now the potential composer is sufficiently equipped to use his 

own initiative in selection. 

I shall illustrate the final synthesis of monothematic composition in such a 

way that the student will be supplied with samples based on different technical 
sources. For such illustrations, I shall use my own compositions which have 

been produced through the use of this system. I shall supply the student with 

technical data only to the extent to which it is necessary in each individual case, 
as these compositions should serve also as material for analysis. 

My own compositions will be supplemented by reference to the works of 

my students, whose compositions were also produced through the use of this 

system. 

A. “Song* *from “The First Airphonic Suite" (1929) 

(Composed for the space-controlled theremiir with sound amplification and 

a large symphony orchestra. It had its premiere in November 1929 in the 

Masonic Hall in Cleveland and was later performed in Carnegie Hall in New 
York. Both performances were given by the Cleveland Symphony under 

Nicolai Sokoloff, with Leon Theremin as soloist.) 

The “Song” is a monothematic composition, with one exposition and a 

partial recurrence of the beginning of the subject. The subject is “through- 
composed” music, for it is based on one continuous melody, originally plotted, 

and then harmonized. Here melody is the major component. 

♦In the original sketch for piano and the version for Thereminvox and Piano, this is called 

,,Melody', instead of "Song”. (Ed.) 
11370} 
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MELODY 
for Thereminvox and Piano 

Lento (very slovto) JosePh Schillinger 

Copyright 1945 by Carl Fischer, Inc. 

Figure 45. Monothematic composition with melody as major component. 
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B. “Mouvement £lectrique et Pathetique” (1932) 

(Composed for the space-controlled theremin and piano). 

This piece is a monothematic composition, whose subject derives from a 

plotted melody. Later the melody was subjected to harmonization. The features 

of melodic structure are: pedal points, successive climaxes, temporal expansions 
and contractions of the thematic rhythmic patterns and a few geometrical in¬ 
versions. 

Pedal points have special significance in this case, as the theremin provides 
a tone of infinite duration without renewal of attack. 

MOUVEMENT ELECTRIQUE ET PATHETIQUE 
for Thereminvox and Piano 

J Joseph Schillinger 

Piano 

__ P ~ Jcrffse. .1 I _ _ I _[ L| [_ 
__ I I T 1 t II II _ft_I_I_L I # 

hF iT ^ 

Vox 

£ Ti 

itH *1, i ‘i ^ ■ & 

Copyright 1945 by Call Fiacher, Inc. 

Figure 46. A monothematic composition whose subject derives from a plotted melody. 
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r-—-r f 
Figure 46. A monothematic composition whose subject derives from a plotted melody 

(icontinued). 
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Figure 46. A monothematic composition whose subject derives from a plotted melody 
{continued). 
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Figure 46. A monothematic composition ibhose subject derives from a plotted melody 
{continued). 
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Figure 4a. A monolhematic composition whose subject derives from a plotted melody 
(continued). 
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Figure 46 A monothematic composition whose subject derives from a plotted melody 
{concluded). 

C. “Funeral March” for Piano (1928) 

(American premiere by the League of Composers in 1930). 

In this monothematic* composition, the major component of the subject is 

harmony. There is no independent melody. What appears to be the melody is a 

combination of instrumental and melodic figuration. There is a partial recapitula¬ 

tion of the beginning, only in a climactic form. The harmonic structure itself 
is a symmetric superimposition of the \^2: Si is Bb and Sn is C#. The building 

up of the strata occurs gradually thus giving the listener an opportunity to adapt 

himself to the 2. For this reason, the beginning, based on Si, seems to be in Bb 
and the very end, based on Sn, seems to be in C# Minor. 

MARCHE FUNEBRE 
Joseph Schillinger 

Piano 

Copyright 1945 by Carl Fischer, Inc. 

Figure 47. A monothematic composition with harmony as major component 
(continued). 
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Figure 47. A monothemaiic composition with harmony as major component 
{continued). 



Figure 47. A monothematic composition with harmony as major component 
(concluded). 

D. “Study in Rhythm I” for Piano (1935) 

This monothematic composition is based on a subject consisting of 12 
measures in 7/8 time, and has four expositions evolved in quadrant rotation: 
® + ® + © + <B>* All expositions have the same period. 

In spite of the title, the subject’s major component is strata-harmony: 2 = 2S. 

The structure of the lower stratum is: Sr = 4+3 (used in clockwise positions) ; 
the structure of the upper stratum is: Sji = 5+5. The progression consists of a 
random arrangement of 4i and 3i, made to produce 12 H: 1“* = 4+3 

+3+4+4+4+3+4+4. The transformations in Si are consistently clockwise, 
and the transformations of Sn consist of binomial regularity of the clockwise 
and the counterclockwise alternation. 

The chords, reading by the lower stratum, are: F + Db + Bb + G + Eb + 
+ C+Ab+E + C+ A+ F + Db. 

Quadrant rotations were obtained from F as the axis of inversion. 
Ti represents an introduction consisting of H,; the next 12T® represent 

the first exposition; the following three expositions <3) 12T + © 12T + © 12T 
are followed by a coda, which consists of 5T and represents a repetition of the 

preceding measure in a slowing down pace* it is based on one H, which is the 
first chord of the subject. 

The temporal thematic pattern of this composition is evolved from the 
simplest elements of \ series. Melody, which in its first three expositions uses 
only the chordal functions of Sn, is based on T = (4+2+I) + (2+1+4). If 
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we designate the first trinomial as a and the second as b, the whole subject ap¬ 
pears as follows: (a+b+b+a) + (b+a+a+b) + (b+a+a+b). The harmonic 
accompaniment follows the same scheme as melody. Its temporal thematic 

pattern is: T = (SR 1 + 1 + 2 + 1 + 1) + (1 + 1 -f 2 + 1 + 1 + (D)l 

its instrumental form is based on single attacks throughout the entire com¬ 

position. In the third exposition, it is varied by the split-unit groups. Melody 
has three instrumental forms. The first form, consisting of single-attack sequence 

of Sji, is followed by the second form, which is a double-attack sequence, com¬ 
bined with octave-coupling. These two forms are evenly distributed in the first 
exposition. The second exposition is based on the first form. The third exposition 

is based on. the second form. The fourth exposition is a variation combining 
the first two forms with the split-unit groups. The tones which appear as aux¬ 

iliary, in reality are the chordal functions of Sj; the presence of leading units 
combined with splitting of durations attributes to the last exposition the character 

of melodic figuration. 

Figuri 48. of the subject. 

h
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Figure 49. Major component is strata-harmony Z — 23 (continued). 
Figure 49. Major component is strata-harmony 1 •= 2S (continued). 
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Figure 49. Major component is strata-hamumy 2 *= 2S (concluded). 

E. “Study in Rhythm II” for Piano (1940) 

A two-part instrumental interference is the major component of the subject 
in this monothematic composition. Its source is the ^-*.3. Each term of the 

resultant is broken into single t-units. Thus the attack-group appears as follows: 
A = 3+2+1+3+1+2+3. gy distributing the attacks through two parts and 

through the durations, we obtain a double cycle of ^-*.3; interference makes 
the 7 terms of r appear twice: 

(a) preliminary scoring: 

« h 17] 12 
8 ui f p err 

Cb) final scoring: 

i »«hJ J72 \J72J ■ 

772 * } 772 
CLT L£f CT 

772J JiJ. J. 172 
8 cjltt fr r- tint- IrhftLr? 
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The entire continuity is based on the circular permutations of single terms: 

T“* = 7rs4-3 O = (3+2+1+3+1+2+3) + (2+1+3+1+2+3+3) + 

+ (1+3+1+2+3+3+2) + (3+1+2+3+3+2+1) + 

+ (1+2+3+3+2+1+3) + (2+3+3+2+1+3+1) + 
+ (3+3 +2+1 +3+1 +2). 

T~>'= 7rs^3-2 = 7*15*2 = 210 t. 

T" = f5 t; hence: NT'' = 210 + 15 = 14. 

In the form of two-part instrumental interference, this continuity appears 
as follows: 

Figure 50. Source r$+3. Attack distributed through 2 parts (continued). 
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Figure 50. Source r$^.3. Attack distributed through 2 parts (concluded)_ 

After accomplishing this, I came to the decision that the rhythmic exuberance 

of this setting is apt to horrify almost any performer. I then re-wrote the same 
setting into 3/4 time with t *= J , thus extending this setting to 70 measures. 

This gave the scheme an “easy” optical appearance: 

Figure 51. Material of figure rewritten in 3f4 time (continued). 

MONOTHEMATIC COMPOSITION 1391 

Ftgure 51. Material of figure 50 rewritten in 3/4 time (concluded). 
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This two-part setting was transformed later into continuous two-part 
counterpoint. The same pitch scale was used in both parts, but in the \^4 

relation to each other, thus producing counterpoint of type Ilf. The axis of the 

upper part was fixed on c and the axis of the lower part, on t. 
After the counterpoint was written, couplings were added. The fundamental 

scheme of couplings (four to each part) was used in systematic permutations, 

employing one coupling at a time. 

MONOTHEMATIC COMPOSITION 
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Figure 53. Coupling (concluded). 

The rhythmic scheme itself serves as an introduction and consists of 10 T. 

This is followed by the first exposition, based on the entire rhythmic scheme. 
Instrumental forms change in each 10 T subdivision of the subject. The last 10 T 
of the first exposition are used as a rhythmic modulation to the second exposition. 

This is accomplished by introducing split units progressively. The second ex¬ 

position, lasting as long as the first, is based on juxtaposition of couplings in the 
upper part, in the original rhythm, and couplings transformed into single-attack 

instrumental forms (by means of split-unit groups) in the lower part. 

MONOTHEMATIC COMPOSITION 1395 

“STUDY IN RHYTHM’H 
Joseph Schillinger 

Allegro molto 
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Figure 54. Study in Rhythm II (continued). 
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Other examples of monothematic composition written by the students of this 

system: 

Will Bradley: Nocturne for flute and piano. The subject is based on symmetric 
melodization and has one exposition. The melody has no recurrences and is 

of exceptional quality. 

Edwin Gerschefski: Solfeggietto, etude for piano. This piece represents a through- 

composed music evolved from 24S4p in the form of unaccompanied melody. 
It was meant to be, according to the composer’s intentions, a modern counter¬ 
part of Karl Ph. E. Bach’s Solfeggietto. 

Paul Lavalle: Symphonic Rhumba (one version is written for a 23-piece radio- 
orchestra; another, for a full symphony orchestra). The subject is based on 

symmetric melodization of harmonic ostinato: Phrygian descending tetra- 

chord in S{9) connected in sequence in identical progressions three times 
through the ^2 and producing four groups 16 T each. The total length of 
the subject is 64 T. In the second exposition, the whole subject is accelerated 
twice. The introduction is a build-up of instrumental interferences in £ 

series. The middle section consists of a fugal exposition, whose theme is 

the basic rhythmic trinomial of f series, used in circular permutations. Melo- 
dically, it is identical with the bass of the Phrygian harmonic ostinato. 

Rosolino De Maria: (a) Prelude No. 1 for piano.* The subject consists of several 
sections of different instrumental form, and strictly speaking, has only one 
exposition. Coupled two-part counterpoint was used as major component 

(type II). The attacks of the original counterpoint were ^(CPh) _ 
A(cpi) a 

(b) Etude in C for piano.** This composition represents an elaborate use of 
harmonic strata, combined with high mobility. It is a sample of virtuosity 
in composition, and a challenge to the virtuoso performer. 

Nathan Van Cleave: (a) Improvisation and Scherzo*** for string orchestra. The 

improvisation is a through-composed subject, based on harmony and melodic 
figuration. 

(b) Etude for Orchestra****. This composition is evolved from a three-unit 

scale, its modifications and derivative scales for the family. The through-com¬ 
posed melody is coupled by a full 213. Rhythmic modifications are achieved by 

doubling the speed. Intonational modifications are achieved by quadrant 
rotation. A counterpart.was included a posteriori. There is a great variety 

of Instrumental modifications. The thematic sequence is based on the triadic 
progressive symmetry, but the three thematic groups are merely quadrant- 
modifications of the same subject. 

•Published by Ricordi. 
••Published by Ricordi. 
•••Performed on CBS on May 27, 1940 by 

string ensemble conducted by Alexander Semler. 
Available at Boosey & Hawke*, Inc. on rental. 

••••Performed by Robert Russell Bennett 
and his orchestra on June 13, 1941 on “Robert 
Russell Bennett’s Notebook." Available at 
Boosey & Hawkes, Inc. on rental. 

CHAPTER 16 

POLYTHEMATIC COMPOSITION 

VV T E shall illustrate the process of assembling a poly thematic composition 
with materials presented in the preceding chapters. 

Our first decision will concern the style of temporal organization. We shall 
assign as the determinant of the series. 

The style of intonation will be based on the Persian (Double-Harmonic) 
scale. 

We shall select three subjects, and plan our composition in such a way that 

the degree of mobility will be highest for A, lowest for B, and intermediate for C. 
Let the thematic unit of A be: Fig. 8. 
Let the thematic unit of Fig. 15 (melody with couplings) be assigned to B, 

and let the thematic unit of Fig. 16 be assigned to C. 

Our next step will be to define the form of thematic sequence. Let it be 
evolved in the form of progressive symmetry, as we learned it in reference to 
three subjects: 

Ai 4- (Aj + Bi) ■+• (Aa 4 Bj 4 Ci) 4 (B» 4 C*) 4 C». 

Next comes the temporal organization of continuity. We shall arrange it 
in such a way that A, in the course of its expositions, will be a growing subject; 

B will be the dominant subject appearing in its maximal period through all three 

expositions; C will be, in the course of its expositions, a declining subject. 

We shall assume the maximal period to be equal for A and C, and designate 
this value at 16 T". 

We shall select the form of growth and decline for A and C to be in 1 -4* 2 -4-4 

ratio. Then we acquire the following temporal scheme for all three subjects: 

4T" 
Ai I-1 

8T" 

As 1-1 

16T" 

A3 1-1 

14T" 

Bi 1-1 

Figure 55. Ratio 1 -7-2+4 (continued). 

11401) 
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Figure 55. Ratio 1+2 +4 (concluded). 

From this we find: T~* (A) = 44-84*16 = 28T" 
T“*(B) = 14«3 = 42 T" 

T“* (C) = 4+84*16 = 28 T" 

Hence: T"* (A, B, C) = A28T" + B42T" + C28T" = 98T" 

Temporal relations of the subjects appear as follows: 

B _ 42 _ 3 A 28 2 C = 28 _ 2 
A+C 56 “ 4 ; B ” 42 ~ 3 ; B 42 3 * 

Hence: T~* (A) + T-* (B) + T""* (C) = 2 -5- 3 -4- 2. 

Assuming t = 1/8 sec. — }• , we obtain the following duration-units for 
all three subjects: 

t'(A) = t = 1/8 sec. — k 

t'(B) - 4t = i/2 sec. = i 

t'(C) « 2t = 1/4 sec. = ih 

Then: 

T"(A) = 16t =2 sec. 

T"(B) = 4t' = 2 sec. 

T"(C) = 8t' ~ 2 sec. 
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The quantities of the respective duration-units in each subject appear as 
follows: 

T~*(A) - 28T" - 448t 

= 42T" - 168t' = 672t 

T~*(C) = 28T" = 224t' = 448t 

Since every T" = 2 sec., the duration of the entire composition is: T~* = 
= 96*2 = 196, or 3 minutes, 16 seconds. 

Thp form of continuity of this composition appears as follows: 

Ai(Tx — T4) + [A*(Ti — T„) + Bil4T] 4 [A,16T + B,14T + Q16T] + 

+ [B.14T + C,(T, - T„) ] 4 C,(T„ — T„). 

We shall distribute the key-axes in such a way that: 

(a) they will be symmetric; 

(b) they will change with each term of pentadic symmetry, which this form 

of thematic sequence represents. 

Let the sequence of key-axes be based on the Ej (S^do): C—E—G — E — C 

Further, let each term of pentadic symmetry appear in the different geometric 
positions; and let these positions be:(g) — ® — ® — © — (g>. 

We shall select our dynamic forms in the following wav: 

AiP; A,MF; AaF ; 

BXF; BaP ; B,MF; 

CiF; CjMF; (\P . 

Under such a form of selection, A and C reciprocate dynamically in time- 

continuity, while B changes from one extreme degree to another and balances 
itself on an intermediate degree. 

Now we can express the entire continuity with respect to intonational, axial 

and dynamic synthesis: AlC<g)P+(A1MF+B1F)E®4(AjF4BtP+CiF)G(S)+ 
4 (B,MF 4 C,MF)E© +C,C(B>P. 

We shall select the instrumental forms in such a way that A and C will have 

the same form in their respective expositions, while B will appear in a different 
instrumental form in each exposition. 
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Figure 56. Polythcmatic form (continued). 
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Figure 56. Poly thematic form (continued). 
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The miniature form in which we evolved the above composition must serve 
as a sample for such exercises. The student will find it more expedient to get 
acquainted with the various forms of composition by executing the most am¬ 

bitious tasks in miniature form. These fhi'niature forms will serve him as models 

for future Works of greater temporal and instrumental dimensions. This method 

is comparable with the execution of stage models before the actual sets are con¬ 

structed. It saves the artist’s time, develops his initiative and technique, and 
helps him to visualize projects of a greater scope. 

I shall refer for analytical purposes to a few compositions in polythematic 
form composed by students of this system. 
Will Bradley: (a) String Quartet 

(b) Duet for Two Clarinets and Piano. 

Carmine Coppola: 

(a) Quintet for Wind Instruments:* 
(b) Concerto for Oboe; 

(c) Pagan Dance for Orchestra.** 

Edwin Gerschefski: Fanfare for the New York World's Fair of 1939 for Brass 

Septet.f 

Rosolino De Maria: (a) String Quartet; 

(b) As I Remember Symphonic Impressions for large orchestra. 

Of my own works, two may serve as examples of unusual and diversified 
forms of polythematic composition: 

(a) Sonata-Rhapsody for Piano (1925) ;ff 

(b) October, Symphonic Rhapsody (1927) for large orchestra.! 

This concludes Part Two of the Theory of Composition. 

♦Chamber work for flute, oboe, clarinet, 
bassoon and horn in three movements. Per¬ 
formed by Detroit Symphony Woodwind 
Quintet in Detroit, March 17, 1941. (Ed.). 

♦•Written in the summer of 1938, it was 
performed by the Rochester Philharmonic, 
Jose Iturbi conducting, on January 19, 1939. 
It has also been performed by the Michigan 
Symphony and by the Detroit-Symphony. (Ed.) 

f Performed over the CBS network in Jan¬ 
uary 1939.-(Ed.). 

tfPenormed in Russia by Alexander Ka - 
-men8Ley, in Berlin by Irene Westermann, in 
Milan by Antonio Russolo, in New York by 
Nicolai Kopeikine, and in Washington, Califor¬ 
nia, Mexico City by Keith Corelli (Ed.). 

$ Performed in Moscow in 1927 and in Len¬ 
ingrad in 1928. Premiere in the Unit'd States 
by Leopold Stokowski and the Phila¬ 
delphia Orchestra in 1929 (Ed.). 
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PART THREE 

SEMAAT/C (CONNOTATIVE) COMPOSITION 

CHAPTER 17 

SEMANTIC BASIS OF MUSIC 

A. Evolution of Sonic Symbols 

THIS discussion requires on the part of the student complete familiarity 
with the semantics of melody and the connotative meaning of configurations, 

which information can be found in the Theory of Melody.* 
Our present task is to include all the technical resources of composition in 

the field of connotative music. This inclusion of all forms of musical expression 
increases the range of admissible associations, thus enriching music as the language 

of sonic symbols. 
All symbols are configurations. Graphic symbols are perceived by sight,- 

sonic symbols are perceived by hearing. Sonic symbols are modifications of 
frequency and intensity. At the early stage of human evolution, there was only 

one language of sonic symbols. Later on it gradually differentiated into two 
sonic languages: speech and music. Early forms of speech greatly rely on the 
intonation (modification of frequency) as an idiomatic factor: words of the same 
etymological constitution, spoken with a different intonation, acquire different 
meanings, i.e., they become new symbols. Music, i.e., what we know now as 
muse, emancipated itself from the fore-language of sonic symbols through the 
dominance of intonation over other sonic forms and through the crystallization 

of fixed frequency units. 
Modifications of frequency and of durations are the basic components of 

sonic configurations. Further refinement of symbols is achieved by modification 
of intensity (which also includes the form of attack) and quality (which is phys¬ 

ically the product of frequency and intensity). All other configurations, such as 
those produced by modifications of density, take place only when complex sonic 
symbols participate. 

Sonic semar dcs is altogether possible because of the configurational inter¬ 
dependence of the activating (stimulative) and the reactive patterns. All com¬ 
ponents of sound work in similar patterns, and these patterns are similar in all 
sensory experience. Identical patterns exhibit a tendency of mutual attraction, 

and the latter stimulates association. The meaning of music evolves in terms of 
physico-physiological correspondences. These correspondences are quantitative, 
and quantities express form. 

We can easily imagine that at its early stage the language of sonic symbols 

existed in the form of larynx reflexes, caused by certain forms of physiological 
activity. As these sounds, stimulated by somewhat similar experiences, repeated 

♦See Vol. I, p. 279. 
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themselves in somewhat similar reactive forms, these reactive forms eventually 
began to crystallize. The crystallized sonic patterns could be intentionally re¬ 
peated. Being associated with definite stimuli, they became symbols. As the 

response to sonic forms exists even in so-called inanimate nature in the form of 

sympathetic vibrations, or resonance, it is no wonder that even primitive man 

inherited highly developed mimetic responses. From this we can conclude that 

a great many of the early sonic symbols probably originated as imitation of 
sonic patterns, coming as stimuli from the surrounding world. We must not 

forget that echo (as a physical pattern-response) existed on this planet before 
any auditory receptor was developed. It is also true that tactile responses to 
pressure in general, as patterns of compression and rarefaction coming from the 

generalized cutaneous, i.e., skin-receptor, preceded the development of a more 
specialized auditory receptor. 

The next stage of the evolution of sonic symbols is characterized by the use 

of intonational patterns as symbols of ideas and concepts. We find such use of 

musical symbols in ancient China, just as we find graphic symbols in the sand- 
paintings of the Navajo. At this stage, both sonic and graphic symbols are in 

competition with linguistic, i.e., etymological symbols. Oxford History of Music 
(Vol. 6, p. Ill) defines this stage in the following way: “Program music is a 

curious hybrid, that is, music posing as an unsatisfactory kind of poetry.” 

Finally, we arrive at the stage where the forms of musical expression become 

confined to their purely configurational meaning. In this aspect sonic symbols 
may be looked upon as generalized pattern-stimuli. The first formulation of this 

meaning of music comes from Aristotle: "Rhythms and melodious sequences 
are movements quite as much as they are actions.” “Musical motion,” when 

projected into spatial configurations, possesses characteristics similar to that 

of motion, action, growth, or other “eventual” processes. It particularly resembles 

the mechanical trajectories and the projections of periodic phenomena, i.e., the 

processes which are characterized by a high degree of regularity. As mechanical 
trajectories are the inherent patterns of "musical motion,” music is capable of 

expressing everything which can be translated into form of motion. 

B. Configurational Orientation and the Psychological Dial 

The interaction Which we call “association,” and which permits the forma¬ 
tion of reactions, sensations, and emotional and mental attitudes, is based on an 

inherent capacity which we may term “configurational response.” This capacity 

appears to us to be a special case of configurational responses in general. It 
extends itself to the entire range of the knowable, including physical and chemical 
reactions, various types of reflexes (including articulatory responses of speech), 
emotional, mental and even telepathic reactions. 

The associative power of musical configuration depends upon three basic 
conditions: first, the selection of a configuration which is in proper correspondence 
with the configuration of the state or process to be expressed; secondly, the 

selection of a musical form which adequately corresponds to the selected con- 
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figuration and which operates in media comprehensible to the listener; and 

finally, a favorable state of reactivity on the part of the listener, i.e., his dis¬ 

position to react and comprehend at a particular moment. 

So far we have dealt with sonic symbols in the form of linear configurations 

taken individually (Theory of Melody)* or in combinations (Theory of Correlated 
Melodies)** In the latter case the component melodies still remained linear 

patterns. The -extension of configurational semantics into other simple and 
complex components of music constitutes the subject of the present discussion. 

We shall consider linear configurations as simple and group configurations 
as. complex. Linear configurations consist of individual components. Group con¬ 

figurations represent assemblages of conjugated components. Simple configura¬ 
tions are produced by melody and possess a greater configurational versatility 
than the complex configurations. The latter are produced by harmony and, 

compared to melody, are relatively inert. 

The degree of configurational versatility of melody depends on the technique 
employed. When configurational versatility becomes the chief factor of ex¬ 
pression, the Theory of Melody (plotting technique***) must be preferred to-the 

Theory of Pitch-Scalesf (variation technique). 

The degree of configurational versatility of harmony partly depends on the 

number of conjugated parts in-the respective assemblage, partly on the number 
of simultaneous assemblages, and partly on the number of transformations 

employed. Harmonic progressions, as they derive from the permutations of 
intervals or from direct transposition of pitch-scales, have relatively limited 
configurational possibilities. In comparison with this, transformations and cycles 
employed in the Special Theory of HarmonyW offer a great many configurations. 

Configurational versatility of harmonic progressions reaches its maximum with 
the use of all transformations of the General Theory of Harmony.ttt 

The versatility of expression depends on the number and the forms of con¬ 
figurations. While the number of conjugated parts in an assemblage defines the 
possible number of transformations (which grows from p to 2p, 3p» 4p to 2), 
it is also true that the stability of configuration, under all conditions being equal, 

grows with the increase of configurational elements: the denser the assemblage, 
the greater its configurational inertia. The patterns of S2p are more alert than 

the patterns of S3p, and the latter, are more alert than that of S4p. 

The discussion of this subject, i.e., the spatio-temporal patterns of simple 
and complex trajectories-, brings us closer to an understanding of music in terms 
of motion and action. We have already seen that pattern stimuli activate con¬ 

figurational response. We shall* use this term as a complex concept emphasizing 
all partial responses of the entire reactive chain. It includes physico-physiological 
(chemical, neurological, psychonic) and psychological reactions (associational, 
emotional, mental). Since we react as a unit, dissociation of the partial responses 
is impossible in actuality. For this reason there is a great advantage in using 

one concept which can emphasize reflexes, associations and judgments. We shall 

•See Vol. I, p. 228;also p. 1432. ••See Vol. I, p. 708. ***See Vol. I, p. 299. fSee Vol. I, p. 1 IS. 
tfSee Vol. I, pp. 368, 378, 382. ttfSee pp. 1068, 1106 and 1127. 
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define judgment as the self-evaluating partial response of the entire reactive 
group. Its function consists of associating current configurational responses with 
past configurational responses, with which it has pattern-similarities. The as¬ 
sociation itself is a form of attraction (like that of'sympathetic reactions) existing 

between the pattern-similarities. Thus, judgment may be looked upon as a form 

of configurational orientation. The evaluation of event, as a process, in terms of 

mechanical efficiency, i.e., in terms of performance (action), crystallizes the 
configurational response into an attitude. The relativity of forms (standards) 

of mechanical efficiency corresponds to the relativity of forms (standards) of 
configurational oriehtation and results in the corresponding attitudes. 

To illustrate this, we shall demonstrate the translation of events into actions; 

and to accomplish this, we shall resort to the scale of Configurational responses, as 
it was presented in the Theory of Melody* i.e., in the form of a psychological-dial. 

Normal 
180° 

800° 
Abnormal 

Figure 5t. Psychological dial. 

3 

Here, infranormal represents the lower limit of normality and corresponds 
to ultimate depression; ultranormal represents the upper limit of normality and 

corresponds to ultimate ecstasy. The 0°, when arrived at by counterclockwise 
motion on the circumference, represents the lower limit of performance; the 
360°, when arrived at by clockwise motion, represents the upper limit of per¬ 

formance. These two coinciding points are both in the range of the improbable. 

•See Vol. I, p. 232 ff. 



1414 theory OF COMPOSITION, PART III 

To facilitate our further discussion, we shall use, a graphic representation 

for each response by the respective hand-position on the dial: 

O0OO00OOQ 
Figure 58. Hand-positions on the dial. 

This scale, if necessary, can be developed to a further degree of refinement by 
introducing the intermediate hand-positions, in addition to those offered above. 

The psychological dial may be looked upon as a form of bifold symmetry, 

having the ordinate for its axis. There is a configurational reciprocation of pat¬ 

terns symmetrically located on both sides of the axis. The reciprocating pairs 

are: (T), i.e., normal-abnormal; 0, i.e., subnormal-supernormal; 0, i.e., 

infranormal-ultranormal; Q, i.e., subnatural-supernatural. This implies that 

the reciprocating responses are activated by stimuli of mutually convert patterns. 

The left half of our dial represents the differentiated forms of the original 
defense-response; the right half, the differentiated forms of the original aggression- 

response. The first response is characterized by contraction-patterns; the second, 
by expansion-patterns. Either of the two may be active or passive, depending on 

the presence of “resistance,” which psychologically is the effortful feeling of 

striving. The presence of resistance in the activating pattern intensifies the 

configurational response. It “dramatizes” the response and is based on the 

amplitude-evaluation. 

As we have seen in the “Semantics of Melody,” this resistance in the re¬ 

sponse-pattern has its counterpart in the mechanical resistance-pat tern. As 
aggression psychologically corresponds to inducement, and defense, to submission, 

we shall consider the right half of the dial as positive and the left as negative. 

The positive zone is associated with the gain of energy and growth, the negative, 
with the loss of energy and decline. The inducement in association with resistance 
becomes dominance, or the active form of inducement. The submission in as¬ 

sociation with resistance becomes compliance, or the active form of submission. 

Now, we come back to the eoaluation of performance. It is not difficult to 

see how mechanical performance can be put on a quantitative basis. Application 
of such-and-such amount of energy is expected to produce such-and-such result. 

When the result of the application of energy is what we expect, the response- 
pattern is normal. When the result is below our expectations, i.e., less than we 

expected, the response-pattern is subnormal. When the result is above our ex¬ 

pectations, i.e., more than we expected, the response-pattern is supernormal. 
Further extension of the performance beyond these limits produces subnatural 

for the first group and supernatural for the second group. The final limit for 
both groups, merging one into another, produces the response-pattern of abnormal 

(absurd). 
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The concepts of normal, subnormal, supernormal, etc., are integrated and 
crystallized response-patterns, and as such, are capable of stimulating associations 
with other response-patterns and their integrated and cystallized conceptual 

forms. It is on the basis of these associations that it becomes possible to translate 

the original configurational response of accumulation-discharge into tension- 
release, anticipation-fulfillment, etc. It also becomes possible to form an attitude 
in each case on the basis of evaluation. The evaluation refers to pattern-similar¬ 

ities by associating them with past experiences, and the response-pattern becomes 
an attitude as the result of evaluation. The attitude demonstrates whether the 
outcome of a certain process (course of events) is below or above expectations, 
or is exactly what was expected. Thus, the fulfillment of anticipation may be 
equal or smaller or greater than is expected. 

C. Anticipation-Fulfillment Pattern 

In the chapter on “Climax and Resistance" (!Theory of Melody)* we 
analyzed the various responses to the discus-thrower. These responses formed 
attitudes as a result of evaluation of the athlete's mechanical performance. 
We -shall analyze now a group of responses and attitudes on events which do 

not contain any apparent motion or action, but merely the anticipation-ful¬ 
fillment pattern. 

For our first illustration, we shall employ a case which involves quantities, 

that is, a case in which evaluation can be based on some obvious quantitative 
relations. 

Let it be a man who comes to a drugstore to buy an article for which he ex¬ 
pects (owing to his previous experience) to pay one dollar and ninety-eight cents, 

and, perhaps, two cents tax. Suppose the customer gets the article he wants for 

the price he expects to pay. The response-pattern in this case is (J), and the 

customer's attitude is either indifference or acknowledgment of the fact: he 

got neither more nor less than he expected, i.e., the response-pattern is normal. 
Now let us move to the negative zone. It is an assumed increase in price that 

would produce it. Suppose the price went up to $2.49. It undoubtedly would 
disappoint the customer arid, whether he bought the article or not, it would 

stimulate the response of regret. Now if we continue our venture further into the 
negative zone, we might set the price for the same article at $2.9$ or even more. 

If the article is of great importance to the customer, and if the customer is poor 
and cannot afford the purchase, depression would be the response. He may not 

be inclined to commit suicide in this case. But imagine a father whose beloved 
child has to undergo a surgical operation, for which the poor man cannot afford 

to pay, because of the increased cost. In this case, depression reaches its maximum 

and the response-pattern is (infranormal). The continuation of this venture 

through the negative zone may suggest such illustrations as one of an imaginary 

customer coming to a drugstore, or even better to a “five and ten cent” store, to 
buy a fountain pen, and being told that the pen costs several hundred dollars. 
*See Vol. I, 279. 
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As this is in the category of loss that is so incredible, the response-pattern will 
be not that of disappointment or depression, but rather of humor. The owner 

of the store may even tell the customer that the pen is made of platinum, or 
maybe even studded with diamonds. Still the price would appear ridiculous to 
the customer, as he is conditioned to definite expectations at the drugstore, 

which are quite different from those which, let us say, he would expect at Tif¬ 

fany’s. Such a situation puts the response-pattern somewhat like this: 

(subnatural). 

To bring this case to the pattern of the abnormal or the absurd, we shall 
imagine that an ordinary fountain pen at Woolworth’s, which the imaginary 

customer picks from the counter, is not for sale and belongs to the Maharaja 

of Jodpur. The response-pattern to be expected in this case is (j^) (abnormal) 

and represents astonishment. 
Let us resume our purchasing venture from the balance point and move 

into the positive zone. In that zone, the pattern of gain will reciprocate the 
loss-patterns which we have already described with respect to the negative zone. 

Coming back to the prospective purchaser of the $1.98 article, we find him 
at a drugstore on a day of a special sale: the current price is then only $1.49. 
The customer buys the article and enjoys the acquisition of it at such an ad¬ 

vantageous price. He would hardly jump for joy, but there would be a response- 

pattern of satisfaction, expressing the dial position at (supernormal) or less. 

The relative limit of satisfaction, which theoretically is at the point of esctasy, 

might occur for the same article at a “penny-sale”; that is, when by paying one 
more cent, the customer acquires two identical articles for the price of one. 

Carrying this incident further into the positive zone, somewhere around 

(supernatural), we must imagine a case where the store owner says to the cus¬ 
tomer: “I value your patronage of many years and I wish to give you a present. 
Choose anything you like within the range of $25.” The situation is quite im¬ 

probable, of course, but not entirely impossible. However, it exceeds all the 

possible expectations of the unsuspecting customer. 

To bring this case to the point of the absurd (j^) in gain we might imagine 

something which would be diametrically opposite to the zero position with the 

Maharaja’s pen at W5olworth's. Such a situation might occur when the store 

owner offers his entire store and a good sum of cash to the astounded customer 

who expected merely to get a pen and to pay for it. Thus, gain may extend itself 
to the degree of the absurd, in which case the pattern-response is one of astonish¬ 

ment. After the subject recovers from this stage, he undoubtedly fluctuates into 

one or another of the adjacent zones. But the latter are associated with humor; 
therefore, the subject will accept the incredibly-generous offer as a joke. 

In this group of episodes, or imaginary events, we have based the evaluation 
process on the tangible figures of quoted price in relation to expected price. 

We shall now present a case in which no obvious quantities are involved. 
We shall base this illustration on a moral instead of material evaluation. And in 

this case, the .evaluation will be based on moral loss or gain. 
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Mr. A knows Mr. B for many years as an honest wage earner. One day Mr 
A discovers to his regret that Mr. B is a petty thief. Mr. A does not find it tragic; 

but his response-pattern is sorrow and can be located on the psychological dial 

as Qj (subnormal). Mr. A does not believe any human being is perfect and 

with regret, makes allowances for such a weakness. One fine day however, 
Mr. A learns that Mr. B had actively participated in a bank robbery. This 

comes to Mr. A as a very depressing bit of news and his response-pattern be¬ 

comes (^). But Mr. A is positive that Mr. B cannot be a killer. Yet, at a later 

date, Mr. B is accused of murder. This comes to Mr. A as a great surprise and 

his pattern-response becomes Q (infranormal). As everything beyond this 

point of the negative zone is associated with an incredible loss (moral loss in this 

case) we would have to compel poor Mr. B to assassinate at least one or two 
families—and we can’t afford to spare even the little children. 

In order to find a proper response-pattern for the deeds of Mr. B, we would 

have to move the dial-hand to position Q (subnatural). Remember that Mr. 

B is not known to be a maniac; otherwise, such actions might have been ex¬ 

pected. To conclude the unfortunate venture of Mr. B, we shall collect sufficient 

evidence in order to prove beyond doubt that Mr. B, during his absence from 

town, exterminated cold-bloodedly and methodically the complete population 
of several small and remote communities. 

The response pattern of Mr. A to such actions of Mr. B, and we sympa¬ 

thetically join Mr. A in his reaction, is Q (abnormal); his attitude can be de¬ 

scribed as complete astonishment, from which it is not easy for him to recover. 

The concepts associated with such gruesome and cruel actions of Mr. B are- 
incredible, unbelievable, impossible, insane, nonsensical, etc. 

Now to cheer up Mr. A and ourselves, we shall start a new life for Mr. B. 
Mr. B has just moved into a new neighborhood, where he makes new acquaint- 

whom,sMr-A- The latter thinks he is "all right,” but does not 
suspect what a nice fellow Mr. B really is. One day Mr. B pays a visit to Mr. A 

Asjtime «oes o». Mr. A. learns that the present was a 
token of true friendship and that Mr. B did not expect anything in return. The 

evaluation of such an action on the part of Mr. B can be expressed as moral gain. 

It places the response-pattern in position. 0 (supernormal). To put Mr. A 

into a state of real ecstasy, we shall compel Mr. B to perform an act of real 

sacrifice in favor of Mr. A We may let Mr. B save Mr. A's drowning child, in 

which action he subjects himself to real danger. Thus, we .each the stage at 

which he response-pattern becomes Q (ultranormal). Beyond the heroic 

ac‘1°n‘.n sa"ng h“ friend’s child from drowning lies the field for incredible and 
fantastic actions that call for a superman. 

Mr B is not a superman, and for this reason his attempt to save a whole 
family of dogs from a burning house, which he succeeds in accomplishing, -auses 

our response-pattern to become Q (supernatural), as the whole affair seems 
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The above scale represents configurations not containing resistance. Earlier, 
in the Theory of Melody, we defined the resistance-pattern as a geometrical 

projection of rotary motion. Its trajectory is that of a sine-wave (originally a 

circle; later extended into a cylindric spiral and, finally, into a sine-wave). By 

combining each of the above patterns with oscillatory motion in a sine-wave 

projection, we obtain the resistance forms of the stimulus-response configurations. 

Figure 60. Resistance forms of the stimulus-response configurations. 
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E. Complex Forms of Stimulus-Response Configurations 

Further intensification of resistance forms derives from combinations of the 

wSICuPnttern5‘J forms become diverging and all negative, converging. 
We shall consider the basic patterns to be fundamental and the auxiliary patterns, 

complementary. Thus in the § axial combination, a is fundamental and 0, com¬ 

plementary. In all oblique patterns, i.e., where 0 participates with the converging 
or diverging axes, the 0-axis is always complementary. In the case of a pair of 

converging or diverging axes, the axis which leads to a climax becomes funda¬ 
mental, 

A certain amount of intensification can be obtained by two or more parallel 
patterns, which in this case act as forces of the same direction; the addition of 
such forces increases the energy. This is true of mechanical phenomena; the 

intensification (growth or increase) of the amplitude which results from the 

addition of two or more identically directed phases (like the addition of sines 
or cosines) offers a purely physical illustration. Complex patterns resulting 

from several parallel configurations may be designated as f-', a+a'r a", 

a . a . a , a .a — a, etc., in which cases they represent intensified variants 
ot a. 

The intensification of a pattern as a stimulus of configurational response 
depends on two mam factors: 

(1) the numbers of axes; 

(2) the value of angles between the axes and the abscissa (primary axis). 

I he greater the number of axes employed simultaneously to produce one 
com,,kx configuration, the more intense the response. An increase in the value 

Ae re^nl mCrea8e ““ stimulates a“ increase in the intensity of 
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I 
1, Parallel Forms 2. Oblique Forms 

Figure 61. Binary forms of the stimulus-response configurations. 
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3. Diverging-Converging Forms 
* 

The angle of divergence or convergence between the fundamental secondary 
axis and the primary axis is equal to or greater than the angle of divergence or 

convergence between the complementary secondary axis and the primary axis: 

a 

To all the above patterns of Fig. 61 (A, B and C) further resistance may be 

added by means of oscillatory sine-wave motion. 

Figure 63. ZHverging-amvergtng forms. 

4 
3 

■n 
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Only diverging-converging forms are included in this table. 
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Figure 64. Ternary forms of the stimulus-response configurations. 

.o 411 “ above Patterns, further resistance may be added by means of oscillatory 
sine-wave motion. y 

Still more complex stimulus-response configurations can be included by 
means of a group of converging-diverging secondary axes which, in this case, 
produce a variety of angle values with the primary axis. Such configurations 

are ofJj1? radiating type. The angle value decreases with proximity to primary 
axis. This permits avoidance of overlapping when such configurations are trans- 

ormed into harmonic strata. The outer strata must be expressed through S2d* 
the intermediate, through S3p; the closest to primary axis, through S4p. 
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All such complex diverging-converging patterns are characterized by extreme 

intensity and are applicable mostly to the last quadrants of*the negative and the 

positive zone of the psychological dial. 

OIO 

0Q 

Figure 65. Some complex forms of stimulus-response configurations 

Further resistance may be added to all the above forms by means of oscil¬ 
latory sine-wave motion. This form of resistance can be realized by means of 

combined (upper and lower: ) directional units. 

The degree of angular divergence-convergence can be modified by the 

respective selection of tonal cycles for Sp, S2p, S3p and S4p, as each cycle has 
a different divergence-convergence tendency. The horizontal segments define 

the position of a climax for each configuration. 

F. Spatio-Temporal Associations 

The responses we have dealt with thus far are of the inherited type. Other 

responses are inherited only as a tendency or inclination. These can be cultivated 
further. New uninherited associations can be conditioned and cultivated. These 

associations enter into the response-system by means of sense-organs. The latter 
may be activated simultaneously by the different stimuli entering the system, 

and also by self-stimuli already present in every sense-organ. The impulse- 

groups combine themselves in some fashion with those which are already present 

and which are integrated with self-stimulated groups. 

The responses we have dealt with thus far are of the eventual (i.e., pertain¬ 

ing to event or process) type. * We shall discuss now the semantics of responses 
of the essential (i.e., non-eventual) type. These are primarily associated with 

intensity and quality. 
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One group of such responses belongs to spatio-temporal associations These 
responses assoc,ate *. auditory with the visual in termVof dimension, distant 
form, luminosity and vis,ble texture. These essential characteristics of the visual 

are mutually convert,ble with their auditory counterparts; that is, if a certain 
vjsual symbol has its aud.tory counter symbol, both symbols become interchange- 

rentinn0t^r °f.1eSSe"tial, resP°nses Pertains to extra-visual-auditory per¬ 
cept,on. Sensations like the olfactory (smell), the gustatory (taste) and The 

bel°n«. to.this The* sensations can also be cul- 

like the^factn SCr7‘natl0n and' eventually, become hereditary, 
hke the olfactory d,scrim,nat,on of canines. However, at present human beings 

m most cases are equ.pped w,th greater discriminatory power over the visible 

caryStat2ed A" ^ SCnSati°nS “* ^ -d therefor" 

a„HirReSPhnSeS Wl!ich arC ‘fiSS concentrated than in the case of the visual and the 
uditory have a lower, i.e., a weaker associative capacity. In such cases the 

response-pettems and the associations they stimulate are often not cap^le of 

3 Ef T th!- unPIeasant-Pleasant” diad. Individually, this fs some- 

irTnot'hle‘r?‘scnmination as such. There are still some listeners who 
are not capable of auditory pattern-d.scrimination beyond the two biologically 

v^l t™5 re3P°n6l’ whk* are- characteristic of the undifferentiat J unT 

Sicto^r5'’ Unplea9ant (or “"satisfactory) and the pleasant (or 

We shall return now to an analysis of the spatio-temporal ablations 
These include; d.mension, direction, density of structure, form and luminosity.' 

eXtUre' V®-’m,olecular structure of matter, as it can be perceived is 
partly in visual and partly in tactile perception. Dimension, which in perception 

iundSeThaST'atred W!tK d,Btance’ c°rresponds to the intensity (vd ie) of 
“ft d, Th* ClOS? ("ear) aPPears to ** '°nd, and the remote (far) appears to be 

Urns of J^iftit61 '”' CharaaeriSti“’WE aCquire the foll™"« Parallel- 

close — big — loud 
remote — small — soft 

These associations arc basic because they correspond to the space-perception of 
sounds in which intensity decreases with distance. 

assoc‘ation °f sp^ul directions with sound seems to be pretty well 
established so far as h.gh and low, or up and down are concerned. There mav 

be a number of source, and reasons for the development of such assoc iat ions in 

U T * r?“le that SUCH --dons are eith r 
bas,c or rigid. For example, our basic pitch-scale motion is associated with in¬ 

creasing frequencies, in spite of the fact that in vocal execution it is the direction 

of increaBmg effort. On the other hand, the same pitch-scale motion among the 

primitive and past civihzaturns represents just the reverse, i.e., it is associated 
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with decreasing frequencies (the biological pattern of exhaling or sighing). At 

any rate, for our purposes the following associations are acceptable: 

high (above the point of observation) corresponds to high frequency of 

sound; 
low (below the point of observation) corresponds to low frequency of sound. 

Variation between the two opposites corresponds to respective frequency 

variation: 

ascent—increasing frequency; 
descent—decreasing frequency. 

There are no right-left associations with any component of sound. Immediate 

associations with the direction of the source of sound can be obtained through the 

'positioning of such sources, through the positioning of loud-speakers, as was 
done, for example, in the first presentation of Walt Disney’s Fantasia in New 

York. Under such conditions the source of sound can be projected from any 
direction in relation to the listener. This possibility, however, has nothing to do 

with the expression of direction by any configuration of the components of sound. 
Density of structure corresponds to the density of musical texture, which 

includes tone-quality, and instrumental and harmonic density. There is a general 
correspondence between the dimensional quality, i.e., size, and density. Large 

spatial extensions correspond to large frequency-ranges; small spatial extensions 
correspond to small frequency ranges. As the density of matter corresponds to 

the density of musical texture, different degrees of the density of matter, which 

have the same dimensional range, can be expressed by corresponding variations 

of textural density. 
For example, S3p, distributed through two octaves, would associate itself 

with matter of lower density than S6p distributed through the same range. 

Thus, a wide area of cumulus clouds can be associated with the middle-high 
and high register of relatively low density. On the other hand, the sinister dark 

rain clouds can be associated with the middle and middle-low register of a con¬ 

siderably higher density. 
As we have seen before, some spatio-temporal associations are mutually 

convertible. One of such mutually convertible associations is the association of 
continuity and discontinuity of space with $he continuity and discontinuity of 

time. This capacity permits us to associate continuous durations with continuous 
extensions, and discontinuous durations with discontinuous extensions. Thus 

we arrive at the following correspondences: 

continuous extension — curvilinear spatial form — continuous durations 

(smooth attack followed by legato); 

discontinuous extension — rectilinear spatial form (angular form) — dis¬ 
continuous durations (accented attack followed by non-legato or porto- 

mento); 

discontinuous configuration — configuration consisting of dissociated ele¬ 

ments — abrupt durations (abrupt attack corresponding to staccato). 
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It follows from the above group of correspondences that the musical ex¬ 
pression of smooth or round or spheric configurations such as sky, domes, rolling 
hills, lakes, cotton-like clouds, etc., must assume the form of legato; that buildings, 

bridges, elementary rectilinear geometrical patterns, partitioned interiors, square¬ 

ly landscaped grounds on gardens, etc., must assume the form of portamento 

which corresponds to broad strokes; that stars, raindrops, snow-flakes, birds in 
flight, planes in group-formation and other patterns produced by dissociated 

elements must assume the form of staccato, whose attack form, i.e., whose dura¬ 

bility and intensity, corresponds with the dimensions of the elements producing 
the respective configuration. 

The texture of matter can be defined as its molecular structure. The per¬ 
ception of textures is partly visual, partly tactile. They appear to our senses as 
a group of gradations from smooth to rough. In a smooth texture the structural 

units are imperceptible. Such a texture associates itself with sound whose phys¬ 
ical components of the partials are also imperceptible. It can be associated 
musically with a pure “tone”. An exceptionally good tone-quality on such 

instruments as flute, french horn, clarinet, violin corresponds to the sensation 
of smooth. In a rough texture, on the contrary, the structural units are per¬ 
ceptible. Such a texture associates itself with sound where either a vibrato is 

present, or certain partials noticeably stand out (as in the double reed Instru¬ 

ments), or a certain harshness of tone-quality is due to the presence of inhar¬ 
monic elements (such as noises produced by the friction of the bow over the 
strings as in mediocre violin playing). 

Smooth and rough, when associated with the pleasant and the unpleasant, 
may also be expressed by the degree of musical harshness, which is one or another 

form of tension, i.e., of dissonant quality. A melody coupled in octaves or other 

simple harmonic relations appears smooth; on the other hand, a melody coupled 

in dissonant or complex harmonic relations appears rough. In all cases, there is 
a scale of gradations between the two extremes. 

The associations of luminosity (the intensity of light) have a basic corres¬ 

pondence with the frequency-intensity components of sound. The intensity of 
light, its brightness, generally corresponds to high frequencies, i.e., to high 

register or a timbre composed of high partials, which render the brightness of 
tone quality. Flutes, french horns (in their high register), chimes and harmonics 

as such belong to this group. Concentrated light associates itself with intense 

sound, and diffused light, with a moderate or low intensity combined with the 
same bright tone-quality. 

Light of low luminosity, dimmed light, sombreness and darkness correspond 

generally to low frequencies, i.e., to low range and to sombre timbres composed 
of middle-range or low partials. All brass in the low register, all double-reed 

woodwind instruments in the middle-low or low register, all single-reed wood¬ 
wind instruments in the low register and all stringed-bow instruments, either 
in the low register or muted (if the register is not high), belong to this group. 

Concentrated light of low intensity can be best expressed by instruments with 

saturated timbre, such as trombones and particularly tuba. Diffused light of 

low intensity or darkness can be best expressed by the low register of saturated 
string timbres, such as ’celli and particularly basses. 
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So far as color associations are concerned, such associations with musical 
pitch (or tonalities), as verified by serious investigation, belong entirely to the 

individual type of conditioning and, therefore, cannot be generalized. However, 
the inherent luminosity of the different spectral hues (for example, yellow is 
more luminous than red at the same intensity) generally associates itself with 

the respective high and low frequencies of sound (i.e., the higher the luminosity, 
the higher the sound-frequency). In other words, there is apparently an intensity- 

frequency correspondence. It is easy to understand such a correspondence, if we 
take into account the data of psychology, which show that the intensity of a 
sensation is the result of the number of impulses. As this holds true for any 
sensation, we can produce an intensification of response by increasing the number 

of identical impulses, i.e., by repetition. As we have seen before, in our ap¬ 

plications of this process to melody, the repetition of an impulse produces re¬ 

sistance and intensifies the anxiety-response. 
Saturation is another factor of intensity. A saturated tone-quality is the 

result of the addition of several components (partials in this case). As identical 
phases of many components add up, this addition increases the amplitude. For 

this reason a dense sound is at the same time a loud sound. 
Intensity of all sensations parallels the amplitudinal intensity of sound, i.e., 

stronger responses associate themselves with the louder sound. The sensation of 

high pressure, for instance, associates itself with high intensity of sound. Of 
course, the reverse is also true. The reason for such correspondences is that 

pressure is in direct association with force. We respond to pressure as a sort of 

“passive force”. 
In tactile form pressure appears as a kinaesthetic sensation of the “op¬ 

position” type, which comes from the receptors in the muscles. The latter 
permits us to judge the relative hardness or softness of an object and associates 

itself with the corresponding forms of attack (hard: pesante, portamento; soft: 

non-legato, legato). 
Thermic sensations have not yet crystallized into any rigid associations 

with sonic forms. A general tendency may be observed, however, to associate 

“warm” with saturated tone-qualities and middle or middle-low register and 

particularly with the tone of brass instruments; and "cold”, with unsaturated 
tone-qualities and high register. “Vibrato” also produces the effect of “warm” 

just as the “non-vibrato”, that of “cold”. Of course, some of the thermic forms 
can be associated with sonic forms through association with other sensations, 

in which case the latter become pattern-stimulating impulses. For example, an 

impression of boiling may be associated, not with temperature, but with the 

kinetic characteristics of the process of boiling and the sound pattern it produces. 

The non-cutaneous sensations (i.e., the sensations not originating in the 

skin, which may be considered the basically biological sensations, such as hunger, 
thirst, pain, sexual urge) associate themselves with sonic patterns through the 
parallelism of pleasantness-unpleasantness. Some extreme forms of non-cutaneous 

sensations become so intense that they stimulate resistance associations. Then 

their configurations fall into the general class of kinetic patterns (as expressed 
in our psychological dial), i.e., the patterns of motion and action, as they include 

the striving for a goal of relief and satisfaction. 
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The kinetic patterns are immediate and self-sufficient symbols, and have a 
universal significance as elements of language. Nevertheless, as was stated before, 

the intonational forms which the kinetic patterns assume, are of local significance. 
In this sense, for example, a certain state of melancholy, corresponding to a 

certain response-pattern, may assume the intonational form of Chinese or of 

Roumanian music, precisely in the same way as “I feel sad” cart also be said in 

the Chinese or Roumanian language, stimulating the same association-pattern. 

The non-kinetic, or rather “extra-kinetic” patterns are not self-sufficient 
and therefore, not as universal in their association stimulating intensity. As in 
the case of gestures, when words alone do not seem to be sufficient, the extra- 
kinetic patterns have their value only as an auxiliary stimulus parallel to some 
other form of stimulation which is more universal as a symbol. 

Such patterns are a good supplement to a script or a program, and serve 

as intensifiers of the basic symbols. Sonic symbols of music usually supplement 
verbal symbols, and as such are universally used in the theatre, cinema, radio 
and television. 



CHAPTER 18 

COMPOSITION OF SONIC SYMBOLS 

THE principles disclosed in the preceding chapter constitute an application 

of my General Theory of Configurational Semantics to music. Now we 

arrive at the practical application of this theory to the composition of sonic 

symbols. 
The maximum success with which such an application may be met depends 

upon the optimum of response, which is a reactive pre-disposition, and geo¬ 

metrically corresponds to congruence, i.e., configurational identity (or at least 
to a close approximation to it). This congruence exists between the stimulus and 

the response configurations and, in turn, is conditioned by the congruity of the 

dial of stimuli (i.e., phasic stimuli) with the dial of responses (i.e., self-stimuli 
and reactive pre-disposition). Thus the response optimum is achieved when all 

points of the response-dial adequately correspond (i.e.,-geometrically coincide) 

with the respective points of the stimulus-dial. 
Such a condition exists when the listener is in a state of balance (180° posi¬ 

tion on the dial) before he is subjected to musical stimulation. 

For the individual whose normal state of balance is a state of depression 
(to any extent), the stimulus which would bring him to what we would generally 

consider normal, must be above normal, i.e., in the positive zone, at an angle 
which equals the individual's deviation from normal in the negative zone. 

For an under-stimulated Mr. Hypochondriac whose normal is at 150°, that 

is, 30° below normal, the stimulus which would appear to him as normal and 
which would bring him to our balance at 180°, would have a pattern correspond¬ 

ing to 180° + 30°, i.e., of 210°. On the contrary, an over-stimulated Mr. High- 

strung, whose normal is at 210°, would require 180° — 30°, i.e., 150° stimulus- 

pattern, in order to bring him to our balance. In oth£r words, the corresponding 
dial-adjustment must be made for each individual case deviating from normal. 

That is, the stimulus-dial must be turned to the right or to the left (clockwise or 
counterclockwise), on the angle of deviation from normal, and in the opposite 

direction from the individual’s point of balance. 
Indicating the response-clock by R and the stimulus-clock by S, we can 

illustrate the two cases discussed above as follows. 

First, we have the case of the under-stimulated individual and the stimulus- 

clock adjusted to produce the intended response of balance: 

R S 

© 0 
Figure 66. Stimulus-clock adjusted to under stimulated individual. 

114321 
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Next, we have the case of an over-stimulated individual and the stimulus- 
clock adjusted to produce the intended response of balance: 

R S 

* N 

Figure 67. Stimulus-clock adjusted to overstimulated individual. 

In both cases, N indicates the point of normal for the respective individual 
and the stimulus which would affect him as our normal. 

This process of the stimuluB-dial adjustment for each individual case of 
response which does not coincide with this dial, may be looked upon as psycho- 
physiological coordination, or synchronization, of the two dials. 

Each component produces its corresponding configuration for each dial- 
point. However, it is not necessary to have all components of one sonic symbol • ^ , - -—u, unc some symooi 
in exact correspondence with one another. For example, a melodic trajectory 

corresponding to Qj may have a pitch-scale corresponding to (J), and still 

produce the general character of Q. Naturally, an exact corre^ondence of 

several components of one sonic symbol intensifies the latter. But such an 
intensity of pattern is not always necessary. 

A. Normal: (^) 

Associations: Balance, Repose, Quiescence, Passive Contemplation, Uni¬ 
formity, Eventlessness, Inactivity, Monotony. 

The stimulus-patterns of this group tend themselves toward uniformity 

which must be expressed through all the participating components. As the point 
of absolute balance is imaginary rather than actual, most of the patterns of this 

group have a certain degree of oscillatory tendency and fluctuate to a certain 

degree about the balance point. The direction to the right (clockwise) from the 

balance point expresses the tendency of unbalancing and the direction to the 
left (counterclockwise) from the balance point expresses the tendency toward 
balancing. It is correct to think of the patterns of this group as trajectories of a' 
pendulum or a magnetic needle. 

Technical Resources: 

i Temporal Rhythm: Durations ranging from very long to moderately 
long, depending on the degree of activity, in uniform or nearly uniform motion. 

Alternation of such durations with rests possessing similar characteristic Uni- 
form or nearly uniform attack-groups. 

(2) Pitch-Scales: Scales with a limited number of pitch units and a fairly 
umfomi Jtatnhuhoo of intervals. In extreme forms of inactivity, one-unit scale 

(3) Melodic Forms: Only stationary and regularly oscillating forms 
within a moderate pitch-range for associations with small and a 
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wide range for associations with large dimensions. A good example of the latter 
is one-unit oscillation through three octaves in Verdi’s scene on the Nile from 
Aida. The violins play g on all four strings, through an oscillating instrumental 

form of single attacks and uniform durations. 

The typical trajectories are: 

o_n_nxLTL_.-xruxru-- 

Figure 68. Trajectories of typical melodic forms for 

(4) Harmonic Forms: Either a complete absence of harmony or one H 
which remains constant. The instrumental form is either sustained (stationary) 

or slightly oscillating in uniform durations. The most suitable structures are 
tonal expansions of the participating pitch-scale. Only one harmonic stratum 

should be employed. If harmony is employed without melody, its structures 

must consist of fairly uniform and consonant intervals. The latter is necessary 

in order to secure tranquility. 

(5) Contrapuntal Forms: None, as the presence of a group of trajector¬ 

ies suggests activity. 

(6) Instrumental Resources: 

(a) density: uniform density which is conditioned by the 

(b) range: which depends on the dimensional associations; 
(c) dynamics: uniform and either low or medium; no sporadic accents; 

(d) attacks: smooth; legato, non-legato and light staccato (uniform and con¬ 

tinuous) are appropriate; 
(e) tone quality: open, i.e., approaching the sine-wave form as far as possible: 

Flute, Violin (non-vibrato), particularly its harmonics, high French 
Horn (pp), sub-tone Clarinet, Double-Bass on open strings and 

particularly harmonics; 
(f) register: depends on luminosity associations; night, darkness—low; sunrise, 

shining moon or stars—high; for neutral associations, like a peaceful 

landscape or quiet lake—middle register. Figure 69. Musical examples for normal clock stimulus 
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B. Upper Quadrant of the Negative Zone: 0 . 

Associations: Dissatisfaction, Melancholy, Weakness, Sadness, Depression, 
Pain, Suffering, Despair. 

The stimulus-patterns of this group tend themselves toward loss of energy 

and balancing. In their extreme and intense form, they assume anticlimactic 
configurations. The basic patterns of this group are b and c axes.* The degree 

of intensity of the stimulus-form corresponds to the amplitude of the respective 

configuration. The degree of dramatic tension corresponds to the respective 

form of resistance. 

Technical Resources: 

1 Temporal Rhythm: 

©Uniform and fairly uniform duration-groups, followed by one or two long 
durations; the weariness effect is achieved by frequent cadencing; moderate 
or slightly animated tempo. Many waltzes and mazurkas of Chopin will 

serve as suitable illustrations. Slow syncopation and upbeat-groups; also 

false syncopation produced by rests. O Configurations corresponding to the loss of momentum: (a) decreasing 
number of attacks in the successive groups; (b) increasing duration-values. 

The latter may correspond to either rhythmic (i.e., containing resistance) 

or progressive (i.e., direct) rallentando. Moderate tempo. 
These characteristics, when they increase progressively, ultimately lead 

to an anticlimax: 
This stage is the conclusive form of the preceding development. It signifies 
ultimate despair, exhaustion, loss of power and, finally, death. Use ex¬ 

tremely long durations, often dissociated from one another by long rests, 

and obtained as a result of direct or indirect (delayed, i.e., rhythmic) 

rallentando. Slow tempo. 

2 Pitch-Scales: 

Uniform or fairly uniform intervals, arranged in such a way that the smaller 

intervals are below the larger ones. For example: 

1+2 + 1+ 2 + 1+ 2 + 1+2, i.e., 
c — d\> — e\> - f\> - ft — g - a - b\> — c; 

c — e\>—g — b\>—d—f — a—c — . . .; (3 + 4) + . . ., 

c — f — db — gb — — g — e\f — flb — e . . . (5 + 8) + . • •, i.e. 

Also use the above scales combined with descending directional units. 

O) Further increase of contrast between the upper and the lower interval 

' ^ placed adjacently. For example: 

(1 + 5) + . . ., i.e., c-db -ft - g - c; 
(3 -f 8) + . . ., i.e., c — eb — b — d — bb — ft — a — . . .; 

(1 + 3) + . . ., i.e., c-db-e—/-g#-a -c. 

•The b and c axes are balancing axe?. The b direction toward the primary axis. See Vol. I, 
axis is the descending direction toward the p. 252 (Ed.) 
primary axis. The c axis is the ascending 
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Also several small intervals appearing in succession and followed by one 
large interval. For example: 

(1 + 1rt32ti'o -*n — * —* - 
. . ., (3 + 3 + 5) + . . i.e., c-eb-gb-b-d-f-bb-db- 

J9 — a 

(1+1+2+6)+ . . . ,’i.e., c — c# — d-e- b\> - - d - a\, - . 

Such scales usually represent a combination of the scales referred to in 

and their crystallized descending directional units, in which case the later 
become neutral units. 

As the predominant configuration of this zone is one of decline, and is as- 
sooated with descending tones, it is practical to think of scales belonging to 

this zone as being constructed downward (as in the primitive and archaic civiliza- 
tions). 

3 Melodic Forms: 

© Balancing axes (b and c). Balancing binary parallel axes (¥ b c' c \ 
Only weak forms of resistance. \d ’ b" o * c7‘ 

© Balancing axes with a strong form of resistance; often beginning with 

a climax and evolving into anticlimactic forms. Binary converging axes 

All forms have resistance. Ternary converging axial combinations (b -5- oTc 

and c + 0 + b). Longer time-period is necessary for more extreme forms. 

4 Harmonic Forms: 
A~\ 

(a) Structures: consisting of balanced or nearly balanced consonant intervals, 

with smaller intervals being placed below the large, ones (downward gravity 

effect). These structures are similar to or identical with the pitch-scales 
of this zone and can be used in any tonal expansion. Also balanced struc- 

tures of the consonant type, with one lowered function (descending altera¬ 
tion) like the minor ninth in a diminished S(9). Casual descending direc¬ 
tional units used in moderate quantities. 

(b) Progressions /containing moderate downward motion. For example: Sp in 

it in U (this pattern contains a certain amount of resistance)* 

S3p in C-,G , QO I S4p in C.O, CtQ. 

o 
(a) Structures: of the lower gravity type, containing dissonant descending altera¬ 

tions (one or more). Such structures can be obtained by altering some of the 
functions m a balanced or nearly balanced structure. For example, a balanced 
structure 4 + 3 + 4, i.e., c - e - g - ft, altered into 3+3+4 i e 

c , *b ~g\ ~ b' by Bering its gravity, i.e., by aggregating smaller inter- 
vals in the lower part of the structure. Likewise, 5 + 5+5 i e c -f - 

- bb - eb, can be altered into 4 + 6 + S, i.e., c - e - b\, or into 

4 + 5+6, i.e. , c - e - a - d#. Also strata consisting of structured possess- 
mg lower gravity Needless to say, the intensity of the pattern grows with 
the addition of the respective characteristics. 
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(b) Progressions: containing extreme (i.e., rapidly progressing) downward 
motion, or delayed downward motion with resistance; the latter is caused 
by the motion-pattern of transformations, which is inherent in some struc¬ 

tures. Examples of cycles and transformations: SpC*, C6; S2pC?; S3pC? Ot 

S4p all general transformations producing rapidly descending or delayed 
descending patterns. For extreme effects: aggregations of rapidly descending 

strata; converging strata. 

(5) Tension Forms (i.e., forms pertaining to harmonization and melo- 

dization: functional relations of melody and harmony): 

(^) Descending directional units whose neutral units represent lower 

chordal functions. For example, in S*(5) such melodic steps as: ab —»g, f —♦eb, 

d —* c, against C-chord; in Si(7b), i.e., large, such a melodic step as: db -*c, 

against C-chord. 

Descending directional units whose neutral units represent higher 

chordal functions. For example, in Si(7b) such melodic steps are: eb—*db» 

bbb —* ab, against C-chord. In extreme cases, symmetric superimpositions of g-, 

where both M and H have the lower gravity characteristics; also the same 

type, combined with descending directional units. For example, 2 ’ 

Sh db ~ fb — ab M 19/_ Sn _ db — gb — cb 
Si “ CS*(5) ; « V2: Sl bb 

S:I 
c 

6. Contrapuntal Forms: 

© 
balance: 

^ t l) c « • 
Oblique balancing forms: q and q; binary parallel forms leading to 
b c 
g and —. The same in slightly converging angles: 

Figure 70. Oblique balancing axes and binary parallel axes. 

COMPOSITION OF SONIC SYMBOLS 1439 

O Identical balancing axes in a more extreme convergence: 

Figure 71. Identical balancing axes. 

Simple versus complex axial groups of the same (balancing) direction: 

Figure 72. Simple versus complex balancing axial groups. 
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Non-identical converging axes, often containing resistance: ~ and bfO -f c 

Figure 73. Non-identical converging axes. 

For more extreme cases, convergence of many parts. 

7. Instrumental Resources: 

(a) density: (J) low; medium; (^) high; in extreme cases, variable density 

of the following forms: 

direct; 

delayed; 

Figure 74. Variable densities. 
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(b> I!3' ^rtly.udTndS °" the dimensi°nal associations; more generally is 
associated with the intensity of the stimulus-pattern: 

Figure 75. Stimulus-patterns. 

:c) StteTrit' -P: PeP) °r deCreasin*: ** intensity of the stimulus- 
^“e associated w.th the period of its diminuendo and with its dynamic 

© 
© / 

JP 

Figure 76. Dynamic ranges. 

also groups of s/p with a gradual decline: s/m/ + s/p -f s/pp- the initial 
dynamic energy derives from the preceding climax; 

(d) attacks: 

short legato groups starting with an accent; short staccato grouos 
storting with an accent; mixed short legato-staccato groups sSw 
with or without an accent: minimal scale of attacks* g 

a ternate legato and portamento groups in which portamento follows 

SeM 7 Whe" COmbined With rallentando; of an 

JT’lrf'TT followed by portamento, foHowed by stac 
cato, particularly when combined with rallentando; maximal scale of 
attacks, groups of considerable length; 
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(e) tone-quality: 

©the Single-reed quality: clarinet, violin (vibrato), French horn in its 
middle register, a mellow trombone at low intensity and in its high 

register (as in Tommy Dorsey’s performance of “I'm Getting Senti¬ 

mental Over You”); 

Othe double-reed (nasal) quality in the middle or the high register: violin 

on the G-string, viola in general, 'cello (high or middle register), high 

oboe and high bassoon, muted trumpet; 

Othe muted quality: all stringed-bow instruments muted, low oboe, 

English horn, low bassoon, low trombone (also muted, the entire range) 
low and middle register of the bass clarinet, low French horn (also 

stopped), tuba, gong; 

(f) register: the intensity of the stimulus-pattern in relation to range: 

middle or middle-low; 

middle and middle-low; 

middle, middle-low and low; 
the basic characteristics of the stimulus-pattern in relation to register: 

(^) middle; middle-low; low. 

(l) Moderate 
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C. Upper Quadrant op the Positive Zone: 

Associations: Satisfaction, Well-being, Strength, Accomplishment, Hap¬ 
piness, Joy, Gaiety, Challenge, Aggression, Conquest, Success, Triumph, Ex¬ 
uberance, Elation, Exaltation, Jubilation, Ecstasy. 

Technical Resources: 

1 Temporal Rhythm: 

G) Uniform or fairly uniform duration-groups; groups of longer durations 
followed by groups of shorter durations; binomials with stress on the first term 
(2 + 1; 3 + 1; 5 + 3; . . .). Duration-groups characteristic of regimental 

marches and folk-dances. Down-beat patterns and down-beat accentuation. 

Only the simplest forms of syncopation, such asl+2 + l,orl+2+2 + l 
or 1+ 2 + 2+ 2 +1. Fairly animated tempo. 
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(jy* Configurations corresponding to the gain of momentum: (a) increasing 

number of attacks in the successive groups; (b) decreasing duration-values. The 
latter may correspond to either rhythmic (i.e., containing resistance) or pro¬ 

gressive (i.e., direct) accelerando. Animated tempo. 
These characteristics, when they increase progressively, ultimately lead to 

a climax: 

(3 This stage is the conclusive form of the preceding development. It 
signifies a climax, i.e., the state of ultimate joy, exuberance, jubilation, and 
finally, ecstasy. It is characterized by an energetic overabundance resulting 
in groups which consist of many attacks and minimal durations. The total 
effect is vibrant and scintillating. The approach to short durations (often in the 

form of a rapid arpeggio, or tremolo, or frulato*) is accomplished by direct or 
indirect accelerando. A climax cannot be sustained for any appreciable length 

of time as the response automatically goes into decline (defense-reflex of the 
sense-organs and of the entire response-system is the probable cause of it; refer 

to the Weber-Fechner psycho-physiological law). Fast tempo. 

2 Pitch-Scales: 

(3 Uniform or fairly uniform intervals arranged in such a way that smaller 

intervals are above the larger ones. For example: (4 + 3) + . . ., i.e., c — c — 
. . .; (5 + 4) + . . . i.e., c - 

+ ., i.e., c—nb — 
— eb — cb — gb — d — a — . . . These scales may be combined with ascend¬ 

ing directional units. 

(3 Further increase of contrast between adjacent upper and lower in¬ 

tervals. For example: (3 + 1) + . . i.e., c—d#--e*-/x — g# — b — c; 
(4 + 1) + . . ., i.e., c — c—f —a~b\>~d~e\> — g — a\r — c — db — . . 
(8 -f 3) + . . ., i.e., c — — &b-gb-a - / — flb — . . . 

Also several small intervals appearing in succession and following one large 
interval. For example: (3 + 1 + 1) •+• . . ., i.e., — f — — 
— 6b — c# — d -- «b — . . .; (5 + 3 + 3) + . . ., i.e., c—f — g# — b~c — 

6+2+ 1 + 1) + . . ., i.e., c-ft- 

Such scales usually represent a combination of the scales referred to in 

and their crystallized ascending directional units, in which case the latter become 

neutral units. 

Since the predominant configuration of this zone is one of growth and is 

associated with ascension, it is practical to think of scales belonging to this 

zone as being constructed upward (in terms of the conception of civilized musical 
contemporaries). 

•See p. 1458. 
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3 Melodic Forms: 

/a' PdW\la™,in? TeS (° and d)■ Unbalanc!ne binary parallel axes 
Vi * a" d* dV‘ Weak forms of resistance. 

0 Unbalancing axes exhibiting a strong form of resistance and leading 

to a climax. Binary diverging axes (|). All forms have resistance. Ternary 

diverging axial combinations (a * 0 + d and d + 0 -h a). A longer time-period 
is necessary or more extreme forms. In extreme cases, a development of revert 
successive climaxes. F or several 

4 Harmonic Forms: 

0 
(a) Structures, consisting of balanced or nearly balanced consonant intervals 

‘"‘f be,"K p!aced above ^ larger ones (upward gravity 
effect). These structures are similar to or identical with the pitch-sSs of 
this aone and can be used in any tonal expansion. Also balanced structures 

of th consonant type, with one raised function (ascending alteration! lib. 

thefaTTted fth in a” augmcr‘ted SW)- Casual ascending directional units used in moderate quantities. * rectional 

(b) S^Tf“rCT^'lm0dmte .Upward m0tion- For example: Sp in CV 
S2p inC., C-^tbia pattern contains a certain amour, of resistance); S3p 

m C,^, C-6 vjt 5 S4p m C-* Q , , C-7 C. 

0 
(a) Zpz o°r altera: 

the functions in a balanced or neariy balanced .ructure Fo examl 
balanced structure 4 + 3+4, i.e., e - . - f - ». altered into 4+ 4^3 

ter^s in the low. TZTfr 

- bb - eb, can be altered into 6 + 5 -f- 4, i.e c - ft _ hb ' ^ 
strata consisting of structures possessing upper srravitv • ,A ?° 

pattern grows with the additio^i cCSs * “,te”ty °f 

of cycles and transformations: SpC-„ C5; 2SPC-7; 3SpO, Q 7u all 

general transformations producing rapidly ascending or delayrf ascVndin! 

sx ir-effects: 
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(5) Tension Forms (functional relations of melody and harmony): 

(^) Ascending directional units whose neutral units represent lower chordal 

functions. For example, in Si(5) such melodic steps as: b —> c, d# —•► e; —♦ g 
against C-chord; in Sa(7^), i.e., the first augmented, such melodic steps as: 

fx —* g#, a# —♦ b, against C-chord. 

0 Ascending directional units, whose neutral units represent higher 

chordal functions. For example, in Sa(7fcj) such melodic steps are: cx —* d#, 

gX —*. a#, against C-chord. In extreme cases, symmetric superimposition of -jj 

where both M and H have the upper gravity characteristics; also the same type, 

combined with ascending directional units. For example, 

M */— Sn d# - fx - ax. 
H “ v 2 ■ Si “ CSs(5) ’ 

M Sn g# •- bft — dft . 
H “ V2 ' Si ' CSi(5) ' 

f tt ~ b - e 
bb 

S:_f 

c 

Contrapuntal Forms: 

(j^) Oblique unbalancing forms: q and binary parallel forms leading 
& d * 

away from balance: - and The same in slightly diverging angles: 

Figure 78. Oblique unbalancing axes and binary parallel forms 

leading away from balance. 
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o Identical unbalancing axes in a more extreme divergence: 

CPn 

Simple versus complex axial groups of the same (unbalancing) direction: 

Figure 80. Simple versus complex unbalancing axial groups. 
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Non-identical diverging axes, often containing resistance: § and a -f 0 + d. 

CPi - 

Figure 81. Non-identical diverging axes. 

For more extreme cases, divergence of many parts. 

7 Instrumental Resources: 

(a) density: low; medium; high; in extreme cases, variable density 

of the following forms: 

direct: 

delayed: 

Figure 82. Variable densities. 
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(b) range, partly depends on the dimensional associations; generally is associated 
with the intensity of the stimulus-pattern: 

Figure 83. Stimulus patterns. 

(c) dynamics: either high (f, ff) or increasing; the intensity of the stimulus- 

pattern is associated with the period of its crescendo and with its dynamic 
range: 

Figure 84. Dynamic ranges. 

Also groups with rapid crescendo in a gradual growth: pp/ + p/ -f m/-/* 

mp<m/ + P</ -f pp<ff\ the dynamic energy grows through resistance. 
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(d) attacks' 

CD short legato groups ending with an accent; short staccato groups ending 
with an accent; mixed legato-staccato groups (often two-attack groups of 
legato-staccato: T2 ; also upbeat-downbeat two-attack groups: rtin 

etc.); generally, minimal scale of attacks; 

0 alternate portamento and legato groups in which legato follows porta¬ 
mento, particularly when combined with accelerando; 

CD successive groups of staccato, followed by portamento, followed by 
legato (which often falls on the climax point) and combined either with 
accelerando (momentum gain) or with rallentando (suspension of a dis¬ 

charge, immediately preceding the climax); the portamento forms often 

become marcato or pesante in this case; maximal scale of attacks; groups 
of a considerable length; 

(e) tone-quality: 

CD open and single-reed quality: flute, clarinet, violin, French horn; piano, 

harp, celeste, chimes, high-pitched drums, castagnets, wood-blocks, orchestra 
bells, tamburin; 

0 brilliant and open brass quality: mixtures of high stringed-bow and 

wopdwind instruments; open trumpets and trombones; high register of ’celli 
for “passionate” effects; cymbals (mf) and kettle-drums; 

0 scintillating quality: tremolo, trills and rapid arpeggio forms on stringed- 

bow and woodwind instruments; extreme high register of trumpets and 
trombones; xylophone (also with abundant glissando and multiple attacks); 

frulato, trills and multiple tongue of flutes; multiple tongue (also sustained, 

for the climax) on trumpets; chimes and cymbals ff\ kettle-drums, tremolo; 
brilliant qualities obtained by superimpositioa of harmonics; 

(f) register: the intensity of the stimulus-pattern in relation to range: 

CD middle or middle-high; 

0 middle and middle-high; 

0 middle, middle-high and high; 

The basic characteristics of the stimulus-pattern in relation to register: 

(D noddle; CD middle-high; CD ^8^* 
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(1) Fairly animated 

Oboe and CJar. 

Figure 85. Musical illustrations for upper-quadrant of positive zone. 

0continued). 
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D. The Lower Quadrants of Both Zonks: 

1. Negative Zone 

Both lower quadrants represent an exaggerated version of the respective 
patterns of each of the upper quadrants. As the negative (left) zone corresponds 

to decline, its patterns are that of decomposition. When such decomposition 

exceeds its natural maximum, the pattern begins to appear discontinuous and the 
formation of an image, greatly retarded. The normally unobservable details 
become apparent and begin to obstruct perception of the pattern as a whole. 

Such an efFect is comparable to the extremely magnified optical images seen 

through a microscope. As we can observe only an insignificant part of an image, 
which part is greatly magnified, we cannot reconstruct the image as a whole. 

For example, a very small portion of a man’s arm, appearing as skin surface 

with some hair growing on it, under magnification may look like a fantastic 
jungle forest. It would be difficult to stretch the observer’s imagination so 
far as to reconstruct the image of the entire arm, as the dimensional scale is too 

large. A similar situation exists with regard to the so-called "slow motion” 

of cinematic projection, in which an image, photographed at 128 frames per 
second, is cast on the screen at 24 frames per second. In temporal phenomena 

this extreme magnification of time-period obscures the image, or the process, 

as a whole, bringing out too many details, and dissociating the observable links 
of the image, or the process. With an increase in the number of images in re¬ 

cording (taking), the projected image becomes more and more stationary. 
Imagine a pugilist delivering a blow to his opponent at the rate of 2 minutes 

per blow. Such a rate, according to standards with which it would be associated 

would appear subnatural. Thus it would be perceived as either fantastic or 
humorous. 

As it follows from the above illustrations, in the temporal projections of an 

image or a process, the rate of mechanical speed is the basic source of extending 

a fame-period. For this reason, sound images, recorded for performance at a 
certain rate of speed and played back at a considerably lower rate, are bound 

to produce an effect analogous to cinematic "slow motion”. In both cases (i e 

optical and acoustical) of projection, the perceived image appears to be psy¬ 
chologically (i.e., as an associative group) more discontinuous, but physically 
approaches continuity, even in observation, as more intermediate points or 
events become noticeable. 

a consequence of this, phonograph records, made to be played at 78 
R.P.M. and performed at 33.3 (i.e., taking mechanical speeds which are standard 

for. the phonograph turntable at the present time) appear to be subnatural 

in effect. Depending on the association with.the anticipated stimulus-pattern 
such a performance activates the response of fantastic or humorous. The obvious 
character of "mechanical inefficiency” taking place during the process of forma¬ 

tion of an image, makes such an image appear humorous. Further disintegration 

of perceptible image, caused by a still lower rate of projection, makes such an 
image appear fantastic. 
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D. Thk Lowkr Quadrants of Both Zones: 

1. Negative Zone 

Both lower quadrants represent an exaggerated version of the respective 
patterns of each of the upper quadrants. As the negative (left) zone corresponds 
to decline, its patterns are that of decomposition. When such decomposition 

exceeds its natural maximum, the pattern begins to appear discontinuous and the 
formation of an image, greatly retarded. The normally unobservable details 

become apparent and begin to obstruct perception of the pattern as a whole. 
Such an effect is comparable to the extremely magnified optical images seen 

through a microscope. As we can observe only an insignificant part of an image, 

which part is greatly magnified, we cannot reconstruct the image as a whole. 

For example, a very small portion of a man’s arm, appearing as skin surface 

with some hair growing on it, under magnification may look like a fantastic 
jungle forest. It would be difficult to stretch the observer’s imagination so 
far as to reconstruct the image of the entire arm, as the dimensional scale is too 

large. A similar situation exists with regard to the so-called "slow motion" 

of cinematic projection, in which an image, photographed at 128 frames per 
second, is cast on the screen at 24 frames per second. In temporal phenomena 

this extreme magnification of time-period obscures the image, or the process, 

as a whole, bringing out too many details, and dissociating the observable links 

of the image, or the process. With an increase in the number of images in re¬ 

cording (taking), the projected image becomes more and more stationary. 
Imagine a pugilist delivering a blow to his opponent at the rate of 2 minutes 

per blow. Such a rate, according to standards with which it would be associated, 

would appear subnatural. Thus it would be perceived as either fantastic or 
humorous. 

As it follows from the above illustrations, in the temporal projections of an 

image or a process, the rate of mechanical speed is the basic source of extending 

a time-period. For this reason, sound images, recorded for performance at a 
certain rate of speed and played back at a considerably lower rate, are bound 

to produce an effect analogous to cinematic "slow motion”. In both cases (i.e., 

optical and acoustical) of projection, the perceived image appears to be psy¬ 
chologically (i.e., as an associative group) more discontinuous, but physically 

approaches continuity, even in observation, as more intermediate points or 
events become noticeable. 

As a consequence of this, phonograph records, made to be played at 78 
R.P.M. and performed at 33.3 (i.e., taking mechanical speeds which are standard 

(or the phonograph turntable at the present time) appear to be subnatural 

in effect. Depending on the association with.the anticipated stimulus-pattern, 

such a performance activates the response of fantastic or humorous. The obvious 
character of "mechanical inefficiency” taking place during the process of forma¬ 
tion of an image, makes such an image appear humorous. Further disintegration 

of perceptible image, caused by a still lower rate of projection, makes such an 
image appear fantastic. 
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Different rates of speed for a phonograph record using the standard turn¬ 
table speeds, can be obtained through duplication, triplication and even quadru- 

plication of the original from one speed to another, i.e., from 78 R.P.M. to 33.3 

R.P.M., or vice versa. Beyond this, further variation of speed becomes im¬ 
practical, as the sound frequencies extend beyond the range of audibility, or 

beyond physical continuity. 
Many ordinary recordings of fairly animated music, when recorded at 78 

R.P.M. and played back at 33.3 are, for any practical purpose, humorous. How¬ 
ever, the presence of certain physical characteristics in the musical performance, 
when exaggerated by "slow motion” of the acoustical (i.e., mechanical) per¬ 
formance, sometimes increases the effect of humor. For example, "The Mad 

Scene” from Lucia di Lamcrmoor by Donizetti, as performed by Amelita Galli- 
Curci (a Victor red-seal record), appears incredibly hilarious when played at 
33.3. The special reasons in this case are a lack of rhythmic unison (synchro¬ 

nization) with the accompaniment (normally associated with beginners and not 
with accomplished artists), and the other, a considerable deviation from the 
required intonation (also associated with beginners who are not able to exert 
sufficient control over their vocal apparatus), which is also a form of mechanical 

inefficiency pertaining to the control of frequency. 
Nevertheless, the basic effect of humor in this case is mainly due to the 

straining of the anticipation-fulfillment chain conditioned by the pre-conceived 

image of an accomplished coloratura, from whom a high degree of alertness and 

mechanical efficiency are expected. 
In another case, the effect of humor arises from: an exaggerated form of 

vibrato, appearing at a low rate of speed, and a quick fading of sound (the 

decrease of amplitude) following each attack and combined with the afore¬ 
mentioned vibrato. Such an effect can be observed in Bing Crosby’s performance 

of My Honey's Lovin' Arms (accompanied by Mills Brothers on a Decca record), 
when the record is played at 33.3 R.P.M.. A secondary association contributing 
to the effect of humor is the anticipation-fulfillment chain, as, under such con¬ 

ditions of performance, Mr. Crosby’s voice acquires the characteristics of piano 
or Hawaiian guitar (i.e., strong attack, quick fading, exaggerated vibrato, which 

characteristics are non-vocal, but generally typical of jazz.) 
Music of slow pace and of. middle-low or low register, triplicated from 33.3 

R.P.M. performance to 78 R.P.M. recording and played back at 33.3, gives 

approximately 1/5 of the original speed. Under such conditions, this type of 

music appears to be so extended in time as to produce an extreme effect of the 

subnatural, i.e., fantastic. Something like the beginning of the Overture to 

Tannhauser by Wagner is apt to produce this effect at 1/5 of its normal speed. 

Among my own numerous experiments in this particular field, a record of 
singing canaries, played at 1/13 of its normal speed (quadruplication of the 

original from 33.3 R.P.M. performance to 78 R.P.M. recording), is as fantastic 

and unimaginable as any effect of music can be. 

2. Positive Zone 

We shall return now to an analysis of the lower quadrant of the positive 

zone. As the positive zone (right) corresponds to growth, its patterns are that 

of composition. When such a composition exceeds its natural maximum, the 
pattern appears not only continuous but extremely precipitated. At extreme 

velocities, the whole is more observable than the details. A comparable effect 
rnay be observed in the case of an extremely reduced optical image (seen through 
the reverse side of a binocular or a telescope for instance) or in the appearance 

of extremely remote images, however big in size (the moon, the planets, re¬ 
mote details of a landscape, etc.). In cinematic projection, such a situation 

occurs when a film exposed at 8 frames per second (as in the early days of the 
cinema) is projected at 16 or 24 frames per second. Today the old films (or 

similar use of "accelerated motion” for special effects) infallibly produce a 

humorous effect when projected at 24 frames per second, and the photographed 
motion itself appears to be fantastic. 

The period of a given movement becomes so short that the observer can only 
seeits initial and its final phases, and misses all the intermediate ones. As such 

speed is inconceivable for human beings, automobiles, trains and even airplanes, 
the accelerated motion” appears supernatural. For this reason, it is perceived 

as either fantastic or humorous. Animated cartoons use a great deal of this 

technique of over-efficiency, as it means, besides the intended effect, economy 

m the number of individual drawings required to represent individual phases 
of given movements. 

Thus, varying the rate of speed of the temporal projection of an image is, 
m this case, the basic device for contracting a time-period. For this reason, 

sound images recorded for a performance at a certain rate of speed and played 
back at a considerably higher rate, are bound to produce an effect analogous 

t0 < acceIerated motion”. Phonograph records made to be played 
at 33.3 R.P.M. and performed at 78 R.P.M. appear to be supernatural in the 

effect of mechanical over-efficiency, and activate responses of the fantastic or 

humorous. !n case of music, these effects are associated with the performing 
skill of individual artists. For example, no pianist can move his fingers at a 

speed which is several times greater than the known speed of a virtuoso pianistic 

performance, yet music recorded at 33.3 R.P.M. and played back at 78 R P M 

dietails of musical images, and including all the individual attacks, 
with full clanty. This translation of speed produces a miracle of technical ac¬ 

complishment for even an unaccomplished performer. A smile is the usual form 
o response to such a speed translation: the performance, as it appears to the 
listener, is too good to be true. 

_ formS °f acceleration achieved by triplication and quadruplication 
tToV*8 *° 333 R P M., each duplicated version to be played at 78 

-P.M., become incredibly fantastic. Besides exceeding any imaginable me- 
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chanical efficiency, such versions change pitch and tone-quality to a considerable 
extent. Any male speech in the first duplication becomes that of the Disney 
character “Donald Duck; any female speech, that of “Minnie Mouse”. Male 

singers, particularly in choirs, produce a hilarious impression which cannot be 
verbally described. Female singing in its triplicated version (approximately a 

quintuple speed when played back at 78 R.P.M.) approaches very closely the 

singing of birds. However, my experiment in slowing down chirping of canaries 
produces a grotesque effect of howling wolves rather than female singers. This 
merely shows that our discrimination of tone-qualities of very high frequencies 

is quite poor, because physically such forms should be reversible. 

The late tenor Enrico Caruso sounds at half speed like a cow (particularly 

when the consonant “m” is combined with an open vowel). I did not have an 
opportunity to convert a cow into Caruso by reversing the process. In my 
quadruplicated version of the Overture to Tannhauser (approximately 13 times 

the speed of the original), the entire composition runs one minute. The incredibly 
fantastic character of this version is due to three factors: first, the unbelievable 

mechanical efficiency of performance per re; second, reversal of the anticipated 
dignified character of this composition in its original form (all versions were 

made from my own recording of Arturo Toscanini conducting the National 
Broadcasting Symphony Orchestra); third, the physical image of frequencies, 

which episodically vanish beyond the audible range. 

A study of music written by the recognized experts of the humorous, such 
as Modeste Moussorgsky, and of the responses of listeners to such music, show 

that the problem of creating humorous music has not been solved. Music com¬ 
bined with words (i.e., vocal music) in some cases stimulates the response of 

humor not by virtue of the music, but by virtue of the words which activate 
humorous associations. This is easily proved by playing such music on some 

instrument (or instruments) to somebody who has never heard it before and is 

not familiar with the accompanying text. Likewise instrumental music which is 
programmatically humorous, does not generally appear as such to a listener 

unaware of the program. 

On the other hand, in many public performances we have witnessed audiences 

laugh, and laugh very heartily, at music which was not intended to be humorous. 
Such is the case on occasion of the first performances of new and very original, 

i.e., unconventional, compositions. Just about ten years ago, at a chamber 

concert sponsored in Town Hall by the League of Composers of New York, 
a Chamber Suite by Anton von Webern (for 14 instruments) was performed by a 

group of very skilful musicians under the direction of Eugene Goossens. Such 

concerts $re generally attended by an audience which can appreciate and often 

enjoy extreme contemporary creations. Yet in the case of Mr. von Webern's 

Suite, the audience rolled in laughter as if it were extremely humorous. 

On the basis of the theory, which I have advanced, it is easy to explain 

why a certain composition which is intended to be humorous does not appear 

as such at all, and why a composition, as serious as possible, may make people 
laugh. The explanation is very simple: music is humorous when it gives the im¬ 
pression of extremely low or extremely high efficiency. In von Webern’s case, both 

these forms were present. On the one hand, the durations were very long or 

staccato, followed by very long rests; on the other, there were so few attacks 

to each movement of the Suite that each movement lasted only a few seconds, 

during which very few things happened; finally, the range was extremely wide, 
while the frequencies followed the course of extremely sudden changes from one 

end of the whole range (low pitches of Bassoon) to the other (high pitches of the 
Flute and Piccolo). The reaction to this piece as being humorous, of course, 

was the result of previous conditioning. From a philosophical standpoint, there 

is nothing inherently humorous in a vacuum. And this piece was a vacuum, 
since very few material sound-particles, or sound-images, appeared in a very 

broad range. But then the whole astronomical universe, which is a greater 
vacuum than we can produce artificially in any laboratory, must appear to be 

still more hilarious. Yet there is a reason why this does not happen. While the 

vacuumatic quality of the von Webern's Suite is immediately apprehensible 

auditorily, the vacuumatic quality of the universe is not immediately appre¬ 

hensible visually. Besides we are not conditioned by any previous experience 
to a less vacuumatic universe. 

What composers of supposedly humorous music have missed is that effects 

of the humorous and of the fantastic are primarily agogic (i.e., pertaining to speed) 
and cannot be expressed by purely intonational devices, such as melody, harmony, 

counterpoint or even tone-quality, unless such tone-quality is an imitation of 

sounds associated with the humorous (like the wow-wow trumpet effect in jazz 

music, or Rubinoff’s laughing violin), or is a product or a result of an agogical 

process. By the latter, I mean tone-quality which appears to be humorous, owing 

to the excessive speed of projection, as in the case of a bass-clarinet performed at 
double speed. 

It is true that a melody which is overloaded with resistances and does not 

move to a considerable climax, as well as a melody having extreme climaxes not 
adequately prepared by resistances (or, better, by any resistance at all) does 

appear humorous—but only to a slight degree and only to a highly discriminating 
audience. 

The real sources of stimuli activating spontaneous responses of the humorous 
or the fantastic are, as we have seen, purely agogic. As our frequency-response 

(we mean the regular auditory response to sound-frequencies) is at the same time 
.an intensity-response, the loudness of perceptible sound becomes an important 
component of the lower half of the psychological dial. 

The right approach in composing sonic symbols, which are intended to 
stimulate reactions of the fantastic and the humorous, is to reproduce charac¬ 
teristics associated with extreme forms of acoustical projection. It is for this 

reason that we discussed the subject of recording and reproducing speed. 
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3. Technical Resources: 

Still considering the mechanical extremes* of accnstical projection to be the 
best means for this purpose, we offer, nevertheless, a parallel table of the common 

technical resources which, in the absence of technical facilities, will serve as the 

next best choice. 

(^) Low register. Extremely low speed. 

Low intensity. 

Suitable instruments: Double-Bass; 

Contrafagot; Tuba; low register of the 

Harp or Piano; low register of the elec¬ 
tronic instruments, or of the pipe- 

organ. 

(2) The lowest audible register. Still 

lower speed and longer durations. An 
extremely slow vibrato, artificially ob¬ 

tained either by producing slow beats 
in the low register or by very slow semi¬ 

tone trills. Very low intensity. 

Suitable instruments: the 32' pedal 
of the pipe-organ or its electronic equi¬ 

valent; the lowest register of Double- 
Bass, Contrafagot and Tuba. 

Percussion: gong. 

Rests, when inaudibility is to be re’ 
presented. This may affect only the 

lower parts of musical texture, such as 

harmony. 

(j) Music almost stops altogether. 
0° One pitch unit is formed in the 

form of a trill, which is extremely slow 
and alternately stops and moves. 

0 High register. Extremely high 
speed. High intensity. 

Suitable instruments: Flute Piccolo; 

high register of the Clarinet Piccolo; 
high register of the electronic instru¬ 

ments, or of the pipe-organ. 

C3 The highest audible register. Still 
higher speed and faster durations. 
Abundance of staccato and accents. An 

excessive and extremely fast vibrato, 
artificially obtained by trills or frulato 

(flutter-tongue); in some cafees by beats 
caused by minor seconds in high reg¬ 

ister. Very high intensity. 
Suitable instruments: highest pipe- 

organ registers or their electronic equi¬ 
valents; the highest register of Flute, 

Piccolo, Harp and Violin (for vanishing 

sounds approaching the high limit of 

audibility). 
Percussion: triangle, clavis (Cuban), 

etc. 
Partial inaudibility effect can be 

achieved by eliminating the upper parts 

of musical texture, leaving the bass as 
the only audible part. 

0 Intonations changing with ulti- 

360° mate velocity (such as scalewise 

grace-note groups on Flute, Piccolo): 
glissando of the highest Violin positions; 

also glissando of the highest positions- 

on the space-controlled Theremin, or 
its equivalent; rapid passages in the 

highest ranges of the pipe-organ or 

electronic organ. 

Figure 86. Table of resources for producing humorous and fantastic effects. 
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nr0" 0th,er , pertam,n* to the lower quadrants of both zones 
are produced on the: basis of association by contrast. Such contrast can be achieved 
only through another stimulus pattern, executed in a different medium from 

h L70St Tfatt forms of the basic stimuli are optical images and 
verbal symbols to which sonic symbols are composed as counterstimuli 

The basic associations by contrast, with respect to the lower quadrants 
of both zones pertain to mechanical efficiency, power, dimension and density. 
The selection of a counterstimulus to a given stimulus must be performed on the 
basis of dial-reciprocity. For example, if the symbol can be located on the 

psychological dial as 0, the countersymbol must be Q, i e„ it must have 

the same angle as the symbol only in the opposite quadrant. This proposition 
controls both quadrants in their entirety until they reach the 0° and 360° point 

The basic symbols appear as images on the stage or the screen (cinema, 
television), or as ideas stimulating imaginary optical forms, as in the play, the 
poem, the narrated story received through a broadcast. 

The humorous effect results from the anticipation conditioned by an actual 
or imaginary situation, and the conflict created by fulfillment. For example 
the symbol of a giant conditions anticipation of a powerful, low voice, for the 

dimensions of a giant, by previous conditioning, suggest large vocal cords 

Therefore, in order to create an effect of humorous, it is necessary to compose 

a counters.,mulus of the opposite character, i.e., a high frequency anc low in¬ 

tensity sonic symbol This sonic countersymbol would create conflict between 
anticipation and fulfillment, i.e., between the optical symbol and the inversely 
corresponding sonic countersymbol. y 

As the quadrant positions are reversible for symbol and countersymbol we 

can put a mouse in place of a giant, and supply the tiny creature with a powerful 
basso, in which case the resulting effect will still be humorous 

«J:„ttVtheBe U1U8trati0nS’ the aSSOciations were based on dimension-fre- 
m*nsuVnte*aly correspondence. As a result, the density 

b^rsr V 80 affected' s,nce a Powerful basso is more saturated soun 'by 
coulri l" °ft ^PhyS1 characteristics) than a weak high-pitched sound. We 
could also introduce an association by contrast on the basis of mechanical 

by addln? aB°fcal.characteristic to both our illustrations: the giant 
has a weak high-pitched voice and, besides, speaks very slowly or stutters- 

SMateT’ 0V\0tlr ha"d'addition to havin8 a powerful low-pitched voice,’ 
speaks at such a high speed that it makes his speech almost incomprehensible. 

renoir k,™8 a8s0clation Producing an effect of more subtle humor, 
require a considerably greater degree of refinement in the responses of an audience 

and TZL Tnte- Symb°‘ f°r 3 giant ra*in* in furious violence, is quiet 

contelZLTh mUB,C; °r •" a 8Cene SUBKeSting ■"“**. P-ce, silence and 
contemplation, die accompanying some countersymbol is crude, harsh and noisy 

music^But such countersymbols are effective only in the case of an audience 
equipped with highly developed associational responses. 

Not only frequency and intensity can serve as a medium for creating humor¬ 
ous effects through association by contrast, but also the forms of attack in their 

inverse correspondence to movements and actions. For example, angular and 
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abrupt movements can be accompanied by sonic symbols ot extreme fluidity 

(legatissimo). Such an approach can be successfully applied to the staging of a 
humorous dance. The opposite, i.e., fluent movements accompanied by music 

with abrupt (staccatissimo) attacks, would produce an equally humorous effect. 
Associations by contrast can be applied with the same amount of success 

to effects of the supernatural. For example, a poor and simple herdsman gets 

a horn or a pipe as a present from a stranger. The pipe looks like a very ordinary 
one, but in actuality it is enchanted. When the poor man begins to play, it 

sounds like a large and glorious orchestra with harps, human voices and an 
organ. Thus the conflict between anticipation and fulfillment is created on the 

basis of inverse correspondence between the primitive crudeness of the pipe (^) 

and the sonic countersymbol of rich and glorious music 

All other forms of associations by contrast, which do not pertain to the 

lower quadrants, will be discussed in the following exposition. 

(2)“Beautiftil Dreamer” 

Figure 87. Varying the tempi. 

The above must sound one octave higher and may be accompanied by a high 

pizzicato of strings, with a fill-in by the glissando of xylophone, also high. 

CHAPTER 19 

COMPOSITION OF SEMANTIC CONTINUITY 

CONIC symbols, acting as associations! stimuli, may assume numerous forms 

of simultaneous and sequent coordination. In many instances, contrasting 
and even conflicting patterns may become simultaneously or sequently adjacent 

Under no circumstances should this deprive the continuity of its stylistic unity. 
The conflicting character of patterns does not imply conflicting systems of in¬ 

tonation and temporal organization of durations. Just as tranquility and ex¬ 
citement may be expressed in a poem written in one language, unity of the forms 

of musical expression is a necessary esthetic condition. In cases where the very 
nature of association requires hybrid forms, such hybrid forms must be unified 

by some one component. For example, in a rapid transition of reminiscences 
associated with different countries and nationalities, it may be desirable to ex¬ 

press the different corresponding intonational forms through melody; yet a 
sequence of such melodies, bearing no resemblance to each other, i.e., based 

on the pitch-scales belonging to totally different families, may be stylistically 
unified by a certain form of harmonization applied to the entire continuity. As 

we have learned before, symmetric harmonization provides such a unifying 
technical resource. 

The form of ^mantle continuity may be either uninterrupted or interrupted 
I he first takes place in a program composition, such as an opera or a symphonic 

poem or background music written for the stage, screen, radio or television 

production; the second is characteristic of fragmentary and often isolated sonic 
symbols serving as musical cues in the same types of production. 

As the temporal organization of the plot of a play or a script is in the hands 
partly of the playwright and partly of the director, there is very little that the 

composer can do in this particular direction. In most cases the composer is called 

to do his job when it is too late, as the temporal organization of a plot is in the 
hands of people who know too little, if anything at all, about such matters. 

On the basis of principles evolved and disclosed in my major work, Mathematical 
Basts of the Arts it is possible to evolve the temporal structure of a plot and to 

coordinate it with the temporal structure of music into one organic whole by 
a purely scientific method. As such a luxury is not to be found in contemporarv 

production-units yet, the composer can only try to do his best under the cir¬ 

cumstances. For this reason we shall not discuss the technique of the temporal 
coordination of plot-music at present. 

For*he composers who intend to write music to their own program, we would 
Uke to otter a few basic suggestions. 

Select a plot. Distribute the plot over a group of events (episodes). Analyze 
the sequence of episodes on the basis of our semantics (i.e., establish the relation¬ 
ship of episodes to balance, tension and release, anticipation and fulfillment 
climaxes, etc.). Classify the episodes according to their importance. Give the 

*To be published shortly. 

{14611 
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episodes of primary importance the longest time-periods. Give the secondary 
and tertiary episodes shorter time-peridds. Organize the entire temporal scheme 
according to such a selection. Write a continuity of sonic symbols to satisfy 
the temporal scheme of the plot. 

Our main problem lies in the field of techniques pertaining to modulation 

and coordination of sonic symbols, by which the production of semantic con¬ 

tinuity is accomplished. 

A. Modulation of Sonic Symbols 

The character of transition may be either sudden or gradual, and its tech¬ 

nical forms either temporal, intonational or configurational. 
Sudden transition introduces adjacent contrasts, characterized by the lack 

of commonness. Technically, such a transition is the negation of graduality. 
Gradual transition represents the transformation of one sonic symbol into an¬ 
other. The degree of graduality depends on timing. Modulation of one symbol 

into another can be accomplished through any technical component (i.e., tem¬ 
poral, intonational, configurational), by means of a common or a neutral form, 

i.e., such a form which is common or neutral, with respect to pre-modulatory and 
post-modulatory character of the respective sonic symbol. 

1 Temporal Modulation 

Transition of one stimulus-pattern to another often requires a change from 

one temporal pattern to another in the respective sonic Symbol. Sudden transition 
implies only negative requirements: the absence of common characteristics. 

Gradual transition necessitates either neutralization of the preceding duration- 

group by introducing uniformity of t for the modulatory period, nr by introducing 
a recurrence of the last duration-pattern of the pre-modulatory temporal group 

if such a pattern can be accepted as common for both (i.e., pre-modulatory and 

post-modulatory) groups. The commonness of a duration-pattern does not 
necessarily mean the commonness of T". 

(a) March to minuet: ~ j*' 

ir pc/Grir dir i 

If CJ’CJ’L/lf r ILT LT LT ILJLIVJ I 

iGfr Mtrtrtr ir lcj* lrffln/lr it n 
Figure 88. Temporal, modulation (continued). 
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(b) Walt, to march: | | f UJ I f Zf W I 

iurr * ir llt nr u zs \zjzjzj i 

\tznmn\r r irrrr irprr ir r i 
modulation 

i r lcj- r r irptur irrrcirir m * n 
9 3 3 

(c) Blues to polonaise: « % ff JJ JJ ff jj | p jjf p | 

i tiszuvr [is i crrr ml m zuziimw i 
* 4 

modulation 

j m 
7 ZfZJ * 

j m 
7 ZJZJ * 

mn jm nj * * * * 
* i * it r hjlt r i * 

<9 

Figure 88. Temporal modulation (concluded). 

2 Intonational Modulation 

AH problems pertaining to intonational modulation received full attention 
in the respective chapters of various branches of this theory. 

Modulatory forms of melody are accomplished either by modal transposition, 
or by permutation of intervals, or by one of the modulatory techniques proper 
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(common tones, chromatic alterations, identical motifs). Modulatory forms of 
correlated melodies (counterpoint) are obtained either by harmonic or by contra¬ 

puntal technique of modulation (sequent modulatory coordination of melodies). 
Modulatory forms of harmony consist of the following techniques: computative 

technique (see: Application of the Generalized Symmetric Progressions to 

Modulation)* applied to the distribution of the interval-group between the pre- 
modulatory and post-modulatory harmonic groups; direct modulation by altering 

the units of a modulatory chord, as described in the chapter on modulation in 
the Special Theory of Harmony,** indirect modulation (i.e., a modulation con¬ 

taining intermediate keys), as described in the same chapter. 

Since in the modulations from one sonic symbol to another, axis-modulations 

are less essential, in most cases, than the modulations of the structural pattern 
of intonation (i.e., the modification of a chord-structure achieved by the re¬ 

distribution of intervals), the latter are accomplished mostly by means of a Co. 
Direct transitions are based on the uncommonness of pitch-units in the adjacent 
assemblages. For this reason, C7 and C-7 is one of the most suitable resources 

and particularly in the symmetric forms (v^ and \^2)- Instantaneous change 
from positions (a) and © to © and (3)'is another excellent device for a sudden 

transition. 

3 Configurational Modulation 

Sudden change from one pattern to another does not require any technical 
considerations, as each pattern is a definite associative stimulus, and we are 
conditioned to produce instantaneous changes in our responses when such changes 

take place in the stimulus. 

Gradual modulations from one configuration to another are based on two 
fundamental techniques: (1) neutralization of a pattern and (2) introduction 

of a common pattern. 

The first technique consists of gradually depriving the pre-modulatory pat¬ 

tern of its individual characteristics, such as the axial combination and the 

trajectory. This technique is based on the assumption that the neutral pattern 
is that of balance, i.e., of uniform periodic motion, associated with the 0-axis 
and the sine-wave. Thus, the growing dominance of the 0-axis constitutes a 

neutralization of any other form of stimulus. In this sense 0-axis is a neutralizer 
of all characteristics but repose, and for this reason is expedient as an "inter- 

eventual” link. The most gradual forms of neutralization are those in which the 

effect of the 0-axis is such that it influences the decrease of amplitude in the pre- 

modulatory axis (or axial combination), whatever such combination might be. 
In this case the pre-modulatory pattern (mostly its last axis) repeats itself with 
decreasing amplitudes (a fading effect). 

•See Vol. I, p. 492. ••See Vol. I, p. 524. 

pre-modulatory pattern modulatory pattern post-modulatory 
pattern 

Figure 89. Neutralizing a pattern. 

The second technique is based on recurrence of the pattern which is identical 

for both, the ending of the pre-modulatory and the beginning of the post-modula- 
tory group. Such a common pattern is an axis (or axial combination) and a 

trajectory. 
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Configurational modulation is a resource by which one stimulus-pattern 
can be changed into another through the increasing dominance of one pattern 
over another. We have encountered such situations in the Theory of Melody,* 

where rhythmic resultants were applied as coefficient-groups controlling the rise 
of one axis and the decline of another. 

For example: 4a + b -f 3a 2b -f 2a -f- 3b 4* a -f 4b produces the declin¬ 
ing dominance of a and the increasing dominance of b, which situation illustrates 
a configurational modulation from the stimulus “a" to the stimulus “b”: 

Figure 91. Graphic representation of 4a -f* b -f 3a -f 2b -f- 2a -f 3b + a -f 4b. 

This case may psychologically correspond to a transition from dominance to 
compliance. 

Configurational modulation is applicable in its respective forms to melody, 

harmony, counterpoint. In all these cases, patterns correspond to melodic 

trajectories, whether self-sufficient as in melody, or conjugated as in harmony 

and counterpoint. Configurational modulation can also be applied to the pat¬ 

terns of density and dynamics. The method of application remains the same 

as in the intonational patterns, but the meaning of balance or neutral configura¬ 
tional equilibrium lies in the center between the two extremes of density and 

dynamics. Neutralization of the extreme forms of density (low or high) is ac¬ 
complished by resorting to medium density, which forms a general primary axis 

of the density-patterns. Neutralization of extreme dynamic forms (pp and ff) 
is also accomplished by the use of the intermediate dynamic degree (mif) acting 
as a neutralizer. 

Common patterns of density and dynamics, linking together the otherwise 

contrasting or conflicting pre-modulatory and post-modulatory configuration- 
groups, serve as another technique of transition from one stimulus to another. 

♦See Vol. I, pp. 261 and 275. 
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Examples of neutralization 

(a) density: 

1. pre-modulatory pattern 

2. modulatory pattern 

3. post-modulatory pattern 

Figure 92. Neutralization of density. 

(b) dynamics: 

S/P + s/pp 4- pp < / +/ > m/ + m/ +ff 

1. pre-modulatory pattern 
2. modulatory pattern 

3. post-modulatory pattern 

Figure 93. Neutralization of dynamics. 
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Examples of a common pattern 

(a) density: 

Figure 94.- Common pattern in density. 

(b) dynamics: 

Figure 95. Common pattern in dynamics. 

Finally, configurational, modulation can be applied to tone-quality, instru¬ 
mental forms and attack-groups. Here, too, either neutralization of extreme 
patterns or configurational similarity serves as a modus of transition from one 
stimulus-pattern to another. 

Instrumental forms which I view as essentially generalized arpeggio forms 
combine melodic and density configuration. In them a modulation from one stim¬ 

ulus-pattern to another is performed either by neutralization of the arpeggio form 
y changing it gradually into a sustained chord, after which a new post-modula¬ 

tory form begins, or by transition through a common pattern. If the arpeggio forms 

arealike in the pre-modulatory and the post-modulatory groups, the modus of 

transition is confined to amplitudinal variation: technically it corresponds to the 
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transition from one form of tonal expansion to another. Modulations represent¬ 
ing a variation of density in an arpeggio form are performed by a gradual increase 

or decrease of the number of simultaneous attacks in the arpeggio. 

Tone-quality modulations are also configurational modulations in the phys¬ 

ical sense, as they represent a transition from one pattern to another. These 
modulations therefore are subjected to the same principles, as all other con¬ 

figurational modulations which we have already discussed. Empirically speaking, 

the change in the configuration of a tone-quality is accomplished, not by a 
physical transformation of one pattern into another* as they can be seen on the 
screen of an oscillograph, but by the pure techniques of orchestration, i.e., by 

the increase of timbral ingredients of one kind and by the decrease of timbral 

ingredients of another kind. 

For example, a gradual transition from Qi (on a 5q scale) to Qv may be 

illustrated as follows: 

2FI-W+S § (qn) + ft. H + FTH <q™> + 

Fag_ Fag Fag_ Trump (•) ( } 
' Fr. H ’ Fag ^ iv; + Tromb (•) + Tromb (•) ^ v'* 

A greater graduality as we have seen before can be accomplished by the 

human voice, where the modulation of a pattern may be performed by the 

modification of vowels. 

Finally, configurational modulation of the attack-forms (embracing the 

legatissimo-staccatissimo scale) can also be performed, either through neutraliza¬ 
tion of the patterns possessing extreme characteristics (like legato or staccato) 

through introducing the neutral pattern of portamento, or by connecting the 
pre-modulatory and the post-modulatory groups by means of a common pattern. 
In addition to this, as in the case of amplitudinal variations, a gradual transition 

through the scale of attack-forms, from one extreme pattern to anothe., con¬ 

stitutes a modulation. For instance, a pre-modulatory pattern being staccato 

may gradually be transformed into legatissimo: aiv 4* am 4* an + ai (i.e., stac¬ 

cato, portamento, legato, legatissimo), in which case legatissimo is the form of 

the post-modulatory pattern. 

Range and register, as configurational stimuli, provide their own forms of 
transition and may serve as links connecting otherwise different patterns. For 

example, the commonness of range or register may bridge different intonational 
or timbral forms. On the other hand, gradual transitions from one register to 

another, as well as amplitudinal range-variation, can serve as modulatory tech¬ 

niques. 

*Th» will undoubtedly be done in the near electronic organ built by Leon Theremin, 
future; I did it in 1932 by means of a special —J.S. 
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B. Coordination of Sonic Symbols 

As all our differentiated sensations developed in the course of biological 
evolution from c.ie general tactile fore-sensation, so did our music develop from 

monody into the complexity of contemporary scoring. And though at one time 
or another a certain sensation may dominate over another, in actuality we have 

no pure sensations. The dominant sensation stands out by its intensity though 

it is conjugated with other sensations. The gamut of sensations can be compared 
to l certain extent with the acoustical phenomenon of timbre, where one fre¬ 

quency dominates over other frequencies with which it is conjugated and which 
are its partials. Of course, the sensational mechanism is much more complex 

than this, as it contains not only simultaneous and sequent processes, but also 
overlapping ones. As one sensation is in progress, another may be just activated 
and still another may be in its decline. 

It is only natural that the art music, which, in its present state of com¬ 
plexity, is employed as a connotative Hnguage of sonic symbols, should be flexible 

enough to produce a worthy counterpart of human sensations, not only in their 
isolated but also in their combined forms. Combined pattern-stimuli activate 
combined responses. And such stimuli may be created by simple or complex 

conjugated sonic symbols, each symbol being represented by the individual or by 

the group-components. Complex stimuli may also be produced through co¬ 
ordination of various art media where music, in all its complexity, becomes only 
one (simple or complex) component of the whole. 

It is not our purpose to discuss here the semantics of other arts than music 
and their possible forms of correlation with music. For this reason our analysis 
of processes involving complex stimuli shall be confined solely to music. l.et 

us suppose that the source of sonic symbols, simple or complex, is a text. The 

complexity of combined stimuli would derive from a certain treatment of the 

same text. For example, we may choose two dissociated events from a scenario 

and present them as two simultaneous conjugated sonic symbols. Tn this case, 

one symbol may parallel the present event, while the other may stimulate the 
presaging or premonition of another event to come. A scene of gaiety, taking 
place on the stage or screen, may be combined with a group of parts in the 

musical score, which have the same gaiety pattern. At the same time, a certain 
thematic counterpart of the same score may reflect the impending disaster, of 
which there is no sign in the respective scene. 

As scripts and scenarios nowadays cover almost any imaginable situation, 

the composer must be so well equipped that he would never be caught unawares. 
Instead of the romantic “love in moonlight” he may face the problem of con¬ 
noting a “day in an insane asylum” or “rush-hour at the Times Square shuttle”, 

which cases call for all the dial positions to be employed simultaneously, as the 
gamut of associations in such cases ranges from normal to abnormal. 

The correlation of sonic symbols pertaining to various pattern-stimuli, first, 
implies the selection of such stimuli as a combination and, second, discovering of 

the conditions under which such coordination can be performed. 
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In actual application, the stimulus-response scale, as represented on our 

psychological dial, can be greatly increased by our usual method of inserting 

intermediate forms between the basic forms already represented on the dial. 
Thos, the configurational scale can be extended to 12 or more patterns. Such 

details must be left to the initiative of the composer. Our present problem is 

to classify as simply as possible the combinations of the different patterns with 
each other in order to establish the basic procedure for producing scales of the 
combined complex stimulus-patterns and their corresponding combined complex 

sonic symbols. 

For this reason we shall confine ourselves to the eight-pattern scale, which 
corresponds to an eight-point dial. Thus, mathematically, the entire problem 

is to compute the number of combinations possible out of 8 elements. 

Table of Combinations of the Sonic Symbols Evolved in Accordance 

with an Eight-Point Stimulus-Response Dial. 

C - - 8! - g 
1 ! (8-1) ! 

aC2 + 2 ! (8-2) ! " 28 

r - 8 1 _ q* 
* 3 ! (8-3) ! 6 

r Si 
*Ci 4 ! (8-4) ! ° 

r - 8! - 
sU 5 ! (8-5) ! 56 

C 8 1 - 

8 6 ! (8-6) ! 

C 81 g 
*Ll 7 ! (8-7) ! 8 

Figure 96. Combinations of sonic symbols. 

Thus there are 8 cases when 1 pattern out of 8 is used at a time; 28 cases 

when 2 patterns out of 8 are used as a combination; 56 cases when 3 patterns 

out of 8 are used as a combination; 70 cases when 4 patterns out of 8 are used 
as a combination; 56 cases when 5 patterns out of 8 are used as a combination; 

28 cases when 6 patterns out of 8 are used as a combination; 8 cases when 7 
patterns out of 8 are used as a combination. Then the total of all these combina¬ 
tions which are at the composer’s disposal, when he is limited to an eight-point 

dial, amounts to: 8 + 28 + 56 -+• 70 -f- 56 -f 28 + 8 — 254. To this, we can add 
one combination of all 8 elements, thus making the total: 254 1 » 255. 
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Of course more complex forms of the above combinations are used rather 

seldom. Strata harmony is the most suitable technical resource for evolving 
more or less complex combinations of sonic symbols. 

Our next stage is the method of classifying configurational characteristics 
as they appear in combined patterns. 

All patterns belonging to one quadrant must be considered as identical 
patterns !of different intensities. The growth of intensity follows the clockwise 

direction in the positive zone and the counterclockwise direction in the negative 

zone. Thus, for example, the pattern of is identical with, but more intense 

than, that of (Q- Such reasoning is applicable to all quadrants. 

Patterns belonging to different quadrants may also vary in intensity, but 
they are to be considered non-identical. 

C. Classification of the Stimulus-Response Patterns, to be 

Represented as Combined Sonic Symbols, on the Basis of 

their Intensity of Configurational Identity 

(1) identical patterns of identical intensities; 

(2) non-identical patterns of identical intensities; 

(3) identical patterns of different intensities; 

(4) non-identical patterns of different intensities. 

Illustrations: 

(a) Two craftsmen who are partners in the trade and are not rivals have a 

different degree of skill in making, let us say, Christmas tree ornaments. 

The problem of the composer is to produce a combined sonic symbol of 

two identical patterns of different intensities. Superior accomplishment 

corresponds to the pattern of greater intensity. Thus expressing the 
less accomplished craftsman as A and the more accomplished craftsman 

. A _ © 
as B, we can establish the following correspondence: — = >=\ 

B 0 

The resulting symbol B may acquire a wider range, higher mobility 

and higher intensity (of sound) than symbol A. Both may be expressed 
as self-sufficient but correlated melodies, or as an accompanied counter¬ 
point. 

(b) The old story about a poor young man in love with a rich young girl: 

the girl’s parents in a united coalition of the entire family clan create 

unsurmountable obstacles and the marriage is called off; both boy and 

girl are in despair. The positive pattern of love and hope (i.e., if our 
sympathy is on the side of the young couple) is counteracted by a more 

powerful negative pattern of the family’s opposition. The composer’s 

problem is to produce a combined sonic symbol of two non-identical 
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patterns of different intensities. Let the young couple be A and the 
family—B. Now we can establish the following pattern-intensity cor- 

A 
respondence: - =* )><. The evil forces (i.e., evil from our viewpoint) 

B (V) 

pull counterclockwise, overpower and win, bringing A into the negative 
zone. Here are the considerations for composing the corresponding 

sonic symbols for A and B. 

Symbol A modulates from the positive into the negative zone under the 
pressure of B, which retains its constant'characteristics of the negative pattern 

of high intensity, high dynamics and density (coalition). The B pattern is 

negative in the sense that it is a destructive and not a creative force. By virtue 
of its characteristic, B pattern is a counteracting force and for this reason must 

have the axial characteristic opposite to that of A. As the A pattern obviously 
corresponds, in its initial phases, to a-axis, the B pattern must be expressed by 

b-axis of greater amplitude than the first phase of A. The effect of the B pattern 
upon the A pattern is such that a-axis gradually loses its momentum and goes 

into decline, transforming itself into b-axis. 
This can be represented diagramatically as follows: 

A 0OOOO 
_ --or 

B O 

Figure 97. Two non-identical patterns of different intensity. 

The above identity-intensity pattern classification must now be supple¬ 

mented further by the characteristic of constancy or variability of the pattern. 

Then the original 4 forms become, in turn, quadrupled: 4s = 16. The basic 
classification represents the original phase from which the departure is made. 

(1) identical patterns of identical intensities: 

(a) const, identity, const, intensity; 
(b) var. identity, const, intensity; 

(c) const, identity, var. intensity; 

(d) var. identity, var. intensity; 
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(2) non-identical patterns of identical intensities: 
(a) const, identity, const, intensity; 
(b) var. identity, const, intensity; 
(c) const, identity, var. intensity; 

(d) var. identity, var. intensity; 

(3) identical patterns of different intensities 
(a) const, identity, const, intensity; 
(b) var. identity, const, intensity; 

(c) const, identity, var. intensity; 
(d) var. identity, var. intensity; 

(4) non-identical patterns of different intensities: 
(a) const, identity, const, intensity; 

(b) var. identity, const, intensity; 
(c) const, identity, var. intensity; 

(d) var. identity, var. intensity. 

In this table “constant’' means a “constant form of relationship” with 

regard to the identity or intensity of the conjugated symbols; likewise, “variable” 
means a “variable form of relationship” in the same sense. 

In the case of the unfortunate couple in love, the hope for marriage and 

happiness, represented by A, was a pattern of variable identity and variable 

intensity, while B was a pattern of constant identity and constant intensity. 

The basic relation of g was that of non-identical patterns of different intensities. 

The fact that A was variable in both respects, made their relationship appear 
variable in the same respects. 

The ultimate number of variations of all kinds, possible for each original 
relationship, depends on the number of individual symbols, conjugated into a 
combined complex symbol. 

When sonic symbols are combined with script symbols or with each other 

into a combined complex symbol (the latter ultimately acquires the form of a 
score), their correlation assumes one of the following forms: 

(1) parallel; 

(2) contrary (inverse); 

(3) oblique. 

Parallel implies identity of symbols and is the most obvious and, for this 
reason, the most generally used form of association. 

Contrary implies an association by contrast or juxtaposition, such as gay 

music to a sad scene or vice-versa; or two conjugated sonic symbols, each stimulat¬ 
ing one of two contrasting associations. 
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Oblique implies either a deviation from identity to non-identity, or from 

no.i-identity to identity. This can be graphically illustrated as follows: * 

Figure 98. Parallel and contrary correlation. 

Such is the case when friends gradually become enemies or enemies become 

friends; also when a gay scene is accompanied by music, modulating from gay 

to sad, or vice-versa. 
In addition to all the previous relational classifications, there still remains 

the general category of temporal congruence. 
Temporal congruence may emphasize either complete events, represented 

by sonic symbols, or their individual phases. Each event generally consists of 

five basic phases: generation (beginning, origination), growth, climax (goal, 

maximum), decline (anticlimax, balancing tendency), degeneration (completion, 

end). 
As combinations of events take place in the interaction, simultaneous (syn¬ 

chronized) associations constitute only one form of temporal congruence. The 

two other forms represent the anticipated and the delayed associations. 
The anticipated associations (i.e., that of presaging, premonition, etc.) re¬ 

present the event to come, at a time when another event takes place (this other 

event may be executed as a different thematic component of the same score 
and can be carried out either in the same {music] or in a different [words, action] 

medium). 
The delayed associations (i.e., that of recollection, reminiscence, etc.) re¬ 

present a past event at a time when another event takes place. 
From a technical standpoint, all forms of correlation of sonic symbols into 

their conjugated combined complex forms can be executed by identical, partly- 

identical, or non-identical groups of musical components. 
Materials which illustrate the processes analyzed and systematized in this 

exposition are profusely scattered throughout all the program and operatic 
music, written by the competent composers of all ages. In my opinion, most 

of the so-called “great composers” produced in many instances impressive music 

because they had a high intuitive notion of configurational semantics, that is, 
they felt music in terms of patterns—which ability is lacking in most of our con¬ 

temporaries. At the same time these men of the past had, in most cases, a very 
crude technique in handling special components, such as harmony, orchestration, 

etc., in which field our contemporaries are much more accomplished. Yet many 

of the present creations are born dead, as they lack the necessary qualities of 
associational stimuli.1'' 

The field of connotative music is so broad and its applications so numerous 

that in this course of study we are only able to direct the student’s attention 
toward the problems and the method by which they can be solved. 

*The use of this system by Schiilinger (as a 
staff composer of the Academic State Theatre 
of Drama, the Experimental Theatre of the 
State Institute of the History of Arts, both in 
Leningrad, and of the State Theatre for Child¬ 
ren in Kharkov) and by his students in the 
U.S.A., who are active as radio, theatre, cinema 
and television composers, brought extremely 
fertile results . . . Among Schiilinger students 
who made noteworthy use of the system 
are such men as Leith Stevens (‘‘Columbia 
Workshop", “Tish”, “Alice in Wonderland", 
“Big Town" and others); Paul Sterrett, 
Nathan Van Cleave (both at CBS, in the 
“Columbia Workshop" and other productions), * 
Oscar Levant (“Nothing Sacred", "Charlie 
Chan at the Opera” and other motion pic¬ 

tures); Bernard Mayers (“Basin Street Cham¬ 
ber Music Society", NBC, where he made some 
very effective scores in the semantic sense: 
“Three Blind Mice”, “Mary Had a Little 
Lamb", “The Bullfrog and the Robin" and 
others); Jesse Crawford (“Valiant Lady", 
CBS); Carmine Coppola ("Pictures in Music", 
CBS, where he wrote “G. B. Shaw”); Lyn 
Murray (“The Adventures of Ellery Queen", 
“26 by Corwin", opera “Esther", “This is 
War" and other CBS programs); Charles Paul 
(“City Desk", “The Adventures of Ellery 
Queen” and other NBC programs); and 
Rudolf Schramm (music to radio and cinema 
(U.S. government productions) in the field of 
education], just to mention a very few. (Ed.) 
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introduction 

^y-HAT has been known for the last couple of centuries as a “symphony or- 
chestra is a heterogeneous aggregation of antiquated tools. Wooden 

boxes and bars wooden pipes, dried sheep's guts, horse hair and the like are the 
materials out of which sound-producing instruments are built. 

The evolution of musical instruments, during their history of several mil- 
lema, followed the course of individual craftsmanship and of the trial-and-error 
method. 

A ^he lnSu.Um?nt? themselves are not scientifically conceived and not scien¬ 
tificallycombined with each other. Some of the orchestral groups participate 
with others by virtue of tradition (like brass and string instruments which, in 
most cases, do not b end) and not by necessity. Nobody ever asks the basic 

q™S,tlon: ,wh{ sbould t|lere ** such a combination as the stringed-bow, the 
wood-wind, the brass-wind and the percussive instruments; and why should 

stend7rdTtiVe gr0UPS ^ ^ !n *he unjuatified ratio ^ich are considered 

It takes a .mg time to force upon the average normal human ear such 
combinations as piano and violin or strings and brass. And this imposition of 
unblendable combinations upon the selector called the human-ear is termed 
cultivation of musicianship”. But eventually people begin to like it, as they 

begin to like smoking tobacco, which suffocates them at first. It is even possible 
to condition the human ear to hear the sound at a sustained intensity, while 
the Bound is fading at its source. Such is the case with the piano. Ordinarily 
we are not aware of the fact that the piano tone fades very quickly. I once 

"°naiy S“fb)neted the age of 30> to a f°rced isolation from the 
piano for three full months. The only sounds I heard during the time were that 

When 1 returned to the city, the piano sounded to my ear as it really sounds, i e 

me f fnrC!TVe Ttrum<;nt Wlth exa^erated attack and quick fading. It took 
me fully two weeks to “recover” from this unconditioned modus of hearing 

The implication is that many of the orchestral tone-qualities and blends 

n^t gTadually.aBalmilated by °ur ear. Many of them are highly artificial and do 

coTorTdT ^ "atU y’ “ many natUra‘ forms and ^tural 

The musician’s argument against better balanced, more uniform tone- 
quahties, winch are possible on the electronic instruments, is that they have not 
the indmduahty the old instruments have. But what they call “individuality” 

* f ®n a gr °.up °f mmor defecta and imperfections. A trombone, due to its 
cnmivvw,3 de81gn’.,haf 8everal tones (certainly, at least one) missing. While the 
composer can easily imagine those missing tones and imagine them in the trom- 

Now mk ^ Cann?t T in hU score’ 8ince they cannot be executed. 
tonra Whv -h\ 18 °- aquaBty inferior to thatof the surrounding 
tones. Why should one particular pitch be defective? No one knows. 

(14851 
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A composer, due to his experience, can also imagine certain tone-qualities 

beyond the ranges of the respective standard instruments. He cannot use these 

qualities because there are no instruments to perform them. 

Under such conditions, the art of orchestration amounts to a constant 

(and in most cases unsuccessful) struggle of the composer’s imagination and 
inventiveness against the actuality of instrumental limitations and imperfections. 

The way things stand today, the composer must compose not in terms of tone- 
qualities, intensities, frequencies and attack-forms (if he does not want to live 

in a fool’s paradise), but in terms of concrete instruments, each designed with 
no regard to any other instrument-each, therefore, having peculiarities of its 

own. 
Musicians also have a sentimentally-childish attachment to the craftsman¬ 

ship of executing a “beautifur tone on a violin or other instruments. Very few 
performers, indeed, can execute such a tone. But why is this self-imposed dif¬ 

ficulty and struggle necessary? Such an attitude has the flavor of sportsmanship 
and competition. Why not liberate the performer from the necessity of struggle 

to obtain the proper tone-quality, when such tone-quality can be achieved, and 

has been achieved, by means of electronic sound production? 

The answer is that many good performers, once relieved of this struggle, 

would feel lost since, to them, the production of tone-quality is half of the problem 

of interpretation. 

In 1918 1 published an article (“Electrification of Music") in which I 

expounded my own ideas (at that time completely new and original) on the 

inadequacy of old musical instruments and on the necessity of developing new 
ones, where sound could be generated and controlled electrically. I thought it would 

be desirable to have tone-qualities, attack-forms, frequencies (tuning) and in¬ 

tensities under control, to be able to vary each component through continuous 

or discontinuous (tempered) scales, suddenly or gradually, and to determine 

the degree of the gradually of transition as well. 

Though there is no universal use of electronic music yet, it is progressing 

very rapidly. Most of my dream has already come true. In 1920 Leon Theremin 
dempnstrated his first primitive model of an electronic instrument before a con¬ 

vention of engineers in Moscow, Russia. On this model, pitch was controlled 

by movement of the right hand in free space (in actuality, iaan electro-magnetic 

field) and volume, by a specifically designed pedal; the form of attack was con¬ 

trolled by a knob; the timbre was constant. 

After a number of years of my collaboration with this inventor, the early 

history of electronic music culminated in 1950 in two Carnegie Hall (New York) 
performances in which participated a whole ensemble of 14 improved space- 

controlled theremins, manufactured by Radio Corporation of America on a 

mass production scale at the plant in Camden, New Jersey. 

That first decade of electronic music, in which 1 am proud to have played 

the part of a musical pioneer, started the art of music on an entirely new road, 
which is in keeping with the engineering accomplishments of our industrial era 
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of applied science. There is no turning back from this road, regardless of the 
absolute value of today’s models of electronic instruments. The fact is that 
a new principle of sound production and control has been established, and this 
principle will bring further improvements and perfection. 

It is important to realize that existing musical instruments and their 
combinations are not stabilized but ever-changing accessories of musical ex¬ 
pression; that absolute knowledge of the functioning of the keys of a clarinet 
is of no basic value, as the design of such an instrument varies and the whole 
family of such instruments may vanish. 

Thus, though in my description of standard instruments all the necessary 
information is given, the composer must not overrate the importance of it, as 

the entire combination of a symphony orchestra, with all its component instru¬ 

ments, may soon become completely outmoded and eventually obsolete. It will 
be a museum combination for the performance of old music. New instruments 
and combinations will take its place. 

The moral of this Introduction is that it is more important for the composer 
to know the physical aspects of tone-qualities, frequencies, intensities and attack- 
forms per se, rather than the resultant forms as they appear on certain types of 

old instruments. It is a warning not to attach too much importance and con¬ 

fidence to certain types of instruments, simply because they are so much in 
use today. 

In the Acoustical Basis of Orchestration, the student will find the type of 
knowledge which is basic and general and, therefore, can be applied to any special 
case. This system is devised with a point of view which will give lasting service 

and will not become antiquated with thte first turn-the history of this subject takes. 

In order to broaden the student’s outlook on the existing instruments, I am 

supplementing this Introduction with a chronological table borrowed from one of 
my other works, Varieties of Musical Experience. 

Two items of this table deserve particular attention; (1) the chronological 
precipitation of progress and (2) the age of the new “electronic” era. 

Scheme of Evolution of Musical Instruments 

From Prehistoric Time 

I. Man utilizes his own organs: voice, palms, feet, lips, tongue, etc. 

From 10-20 Thousand Years Ago Until Our Time 

II. Man utilizes finished or almost finished objects of the surrounding 

world; bamboo pipes, shells, bones of birds, animal horns arid antlers, 
etc. 

From 5 -10 Thousand Years Ago Until Our Time 

III. Man processes raw material, giving it a definite form: from a piece of 

terra cotta and hunter’s bow up to the Steinway piano and modern 
organ. 
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From 18th Century A.D. 
A. Man constructs automatically performing instruments: from 18th 

Century, mechanical musical instruments: from 19th Century, 

recording and reproducing musical instruments. 

From the End of 19th Century 

B. Man develops transmission of sound waves over iong distances: 

radio. 

From the Beginning of 20th Century 

C. Man devises sound production by means of: 

1. Electro-magnetic induction 
2. Interference in electro-magnetic field. 

CHAPTER 1 

STRING-BOW INSTRUMENTS 

CONTEMPORARY string-bow instruments have as their immediate an¬ 
cestor the viol family. When the treble-viol, in the hands of Italian crafts¬ 

men, achieved its ultimate degree of perfection, it became the dominant member 

of the viol family: the treble-violin emancipated itself into the plain “violin”. 
In this sense, the evolution of the violin family followed the downward (in the 

way of frequency) trend, i.e., the perfecting of the violin was followed by the 
perfecting of violas, 'celli and string double-basses (or contrabasses). This course 

of evolution was somewhat contrary to the development of the viol family, 
where bass-viol (later, violone) was the dominant instrument of the group, the 

patriarch of the family. Thus “violoncello” originated as the diminutive form 
of the “violone”. 

The more remote ancestor of this family is the Arabian “rebab”, a primitive 
type of string-bow (often having only two strings, however, tuned in 3 2 

ratio, i.e., in a perfect fifth) and having a resonating chamber. This ancient 

instrument leads us back to the “monochord”, a one-string bow instrument with 

a resonating chamber, and, finally, to the actual source of the violin, which is 
the bow and arrow. 

This remarkable evolution of a defense weapon into a musical instrument 

of high degree of perfection consumed not only millenia of astronomical clock¬ 

time, but also an incalculable amount of human energy lavishly spent by genera¬ 

tions of craftsmen and musical performers. 

But with so much said and written about violin-making and violin-playing, 

certain facts remain obscure. Since most of the time (between and during the 

eras of mutual mass-extermination), is spent by humanity in creative mythology, 

the history of the violin discloses a constant struggle between the glorification 

of violin-makers and violin-players. The fundamental question is: which factor 
is more essential in achieving perfection, the instrument or the player? Nobody 

would deny the importance of both. However, I am entitled to state, on the 

basis of experiments performed with Nathan Milstein and another highly ac¬ 

complished, but not extraordinary, representative of the Leopold Auer school 

(which also contributed Heifetz, Zimbalist, Elman, Piastro, Seidel and many 
other virtuosi), that the player is a more important factor than the instrument. 

I draw this comparison particularly in reference to the quality of tone-production. 

In my experiment both performers were tested on the same two instruments: 
one was a violin made by Antonio Stradivarius and the other, a mediocre sample of 

mediocre craftsmanship. Milstein’s tone-quality was superior on both violins 
and with less individual difference between the two instruments than that of 

the other violinist. This may be a good lesson to some parents and teachers: 
only a mediocre violinist needs a very expensive instrument. 

(14891 
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A 

As the best musical organizations of today have at their disposal some of 
the best string-bow performers (usually the potential soloists rejected by the 

market’s maintenance of only the few best performers), the composer of our 
civilization may indulge in scoring which requires, on the part of the performer, 

a highly developed and versatile technique. 

A. Violin 

1. TUNING 

The entire range of the violin is written in treble clef. 

The four strings are named g, d, a, e. From the physical standpoint all 

four strings have a different timbre. The timbre of the g-string is particularly 

different from the three upper strings. In the hands of an accomplished per¬ 

former this timbral variance is greatly minimized. However, good playing does 
not affect the variance of the g-string with the three upper strings. This difference 
is due to the fact that g-string is a sheep’s gut wrapped around with a metal 

wire, while d-string and a-string are sheep’s guts which remain unwrapped. 
E-string only about three decades ago underwent a transformation: sheep s gut 

was replaced by a metal wire. 

The violin is tuned in perfect fifths, i.e., in 3-*2 ratio. The tuning begins 

with the a-string. Thus the ratios of the remaining strings are: 

e=#;d -f;g-(*)•-* 

As the above ratios noticeably deviate from the corresponding pitches of 

the twelve-unit equal temperament, some of the more discriminating com¬ 

posers (Hindemith, for instance, makes it a rigid rule) avoid the use of open 

strings altogether, except in chords. 

TV 

Figure 1. Tuning of the violin. 

2. PLAYING 

The Left Hand Technique 

Intonation is controlled on the violin by means of shortening its strings, 
which is accomplished by pressing Ibe string against the fingerboard. For this 

purpose the fingers of the left hand are employed. Strings vibrate between the 

two fixed points (nut and bridge) and transfer their vibrations to the bridge. 

The vibrations of the bridge stimulate sympathetic response from the body of 

the violin, which is a resonating chamber. 

STRING-BOW INSTRUMENTS 

hour fingers of the left hand (thumb is excluded) participate in producing 
intonations. The various distances which the left hand occupies on the finger¬ 

board (while supporting the violin) in relation to the nut are called positions. 
Each position on each string emphasizes four pitch-units of the common diatonic 

scales. The positions begin with an open string. Such a position might be called 
the zero position. 

Arabic numerals indicate the fingers employed. Major tetrachords are used 
here merely for convenience: other accidentals can be employed as well. 

The first position begins with a whole tone from the open string. 

If the first pitch-unit is only a semitone away from the open string, then 
such a position is called half-position or semi-position. 

From here on, violinists do not discriminate any semi-positions, but con¬ 

sider only the Second, the Third, the Fourth and so on, positions, regardless of 

whether they are tone-and-a-half or two tones, two-and-a-half or three tones 
from the open string. 
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The three lower strings (G, D, A) are seldom used beyond the eighth position; 

the e-string is used even in orchestra-playing up to the fifteenth position (the 

beginning of Rimsky-Korsakov's opera Kitezh.) 

All violin-playing is accomplished in most cases, including double-stops and 
chords, by means of standard fingering. Chromatic alterations are performed 

by moving the same finger a semitone up or a semitone down. 

Insofar as the precision of intonation is concerned, it is always easier to move 

the fingers in the same position, making transitions from one string to another, 
than to change positions rapidly, particularly when such positions are not ad¬ 

jacent. It is to be remembered that though the use of the four fingers is analogous 

on all four strings and in all positions, the actual spatial intervals on the finger¬ 

board contract logarithmically while moving upward in pitch. This means that 

a semitone in the first position is spatially wider than a semitone in the second 
position; the latter is wider than the semitone in the third position, and so on. 

Musical intervals from the open strings can be defined in terms of positions, 

and positions can be defined in terms of musical intervals. 

Position, where a given note is produced by the first finger, equals the number 

of the corresponding musical interval, minus one. For instance: 

* 
Figure 6. Position. 

The given note g# to be played on a-string with the third finger requires 

the hand to be in such a position where e can be played on a-string with the first 
finger. As the musical interval from a to e (up) is a fifth, the position can be 

defined as 5 — .1 = 4 (i.e., it is the fourth position). This is so because the^rjf 

position is produced by the interval of a second (i.e., 2) from the open string. 

This proposition can be reversed.. For example: what note is played by the 
second finger in the sixth position on the e-string? 

The first finger in the sixth position produces an interval of a seventh (i.e., 

6 -f-1 —7); therefore the second finger, in the same position produces an octave. 
Thus the note to be found is e, one octave above the open string. 

Figure 7. Example of fingering. Single notes. 

Playing of S2p 

The so-called “double-stops”, i.e., couplings, harmonic intervals and two- 
part harmonies belong to this category. 

•S2d are played by means of standard fingering. Left hand is considered 

in an open position if the finger on the lower of the two pitches corresponds to a 
smaller number than that of the higher of the two pitches. The reversal of this 

proposition corresponds to a closed position. Open positions are easier to play. 

Closed positions can be used in double stops without particular difficulties, but 
preferably in a tempo that is not too fast. 

Unisons (possible only with one open string): 

Thirds : 

Figure 8. Fingering of S2p (continued). 
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Fourths: Playing of S3p 

Playing of triple-stops includes melody with two couplings and three-part 
harmony. 

Fifths: (are played with one finger pressing two adjacent strings): 

Sixths: 

etc. 

etc. 

Octaves (quite difficult on account of the stretch between the first and 
the fourth finger? easy, with one string open): 

etc. 

Octaves are used mostly in solo playing. As a perfect acoustical octave 

(i.e., 2 + 1 ratio) sounds quite empty, Boloists usually resort to playing an 

imperfect octave (somewhat more narrow in stretch than the acoustical octave), 
which sounds fuller. In scoring for an orchestra, octaves of violins are usually 

written divisi (i.e., both pitches are played by the different parts). 
As octaves without participation of an open string require a stretch between 

the first and fourth finger, it becomes obvious that intervals wider than an 
octave can be performed only if the use of at least one open string is possible. 

- A special double-stop effect should not escape the attention of the or- 
ehestrator: passages on one string combined with another string remaining open. 

For example: 

Such passages can be played at considerable speed. 

When employing 3 fingers at a time (i.e., without participation of open 

strings), only open position of the left hand can be used. * In all other cases, 
previous considerations hold true. 

Three open strings 

■It. 
-1- >- 

a 5-1 
§J 

r ■ -iki"€ r "* O l 
T5 o 

One open string: 

etc. 

etc. 

Figure JO. Fingering of S3p 
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Playing of S4p 

Playing of quadruple-stops includes melody with three couplings and four- 

part harmony. There is only one quadruple-stop with four open strings: 

XT 0 

All other cases include 3, 2, 1 or no open strings. All left hand positions 

must be open. Such chords as S(5) in open harmonic (O) positions are quite 
easy because only 3 fingers participate (as the perfect fifth is played with only 

one finger). 

Three open strings: 

A ~ 4 n 2 n_a. A 
4 0 

n
€
f$
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75 0 75 0 "WO TWO XT 0 XT 0 XT 0 

Figur-e 11. Fingering of S4p. Three and two open strings {concluded). 

One open string: 

a 4 

XT 0 TT 0 TT 0 XT 0 XT 0 

-e-1 ^1 

Figure 12. Fingering of S4p. One open string. 
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The above tables are merely samples of the systematization of the material 

on fingering; they can be extended to higher positions (with or without participa¬ 
tion of the open strings). These forms of fingering are applicable to various 

instrumental forms. 

As the bow can move simultaneously over not more than two strings (some 

exceptional virtuosi can bow three strings simultaneously in forte] but such an 
accomplishment is exceptional and we cannot count on it in writing orchestral 

parts for the violins), we see that: 

l(2p) can be performed as: 

ap and a2p in sequent combinations; 

l(3p) can be performed as: 

ap and a2p in sequent combinations; 

l(4p) can be performed as: 

ap and a2p in sequent combinations. 

Figure 14. Examples of instrumental forms suitable for the violin (continued). 

Figure 14. Examples of instrumental forms suitable for the violin (concluded). 

B. The Right Arm Technique 

Bowing is a process by which friction is produced between the horse-hair 
of the bow and the string. The various techniques by which strings can be 

made to oscillate in different patterns, constitute the bowing attacks. Heavy 

bowing attacks cause large amplitudes, and light bowing attacks, small ampli¬ 

tudes. In order to produce a continuous sound, without a renewal of attack, the 

bow must move in one direction. The duration of a period depends upon the 

pressure of the bow on the string. Thus the period of continuous bowing in one 
direction in piano is greater than in forte. 

We shall now classify the forms of bowing as the forms of attack in relation 
to the durability of sound. We shall assume that the total scale of attacks lies 

between the two limits: the lower limit corresponds to the most continuous 

form of attack, and the upper limit, to the most discontinuous, i.e., abrupt, 
form of attack. 

The movement of the bow in the direction from g-string to e-string is con¬ 

sidered downward, and, when necessary, is indicated as n ; the movement in 
the opposite direction is considered upward and is indicated as v . The upbeat 

groups are usually played v and the downbeat groups are usually played n . 

Otherwise a composer must indicate the direction of the bowing which expresses 
his desire. 

The Scale of Bowing Attacks 

(1) legato: a group of notes united by a slur represents continuous bowing in one 
direction; large legato pertains to a long group, and small legato, to a short 
group; 

(2) non-legato (detach^) or detached is indicated by the absence of slurs or any 

other signs: each note corresponds to an individual smooth bowing attack, 

i.e., the bow must be turned in the opposite direction after each note; 

(3) portamento (in bowing) represents a group of slightly accentuated attacks, 

while the bow moves in one direction; it is indicated as follows: i J J i ; 
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(4) spiccato: abrupt bowing for each attack, while the bow moves in one direc¬ 

tion: ITT? ; it sounds somewhat lighter than staccato; 

(5) staccato: abrupt bowing for each attack and changing the direction of the 

bow after each attack: /T"J"3 (no slurs); 

(6) marteUato (hammering): a vigorous downward or upward stroke indicated 
like this: J J (no slurs; bow changes its direction after each attack, 

unless specified otherwise); 

(7) saltando (jumping): a bouncing group of attacks obtained by one stroke 

(usually two, three or four attacks, which can be described as throwing the 
bow from above; bouncing is caused by the resilience of the string and the 

bow; saltando has a light percussive character and is usually employed in 
accompaniments of the character of Spanish dances: this effect is a mild 

version of castanets; saltando is indicated like this: /"TT? » 

(8) col legno (with the wooden part of the bow) is marked by these words above 
the part; no other indications are necessary; this effect is still more per¬ 

cussive in character than saltando: it is performed by an individual thrust 

of the bow downward upon the string, each throw corresponding to an in¬ 
dividual attack; the general effect of col legno is that of pianissimo. 

To continue the abrupt forms of attack, we may add, at this point, the 

various forms of plucking the strings. 
From the orchestrator’s viewpoint there are two basic forms of pizzicato: 

(1) pizzicato legato, where the respective finger of the left hand is moved on a 
small interval (usually a semitone or a whole tone), after the string is plucked 
(this effect resembles the so-called “Hawaiian guitar”); (2) pizzicato (the usual 
form), where each attack, single (one string) or compound (several strings; this 

sounds like an arpeggio) is produced by individual plucking. The regular 
pizzicato is marked pizz. and the pizzicato legato is indicated by a pizz. and a 
slur: pizz. n . From the violinist’s standpoint, there is also a distinction 

between the right-hand pizzicato and the left-hand pizzicato (the latter is indicated 
by a cross ( -f) above the note; it is mostly used on open strings, and can be 

easily executed amidst rapid passages of bowing). 

Bowing positions in relation to the sections of the bow 

Insofar as the manner of playing is concerned, the bow may be regarded 
as consisting of three sections: the nut (lower part), the middle section, and the 

head (upper part), which, in international musical terminology, corresponds 

respectively to: (1) du talon4 (2) media (or: modo ordinare) and (3) a punta d’arco. 

When specific sections of the bow are to be used, the composer must make 
corresponding indications. However, du talon is associated with marteUato; a 

punta d’arco is associated with high-pitched bowing tremolo in pianissimo; and 

media simply serves as a symbol for cancellation of one of the previous special 
forms of bowing. 
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Bowing positions in relation to the fingerboard and the bridge 

There are three such basic positions: (1) over the fingerboard (usually at its 
widest part), known and marked as sul tasto; this effect produces a delicate 

flute-like quality; (2) in the usual place between the fingerboard and the bridge 

(usually slightly closer to the bridge), indicated also as media or modo ordinare, 

used mostly for cancellation of the preceding or the following effect; (3) very 
close to the bridge, marked as sul ponticeUo, which is mostly used in bowing 
tremolo; this produces a nasal “double-reed” quality. 

It is possible, while performing the bowing tremolo, to move the bow gradual¬ 

ly from sul tasto to sul ponticeUo or back. This is a neglected but very valuable 

technique, by which a gradual modification of quality (tasto corresponds to flute; 

ponticeUo, to double-reed) can be obtained on all the stringed-bow instruments. 

Bowing tremolo (i.e., rapid forward-backward movement of the bow) must 
not be confused with tremolo legato, which is a finger-tremolo (like the trill, only 
in a different pitch-interval). 

3. RANGE 

The range of the violin, as employed by composers, grew upward during 

the 18th and 19th centuries. It was the desire of some of the outstanding com¬ 

posers to extend violin pitch beyond the range known to their predecessors. 

This evolution of range must be considered now to be completed, so far as the 

known type of violin is concerned. The reason for this is that Rimsky-Korsakov 

employed (as a pedal point), at the very opening of his opera Kitezh, b of the 

third octave (the highest b on the piano keyboard), which happens to lie (that 

is, the point of finger-pressure) at the very end of the fingerboard. During Beet¬ 
hoven's time, the upper limit was at c of the same octave. 

Only the e-string is used in such a wide range; all other strings are used 

within the range of a ninth (14 semitones); however, the range of g-string is 

frequently extended to a twelfth and even more (the purpose of this is to obtain 
the specific quality of high positions on that string). 

Figure 15. Range of the violin. 

On the E string note the following: 

(1) represents the limit for cantabile in unsupported unison (i.e., without 
octave doubling) and corresponds to the upper limit of the highest human 

voice, i.e., coloratura soprano; it is also the limit for pizzicato, after which 
limit the sound becomes too dry; 
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(2) Haydn’s limit; 
(3) Beethoven’s limit; also the limit of free orchestra-playing, beyond which 

only 'easy passages in single notes and sustained notes (single or double) 

can be used; 

(4) the limit in the early scores of Wagner reached e below this g#; the latter 

was introduced in the Ring; 

(5) Rimsky-Korsakov’s Kitezh; no fingerboard beyond this point. 

4. QUALITY 

The basic resources (besides those which we have already described) of 

special tone-qualities on the string-bow instruments and decidedly contrasting 

with each other are the mute (double-reed quality, marked con sordino) and 

the harmonics or overtones (purest quality: sine-wave; no vibrato). The mute 
can be put on (con sordino) or taken off (senza sordino) wherever the composer 

desires, providing he gives enough time to the performer to make such a change. 

Harmonics are produced on the violin by touching instead of pressing the 

string. The scale of harmonics can be only approximated in our system of musical 

notation. Harmonics are a natural phenomenon corresponding to what is known 
pi mathematics as “natural harmonic series”, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9. 

The sound of harmonics corresponds to simple ratios of frequencies and to 

the partial distribution of a sounding body. In the case of strings, harmonics 
correspond to the division of a string into uniform sections. These sections are 

in inverse proportion to the order of a harmonic. 

Thus, in order to get the fundamental (which is considered the first har¬ 

monic), it is necessary to let the entire string vibrate. In order to get the second 
harmonic, it is necessary to let the two halves of the string vibrate separately. 

The zero point between the two halves is known as "node”. The finger must 

touch (not press) at the point of the node. The higher the harmonic, the shorter 
the partial division of the string (and the higher the frequencies). 

The correspondence between divisions of the string and the order of har¬ 

monics is as follows: 

Division of the string Order of the harmonic 

?1 

Beyond this limit, harmonics produced on the string-bow instruments 
become impractical, except perhaps for the double-bass seventh harmonic. What 
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violinists usually do not know, and what the composer should know is that 

every node in the same subdivision (denominator) produces identical harmonics. 

h % 

The practical consequences of this situation are the diversified ways of getting 
a harmonic in a passage where a violinist may think it impossible. Imagine a 

regular rapid passage which brings you to the upper (close to the bridge) part 

of the fingerboard. Now assume you want to use the third harmonic. A violinist 
might try to reach the point K, in Fig. 16 (2), while touching the string at the 
point R* would produce the same harmonic. 

As more careful composers (Wagner, for instance) indicate in musical nota¬ 
tion by a diamond-shaped note ( *, J, J, etc.) the point of the finger- 
contact with the string, it is possible to carry out the above principle to a prac¬ 
tical end. 

Each string is subject to the same physical conditions, so far as harmonics 
are concerned. The longer the string, the more pronounced the harmonics. Thus, 
the quality of harmonics increases in the following order of instruments: 

(1) Violin 
(2) Viola 

(3) Cello 
(4) Bass 

as^syrabofP(Ed!{,IOyed th* W°rd "knot" instead of "node>" He therefore used the letter “K” 
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The le#er the order of the harmonic, the richer it sounds. This means that 
lower harmonics still form physically their own harmonics (or the harmonics of 
the second order). Thus it is correct to state that, let us say, the third harmonic 

on the bass is denser than a third harmonic on the ’cello, and that the latter 
is denser than a third harmonic on the viola, etc. But a sixth harmonic on the 

'cello may not be as dense as a second harmonic on the violin. 
Here is a complete table of harmonics for the string tuned in c, which can 

be transposed to any other tuning. The large notes indicate the sound of the 

open string, the diamond notes indicate the point of finger-contact with the 
string and the small notes indicate the resulting pitch of the harmonic. 

6th 
I- 1 

Figure 17. Table of harmonics for “c" string. 

Fractions indicate the frequency ratios. All black notes indicate impractical 

cases. 
With regard to equal temperament, the corresponding contact points (K) 

are practically exact: 

f f. i. ¥ 

Jf- is very slightly lower 

f, f£, are slightly lower 

■I and are slightly higher 

In addition to all these harmonics, usually called “natural harmonics”, 

there are harmonics produced by pressing the string with one finger and touching 

with another. The latter are called by the violinists “artificial harmonics”. 

In reality harmonics cannot be artificial. What would you think of an “artificial 

sunset”? 
The pressing finger shortens the string, and the touching finger produces 

the respective partial subdivision. There is only one fiarmonic which is practical 
under such conditions: the fourth harmonic. The pressing finger is always the first 

finger and the touching finger is always the fourth. The practical advantage of this 

device is its chromatic universality, which permits the performance of any 

melodies in the form of harmonics. 

Figure 18. Melodies in the form of harmonics. 

B. Viola 

The viola differs from the violin mainly in its tone-quality and in the possi¬ 
bilities for virtuosity. Its tone quality is “somber” as compared to that of the 

violin. The technique of performance is more difficult than on the violin. The 

reason for this is that though the dimensions of the viola are greater, the system 

of fingering remains the same. Thus, playing the viola requires greater stretching 

of the fingers. In most cases, the unsuccessful but broad-handed and practical 
minded violinists become violists. It is interesting to note that one of the best 
composers of today, Paul Hindemith, is one of the best violists of today. For 
many years he was the leader and the violist of the excellent “Amar-Hindemith 

Quartette”. He has composed works for this neglected instrument in the form 
of a concerto, sonata and unaccompanied suite. 

The tuning of the viola is one fifth lower than that of the violin. The alto 

and the treble clefs are used in the notation of viola parts. 

Figure 19. Tuning. 

The range of viola in orchestral use does not exceed a ninth from each of 
the lower three strings (C, G, D) and not more than a twelfth from the upper 

string (A). In writing for viola solo, the upper string can be used within a range 
of two octaves. 

Figure 20. Range. 

It is correct to say that the viola is related to the violin as two to three. 
All forms of technical execution correspond to that of the violin. Except 

with regard to range, the parts written for the viola need not be limited in any 
respect in which the violin parts are not limited. 
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C. Violoncello 

Violoncello means a small violent, which was the bass viol of the viol family. 

This is why it has a diminutive name in spite of its size. This instrument is 
commonly called cello, which does not make any sense, but conveys the as¬ 

sociation through the established use of this word. It is more correct to write 

“ ’cello” (with an apostrophe in front). 
Being held in a different position from the violin and the viola, and exceed¬ 

ing the latter in size (the ’cello is related to the viola as one to two and to the 
violin as one to three), the ’cello requires a different type of technique in fingering. 
The intervals on the fingerboard are wider, and the stretching is greater. Though 

the thumb does not have to support the instrument, it seldom participates in 

playing and is used on special occasions only (mainly for pressing the string 
while playing harmonics). The thumb is indicated as “ 9 All other fingers 

are numbered in the same way as on the violin. 
The ’cello is tuned in fifths and one octave lower than the viola. Bass (F), 

tenor (C) and treble (G) clefs are commonly used. Contemporary composers in 
most cases have abolished the tenor clef; but the ’cellists have to know it well 

because most composers of the past have used it in their scores. 

Figure 21. Tuning. 

The range of the ’cello in orchestral use does not exceed a ninth from each 

of the lower three strings (C, G. D) and a twelfth from the upper string (A). 

In solo playing, however, the latter can have a two-octave range. 

It is customary in ordinary passage-playing to make transitions from string 

to string in one position, rather than to change positions on one string. In case 

of chromatic scalewise passages, positions are frequently changed. 
The usual fingering for the lower positions is based on thfe following 

principle: * 

(1) semitones are played by adjacent fingers; 

(2) whole tones by alternate fingers; 
(3) chromatic scales are played with continuous changes of positions, each 

position emphasizing three fingers: the first, the second and the third; 

(4) all executions of double-stops, chords and rapid arpeggio are based on 

the above forms of normal fingering; as a consequence, the chords which 
are easy to play are either in open positions or contain open strings; 

(5) perfect fifths are played with one finger on two adjacent strings; 

(6) all "artificial harmonics” are played with the thumb (pressing) and 
the third finger (touching). 

Positions 
0 I n ra 

4 

8 a 4 -a-a tU*8 
^■1 * 1 ——iSTwi 

1 mm % 1 % w 
?'S!| 

^U1 So 

Figure 23. Examples of fingering. 

All the forms of bowing, practical for the violin, are practical for the ’cello. 
As the bow of the ’cello is proportionately shorter than that of the violin, the 

composer must use long durations of single notes and of passages emphasized 
by the bow moving in one direction with discrimination. 

One of the ’cello’s features are harmonics. Owing to long strings, they are 

wry sonorous. For the same reason pizzicato is richer on tne ’cello than on the 
violin. Pizzicato glissando (marked: piss, and a slur over the two bordering 

notes), produces a colorful effect similar to Hawaiian guitar. (See Four Hindu 
Songs for voice and orchestra by Maurice Delage). 
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Glissando of harmonics is another effect to which the ’cello is particularly 

suited.. In order to execute it, touch the string at the nut and move the finger 
quite fast toward the central knot of the string. This causes a sequence of har¬ 

monics from high to low ones. Moving in reverse, i.e., from the central (node) 
knot to the nut, causes the reversal of the sequence of harmonics. There is no 

need to move the ffcger beyond the central knot (node) as the string has an axis 
of symmetry for all the knots (nodes), and such a finger movement would pro¬ 

duce the same harmonics as when moved from the central knot (node) back 

to the nut. The resulting effect has great color value and has been used by the 
best orchestrally-minded composers. It sounds like a rapidly moving arpeggio 

of a large seventh-chord. 
A combination of such harmonics glissando played by several ’cellists on 

different strings, and also in different directions if desired, produces a shimmering 

effect of fantastic harps, subtle and fragile. 
The adopted notation of this effect is as follows (black notes show the main 

points of the actual sounds as all the points cannot be expressed in our musical 

notation). 

See Rimsky-Korsakov’s opera Christmas Night. 

D. Double-Bass (Contrabass) 

The double bass (corresponding to the antiquated violone) has four strings 

usually. They are tuned in fourths. 

Written Sounds 

Figure 25. Tuning. 

In the 18th and 19th centuries when a lower note was required, the bassists 

re-tuned the lower string to Eb or to D. In the 20th century the problem 

has been solved by the addition of a fifth string (below the fourth regular string), 

which is tuned in C. All large symphonic and operatic organizations have at 

least half of their string basses equipped with five strings. 
High positions are used less frequently on the string bass than on any other 

string-bow instrument. 

The range, practical for orchestral use, is as follows: Double bass always 
sounds one octave lower than the written range. 

Figure 26. Range. 

All forms of bowing and effects, including the use of mutes, pissz., glissando, 
harmonics and harmonics glissando, are perfectly suitable for the bass, though 
they are sometimes unjustly neglected. 

Fingering technique and intonation are the chief difficulties of this instru¬ 
ment. The fundamentals of fingering are as follows: 

k 0 1. .8 o ° 1 8 8 0 
ir* 1 4 0 i, 

—-^—o—o—“— 

Figure 27. 

tt° 11 

Fingering. 

The last case is quite difficult and must be avoided, unless absolutely necessary. 

As higher positions require closer spacing, it is easier to play the bass in the 
higher positions. The purity of intonation increases, but it becomes more and 

more difficult to get a pleasing tone. It is best not to use the double-stops at all 

as they sound muddy in low register anyway. However, certain forms of pedal 
and strata can be used. 

Figure 28. Forms of pedal and strata. 

Chords are impractical even when possible. Some composers have written 

solo passages and phrases for the bass, and have exceeded on such occasions the 
established orchestral range. See Rimsky-Korsakov’s opera Coq D’Or in which 
a bass solo is written in the alto (C) clef. 

There are very few outstanding bassists who appear as soloists. Probably 
the best of all bassists in the whole history of this instrument is Sergei Kousse- 

vitsky (at present the conductor of the Boston Symphony Orchestra). When 

Koussevitsky was younger, he frequently gave recitals on the double bass as 
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well as played concertos with his own orchestra (which was known as the 
Koussevitsky Orchestra in Moscow, Russia). As bass literature is limited, 

Koussevitsky often played his own transcriptions of concertos written for some 
other neglected instruments. Thus, one of his favorites was Mozart s concerto 
for a bassoon (Fagotto) with orchestra. Another accomplished bassist (at present 

with the Radio City Music Hall Orchestra in New York) also comes from Russia. 

His name is Michel J&bsnopolsky.* 
When used as a solo instrument, the double bass must be tuned a tone higher 

and read a minor seventh down. It really becomes a bass in D. Some of the 
outstanding violin-makers in Italy made a few excellent basses, which are slightly 

smaller in size and permit the tuning one tone higher. They are better in tone too. 
In jazz, the double bass is used mostly as a percussive instrument: it is 

plucked (pizzicato) and slapped. It is interesting to mention that in jazz playing, 

where virtuosity on some orchestral instruments leaves the classical way of 
playing far behind, the development of the performer's technique influenced 

mostly the right and not the left hand and, even then, not in bowing. This 

particular form of virtuosity produced some proficient performers. There are 
two duets for* piano and double bass on Columbia records: Blues and Plucked 

Again (Columbia, Jazz Masterwork, 35322), with Jimmy Blanton (bass) and 

Duke Ellington (piano).** 

•In Russia, he played among other things **The catholicity of Schillinger's interest and 
Schillinger's own "Suite for Double-Bass and the range of his information always astounded 
Piano" composed in 1921. (Ed.) Schillinger's students. (Ed.) 

CHAPTER 2 

WOODWIND INSTRUMENTS 

A. The Flute Family 

i* flauto grande (flute) 

, f,Thf‘S infr,ument' known ai ‘ "large flute” in contrast to the smallest member 
of this family known as a "small flute," or Flauto Piccolo, or just plain "Piccolo" 

n™'hataS ^ aS.;‘Cellf\i9 » ^-instrument without Lns'poTtion This 
means that, whereas its natural tones, i.e., the tones produced by modification of 
blowing and not by using holes and keys, have D as their fundamental the 

y are Tritt“-,ToneS Which are not in the acoustical Lie 

makn n y TT ° T r "d 3 "Umber °f keys Ending on the 
make). Opening of the holes from the fool-joint up shortens the air column 
and produces the tones of the natural major scale in D, i.e., d, e, f#, g, a b c# 

be eiL°r?u ther ienBeC°nd,natfUrt‘t0ne (h~C> which be executed further in a similar fashion. All chromatic intervals are filled out 

d aLexecutSybv t *7 ^ makeS' Aree) t0neS MoW the fundamental 
whloh wUted.byeX,tendlng the bore with a pair of specially designed keys 
which close instead of opening the holes. y ’ 

Being cylindrical on the outside, the bore of u (lute may be an inverted eone 

anrf the 'U fWlt Wr>L5,i«ht deviation from a cylinder. The shape of the- bore 

of h fr °f T'tlng the air column directly (through an open hole) instead 
rough a mouth-piece of any kind gives the flute its whistle-like tone-quality 

Figure 29. Harmonics. 

D AAGaetcn?rre °VthiS C0nstructi0n' the easiest keys for the flute are 
’ Th fl /’ ^ ,aCent t0 D through their signatures. 

at anv nractir,hrrt,CU, yJSUited f<>r ■“'"** Passages (which can be played 
highly dewloneri 6 SP“ 2 “d cl“ftforms of arpeggio (E.) Finger technique is 
JL L A •! ^ g flutlsts-A11 forms of tremolo legato (arpeggio of coupling.) 
<r«&, rapid grace-note scalewise parages are typical of the flute C0Upllngs^ 

(1511] 
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Another flute specialty is the multiple-tongue effects: double, triple and 
quadruple, which as the name shows, are accomplished by a rapid oscillatory 
tongue movement. There is no special notation for this effect, and every flutist 

knows it should be used when there is a rapidly repeating pitch. 
It must be understood that the term “legato” (indicated by a tie), as ap¬ 

plied to flute as well as to all wind instruments (including woodwind and brass), 
means a group of notes executed in one breath. As non-legato, staccato, etc., 

are also executed in one breach for a group of notes, legato means one breath 

without a renewal of the tongue-attack. 
Increase in the number of attacks augments the volume of the instrument 

and should be used in all cases when the natural volume is weak; yet harder 

blowing may produce the next natural tone. As a special device for both in¬ 
creasing the volume and giving the tremolo effect, frulato (flutter-tongue) is 

used. In order to execute frulato (which is only practical in the high register), 

it is necessary to pronounce (in a whispering manner) a continuous rolling of 
frrr. The notation for frulato is: —-for the period of duration of the note. 

Because blowing the flute is immediate, the air column in the bore is quite 
unstable. This causes great sensitivity of registers. Each register has its own 

dynamic characteristics. Consideration of the latter is of the utmost importance 
in orchestration. Contemporary manufacturers are constantly seeking a scien¬ 

tific solution For equalization of registers. To put it plainly, each register, unless 

very skilfully handled, sounds like a somewhat different instrument. When one 

melodic group occupies more than one register, the contrast between the registers 
becomes very undesirable. Some old-fashioned minds think it desirable to have 
nearly each tone in a different flavor, because they believe it attributes in¬ 

dividuality to the instrument. This assumption is psychologically wrong because 

each sound does not sound per se, but in connection with preceding and following 

sounds. Imagine a book where each character is printed in a different type. 

It certainly attributes individuality to each letter, but at the same time makes 

the process of reading far from pleasurable. 
Uniformity of tone-quality throughout the entire range is the main weapon 

of attack against electronic instruments because such instruments have a much 

greater qualitative stability than woodwind instruments. In other words, elec¬ 

tronic instruments are condemned by the reactionaries while great string in¬ 

strumentalists try hard to conceal bow changes from one string to another 

(which is equivalent to the change of registers). 

Medium 
High 

MX. 

Soft, dense, 
unstable 

Dynamic Range: 

VP*P 

Stable, 
medium dense, 
flexible 
D.R: pp* mf 

Rich, j Whistling 
expressive,: thin,loud, 
flexible \ not unpleasant 

Shrill, 
thin, very loud, 
less pleasant 

d.r ijy*ar 

Figure 30. Range and registers of the flute. 
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2. FLAUTO PICCOLO (PICCOLO) 

This is a diminutive flute and possesses all the main characteristics of the 

large flute. Its acoustical scale is also in D, but its range is much more limited, 

lhe lower register is practically useless, except for some humorous effects. The 
agility of this instrument is truly remarkable, and particularly so in the scalewise 
passages. 

Q 

Useless 
Best range for solo, 
playing. Dynam¬ 
ically flexible. 

PP^mf 

Shrill and loud. 
D.R: f*J& 

Impractical and 
difficult. 

(Sounds one octave higher than written) 

Figure 31. Range and Registers of the Flute Piccolo. 

3. FLAUTO CONTRALTO (ALTO FLUTE) 

This comes in two sizes (or types): 

(1) FI. Contralto in G. 

(2) FI. Contralto in F (used less than the one in G). 

Both types are used a great deal in operatic and symphonic scoring. 

The mam value of the alto flutes lies not in extending the range below the 
ordtnary flute, but m grvtng a better quality and a more stable range corresponding 
to the low register of flauto grando. 

FI. Contralto in G sounds a perfect fourth (5 semitones) lower than the 
written range. 

rangJ1 C°ntra,t°in F munds a perfect fifth (7 semitones) lower than the written 

The first of the two has a better tone quality. 

Written range 

Sounding range 

(Low register of FI. Gr.) 

Sounds 

Figure 32. Range and registers of the Alto Flutes (continued). 
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Figure 32. Range and registers of Ike Alto Flutes {concluded). 

i 

There is no need to use the high register of alto instruments as the regular 

type gives a better tone-quality. 

Other types, such as Bass Flutes, are obsolete nowadays. They produce 

tones in quality somewhere between the ocarina and an empty bottle. 

B. The Clarinet (Single-Reed) Family 

1. CLARINETTO (CLARINET) IN Bb and A 

This instrument has a cylindric bore, which causes, according to Helmholtz, 

the appearance of only odd (1, 3, S, 7, 9, . . .) harmonics. The even-numbered 
harmonics are absent. This situation creates a gap of 18 semitones between the 
fundamental and the next (i.e., the third) appearing harmonic. Somehow the 

designers of this instrument succeeded in reducing the number of holes and keys 

considerably (usually to 13) though theoretically 18 holes are necessary in order 

to produce a chromatic scale covering the gap. 

From the performer’s angle, the clarinet is a difficult instrument to master. 

However, this should not worry the composer as accomplished clarinetists are 
really in abundance. The main consideration for the composer to bear in mind 

is that while approaching the third harmonic, the tone of the clarinet weakens 
for about the last 6 semitones. The register between the fundamental and the 
third harmonic is known as chalumeau (French, from Latin “calamus”—reed; 

originally, a single reed instrument with a built-in reed, now obsolete; probably 
the ancestor of clarinet).. A special tone-quality, in addition to the usual one, 

and one which is hard to produce, corresponds to the chalumeau register and is 
known as subtone (soft, delicate and tender). Starting with the third harmonic 

and going up, the tone-quality of the clarinet changes noticeably. Of course, it is 

the task of an accomplished performer to neutralize this difference. 

The sound on the clarinet is produced by blowing into a detachable mouth¬ 

piece to which a reed is attached. A complete chromatic scale is produced by 

means of various types of keys and by holes which are covered by the fingers (spe¬ 
cial keys on the bass clarinet). The clarinettists of American dance orchestras arc 

able to produce a glissando (i.e., continuous pitch modulation between two fre¬ 
quencies). This is accomplished by the embouchure (which usually means "the 

assumed position of lips combined with lip-pressure”). Symphonic and operatic 

clarinettists are not trained to play glissando. 
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The scale of natural tones on the clarinet is written as follows (and sounds 
as written when played on a clarinet in C): 

Figure 33. Natural tones of the clarinet. 

The clarinet in C was discarded a long time ago because its tone quality 
was not as satisfactory as that of the clarinets in B b and in A (some contemporary 

manufacturers make an extra hole and key to compensate the lower semitone 

on the Bb-clannet; thus it can play the parts written for the A-clarinet; in 
other instances, mechanical adjustments have been made in order to obtain a 
combined version of the Bb and the A clarinets). 

Though some individual performers get far beyond the common range 

there is an unwritten international code of ethics by which composers limit 
themselves to the written g of the second octave. 

Low 
Rich, mellow, 
stable; 
Dynamic Range: 
PPP*f 

I ^ : Thinner quality than 
j Delicate from : Brilliant or lyric-: below this point; 

: this point; ; al, depending on \ Skillful performers 
: Dynamic weak- j the character of } can still produce « but 

B: ! ““Si Unstable;; music and dyna- j generally it is easier 
; Dynamic Range: : mics; Flexible • to play /; 
\ • Dynamic Range: j Dynamic Range.* 

| j 

Figure 34. Range and registers of the clarinet. 

For the clarinet in Bb the above table sounds one tone lower. This 

means that the composer must write his parts for the Bb instrument one tone 

higher than he expects to hear the actual sounds. For instance, the part which 
sounds in the key of C must be written in the key of D. Thus, the clarinet in 
Db acoustically is a D instrument, as its fundamental tone (by sound) is d. 

Likewise, parts for the clarinet in A must be written three semitones higher 
than they are expected to sound. Thus the above'table sounds three semitones 

lower. Parts expected to sound in the key of C must be written in the key of Eb. 
I hus clarinet in A acoustically is a C# instrument, as its fundamental tone 
(by sound) is e#. 

It was believed in the I9th century that the Bb-clarinet represented the 
masculine quality, and that it was more substantial but less delicate than the 
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feminine quality of the A-clarinet. However, today skilful performers can obtain 

both characteristics on the Bb-clarinet. 
Considering the quality of manufacture and the skill of contemporary per¬ 

formers, we may say that the clarinet can play practically everything. Its 

specialties are: rapid diatonic and chromatic passages, tremolo legato and trills. 

Staccato is preferable i»its soft form. Arpeggio of the Ei form is very grateful 

both ascending and descending. 

2. CLARINETTO PICCOLO IN D AND Eb 

The first instrument (D) is used in symphonic and operatic orchestras and 

the second (Eb), in military bands. Both these instruments are inferior in their 

tone quality as compared with the clarinets in Bb and A. 
The acoustical range of the D-clarinet is in F#. It is written one whole tone 

lower than it is expected to sound. The parts which are written in the key of Bb 

sound in the key of C. 
The acoustical range of the Eb-clarinet is in G. It is written three semitones 

lower than it is expected to sound. The parts which are written in the key of A 

sound in the key of C. 
Except for tone-quality, the piccolo clarinets can be favorably compared 

with the regular clarinets: their mobility is as high. 

3. CLARINETTO CONTRALTO (ALTO CLARINET) 
and CORNO DI BASSETTO (BASSETHORN) 

Clarinetto contralto is usually an Eb, but sometimes an F instrument* 

Thus its part should be written a major sixth and a perfect fifth higher, respectively, 
than the sounding keys. The F instrument is so constructed that its lowest written 

note is c below the usual e. The tone-quality of each of these instruments can be 

described as more "hollow” than the tone of a regular clarinet. 

Corno di bassetto has a smaller bore than the clarinet. It looks somewhat 
like a miniature version of the clarinetto basso (bass clarinet). Its tone-quality 

is more, “reedy” than that of the clarinet. The bassethorn is an instrument in F: 

it is written a perfect fifth higher than it sounds. Today the bassethorn is be¬ 

coming more and more obsolete: the alto clarinet in Eb takes its place. 

4. CLARINETTO BASSO (BASS CLARINET) In Bb and A 

The A instrument is seldom used outside of Germany. Both these instru¬ 
ments sound one octave below their respective regular clarinets. This means 

that the Bb-basso is written a major ninth higher than it sounds; A-basso is 
written a minor tenth higher than it sounds when the treble clef is used. In German 

scores, both treble and bass clef are often used. 
The rule is that in using the bass clef, write one octave below the corresponding 

note of the treble clef: that is, the transposition of sound from the bass clef is 

only a whole tone, or a tone-and-a-half down instead of the major ninth or minor 

tenth as In the treble. 

1 

Both these instruments are manufactured with and without the lower ex¬ 
tension from e to c. The Bb-basso without lower range extension is used by 

dance orchestras, whereas the Bb-basso which reaches the lower c (5b- by the 

sound) is used in symphonic and operatic scoring. These instruments have quite 
a sinister tone in their lower register. It is wise not to write for the bass-clarinet 

above d of the second octave. The bass-clarinet possesses somewhat less mobility 
than the smaller clarinets. 

— ---y— —wT+n™, a. monstrous anair wmch has to 
be suspended on special stands and which is very hard to play. Richard Strauss 

used one in his Electra, but apparently only the Germans could play it. 11 sounds 

one octave below the bass clarinet (it is also in Bb) and has an awe-inspiring 

C. The Saxophone (Single-Reed) Family 

The saxophone is one of the numerous creations of Adolf Sax, an eminent 
instrument designer of the 19th century. This instrument is a crossbreed between 

the oboe (owing to its conic bore) and the clarinet (owing to its singlc-recd mouth¬ 
piece). 

Very few composers used this instrument in the 19th century (one of them 
was Georges Bizet) and eventually it became quite obsolete, with the exception 

of its use by military bands in France and Belgium, which have emplc ed saxo¬ 
phones widely. 

The original saxophone family consisted of instruments in C and in F. 

Soprano Saxophone in C 
Alto ” » p 

Tenor " ” C 

Baritone ” ” F 
Bass ” ” c 

American manufacturers rejuvenated interest in this instrument. They 
succeeded in constructing saxophones of a more improved design. American 

saxophones as played by American saxophonists have introduced a whole new 
style of music and musical execution. 

American-made saxophones are so flexible that any type of part can be 
written for them. Rapid scales, arpeggio, tremolo legato, trills, staccato, glissando 

are all possible and grateful on this instrument. The last two or three decades 
have produced a number of outstanding virtuosi, many of whom are Negroes 
and many of whom are skilful improvisers. It is due to the wide influence of 

jazz and jazz-playing that saxophone manufacture has become a considerable 
industry. 

Standard dance-band combinations customarily use 4 or 5 saxophones. In 
some instances this number varies. It is quite conlmon for a saxophonist to 

double as a clarinettist,Some performers are equally good on both instruments. 
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In the earlier days of American jazz (and also in some instances in Europe) 
there were some ensembles consisting only of saxophones, but they have not 

survived.* 
The American family of saxophones is tuned in Bb and Eb. 

A 

Written range: For all saxophones 

Sounding range: Soprano in Bl> 

Sounding range: Alto in El> 

Sounding range: Tenor in Bi» 

Sounding range: Baritone in El» 

Sounding range: Bass in BV 

Figure 35. Saxophones. 

The soprano and the bass are seldom used today. All saxophone parts are 

written in the treble clef. There is no noticeable difference of registers in a good 
performance, and it is for this reason that we have omitted range subdivisions. 

D. The Oboe (Double-Reed) Family 

1. OBOE 

The oboe is an instrument of ancient origin. In its primitive form it was in 

wide use throughout Asia. One of the oboe’s ancestors was the Hellenic aulost 
which was used for the expression of passion. 

Blowing through the narrow opening of the flatly folded reed (usually called 

double reed) requires strong lungs and a peculiar technique of breathing. Some 

of the Asiatics (Persians, for example) can play the oboe-like double-reed instru¬ 
ments with uninterrupted sound (like the Scottish bagpipe). These performers 

♦Recently a well-known band leader, Shep orchestra which consisted, apart from several 
Fields, organized a large, successful dance percussion instruments, wholly of saxophones. 

(Ed.) 
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usually hold a reserve supply of air in one cheek, which is exhaled, i.e., blown 
mto the reed, while the lungs are inhaling a new supply of air 

The contemporary oboe has a conic bore, which characteristic permits the 
appearance of the full scale of natural tones (harmonics). 

Without additional keys, the oboe acoustically can be considered an instru- 
ment in D, like the flute. The oboe, like the flute, is not a transposing instru¬ 

ment. Most oboes of European manufacture have b of the small octave as their 
lowest tone. American-made oboes reach 6b, immediately below it. It is cus- 
tomary not to use the oboe above/ of the second octave. Owing to its construction 
the oboe is a slow-speaking instrument. Only passages of moderate speed are 

,°" t mu8trUTnt; The oboe i8 va,ued mainly for its characteristic 
tone-quality, which can be described as “nasal" and “warm." 

... A1i types of passages are possible, including tremolo legato and trills, pro- 
vi mg ey are executed at a speed which seems moderate compared to flutes 

and clarinets. One of the most valuable characteristics of the oboe is the versatil- 

the f^nct the ^ttack forms. The legato, the portamento, 

tincrion d paftlCU " y the hard 8taccato appear on the oboe with clear dis- 

The density of the oboe’s tone decreases considerably in the upper part of 
its range. The low register is somewhat heavy and has a natural volume in¬ 

crease in the direction of decreasing frequencies. The most flexible and ex- 

pressive part of the range is the middle register. High tones are thin and shrill, 

he density of the oboe’s tone decreases considerably in the upper part of 

creJTfn ,,The.!°W,repstfJi8 somewhat heavy and has a natural volume in¬ 
crease in the direction of decreasing frequencies. The most flexible and ex¬ 

pressive part of the range is the middle register. High tones are thin and shrill. 

Natural tones _ 4 

Dense tone-quality; 
Dynamic Range: 

Rich expressive 
and flexible tone- 
quality; 
Dynamic Range: 

High 

Tone-quality 
grows thinner; 
Dynamics: f 

Small tone-quality; 
Dynamics: 
Good only in a 
loud tutti. 

Best range for a solo cantilena 

Figure 36. Range and registers of the oboe. 
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2. OBOE D’AMORE 

A mezzo-soprano type of oboe which is now rarely used. J. S. Bach used it in 

his Christmas Oratorio. It was revived by Richard Strauss in his Sinfonia Do- 

mestica. 
This is a transposing instrument in Ab. 

Figure 37. Range of Oboe d’Amore. 

3. CORNO INGLESE (ENGLISH HORN) 

The immediate predecessor of this instrument is the oboe da caccia (hunting 

oboe), now obsolete. The contemporary version ol corno inglese (also known as 
oboe contralto) represents an instrument similar in most respects to the oboe, 

but sounding a perfect fifth lower. It is a transposing instrument in F. 
The middle octave is its best register for an expressive solo. The low register 

is denser and heavier than that of an ordinary oboe. The high register is seldom 

used beyond the written d (sounds g) of the second octave. All other character¬ 
istics correspond to oboe. It is still a somewhat slower-speaking instrument than 

the oboe. 
The English horn is exceptionally suitable for the expression of passion and 

suffering. In orchestral scoring it is often given a solo. One of the famous solos 

is in Wagner's Tristan and Isolde (Prelude to the third act). 

Figure 38. Range of corno inglese. 

4. HECKELPHONE (BARITONE OBOE) 

The baritone oboe is an instrument of German manufacture (made by 

Heckel) which, in its perfected form, was introduced about 1905. The tone has a 

quality of overwhelming richness and expressiveness. Richard Strauss used 

it first in his opera Salome; Ernst Krenek also employed it in his opera Sprung 

Ueber den Schatten (“Leap Over the Shadow”). It is an instrument well deserv¬ 

ing wide use together with the oboe and English horn. 
The heckelphone is made to sound one octave below the oboe; it sounds 

one octave below the written range. Its size is so big that the bell of the instru* 

ment rests on the floor, while the performer is playing it from a sitting position. 
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The key and hole system, is designed to resemble that of an ordinary oboe 

* 'CA&CtheTanp T.lT “ ^ f°T 0b°ist to master the heckelphone. ’ 
of i M a"d hC rePterS °f this instrum™t correspond exactly to that 

for a f r 15 4t°' but «"“d °"e «*»ve lower, there is no need lor a table of range and registers. 

E. The Bassoon (Double-Reed) Family 

1. FAGOTTO (BASSOON) 

The name "fagotto” derives from "faggot”: a bundle of sticks- the name 
bassoon from the association with bass register 

Which he <a,SCn iS an .in5t,rrument with a very long conic bore (about eight feet) 
ch folded upon itself, somewhat in the manner of the letter "u” This 

u-shape makes it possible to. have a system of accessible holes and keys ' W 

of the key-holes produce only one tone (the lower keys) and some, two (odave 
variation is easily produced by lip-pressure). loctave 

h* an^Str“ ™th a c°nic bore and a double-reed mouth-piece the 

*—* - r»p. i. i.. 

ha«Jnnd-er ^ T* COn<!it?ms of fin&ering (with the basic six holes closed) the 

- a tcsiCTSK:r" 
end is of somewhat poorer quality than all the other tones of the low raster 

oboe VarioSusTent “fCapable ,°f mobiiity. noticeably greater than that of an 
oboe, anous forms of arpeggio (practically in all expansions) octaves and 
eaps in general, as well as rapid scalewise Dassaves frpmnU i ’ , 

constitute the versatile technique oTthilhst”' 

Legato, portamento, soft and hard staccato (the latter h#>incr tU u . * ssr -—- • 
mayBb“d £ weltT Ttt nm" T ^ and-the drfs •*** dy oe useo as well). It is not a transposing instrument. 

I he dynamic peculiarities of the bassoon require particular attention on 

ofthTsmaU CT.P°^r‘ The ,OW re^ster (from ^ of the contra-octave to c 
of the small octave) is the most powerful part of the bassoon’s range It weakens 

PnHh y>v?Warf m-lddle register (this be*™ with c of the small octave and 
register Tlmhillf octave), which is considerably'weaker than the low 

h 'T / fr°m C -t0 g °f the midd,e « somewhat harsh • 
it becomes very mellow from g of the middle octave to d of the first octave 

ivelv fth^o15 °ne °Kthe ^ COmP°sers who has utilized this upper region effect¬ 
ively (the opening bassoon solo at the beginning of the RUes ^SpHng). 



1522 THEORY OF ORCHESTRATION 

Middle 

^L.OW 

Dense, rich qualityj 
Dynamic Range: 

•f*jr 

J High 

] Weaker, paler Harsh and crude, Mellow, deli- j 

| quality; weaker somewhat pierc¬ cate quality; j 

• intensity; ing quality; Dynamic Range: j 

I Dynamic Range: Dynamic Range: 

Figure 39. Range and registers of the bassoon. 

2. FAGOTTINO (TENOROON, QUINTFAGOTT, TENORFAGOTT) 

This instrument (now practically obsolete) was built a perfect fourth and 
a perfect fifth above the regular bassoon. Both types are transposing instru¬ 

ments: tenoroon in Eb, sounding one perfect fourth higher than written and 
tenoroon in F, sounding one perfect fifth higher than written. The tone-quality 

of these instruments is inferior to that of the regular bassoon. 

3. CONTRAFAGOTTO (DOUBLE-BASSOON, CONTRA- 

BASSOON, CONTRAFAGOTT) 

This instrument, still of greater dimensions, is meant to be the lower octave- 

coupler to an ordinary bassoon. The engineering quality of this instrument, being 

inferior to that of a bassoon, causes inferior tone-quality and less exacting in¬ 

tonation. The tone of this instrument is somewhat dry and does not sound as 

healthy as the tone of the bassoon. Its alertness is also somewhat lower. 
As the contrabassoon is an instrument built mainly to produce low fre¬ 

quencies, it must not (except for some special purposes, such as creating associa¬ 

tions of a “humorous” or “painful” nature) be used beyond its regular middle 

register. 
The contrabassoon is a favorite instrument with many composers. Its sound¬ 

ing range is one octave lower than written. Its lower register is considerably 

weaker than that of a bassoon. 

Written range 
Middle^. 

£3t * 

Sounding range 
Middle 

High High 

Figure 40. Range and registers of Ike contrabassoon. 

CHAPTER 3 

BRASS (WIND) INSTRUMENTS 

A. Corno (French Horn) 

T™Hh0r" is 7 rtrument with a lone and rich history. The immediate 
the 7lnT°r °f .7 contemP°rary three-valve chromatic French horn was 

e so-called natural horn, capable of producing only the natural tones. All 

hi th°niLSn n 1 "atUral h°r" Were obtained by Pu‘dng the fist of the left hand 
into the bell and varying the depth of its position within the bell. The .. 
the fist is set, the lower the sound of the respective natural tone. This manner 

l"g “ra 10,168 baSet* °n th£ Phy8ical Pr‘nc’P'e of open and closed 
pipes, an open pipe sounds one octave higher than the same pipe closed. As 

lenlel h°n,CrbT, WhlChrS C°iled ar°Und itSelf) extends in a horn t0 “boot 
Spven feet, the partial closing of this pipe by a fist, at the bell, lowers the respective 
natural tone only by one or two semitones. This device does not cover a» steps 

chromatically as the acoustical gaps between the second and the third, and 

Hr? the.‘b,rd.and the fourth *one8 are too great. It is for this reason that 

fare-mce “ 18tH a"d e3rly 19th centuries were predominantly fan- 

Eventually natural horns became practically obsolete. Rimsky-Korsakov 
used natural horns in his opera May Night (when chromatic horns were univers¬ 

ally in use) for the sake of his own amusement, which he called "self-discipline". 

menf" n ^ "7? *7“ by such comPosere as Mozart and Beethoven, not to 

2? thesT 01 H?re' !t iS imp°rtant haw a‘ 'east some basic information 
Hot h k a" he anSpOSlt,0n-keys of the various horns which were used in not such a remote past. 

Natural horns were constructed in two main size-grouDS- the alio hnm. 
and the basso horns. All home transpose downward, i.e„ they sound below the 

written range. Alto horns transpose directly to a designated interval, indicated 

alto transH??! T in5trument' horns, in addition to the 

and thenb”r?;eHnndBh0)ne ** the C,a™‘ ^ 

tinn IrhC alt“hT5 :ere COnstructed in all chromatic keys except Gb. The selec¬ 
tion of a particular horn was in correspondence with the key in which a certain 
pwice was. written. Basso horns were used, where it was esLtial to Hhth? 

lower register. Basso horn parts are known only in three transpositions: the 

in e?pre?Ttion of?hea3SO H Ab~bass°- There — ™ octave confusion in 
C f k T beCaUSe “ was the a,t° horns ‘hat were usually 

7*7 r a °n b7S0 h°rnS Was <>uite optional. An instance of their use 
may be found m Beethoven's Fourth Symphony (written in the key of B6) 

is no OH h,r °f raivaS' which ““re th« entire chromatic scale, there 
L dlfference ln the construction of the present day French horns 

.(including the conic mouth-piece). 

[ 15231 



1524 THEORY OF ORCHESTRATION 

Blowing through a long narrow channel creates conditions under which it 

is easy to "overblow” the fundamental tone of the scale. That is, the air- 
column tends to break into two halves. For this reason, the officially recognized 

range of |the horn begins with the second tone. From there on, all pitches are 
practical up to and including the twelfth natural tone. 'The sixteenth tone is 

seldom used nowadays. As the frequency increases, the tone-quality becomes 

brighter. 
We shall represent now the scale of natural tones for the hypothetical 

French horn in C. As the chromatic horns used today are in F, the actual sounds 
appear a perfect fifth below the written range when the part is written in the 
treble clef ; in using the bass clef, write the parts a fourth below the intended 

pitch, or, to state it differently, one octave below the treble clef. Thus the 
transposition of the French horn, when written in the treble clef, is exactly the 

same as that of an English horn. 

Thus: 

This cumbersome octave-variation as well as the whole idea of pitch-trans¬ 

position is a survival of an old tradition. The sooner it is abolished, the better; 

no one gains by this transpositional technique, which is a constant source of 

complications and confusion. 
During Wagner’s time and later, chromatic French horns in E were used 

together with those in F. They are abolished today, because of the superior tone- 

quality obtainable on the horns in F. 

Figure 41. Scales of natural tones of the French horn. 

Only in very exceptional cases is the French horn part written one or two 
semi-tones above the twelfth tone. The best tone-quality for solos lies between 

the fourth and the twelfth natural tones. The French horn provides a direct 

continuation of the tuba’s timbre in the lower portion of its range. From the 
fourth to twelfth tones it acquires a gradually growing characteristic of lucidity; 

in its upper range, the French horn blends well with clarinets and particularly 

with flutes; in its lower range, with trombones, tuba and bassoons. In this sense, 

the French horn is an intermediary between the wood-wind and the brass groups. 
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The chromatic scale, as already stated, is obtained by operating the three 
valves. All three-valve instruments are designed on the same general principle. 

The first valve (operated by the upper key) lowers the natural tone by two 
semitones. 

The second valve (the middle key) lowers the natural tone by one semitone. 
The third valve (the lower key) lowers the natural tone by three semitones. 
Valves are indicated by the respective Roman numerals: 

I lowers by 2 semitones 

II ” ”1 semitone 
HI ” ” 3 semitones 

These indications are not used in scores or parts, but merely for reference, when 
necessary. 

The operation of valves is such that while blowing the written middle c, 
for example (the 4th tone which sounds /), and pressing key I, one obtains bt> 
(sounds eb); blowing the same tone and pressing key II, one obtains b^ (sounds 
ell); blowing the same tone and pressing key III, one obtains al? (sounds dll). 

All other intervals, by which a natural tone can be lowered, are obtained 
by a combined use of keys controlling the operation of valves. Thus: I -f- II 
lowers the natural tone by 3 semitones; 

I + HI lowers the natural tone by 5 semitones; 
II -4- HI lowers the natural tone by 4 semitones; 

the combination of all three keys lowers the natural tone by 6 semitones. 

In the French horns of old make, there were some deficiencies of intonation 
when the combined valves were used. They are abolished in present manufactur¬ 
ing by a special interlocking of air columns in the valves, which device rectifies 
the corresponding frequency-ratios. 

Valves themselves are additional short pipes, connected with the main 
channel by operation of the keys. The latter affect the pistons or the rotary 

cylinders. Cylinders are more common on the present French horn. So far as 
tone quality is concerned, it does not make any difference which particular 
mechanism is used. Thus keys open the valves, thereby connecting them with 

the mam channel, which results in the lengthening of the air column and, for 
this reason, lowers the pitch of a given natural tone. 

Since the change of embouchure (lip condition with respect to form and 
pressure) is never as alert as finger technique, it is preferable to write rapid 
passages when they can be produced mainly through the operation of keys. 
It is for this reason that the composer must have an exact knowledge of the key- 

valve operations Even trills and tremolo legato are possible when they are 
obtained through the use of keys. 

It follows from the above that the valve system is, acoustically opposite to 
the whole system used on all wood-wind instruments (i.e., on the brass instru¬ 

ments natural tones are lowered; on the wood-wind instruments they are raised). 

The French horn is a slow-speaking instrument, and for this reason speed 

is not limited by the finger-technique but rather by slow tone-production. All 
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forms of legato and staccato, as well as portamento, are available and distinct. 

The breathing process, as applied to this instrument, is normal and healthy. 
It is possible for this reason to execute sustained tones or passages of considerable 

period in one exhaling. Contrary to the double-reed practice, playing the French 
horn* is aAealthful occupation. 

Owing to the conical shape of the mouth-piece, double-tonguing is not within 

the scope of this instrument. One of the French horn's specialties is the dynamic 
effect of sforzando-piano (sfp). This can be performed at any point from the 
3rd harmonic upward. The French horn has a wide dynamic range but its lower 

part weakens considerably. 
The French horn is played either open (indicated as o) or stopped (indicated 

+). The first indication is not used, except as a cancellation of the “stopped.” 
Stopping is usually indicated above each attack. 

Mutes are generally applicable to French horns, but used by performers 
only under compulsion: they think the stopping “will do”. 

In volume (intensity), the French horn occupies an intermediate position 

between the brass (in relation to which it is weaker) and the wood-wind instru¬ 
ments (in comparison with which it is louder, particularly when played high 
and ff). 

B. Tromba (Trumpet) 

The trumpet is a chromatic three-valve instrument. Depending on manu¬ 

facture, either cylinders or pistons are used. 

Of all types of trumpets, the soprano (ordinary) type in Bh and A is used 
more universally than the alto trumpet in G and F, the piccolo trumpet in D 

and Eh, and particularly the bass trumpet in Eh and Bh. 

1. TROMBA (SOPRANO TRUMPET) in Bh and A 

Of these two designs, preference is given to the Bb trumpet in the U.S.A., 
while in Europe both tunings are used for the respective parts. American dance- 

bands use the B6 trumpet exclusively. 

Some of the Bh trumpets can be converted into A trumpets, by drawing 

a special telescopic slide which lowers the range of the instrument by a semitone. 
The trumpet part as written sounds two or three semitones lower respect¬ 

ively, as in the case of the clarinets. 

Its scale begins with the second natural tone and ends, for all normal purposes, 
with the eighth. Outstanding trumpeters are able to blow the ninth, the tenth 

and even the twelfth tones. In this case the use of the piccolo trumpet becomes 
unnecessary as the tone of the regular soprano trumpet is preferable. On the 

other hand, the composer must not rely on the presence of a virtuoso in every 
orchestra, even the performer playing the part of the first trumpet. 

Natural tones are produced by the embouchure, and the pitches between them 
by fingers, i.e., by pressing the keys which control the valves. The trumpeters 
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of American dance-bands produce many chromatic variations and glissando by 
the embouchure. These virtuosi very frequently go beyond the eighth tone. 

In writing improvised” solos (which in most cases are actually written out 
and studied), it is best to test the individual performer’s range first. 

Figure 42. The range of the trumpet. 

is - f#!inther°nl!rdu r°f a“ three valves’ the ,owest of the trumpet 

ly weak The I, -\(“ h ** teloW the Second natural tone are (feneS- 
ly weak. The natural intensity grows with the increase of frequency, but skilful 

per ormers have a considerable control over the dynamic range of this instrument. 

The cup-shaped mouth-piece of the trumpet, the shape of the bore fshVhtlv 
deviating from a cylinder to a cone) and the length of the bore make the tranSY 

tonTuT °it°tgULattaCkS m°re immediate- For this reason double and multiple 

at a Mar^er-W0'k,°n ^?ueyS PCrmitS eXeCution °f trills a"d tremolo legato 
LIT/T1; PTvdT 7th comP°nent pitch-units are executed through the 
^ura^ pitch-units may be keyed, or one of them may be 

and hard°Zc°latt;k? “* 7" defined °n 3 trUmpet: le*ato- Portamento, soft 
speed At ? even arpeEgl° ran be executed at a considerable 
speed. At one time the trumpet was considered as mostly suitable for a oer- 

ev^rV 77 7 a"d fanfare-like .music, but this dewpoint (considered 

ment h- s ^ co'"Pletely outmoded. The prestige of this instrn- 
ment has been amazingly restored and heightened by jazz. 
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2. CORNETTO (CORNET) IN Bb and A 

This instrument, also known under the French name of cornet a pistons', 

(i.e., a cornet with pistons; the name implies chromatic possibilities) does not, 

strictly speaking, belong to the trumpet family. Its bore is more conical than 

that of a trumpet; this makes its tone-quality more mellow. For this reason 
it is considered a more lyrical instrument than the trumpet. Today, however, 

the skill of performers is so great that accomplished artists are able to imitate 

the sound of a cornet on a trumpet and the sound of a trumpet oil a cornet. 

In most cases, American cornettists use the Bb instruments. It is also cus¬ 
tomary for a trumpeter to play both trumpet and cornet. The scale of natural 
tones, the range and tflfe whole mechanism of execution are practically identical 
with that of a trumpet. The cornet is generally considered to be somewhat less 

alert than the trumpet. Tone-quality on both trumpet and cornet can be altered 

by means of a mute inserted into its bell. The use of the mute is marked “con 
sordino”; the cancellation of this effect, “senza sordino”. 

American jazz created a real mute-o-mania, resulting in a great variety of 
new mutes (straight mute, cup-mute, harmon-mute, etc.). Another device, 
closely related to mutes is the “hat” (usually made out of metal, in the shape of 

a trench helmet or a derby). It is used for glissando “wow-wow” effects (acous¬ 
tically, a transformation of the open pipe into the closed pipe). 

This instrument is the prima donna of the brass band, but it has found its 
way into symphonic, operatic and particularly dance scoring. 

3. TROMBA PICCOLA (PICCOLO TRUMPET) in D and Eb 

This instrument is considerably smaller in size than the ordinary trumpet. 

The D-type is mostly used in symphonic scoring (for example, Stravinsky’s 
Sacre), but relatively very seldom. The Eb type is much more common in brass 
bands. 

The tone-quality of both is decidedly inferior to that of a regular trumpet. 

The transposition of this instrument is analogous to clarinet piccolo, i.e., 
two and three semitones up respectively. Thus the eighth natural tone (c) 

sounds d and eb respectively. As this instrument requires an excessive lip- 

pressure, it is very difficult to produce any tone above the eight harmonic. For 

this reason there seems to be no practical advantage in the further use of this 
instrument. 

4. TROMBA CONTRALTA (ALTO TRUMPET) in G and F 

This is a very useful instrument not only for the extension of the regular 
trumpet’s range downward, but also (and mainly so) for obtaining better quality 

tones within the low register (from the third natural tone down) of a regular 

trumpet. Rimsky-Korsakov made a very extensive use of this instrument in 
his operas. It is a softer instrument compared to the Bb and A trumpet. 
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The lowest possible pitch on the alto trumpet is the written f# (three keys 
pressed: all valves open), which sounds c# on the G trumpet and b on the F 

rumpet respectively, i.e., it transposes down like the alto flute. 

nn tu CUSt°mary for the former of the third trumpet part to double 
on the alto trumpet. 

5. TROMBA BASSA (BASS TRUMPET) in Eb and Bb 

j S,t,riCt'y Spe^.'ng’ this instrument is not a trumpet but a miniature tuba 

^rnun of rh0re’r^ 0nf ^ 5°’called saxh°rn family (the dominant brass 
g up of the military oands). It is also known as tenor tuba or Wagnerian tuba 

In many instances the parts written for this instrument are played by the 

rari^tb0"!^ The E!> mstrument sounds eiKht semitones below the written 
mstrument, one octave below the soprano Bb trumpet. Un- 

1n r hnL h'Vnbt-Ument T' beC°me obsolete- There is also a bass trumpet 
range 5 which is very seldom used. It sounds one octave below the written 

C. Trombone (Trombone) 

^ThC tro"lbo"e is on? of the most remarkable instruments in the orchestra. 
Its design is based on an ingenious yet very simple principle: it has an air column, 

whose length can be varied by means of a slide, which is a part of the instrument 

proper. As a result of this construction the trombone produces a complete 
chromatic scale consisting of natural tones only. 

The pulling out of the slide increases the volume of the air-column and thus 

pioduces the additional six standard positions. When the slide is pulled all the way 

m, the trombone is considered to be in tho first position. The opposite oosition 

with the slide pulled out (to the limit, but still producing a contiguous tore or’ 

.^totltonri-H 61 PUMed °Ut comPletely. disjoining the instrument 
* ‘ ‘W° md‘™luaI 5ectlons)1S considered the seventh position. All other positions 
are be ween the two extreme positions. Thus the slide actually converts seven 

naturaUiistruments into one chromatic instrument. As different positions possess 

different acoustical characteristics, we shall describe each position individually. 
The first position has the following natural scale: Y 

Figure 43. First, second, third and fourth positions of the trombone (continued). 

The second, the third and the fourth positions have 

similar acoustical characteristics. See following page. 
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12 3 i B 6 8 9 10 12 

Figure 43, First, second, third and fourth positions of the trombone (concluded). 

Tones produced by the fundamental are often called pedal tones. 

Beginning with the fifth position, the air-column breaks up into two halves, 
thus making the production of the fundamental impossible. 

The fifth, the sixth and the seventh positions have the following natural 

scale: 
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It is easy to see that after the natural tones of all seven positions are com¬ 
bined, there appears to be a gap between the second natural tone of the seventh 
position and the fundamental of the first position: 

Thus, the following pitches are not available on the trombone of this type: 

*•* #-<*• TT )tTr 

Figure 45. Unavailable pilches on the trombone. 

The ability to produce the natural tones above the tenth depends upon the 

skill of the performer. It is advisable, in writing orchestra parts, not to exceed 

the eighth harmonic, reserving the use of the ninth and the tenth for exceptional 
effects. 

• ,T° C°?lpen8ate for the absence of pitches within the gap, an instrument 
with a special valve has been designed. This valve, operated by a string attached 

to a ring controlling the opening of the valve, lowers any natural tone by five 

semitones (perfect fourth). For this reason a trombone supplied with such a 
device is known as a Irombone with a valve. 

By means of this device, d#, dfcj, c# and c* can be obtained from the second 
natural tones of the III, IV, V and VI positions respectively. 

The slide positions 

HI* V* VI2 

Pitches produced by the 
open valve 

Figure 46. Pitches produced by the open valve and slide. 
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The lowest pitch of the gap (bfc?) still remains impractical owing to the fact 
that the air-column of the seventh position, augmented by the valve, becomes 
so great that it breaks itself into three thirds of the total volume, thus causing 

the third natural tone: 

It follows from this description that not only the entire chromatic scale is 

available, but that some of the pitches are even duplicated: they appear as the 
different natural tones of the different slide-positions. The preference in such 
cases depends on two conditions: 

(1) the positional distance from the preceding to the following pitch; if such 

positions are too remote and there is a possibility of obtaining the same 
pitch on a different natural tone of a nearer position, it is the positional 
distance that becomes a decisive factor; 

(2) the difficulty of producing higher natural tones in the lower positions as 
compared to lower natural tones in the higher positions; for example 

is easier than 

Figure 48. Up is easier than VII12 • 

The trombone has a cup-shaped mouth-piece. Its tone-quality greatly de¬ 
pends on the manner of playing. Some trombonists have a bold, powerful tone; 

some have a mellow lyrical tone; and some have both. The character of the tone 
greatly depends on the form of vibrato (tremulant). All forms of vibrato on the 
trombone are vibrato by pitch (obtained by oscillating the slide within a small 

pitch interval as on the stringed-bow instruments). In comparison, trumpet 
vibrato is vibrato by intensity and is caused by variation of embouchure. 

The trombone is an instrument of a sliding pitch par excellence, easily 
comparable to the ’cello. For a long time composers misunderstood the true 
nature of this instrument. American jazz recaptured the real meaning of the 

trombone, though in many instances dance-band trombonists overdo both the 
vibrato and the sliding, which renders a sugary character to the whole perform¬ 
ance. 
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Ulssando- "hlch "-as first regarded (in the hearing of Stravinsky's scores) 
as an innovation, in reality is very basic on a trombone and today has become 

not only a commonplace resource, but also a source of annoyance. From the 

technical standpoint a true glissando can be executed only on the same natural tone 

while the slide is being gradually moved through its continuous points (that is,’ 

not only the positional but also interpositional). All other forms of glissando 
are made by variation of embouchure and are not standardized 

A glissando can be performed either up or down. It is sufficient to indicate 
a glissando by showing the starting and the ending pitch of it. and to connect 
the two by a straight or a wavy line: 

or 

Figure 49. Glissando, 

The term gliss. may also be added above the part, if desirable. 

The passage just illustrated is executed on the eighth natural tone, while 
pullmg-in the slide from the VII to the I position gradually. If a passage falls 

on the different natural tones, it is impossible to execute it in continuous, i.e., 
glissando, form. For example: 

Figure 50. No glissando on different natural tones. 

The execution of this passage is impossible because can be only III*, while 
1 g is the third natural tone, its fundamental would be c and there is no such 
position on the trombone. 

, W"re Very ** on ** trombones in the symphonic music 
of the past. However, the development of jazz has led to a very extensive and 
diversified use of mutes (including “hats”) in the same maimer as they are 
being used on the trumpets. 

Besides raising the standards of performance on this instrument, jazz has 
also created some outstanding virtuosi, among whom the greatest artist is Tommy 
Dorsey, particularly because of his unsurpassed tone-quality. 

Some trombonists are capable of producing (as a special effect in the higher 
positions) simultaneously the fundamental and the third harmonic (actually 

sounding as a harmonic). In addition to this, some jokers sing the fifth har¬ 
monic, thus obtaining a whole triad. 

Trombone parts are usually written in the bass and the alto clefs- 19th 
century composers preferred the tenor clef. Today it is practical to use treble 
clet tor the higher register, as all trombonists can read these four clefs. 
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The trombone with a valve is usually employed as the third trombone 

in symphonic scoring, but is seldom used by dance-bands. All other types of 
trombones, such as alto trombone (in Eb, sounding a perfect fourth higher than 
written) or bass trombone (in F, sounding a perfect fourth lower than written) 

have become completely obsolete. The old three-valve trombones of various 

types were found unsatisfactory in their tone-quality, which was decidedly in¬ 

ferior to that of the natural (slide) trombone. 

D. Tuba (Tuba) 

This instrument is also Iqgown as bass-tuba and belongs to the sax-horn 
family, which is fully represented in the large brass bands. The tuba, which is 

used as a standard instrument in symphonic and operatic scoring, seldom ap¬ 

pears in the dance bands. Dance bands mostly use the Eb sousaphone bass (a 
three-valved instrument commonly used in the infantry). 

The tuba, acoustically, is an instrument in F, but does not require trans¬ 

position. Its parts sound exactly as written. Due to traditional use of a quartet 

consisting of three trombones and a tuba (usually the tuba part is written on 
the same staff as the third trombone), composers developed a habit of associating 

the tuba with trombones. However, the tuba comes closer to the French horn 

than to the trombone. Its pipe is conical, like that of a French horn, while the 
trombone's pipe is cylindrical until it reaches its bell. The mouth-piece of the 
tuba is closer in shape to that of the trombone than of the French horn. 

The scale of the natural tones of the tuba is as follows: 

Figure 51. Natural tones of the tuba. 

It is advisable to use the first six natural tones, and to resort to the eighth 
tone only in exceptional cases. The tone-quality of the French horn is preferable 

to that of the high register of the tuba and it bears a close resemblance to the latter. 

Tones below the fundamental are difficult to execute as there is a constant 
danger of overblowing the fundamental. It is best not to write below d which 
lies three semitones below the fundamental. 

There is an interval of a whole octave between the fundamental and the 
second tone and the design of the tuba requires four valves. These four valves are 

evolved according to the standard three-valve principle, the fourth valve being 

capable of lowering a natural tone by 5 semitones. In addition to this, tubas 

used in symphonic and operatic orchestras have a fifth valve. The purpose of 
his valve is to give an acoustically more satisfactory semitone-valve for the lower 
egister, as the second valve is not sufficiently large. Tubas of the type being 
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described here have a valve operation on cylinders. Pistons are to be found in an 
instrument serving similar purposes in infantry bands, the ophicleide, which is 
earned over the shoulder while being played. 

Thus the valve arrangement on the five-valve tuba is as follows: 

I lowers the natural tone by 2 semitones 

11 lowers the natural tone by 1 semitone 
III lowers the natural tone by 3 semitones 

IV lowers the natural tone by 5 semitones 

V lowers the natural tone by 1 large semitone 

Combined application of these valves produces any desirable interval between 
the first and the second tones. 

The tuba is a slow-speaking instrument. Good intonation is one of the 
main difficulties of this instrument. The main asset of the tuba is its rich tone 
quality. All forms of attack are available, but the tuba is particularly suited for 
long sustained tones and slow passages in general. No mutes and no special 
effects are used on the tuba. 

The Russian composer Shostakovich used, in his First Symphony, two tubas, 
instead of the customary one. As intonation on the tuba is usually less precise 

than on the other brass instruments, this score, at least when being performed 
m Russia, created considerable difficulties during rehearsal: one tuba is bad 
enough but two become unbearable. 



CHAPTER 4 

SPECIAL INSTRUMENTS 

A. Arpa (Harp) 

THE origin of the harp leads back to antiquity. In the bas-reliefs of ancient 

Egypt, dated as far back as 2700 B.C., court orchestras are represented 

which consist mostly of pipes and harps. In the last two or three centuries the 
harp has undergone many modifications. Some manufacturers have built chro¬ 
matic harps and some, diatonic. Contemporary harps are diatonic instruments 

with a triple tuning. 

The contemporary harp is originally tuned in a natural major scale in cb. 

There are seven strings to each octave. All octaves are identical. The main 

feature of the contemporary harp is a set of seven pedals which control the 
tension of strings. The mechanism of the pedals is devised in such a manner 
as to produce modification of the same-named strings throughout all octaves. 
Thus, through the first step pressure-position of the cb pedal, the pitch of all 
the cb-strings becomes ck). Through the second pressure-position of the cb - 

pedal, the pitch of all cb-strings becomes c#. A similar mechanism affects the 

remaining six name-strings. The step-pressures are independent for each pedal. 

While one pedal is put into its first pressure-position, another pedal may be 
put into its second pressure-position. This is possible because all pedals have an 
independent operation. Pressure-positions are retained by the instrument until 

they are changed by the performer. This is possible because each pedal has a 

locking arrangement in the form of two inverted steps: 

First notch - 

Second notch 

Figure 52. Pedal notches. 

_j b- position (original) 

_j ^-position (first pressure) 

D - position (second pressure) 

115361 
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Looking at the harp from above, the pedals appear in the following ar¬ 
rangement: 

Figure 53. Pedals of the harp. 

Accomplished harpists manipulate the pedals with great dexterity and can re¬ 
arrange up to four pedals per second. 

Harpists, as in the case of pianists, find the different strings by tactile 
distance-discrimination. However, in some cases, strings of red color are used 
for all the cb s, and of blue color, for all the fb’s. This helps one to find the 
remaining strings. 

T*!? barp, ‘lplayed either Plucking a string, or a group of strings, with 
the individual fingers: 

(1) in sequence (arpeggiato), which is the normal form of execution of 
chords on a harp; 

(2) simultaneously (non-arpeggiato). 

,n !" ,additi.0n t0/hi8' the harP is often played glissando, which is always a 
•?“ ““uted bJ -Wing one of the fingers over the strings. 

rh 8tnngS wltb,n ,Sli ranfSe ^ problem of tuning glissando- 
chords becomes of major .mportance. Glissando can also be executed in octaves 
and other simultaneous intervals. 

As a special effect, octave-harmonica can be used on a harp. This is executed 

y 0UChiI.nK stnnS at ,t8 nodal Point (geometrical center) with the palm 
and pluclang with a finger of the same hand. If the interval is relatively small 
each hand can produce harmonics in simultaneous intervals. 

*5* harp is a delicate instrument. It gains in volume con¬ 
siderably through the use of glissando. This effect an be executed in various 
degrees of the dynamic range (from pp to ff), depending on the ssure exerted 

8?ra"d SSS •“dfa* °V“ ** -«*•: -create in s^ ^ pressure results in the increase of volume. 
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It is important for the composer to understand that when pressure-positions 

are alike for all the strings, only natural major scales in the following three keys 
result therefrom:-Cb, Cb, C#. 

Original position: cb — db — eb — fb — gb — ab — bb 
First pressure-position: cb — db — eb — fb — gb — ab — bb 
Second pressure-position: c# — d$ — e# — f#—g$ — a# — b# 

All other scale-arrangements require rearrangement of the pressure positions. 

It would be of great advantage to the composer to know that all the 36 

forms of 2 (13), tabulated in the Special Theory of Harmony,* are at his disposal. 
And any tonal expansions which derive from the above master-structures do not 

require any rearrangement of the pressure positions. This is possible because 

none of the above 2 (13) contains intervals greater than 4 semitones, which 
satisfies the pedal mechanism of the harp when tuned in E0. 

As the harp is a strictly diatonic instrument, it is desirable to use it as such. 

Quick modulations, containing several alterations, are quite impossible on this 
instrument. Many large scores contain two harp parts (used alternately for 
this purpose) in order to accomplish groups of modulating chords. 

The part for the harp, like that of the piano, is written on two staves 
joined by a figured bracket. The clefs in use are the common bass (F) and 
treble (G): 

Right hand part 

Left hand part 

Figure 54. Harp clefs. 

Instrumental forms suitable for the harp are quite similar to piano forms. 

Octaves in each hand can be executed only at moderate speed. Chords with wide 
intervals for both hands are more difficult than on the piano. Close positions 

are preferable to open ones, though the bass can be detached from the upper 

structures. Many effective passages can be accomplished by alternation of hands. 

Here the composer’s inventiveness may bring many fruitful developments. 
From the viewpoint of thematic texture, the harp can be looked upon as 

an instrument similar to piano, i.e., it can perform melody (in its various instru¬ 

mental forms), harmony, accompanied melody, correlated melodies, and ac¬ 
companied counterpoint. 

In the orchestra it is frequently used as a coloristic instrument, which is 

due particularly to its capacity to execute effective and diversified forms of 
glissandi (upward, downward, combined, rotary, etc.) 

•See Vol. I, p. 654. 
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There is a wide selection of structures which can be executed glissando 
(such structures often contain repeated pitches produced by the adjacent strings 
enharmomcally tuned; but the speed of the slowest practical glissando is suf¬ 
ficiently great not to make these repeated pitches apparent to the ear). There 

is an easy way to determine whether a certain structure permits the performance 

of a glissando: if the structure does not contain major thirds, built on the degrees of a 
natural major scale in Bb, then glissando is possible. In other words, the structure 
in question cannot contain the following simultaneous intervals: 

Figure 55. Glissando chords on the harp. 

because they do not contain the major thirds referred to in Figure 55. 

On the othcr hand the following chords are impossible since they contain 
such major thirds as are classified in Figure 55. 

Figure 56. Impossible glissando chords on the harp. 

tro„hlher,fPrindple ,°f m£aj0r. thirds of the saves the composer the 
trouble of empirical verification. For example, let us see why d - f# - a - c is 
impossible in glissando: * a c is 

db - db 

eb - impossible to stretch to f#. 

be tuned ^ — -Id 

On the other hand a chord like c - d - f - ab is possible: 

cb — cb 
db - db 

eb - e# (ft,) 
fb - fb 

gb - g# (ab) 

bb - b# (cb) 
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There are several different forms in use, by which a glissando can be indicated. 
Here are the most common: 

Figure 57. Notations for glissando. 

The tuning of pedals in general, particularly when parts are harmonically 
simple, does not require any indication. Cautious composers, however, often 
indicate the pedal changes. For example: 

Figure 58. Notation of pedal changes. 

In the fourth measure bkj and efcj do not require any changes in tuning as bfcl = 
= cb and e^ = fb. 
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Octave harmonics, which are the only ones used on this instrument, are 
indicated by zeros above the notes, which notes should sound as harmonics in 
the same octave as written. 

Figure 59. Notation of octave harmonics. 

The forms of attacks on the harp correspond to that of a piano, i.e., legato, 
portamento, staccato, but the difference is less distinct than on the piano. 

The basic timbre of the harp resembles the clarinet, owing to the method of 

playing (i.e., finger-plucking, instead of a hammer-attack, as on the piano; 
piano strings when played by fingers, without the medium of keys and hammers, 

also sound like the harp). The harp blends well with flutes and clarinets. The 

composer must not forget that the harp is a self-sufficient solo instrument of a 
diatonic type. 

In the orchestra, of course, it is mostly used as an accompanying and color - 

istic instrument. It is also extremely effective as a semi-percussive rhythmic 
instrument. 

Sometimes the harp, doubling wood-wind instruments, produces a more 
transparent equivalent of the pizzicato of stringed instruments. 

Carlos Salzedo, who is probably the most accomplished and the most versatile 
harpist of all times, has invented a number of new effects for this instrument. 

He and some of his accomplished students (at the Curtis Institute in Phila¬ 
delphia) are capable of executing these effects. 

B. Organ (Pipe-Organ or its Electronic Substitutes*) 

The pipe-organ is a more self-sufficient instrument than any other instru¬ 
ment known. This is due to the number of tones which can be produced simul¬ 
taneously and to their timbral variety. 

The number of different tone-qualities depends upon the number of stops, 
which can be used individually or in combinations. More expensive organs 
usually have more stops, price also determines Uie quality. Organs range 

horn two-manual to five-manual models, in addition to which every organ has 
a pedal keyboard, generally used for production of the lower pitches. The dy¬ 
namic range of a pipe-organ is fully comparable with that of a full symphony 
orchestra. 

This instrument underwent many evolutionary changes. The latest and most 
spectacular type of pipe-organ is the large theatrical organ. This type of instru¬ 

ment is furnished with a very diversified selection of stops (including many 

•See p. 1544. 
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percussive effects like xylophone, chimes, etc.) not excluding all the essential 

stops of an ecclesiastic organ. There are a number of pipe-organs in the world 
which can be justly considered masterpieces of acoustical engineering. 

As organs vary widely in design, number of manuals, selection of stops, etc,, 
it is impractical to give a detailed description of a pipe-organ. Basically, however, 

all pipe-organs possess certain general characteristics in common. It is essential 

for the composer to know some of these common characteristics: 
(1) The amount of pressure exerted by the performer on the keys has no 

effect on the intensity or character of the sound. 
(2) Forms of attack are effective: legato, non-legato, staccato are quite 

pronounced. 
(3) Physically, the tone is generated by a pipe or a group of pipes, which 

are often built-in at a considerable distance from the console; this 

produces an effect of delayed action: a very important detail to bear 

in mind in using the organ in combination with other instruments. 
(4) Tone-qualities are classified into groups, representing timbral families: 

the strings, the flutes, the reeds, the chalumeaux, etc. Each family 
has a number of distinctly different stops (i.e., tone-qualities). 

(5) Each stop has a set of pipes covering a definite range; organists look on 
ranges and registers as represented by the length of respective pipes. 

Thus they say: a 4' string stop, or an 8' reed stop, or a 32' pedal stop. 

The longer the pipe, the lower the pitch. Certain timbres are available 
only in certain registers, while others cover the entire (or nearly the 

entire) range. 
(6) The massive tone-qualities characteristic of the pipe-organ are due to 

single, double, triple, etc. octave-couplings. These couplings are executed 
by pushing coupler-keys. Under these conditions, an organist can 
produce a powerful and massive tone by using only one finger. 

(7) Volume (the intensity of sound) is controlled in part by special pedals. 
Thus gradual dynamic changes are possible. A sforzando-piano (sfp) 
effect is also available on most organs. 

(8) Composition of stops for the performance of a given piece of music is 
known as registration. Notation for the latter is seldom provided by the 
composer (unless he is an organist). Even when the composer or the 
editor of organ parts indicates the registration, it is quite traditional for 

the performer to change the indicated registration to one of his own choice. 

(9) It is customary to mix the stops belonging to different timbral families 

as well as to couple them through several octaves. 
(10) In addition to this, there are so-called organ-“mixtures’ ’, which are 

built-in combinations of various couplings. When such mixtures are used, 

one key pressed by a finger produces a whole chord structure of one or 
another type. Thus, melodies may be played directly in parallel chords. 
In some of the Organs built in Germany in the second decade of this 

century, mixtures producing some less conventional chords were intro¬ 
duced (in one instance, the mixture added to c produced c — d# — f# — 

-b). 

It is important for the composer to realize that as a consequence of couplings 
and mixtures accompanying each individual note, what reaches the ear of the 

listener (including the organist himself) is quite different from what is written 
on paper. Not only the respective octaves and registers (in the general sense 

of this word) can be different than in writing, but they also can be accompanied 
by whole sets of new pitches which do not even appear in parts. Often symphonic, 
operatic, oratorio and cantata scores contain an organ part. 

The above-described characteristics of this instrument make it very difficult 
for the composer to use the organ in an orchestra or in a mixed vocal-instrumental 
combination properly, since the principle of clarity as a necessary quality of 

instrumental and vocal scoring often conflicts with the natural tendencies of 
the instrument. l*or this reason the organ is either misused in most scores, or 

it plays a purely decorative part. In the old scoring, the organ was used, ac¬ 

cording to ecclesiastic tradition, as a duplication of the choir, and its part was 
often written merely as a figured bass, which the organist had to fill in. This can 
be found in the scores of leading composers of the 19th century. 

Another important characteristic of the organ is its tone-quality with respect 
to vibrato. The organ can produce non-vibrato or a vibrato by intensity (some 
instruments, particularly in the string-stops, have also a mechanical vibrato 

of beats, produced by simultaneous pitches which are set at slightly different 

frequencies). For this reason, organ vibrati are mostly of a different type from 
orchestra vibrati. Simultaneous use of both often creates conflicts and dis¬ 
crepancies. 

Organ parts are generally written on three staves: the two upper staves refer 
to one or more manuals, and the lower to the pedal. Other manuals are choir, 
solo, echo, etc. 

Figure 60. The three staves of the organ. 
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CHAPTER 5 

ELECTRONIC INSTRUMENTS 

' I 'HIS group of instruments is more diversified than all other groups com- 

bined. The term “electronic musical instrument” can be used to describe 
any instrument where electric current generates sound directly or indirectly. 

There are two basic subgroups of electronic instruments. 

A. First Subgroup. Varying Electromagnetic Field 

The first subgroup consists of instruments whose sound (i.e., sonic fre¬ 

quencies) is generated by varying the capacity of an electromagnetic field created 
by two currents. The instruments invented and constructed by Leon Theremin 
are based on this principle. They include three basic models: 

(1) Space-controlled Theremin (also known as Victor-Theremin; later: 
R.C.A. Theremin). 

(2) Fingerboard-Theremin. 
(3) Keyboard-Theremin. 

Of these types, the first acquired far greater popularity than the other two 
models. Recitals are being given by various performers on this instrument. I 

was the first composer to use this instrument in a solo (coneertizing) part with a 

symphony orchestra. The composition was called The First Air phonic Suite 
and was performed by Leon Theremin as soloist with the Cleveland Orchestra 

in Cleveland and New York in 1929. In 1930 a realization of an early dream 

came through. I scored, rehearsed and produced together with Leon Theremin 
and 13 other performers, two programs presented at Carnegie Hall in New York, 

in which an ensemble of 14 space-controlled theremins was presented for the 
first time. 

1. SPACE-CONTROLLED THEREMIN 

Each musical instrument displays some characteristics of its own. The chief 
characteristic of the space-controlled theremin is its extreme adaptability not 

only to pitch and volume variation, but also to the different forms of vibrato. In 
this respect it is so sensitive that the pleasantness or beauty of tone depends 
largely on the performer. In order to obtain a “beautiful tone” on this instru¬ 

ment, the performer must know what physical characteristics make a tone 
“beautiful”. These can be briefly described as a combination of vibrato frequency 

and the depth of vibrato, i.e., pitch variation between vibrato points. As this 
text is meant for the composer or orchestrator, there is no need to elaborate on 
this matter further. In 1929 I wrote A Manual for Playing Space-Controlled 

Theremin, where these matters are discussed in detail. 
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Pitch on the theremin is controlled by the right hand, which is moved to¬ 
ward and away from a vertical rod (antenna). The spatial dimensions of pitch 

intervals vary with respect to total space range, which is adjustable either in¬ 
dividually or for each performance. In other words, pitch is varied within the 

spatial boundaries of the electro-magnetic field. Depending on the stature of 

the performer and the length of his arms, spatial range may be practically ad¬ 

justed (tuned by a knob control) somewhere between one and three feet. 

The electro-magnetic field can be imagined as a three-dimensional invisible 
fingerboard. It is so sensitive that even the slightest move on the part of the 

performer affects the pitch. Spatially, intervals contract with the increase in fre¬ 
quencies, i.e., by moving the hand toward the right antenna (which is a physical 

generality: it works the same way on the regular fingerboards, air columns, etc.). 

Not having a fixed-length fingerboard, the thereminist faces, as it proved itself 
to be the case in many individual instances, much greater difficulty in pitch 
control than any string-bow performer. Yet some performers, who were not 

even professionals on any instrument,' could master the pitch-control problem 

in about two weeks. Their reaction was that you control pitch mostly by “feeling 
distances”, that you play as if you were singing. 

I am not offering any description of the basic timbre of this instrument, 

as each model has a timbre of its own. Vaguely they all resemble a combination 

of a string-bow instrument (when bowed) at its best, if not better, and of an 

excellent human voice singing every tone on the consonant "m”, which, of course, 
has its own basic acoustical characteristics. 

The left antenna of this instrument serves the purpose of controlling the 

volume. The left hand moves vertically toward (decrease of volume) or away 
from (increase of volume) the loop-shaped left antenna. The intensity range 

can be also spatially adjusted by turning a knob, just as in the case of pitch- 

control. This permits any degree of subtlety in varying the volume, as in the 
case of the right antenna with respect to pitch. 

Playing this instrument is a task in the coordination of both hands and 
arms moving through two space-coordinates. It would be just to say that this 

instrument is much more delicate and sensitive than any human being who has 
played it up to now. People with good coordination and sufficient sense of re¬ 
lative pitch turned out to be better performers than eminent musicians. Leon 

Theremin and his assistant, George Goldberg (also an engineer), proved this to 
be so. 

The composer can have at his disposal the entire audible range, if necessary, 

and any volume, as sound is amplified electrically. All forms of attacks are 

available. The space-controlled theremin is a monodic (i.e., producing a single 
tone at one time) instrument par excellence and, therefore, particularly suitable 

for broad sustained cantilenas, pedal points, etc. Rapid passages of any kind 
can be executed by an accomplished performer at speeds comparable to that of 
an oboe. One of the first models of this instrument had a knob contact for pro¬ 

ducing attacks. By pushing the knob with a finger of the left hand abruptly, 

one could produce the most abrupt forms of staccato at any desirable speed. 
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The Philadelphia Orchestra, through the initiative of Leopold Stokowski, 
its music director, used a specially built model of the theremin. This instrument 
served the purpose of coupling and reinforcing orchestral basses of various groups. 

It had a pure (that is, sinusoidal) tone and immense volume amplification. 

It is best not to compare the theremin with any other standard orchestra 

instruments, but to look upon it as the first instrument of the coming electronic 

era of music, having its own characteristics and being conceived and designed 
along entirely new principles of sound-production and sound-control. It is the 
first child of the electronic musical dynasty. Its first model dates back to 1921, 

when Leon Theremin demonstrated it in Moscow before a conference of electrical 
engineers and inventors. At that time it was in its early experimental stage. In 

the U. S. A. it was manufactured by R. C. A. Manufacturing Co., Camden, 
New Jersey. 

2. FINGERBOARD THEREMIN 

This instrument was designed and constructed for the purpose of supplying 
violinists and 'cellists with an electronic instrument, which they could learn to 

play in a very short time. Some violinists and 'cellists have played it with great 
success. 

This instrument's main part is a cylindrical rod, about as long as the 'cello’s 
fingerboard. While being played, it is held in position similar to the 'cello. The 

part which is touched by the fingers of the left hand (to which procedure all 

string-bow performers are accustomed) is covered by celluloid. Production of 
tone results from the contact of a finger with the celluloid plate. Thus pitch- 
control is very similar to that of a 'cello. Volume is controlled by a special lever, 

resilient and operated by the right hand. The greater the pressure on the lever, 

the louder the tone. This form of dynamic control allows not only gradual 
variations of intensity but also accents and sforzando-piano. All forms of attacks 

are available through direct contact with the fingerboard. Though the manner 

of playing this instrument more resembles the 'cello than the violin, violinists 
have found it easy to play. 

The range of this instrument is adjustable, i.e., the same model can be 
tuned in high, low, or both registers. The tone quality of the fingerboard there¬ 

min resembles an idealized 'cello tone (i.e., one which is deprived of inharmonic 
sounds, usually resulting from the friction of horse hair over sheep’s guts while 

bowing) and is more of a constant than on the space-controlled model. The usual 

type of cello vibrato gives a perfectly satisfactory result. The basic timbre is 
quite close to the double-reeds (nasal). 

Of course timbre and other characteristics of this instrument could be easily 
modified. Some engineers in Europe, after Theremin, constructed instruments 

whose outer design resembled the violin, ’cello, or bass. Leon Theremin thought 

this pointless, because the dimensions and the shape of an electronic fingerboard 
instrument have nothing to do with its range or registers. 

f 

The fingerboard theremin is a monodic instrument. One of the advantages 
of having such instruments in the orchestra is tone-quality, which can be literally 

"made to order” by the engineer or manufacturer; another, is its range which 
offers a great economy: a passage, which generally starts on the 'celli and is 

completed by the violins, can be executed on one instrument and by the same 
performer. 

3. KEYBOARD THEREMIN 

Keyboard theremin is a monodic instrument, with a standard piano key¬ 
board. It is a direct predecessor of the solovox, manufactured by the Hammond 

Organ Company today. Physically, though, the solovox does not belong to the 

first subgroup as piano strings, electromagnetically inducted, are the original 

sound-source. Nevertheless, the keyboard theremin operates physically on the 
same principle as other theremin instruments, i.e., by variation of the capacity 
of an electromagnetic field. 

This instrument was designed with* the purpose of supplying keyboard 

performers with an instrument which they could play without much additional 
training, yet which would possess such features as economy of space, any pre-con- 

ceived tone-quality, well expressed forms of attack, regulated forms of tremulant, 

fading effects with vibrato automatically performed (as on the Hawaiian guitar), 
and automatically pre-set varied degrees of staccato etc. 

The business end of the Theremin enterprise was not properly handled. 
As a result there are not many space-controlled models to be found today, more 

than a decade since they were first built, not to mention the fingerboard and the 
keyboard theremins, of which there are very few, if any, left. 

Leon Theremin built a number of other electronic instruments, among them 

various types of organs with micro-tuning and variable timbre-control (in the 

design of which I participated), but these instruments mostly served the purpose 
of research and have never reached the attention of the public at large. 

The purpose of my directing the attention of the composer to these short¬ 
lived models is to show the direction in which lie the future stages of the field of 

orchestration, as there has never been any doubt in my mind that the present 
standard (non-electronic) instruments will soon be outmoded and superseded by 
perfected electronic models. 

In this regard the composer will be confronted with new approaches and 

techniques of orchestration. He will have to think acoustically and not in terms 
of violins, clarinets, trumpets etc. This is just a note of warning. 

B. Second Subgroup; Conventional Sources of Sound. 

The second subgroup of electronic instruments uses conventional sources 
of sound (strings, bars, oscillating membranes, etc.), but they are excited by means 

of electro-magnetic induction and amplified through a loud-speaker system. 

While Theremin’s models were entirely revolutionary and constituted a 
decidedly radical departure from all existing ideas of designing musical instru- 
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ments, the instruments which I refer to as the second subgroup are decidedly a 
result of compromise, lack of vision and immediate commercial considerations. 
It is just to say that the theremin instruments are more refined as an idea though 
not sufficiently perfect in actual operation, while the existing models of the 

second subgroup are well designed, well-built, and are reliable in operation but 

are based on old-fashioned and often erroneous notions las to what a musical 

instrument should be. For this reason the instruments of the first subgroup 
eventually will be resurrected and will last longer in improved forms, while the 
instruments of the second subgroup will be considered too crude in comparison, 

and will die out the way the player-piano did when the perfected radio left no 
room for its existence. The instruments of the second subgroup-are manufactured 

and sold on a mass production-consumption basis. They are widely used today, 
particularly in the field of radio and dance music. 

The instruments of the second subgroup are generally called by their old 

original names, with the addition of the definitive “electrified”. Thus we speak of 
such models as the electrified piano, electrified organ, electrified guitar, etc. 
The history of these instruments leads far back to Thaddeus Cahill, who in 1897 

constructed the “Sound Staves”, a clumsy instrument with oscillating membranes, 
effected by electric current.* 

As electronic instruments of all types are in an early stage of development, 

and as the present models may soon become outmoded and obsolete, I shall offer 
only a brief description of the models which are most in use today, and only 

such a description as will provide the composer with information and ideas 
valuable per sc. 

1. ELECTRIFIED PIANO 

This instrument consists of an ordinary piano and a system of electro¬ 
magnetic inductors connected with an amplified sound system. There are dif¬ 

ferent designs of this instrument, but the resulting sounds have most character¬ 

istics in common. This instrument is usually known as electronic piano. In 
the U. S. A. the Miessner piano is better known; in Germany, the Bechstein 

(after the famous firm manufacturing the best pianos ever built). Some of the 

electronic Bechsteins are also in use in the U. S. A. 

The main feature of all such instruments is the conversion of a regular 

piano into several different instruments. This is accomplished by a system of 
various pre-set forms of induction. The two characteristic extreme forms are: 

one, in which the duration of a tone is prolonged indefinitely and the volume of 

it can be increased even after the respective key has been released, and another, 
in which a pre-set form of quick fading, the sound of which resembles harpsichord, 

is produced. There are usually various intermediate effects between these two 

extremes. At the same time this instrument can be used without electrification, 
which is of great practical advantage. Any accomplished pianist or organist can 
master this instrument in a very short time. 

•For more historical detail see my article lished by the League of Composers in 1931 
“Electricity, the Liberator of Music*' in the (Vol. 8). (U. S.) 
April issue of Modern Music Quarterly, pub- 
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2. SOLOVOX (manufactured by the Hammond Organ Co.) 

Solovox is a monodic instrument, devised in the form of a piano-attachment 
In fact, it is a monodic version of an electrified piano. The purpose of this in¬ 

strument .s to execute melody of a durable and, if desirable, tremulant tone 
directly from the piano (with the right hand playing the solovox) and the ac- 

companiment being played by the same performer on the same piano (with the 
R . hand). Whether such a combination is desirable, is a debatable matter. 
Hut this will be discussed in “Acoustical Basis of Orchestration”.* 

3. THE HAMMOND ORGAN 

This instrument (manufactured by the same company and designed by 
awrence Hammond) is the most universally accepted of all the larger types of 

electronic musical instruments. The Hammond organ is a fairly complex piece 
Of electncal engineering without being bulky. 

The name "organ" is applicable to this instrument only insofar as the pro¬ 
duction of sustained simultaneous sounds is concerned. Otherwise, every organist 

or any experienced musician can tell, without seeing the instrument, whether he 
is hearing a pipe-organ or a Hammond organ. There is undoubtedly a general 

difference in the tone-qualities of the two instruments throughout their ranges 
particuiarlymth ped,.. The Hammond Co. expected to self most of its insfru: 

ments to cathedrals, churches and chapels. The instrument, however, approaches 

the theatre organ more closely than it does the church organ (particularly when 

5P!aker WHiCh’ by the Way " -nurtured 
and ‘ WIT ' Y mstrument is widely used for dance music 

built™"" are Certa!n bas‘c PrinciPles on which the instrument is designed and 
built, and they are important for the composer to know. The following infor- 
mation is not available elsewhere. 

The first fact of importance is that this instrument does not sound like a 

pipe-organ m lta tone-quaUties. There are two reasons for this. The first is that 

ks 7tC “ Z k rdf“ SOUnd system d0 not Pc™it the high frequen- 
nec ^ rh L ,,0 3 ?ne) tG C°me throu*h' 1 drifted this fact by con- 

b HTTnd, speaker with a turntable. Good high fidelity recordings 
sounded completely muffled”. The second reason is that the Hammond 

cons tan f 3 ^ -° inC‘Ude inha™°nic sounds, which are the 

“ another^matter.P<PeS ^rmonic sounds are desirabie 

does not WHiCh ^ in8eP3rable fr0m the first’ is that this instrument 
does not sound like a pipe-organ in its emission of sound. In a pipe-organ the 

ission of sound is not instantaneous (particularly in old church organs) owing 

•Vibratone, manufactured by Brittain Sound Equipment Co, Los Angeles. 
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to the necessary time interval required in transmission of an impulse from the 
keyboard of the console to the pipes and then to the ear of the listener. In the 
Hammond organ the transmission of sound is instantaneous, owing to the speed of 
electric contact. This particular characteristic adds one advantage to the Ham¬ 

mond organ, namely, the hard staccato of extreme abruptness. Organists com¬ 

plain that on the Hammond instrument “the sound appears before you touch 

the key". 

The two factors are closely interrelated. The lack of real high partials on 

this instrument is due to the mechanical design of the Hammond organ which 

does not permit the use of better speakers and of a better sound system; high- 
frequency response would make the key-contacts audible (they would click 

loudly). Hence, the “muffled” tone, as the lesser of the two evils. 

The speed of sound transmission could be easily modified by a special mech¬ 

anism for delayed action. The inharmonic tones could be introduced electron¬ 
ically (such devices were used with success in the electronic instruments of the 

first subgroup type built by Dr. Trautwein in Berlin in 1928). 

A valuable factor in applying electro-magnetic induction to oscillating 

membranes or revolving discs (as in the case of the instrument under discussion) 

is the stability of frequencies. So long as the electric current is relatively stable, 
i.e., of a constant voltage, the instrument, no matter how long it is in continuous 

use, remains in tune. This is not true of the instruments of the first subgroup, 

where warming up of the tubes eventually affects the pitch. 

The Hammond organ, evaluated per se and not in comparison with other 
musical instruments, must be considered a valuable self-sufficient or auxiliary 

instrument. The chief asset of this instrument is its acoustical system of timbre 

variation. 

The Hammond organ produces pitches of a twelve-unit equal temperament 

in simple (sinusoidal) waves. These simple components can be mixed at random 

at different intensities, which results in different tone qualities. The simple 
components are called by the names of the nearest tones of the natural scale. 

Each component is controlled individually and has eight graduated degrees of 

intensity. Actual control is exercised by pulling out the respective levers. There 

are nine levers corresponding to the nine components of each tone quality. 

Figure 61. The nine levers of the Hammond organ. 
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. The numbers in the circles indicate the levers as they appear from left to 
right. 

® corresponds to the subfundamental, i.e., one octave below the fundamental; 
® the subthird harmonic, i.e., one octave below the third harmonic; 
® the fundamental; 

® the second harmonic; 
® the third harmonic; 
(5) the fourth harmonic; 
(?) the fifth harmonic; 

® the sixth harmonic; 

® the eighth harmonic. 

We shall consider such a set to be an acoustical system of components for 
production of one tone-quality at a time. All present models have two such 

systems fbr each of the two manuals. A special two-lever (two-component) 
system (the fundamental and the subthird) controls the pedal. 

Once the levers of one system are pulled out into a certain pre-arranged 
position, such a position mechanically corresponds to a certain push-button. 

That is, the pre-arranged combination, producing a certain tone-quality, can be 
obtained instantaneously, by pushing the corresponding button. On the model 

~>°fJ?e Ha™™°nd organ, the two systems correspond to push-buttons 11 and 
12. I he push-buttons are the same for both manuals. 

All other push-buttons, numbered from 1 to 10,'cOntfoi pre-set combina¬ 
tions. The pre-se combinations are the most comWbii Stops of a church pipe- 

organ. However, these too can be re-arranged by changing some of the wire 
connections within the console. 

The total number of tone-qualities for each manual individually (which 
would also absorb any of the pre-set combinations) equals the sum of all combina- 

tions by 2 by 3, .... by 9 out of nine elements (since there are nine levers). 

Each combination can be modified according to the different positions of inten¬ 
sity for each lever (of which there are eight). Thus, if it is originally one-lever 
setting, each of such settings has to be multiplied by 8. There are thus 9-8 - 72 

one-lever settings. For a combination of two levers, the value 8 must be squared; 
tor a combination of three levers, the value 8 must be cubed, etc. 

There is no need to make a complete computation of all tone-qualities thus 
obtainable, as it would take several centuries to play them through. However, 

from a musical standpoint (i.e., from the standpoint of imperfect auditory tone- 
quality discrimination), there are not so many really distinctly different com¬ 

binations since many modifications of the same combination sound quite similar 
to the ear. 

Though components of tone-qualities on the Hammond organ are the tones 
which approximate harmonics in the twelve-unit equal temperament—but not 

real harmomcs-the very principle of composing tone-qualities from elements 
and not from complexes (like the timbres of standard instruments) has a great 
educational value for any student of music in general and for the orchestrator in 
particular. 
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The Hammond organ is supplied with some controls adopted from the pipe- 

organ. Among these are the various couplers, the dynamic control swell-pedal, 
the tremulant-control, the “chorus", etc. The range of model E is from c of 
contra-octave to f# of the fourth octave (it has the frequency of approximately 
6000 cycles and corresponds to lever ® for f# of the first octave on the keyboard, 

which pitch is half an octave higher than the highest piano c). 
Besides being a very diversified self-sufficient instrument, the Hammond 

organ is frequently used in small instrumental combination to supply the miss¬ 

ing timbres. 
The composer will make the best use of this instrument by realizing that 

the Hammond organ is an instrument whose specialty is production of control¬ 
lable and highly diversified tone-qualities, combined with sufficiently versatile 

forms of attacks and an enormous dynamic range, without sacrifice of dynamic 

versatility. The Hammond organ keyboard has a very light action, which per¬ 

mits the production of rapidly repeating tones. 
In order to assist the orchestrator with a method by which he can find the 

basic timbral families out of the enormous number of possible combinations, 

I have devised a simple system by which such families can be instantaneously 
arranged and easily memorized. This system is based on the patterns of intensity 

of the different components in relation to their lever-scale position (which ap¬ 
proximately corresponds to the frequency position). 

Scale of Basic Timbral Families on the Hammond Organ 

Families: Patterns: 

1. Uniform intensity of all participating com¬ 
ponents 

2. Scalewise increase of intensity of all parti¬ 
cipating components. 

3. Scalewise decrease of intensity of all parti¬ 

cipating components 

4. Convex arrangement of intensities of all 

participating components 

5. Concave arrangement of intensities of all 

participating components 

Figure 62. Basic timbral families on the Hammond organ (continued). 
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6. Selective pattern of partials of uniform in¬ 
tensity based on odd-numbered levers. 

7. Selective pattern of partials of uniform in¬ 

tensity based on even-numbered levers. 

Figure 62. Basic timbral families on the Hammond organ (concluded). 

This system helps the orchestrator to associate timbral families with the 
corresponding scale of visual patterns: 

Figure 63. Visual patterns of the timbral families. 

Verbal description of these basic qualities is highly inaccurate. For this 
reason I shall eliminate it altogether. The best way to get acquainted with these 

limbial families is by practical study of this system of timbral selection at the 

ins runieiit. us prai tical study should be accompanied by further investigation 
ol the dynamic variations within each timbral pattern. For instance, in the 
second family we may vary the angle representing intensities: 

In the fourth family, we may modify the form of its convexity: 

. St^ Wi" °f grCat practical benefit to composer or orchestrator 
and particularly with regard to his study of my Theory of Orchestration. 

4. THE NOVACHORD 

• . The Novach°rd, another Hammond development, is a keyboard electronic 

whaTm^e d" whlch,s'mu!teneous SOUnds can be Produced. The name is some- 

on instrument. 3 “d- °f COUrae' there are - brings 

1 he Novachord has the range of a combined string-bow group It his 

™d attach™ ^ Tun° tyPe' 11 iS SUPP'ied With numer°us timbre-controls 
d. vcWH f I f TrUment can be iust|y considered an improved and 
developed version of the keyboard theremin. One of the specialties of the Nova- 
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chord is attack-forms whose fading periods can be automatically pre-set. The 
forms of vibrato can also be automatically controlled. Dynamic variation is 

controlled by pedal. 

The timbres of the Novachord resemble closely (owing to the selective system 

of attack-forms) many of the standard orchestra instruments. Some Novachord 

timbres are of such high quality that only the very best performers on the original 

instruments can rival them. 

The Novachord is a very valuable instrument as a substitute for missing 

standard instruments in an ensemble or orchestra. As a self-sufficient instrument, 
which it is meant to be, it is not quite satisfactory. The reason for this is that 
it is a simultaneously monotimbral instrument: only one tone-quality can be 
produced at a time. As the result of this characteristic, melody and accompani¬ 

ment sound in the same tone-quality and, in addition to this, at the same volume. 

Thus, when melody is played with an accompaniment, it can be singled out by 

one means only: playing the accompaniment staccato. 

CHAPTER 6 

PERCUSSIVE INSTRUMENTS 

shall adhere to the following definition of percussive instruments: all 

instruments whose sound is produced on a string, a membrane or a bar 
(often built of different materials) by direct attack and not by electro-magnetic 

induction As a consequence of this characteristic, all percussive instruments 
naturally (and automatically, unless extended by some special devices) have a 

fading sound. Therefore the period of fading is in direct proportion to the in¬ 
tensity of sound,i.e., to the amplitude of its attack. 

Since all the inharmonic (i.e., noise producing) instruments will be described 
as percussive instruments, though some of these really are not percussive, one 

distinction must be made clear: while on the percussive and inharmonic instru¬ 
ments sound is basically produced by attack, it is also produced by friction. For 

example, a drum can be played not only by a stick or a hand attack, but also by 
rotary motion of the palm of the hand over the skin of the drum. The same is 
true of the rubbing of surfaces of two emery boards, etc. 

Some of the instruments known as self-sufficient, will be described here 
specifically as orchestral and, therefore, as coloristic instruments. Particular atten¬ 

tion will be paid to their percussive possibilities, which are so often neglected. 

Percussive sounds of the instruments, which originally are not meant to be 
percussive (such as string-bow instruments, when played pizzicato, col legno, 

etc.), will be discussed in the Technique of Orchestration*, in the chapter devoted 
to the Forms of Attacks. 

We shall classify all percussive instruments in four groups: 

Group one, where the source of sound is a string or a bar (metal or wood): 
Group two, where the source of sound is a metal disc; 

Group three, " ” " ” " is a skin membrane; 

Group four, ” ” " ” " is various other materials. 

A. Group One. Sound via String or Bar. 

1. PIANO 

Piano (grand and upright) is a self-sufficient instrument, most universally 

our^^civilization. The range of a piano varies from concert grand 
manufactured by Bluethner in Germany (whose range extends from g of the 

tHf f!Urth oct*v*> to America" madR five-octave minia- 
e uprights. The standard range, however, can be considered 7W octaves 

which comprises 88 keys (it extends from o of the subcontraoctave to c of the 
iourtn octave). 

The timbre of the piano, strictly speaking, cannot be uniform, as its strings 
are made of different materials, differently shaped and attacked by somewhat 
*See Editor’s note at the end of this book. 
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differently designed hammers. The upper and the middle registers consist of 

straight steel strings used for each tone in groups of three. The middle-low 
and the low registers have coiled copper strings coupled in pairs. The lowest 

register has single copper strings for each tone. 
It is to be remembered that the piano is a strictly percussive instrument, 

as strings are excited by the stroke of a hammer. The tone of the piano fades 
very quickly, as the oscillograph shows. It is our cultivated auditory imagination 
that extends the duration of a piano tone. Physically, a piano tone has a sharp 
attack and quick fading. The depressing of the right pedal extends the 
duration of a tone, as this releases the string, permitting it to vibrate. This, 

however, docs not exclude the fading of a tone, but merely extends the time period 

of the fading. In musical terms this can be stated as: diminuendo is a constant 

of a piano lone. 
The piano gets very quickly out of tune because its system of double and 

triple strings for each tone makes it physically difficult to maintain perfect 

unisons. , r T . 
We had the description of piano possibilities in the Theory of Instrumental 

Forms*. Here we are primarily concerned with the unconventional uses of the 

piano as a percussive and coloristic orchestra instrument. 
Igor Stravinsky made an interesting use of four pianos combined with an 

ensemble of percussive instruments in his Les Noces. 
The real use of the piano as a percussive instrument comes mainly through 

the explorations of Henry Cowell, an American composer, who himself is an 
excellent exponent of his own techniques. Cowell has developed an exact and 

thoroughly developed system of playing piano with forearms and fists. Har¬ 

monically this device involves the use of “tone-clusters” (Cowell’s term). Under 

such conditions the piano is capable of producing an amazing volume, uncommon 
to this instrument. My record library includes my own recordings of various 

Cowell devices, as they appear in his own compositions performed by himself. 

Unfortunately these are not on the market at present. There is, however, one 
Victor record of Ravel’s Bolero arranged and played by Morton Gould. In 
this arrangement Cowell’s forearm technique was employed. For more details 

on this subject see Henry Cowell's New Musical Resources.** 
Apart from this specialized field of piano execution, rapid alternating trem¬ 

olos of both hands involving the use of three or more fingers in each hand can be 

employed very effectively as a percussive device. 
Another device which Henry Cowell uses and which is generally not unknown, 

consists of plucking the strings or sliding over them (with the right hand) while 

pressing the keys silently (with the left). Sliding over a group of strings permits 
the sound to come only from the strings whose keys are pressed. This produces 

a delightful harp-like tone. 
Henry Cowell has also developed a highly coloristic effect which, so far as I 

know, he is the only one able to execute. It consists of sliding over the strings 

(in the back of the piano; somebody has to press the right pedal down continously) 

and sometimes plucking them. The sliding is done across an individual string 

♦♦Published by A. A. Knopf, N. Y. ♦See p-1043 $. 
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and produces a most fantastic sound. Cowell often touches the nodal points 
of a string in order to get harmonics. He holds the string at a node with one hand 
and slides across it with the other. He has some compositions, like Banshee, 

entirely written for this technique. This device can be used with great success 
for wind and storm effects, as well as for fantastic and ghost-like effects. 

The use of regular piano harmonics was made in Arnold Schoenberg’s and 
my own compositions. Harmonics are particularly interesting as a variable 
timbre effects. By silently pressing a key (or a group of keys) which corresponds 

to the respective harmonic and by striking the fundamental (or a group of funda¬ 
mentals) we obtain an actual harmonic. This is due to the sympathetic vibra¬ 
tions of the open string in response to the partial vibrations of the fundamental 
(which is executed staccato). The effect is that of an abrupt attack, followed 

by an extended fading harmonic. It is very interesting to note that under such 
conditions, each harmonic has a different timbre. 

Ca) Second harmonic (b) Third harmonic 

Figure 64. Second and third harmonics. 

Cases (a) and (b) in the above figure have different timbres. Higher har¬ 
monics (preferably the ones which are used on a trumpet) can also be achieved. 

The piano is also capable of producing vibrato (in single tones or chords). 

Not the imaginary vibrato, where a pianist is vibrating his finger while pressing 
the key (which is physically meaningless, as after the hammer strikes the string 
no manipulation of the key has any effect upon the string), but a real physical 
vibrato by pitch. 

This is my own device at which I arrived by the following reasoning. If we 
silently pi-ess the eleven lower keys (which is easily done with the palm of the left 

hand) then any keys we strike at an interval of an octave or more would stimu- 
late the respective partials on the lower open strings. As the actual partials 

differ slightly in pitch with the corresponding keys we strike, the differences in 

irequencies produce beats, i.e., vibrato by pitch. I used this device with great 

success in the piano part of my Symphonic Rhapsody October. All sounds must 

be produced either portamento or staccato. They come out with special prom- 
mence on a concert grand piano, as there the strings are correspondingly longer 
and, for this reason, their partials are louder. This device can be applied either 

in long durations or in rapid arpeggio passages. For this effect the pedal must 
not be used. 
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The piano can be turned, for some special effects, into a harpsichord and 

other plucked instruments. For these effects, it is necessary to use paper (parti¬ 
cularly wax-paper), placed right on the strings. When the hammer strikes a 

string covered with paper, it produces a buzzing effect. For a more drastic 
percussiveness, plywood boards may be used instead of paper. I made use of 

the latter in background music to Merry Ghost, a Japanese play by Kitharo 

Oka; this effect was used to produce a sound resembling that of the shamisen 
(a Japanese plucked instrument). 

Finally the piano can be used as a sympathetic resonating (echo) system. 
The piano, when its right pedal is pressed, is able to reproduce sympathetically 

any sounds which are in its vicinity, i.e., any such sounds whose air waves can 
reach the strings with sufficient intensity. This concerns .both the harmonic 
and inharmonic (noises) sounds. 

Whistle into the piano and the response is the same pitch and the same tone 
quality. Sing, and the same sound continues as an echo. This device can be 

used specifically as an echo generating device. It is a natural phenomenon based 
on the physical pattern-response. It existed in nature before any animals in¬ 
habited this planet. Nobody can lay any claim to discovering the echo. 

I suggested this device to all my students of orchestration, and it was Nathan 
L. Van Cleave who effectively used it in scores made for the Kostelanetz orchestra. 

This device can be utilized practically, in the alternation of staccato of an instru¬ 

ment or a group of instruments (preferably identical ones) and its echo; both 
should follow in uniform durations. 

Instruments J Instruments J 
Piano echo Piano echo 

Figure 65. Piano echoes. 

The alternation of such durations must not be too fast. 

Many spectacular effects in orchestration can be achieved by a combined 

use of these piano devices. The Harp, Novachord, Harpsichord, Guitar, Hawaiian 

Guitar in many cases may be looked upon and utilized as percussive instruments. 
This does not require any additional description. 

2. CELESTA 

Celesta (“divine”) is a keyboard instrument with soft hammers striking 
metal bars. These bars are made of precious and semi-precious metals. This 
instrument has a tone unsurpassed in delicacy and tenderness. 
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The most common design of this instrument includes four octaves (the 
small, the middle, the first and the second, usually starting from c). 

A 

Figure 66. Range of celesta. It sounds an octave higher. 

The parts for this instrument are written on a two-staff system, the same 
as for piano. Standard bass (F) and treble (G) clefs are used. 

It is a miniature self-sufficient instrument, on which melody, harmony, or 

both, can be executed simultaneously. Chords in their various instrumental 
forms, are frequently used on the celesta, as it produces a very delicate aoom- 

pamment suitable for melody played on the flute, the clarinet (particularly the 
subtone register), or in combination with the harp. 

This instrument may be looked upon as a still more delicate version of chimes 

It can be employed only in transparent (low density) textures and amid low 
dynamics (p, pp). 

Debussy and Ravel used this instrument extensively in their scores. Chai¬ 
kovsky made some effective use of it in his Nutcracker Suite. 

3. GLOCKENSPIEL (Orchestra Bells; Campanelle) 

This instrument is known in two basic models: the hammer and the key¬ 
board types. 3 

Hammer orchestra bells are played somewhat like the xylophone, i.e., by 
stnkmg the bars with two hammers (usually made of wood) held in both hands. 

Ihe bare, of semiprecious and common metals, are built in a portable closing 
box. I he bare are arranged in two rows, similar to the arrangement of black and 

white keys on the piano. Often even the musical names of the individual pitches 

are engraved on each bar. This makes it easy for the performer to strike the right 
ar. Glockenspiels of both types are chromatic instruments. The keyboard 

model is of piano design. 

The hammer instrument has a superior tone-quality to the keyboard model, 
which is clumsy and produces a less brilliant tone. Generally, the tone of this 
instrument is a harsher version of the tone of a celesta. The attacks, owing to 

unsoftened hammers, are more pungent. Some musicians describe it as having 
a metallic timbre. 

The range commonly used for both models of orchestra bells is as follows: 

Figure 67. Range of orchestra bells. Sounds two octaves higher. 
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Parts are usually written on one staff, in treble clef, but can be written, when 
necessary, on two staves. 

As the sound of this instrument has a relatively long durability, it is not 

desirable to write rapid passages, unless such passages represent instrumental 

forms of one harmonic assemblage. However, the glockenspiel is a commonly 
used instrument. Its brilliance is due to the dominance of high partials. 

4. CHIMES (Campane) 

“Campane” means bells; the English term is “chimes”. This instrument 

is used in large orchestras. It has a group of cylindrical metal bars suspended 
from a frame. The bars are struck by a wooden hammer (sometimes two hammers 

arc used). This instrument has the sound of the church carillon and represents 
a more compact version of the latter. It is used for similar climactic or jubilant 

episodes, or, in some cases, for stimulating associations with a real carillon. 
The carillon,, of course, is a totally different instrument, consisting of church 

bells and bars and played by fists, striking specially designed large keys. 
Chimes usually have a set of bars covering one chromatic octave from c to c. 

The parts are written in the middle octave(treble clef) but there is such a pre¬ 
dominance of higher partials that, strictly speaking, the pitches do not belong to 
one particular octave. Chimes blend well with the brass instruments. 

5. CHURCH BELLS 

This instrument is actually a group of several suspended church bells, 
matched in their pitches for each individual score. Such a set was used in Chai¬ 

kovsky’s overture “1812” where the church bells represented some of the standard 
Russian-Orthodox carillons and conveyed the idea of jubilation over the retreat 

of Napoleon Bonaparte from Moscow. 

6. VIBRAPHONE (also known as Vibra-Harp) 

This is a relatively new instrument, designed and manufactured in the United 

States. It is widely used at present in dance-bands. There arc already several very 
eminent virtuosi, who appear as soloists with the dance-bands and small ensembles 
playing dance music (Adrian Rollihi, Lionel Hampton and others). 

This instrument is built on the general principle of the xylophone, but its 
bars, quite large in size, are made of metal, have resonating tubes under them 

and an extension of tone. The latter is achieved by means of electro-magnetic 

induction (which not only extends the durability of the tone, but also supplies 

it with an automatic vibrato by intensity); this effect is controlled by pressing 

a special pedal, built for this purpose. The execution of various dynamic effects, 
like sforzando-piano, is thus possible. 
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The vibraphone has a rich “golden” tone and differs from chimes in its 
timbral components: it has some similarity, in its basic timbre, with the "chalu- 
meau” of the clarinet. Vibraphones, depending on their size, vary in range. 

Large concert vibraphones usually have the following range: 

fa 

Figure 68. Range of vibraphones. 

This instrument is played by special hammers, often even of a different 
design* (to achieve different types of attacks). Some vibraphonists hold two, 
three and even four hammers in each hand. This permits execution of some 

self-sufficient solos in block-harmonies, following one another at a considerable 
speed. * 

7. MARIMBA and XYLOPHONE 

The marimba and xylophone are essentially the same kind of instrument. 
The difference between the two is chiefly in the resonating cylindrical tubes 
which are part of the marimba and are absent on the xylophone. Both types 

have the same kind of wooden bars and are played with special hammers. The 

xylophone is more traditional with the symphony orchestras, while the marimba 
is more used in dance-bands. It is interesting to note that many truly primitive 

African tribes use the marimba, i.e., even they have arrived at the necessity of 

using a resonating medium. The resonating tubes give the marimba a richer 
and a more sustained tone than the xylophone. 

Music written for this instrument in a dance band is considerably more 
complex technically than parts written for the xylophone in symphonic scoring 

One of the reasons for this is that in symphony orchestras one of the percus- 

sioners plays the xylophone part, but he is not expected to be a xylophone vir¬ 

tuoso. In the dance bands, quite the contrary, the marimbaist is a specialized 
soloist (often also playing the vibraphone) and is even capable of handling two, 

three and as many as four hammers in each hand. Some of these virtuosi handle the 
xylophone or the marimba as a very delicate instrument. This is accomplished 

y t e use of special soft hammers. Some of such performers give a very refined 

rendition of Chopin’s piano compositions. One very versatile xylophonist even 

built a dance band around the xylophone as a leading solo instrument. His 
name is Red Norvo, and recordings of his performances are available. 

The range af the xylophone and the marimba varies. In writing for symphony 
orchestra, it is best to adhere to the following range. 

Figure 69. Xylophone range. 
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In writing for the xylophone or the marimba used in present-day American 
dance-bands, the range can be extended as follows: 

'Figure 70. Range of xylophone in dance-hands 

Full chromatic scale is available in both cases. 
The alternate tremolo (like the plectrum tremolo on the mandolin) of both 

hands on the same bar (which is equivalent to the same note) is a common way 
of playing long notes on this instrument. All shorter durations are bound to 
sound staccato. It is an excellent instrument for execution of IS2p in any form 
and at practically any speed. 

Glissando either on the naturals (c,d,e,f,g,a,b) or the sharps (c#, d#, f$, 

g#, a#) is another common device on this instrument. Combinations of both 
glissando forms, and in both ascending and descending directions may also 
be used. 

Both the xylophone and the marimba have a wide dynamic range. The 
xylophone blends well with the flute; the marimba, either with the low register 

of the flute or with the “chalumeau” of the clarinet. Good combinations are 
also obtained by using the xylophone with the piano. 

Parts for these instruments are usually written on the staff in the treble 
clef (G). In many French scores xylophone parts are written one octave higher 
than they sound. The reason for this is, probably, the dominance of upper 

harmonics which, in some cases, produces an impression that a certain tone 
sounds one octave higher. Many interesting effects may be achieved when parts 

for this instrument are written with full knowledge of the Theory of Instrumental 
Forms*. 

The following percussive instruments of this group can be looked upon as 

more primitive or more simplified versions of the instruments already described. 

8. TRIANGLE 

This instrument consists of one long metal bar of cylindrical form and of 
relatively small diameter and is bent into an isosceles or an equilateral triangle 

(hence the name), not quite closed at its vertex. It is usually suspended on a 

string and is played by striking it with another straight metal bar of about the 
same length as each side of the triangle itself and of about the same (or smaller) 
diameter. 

The triangle is rather like a single bar of a glockenspiel. Its high partials 
dominate to such an extent that it is considered to be an instrument “without 

definite pitch”. Thus, the triangle can be used with any Harmonic assemblage 
whatsoever. 

♦See Vol. I, p. 881 ff. 
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There are only two ways of using this instrument: 

(1) 1r^™1f1“al attaeks (a" staccato) arranged in any desirable form of temporal 

(2) of^the'triangle1 “ aCC°mpHshed by aMat:k,nS alternately two adjacent sides 

ft is an instrument of limited dynamic range (generally mf) but can be made 

efferts ThTt5 £ trefm°‘°'. The latter also offers crescendo-diminuendo 
Hr" It Wh a u Ua uy th‘S lnstrument is very prominent and very "metal- 

■ ' Jt.blen<is well with all higher registers, as at such frequencies tone-qualities 
lose their timbral characteristics (owing to weakness or inaudibility of the high 
partials). Parts for this instrument are written on a single line. No clefs are used. 

9. WOOD-BLOCKS 

Wood-Mocks are made in the form of a parallelepiped (rectangular solid) 
, more frequently, in the form of a spheroid (eliptic solid). In both cases 

some portion of the so id is carved out, and the hollowness thus formed contributes 

to the resonating quality of this instrument. Wcod-blocks are made in different 
sizes to secure a selection ^ pitches, but these pitches are not toe distinct 

The bl£w^b OC.k m,ay beu °ok!d upon 35 a simplified version of the xylophone 
J he blocks are struck with sticks or hammers. Often (in dance combinations) an 

ZCoVt 5ti,\0f lhr f0Ur °r "'ood-bl.ck.si, added to the'usu'd'com- 
b.nat.on of traps so that they can be handled by one performer. The wood-block 

maV]r„oV iy! ,llnStrU',"U,lt' 1e°WUVer’if “ 864 of sevtral is thtiir parts 

regU ar e"nestaff’whcrc the pitchl;s can reputed 
*3 
•V 

10. CASTAGNETTE (Castanets) 

infant’?^)15! “* smalll hardwood P^es (with the shape of the sole of an 
with th hT- loose y Jolnfid by a cord. They are held within the palm of a hand 

rlrnd l5TgsPU ed °Vtr the middle finger' The actual ma in of sounds 
produced by finger attacks. Fingers strike one of the castanets and this in 

turn, strikes the other. This produces a clicking and very brilliant high-pitched 
inharmonic sound. In some cases, two pairs of castanete are u^(onePlfor 

ach hand). Some of the Spanish and Flamenco dancers are real virtuosi of 
this unpretentious instrument. virtuosi ol 

and U “ Lh,igh!LdeVel0Ped (by tradition> rhythmic resource in orchestration 
d may be 'poked upon as a simplified version of the xylophone. It is parti- 

k.weHnUMmh 4or an,ma^d high-Piteh«l figures; wood-blocks are considerably 
Ower in pitch and cannot be maneuvered at such a high speed. X 
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The score for each hand occupies one line. Thus for two pairs of castanets, 
two lines must be used. The advantage of writing on two lines lies in the fact 
that it is simpler to score many complex interference rhythms, which are easily 

executed by two hands. It is well worth the time to make a study of traditional 
Spanish castanet rhythms. 

11. CLAVES 

The claves is a Cuban instrument consisting of two fairly thick sticks made 
of hardwood. The performer hits one stick with another. Both sticks are alike. 
This instrument is commonly used today as a rhythmic ingredient of Afro-Cuban 

dance forms (Rhumba, Conga, etc.) by our dance orchestras. 
The sound of the claves is high-pitched, inharmonic and piercing. In rhumbas 

it usually performs the -J series trinomial (i.e., 3+3+2, 3+2+3, 2+3+3). 

The part for the claves occupies one line. 
The claves is ordinarily used with the so-called rhumba bands, but can be 

introduced into symphonic scoring, "when Cuban character is desired in the music. 

B. Group Two. Sound-via Metal Disc. 

1. GONG 

This instrument comes from Hindustan and China. It is made in two shapes: 
a circle or a rectangle. It is made of metal. It is usually very massive and large, 

at least the type used by the symphony orchestras. It is suspended from a frame 
to which it is attached by a pair of strings. 

Figure 71. Two types of gongs. 

It is the lowest-pitched inharmonic percussive instrument of the metal disc group. 
It is struck with a stick with a round soft end. The sound is very rich in quality 

and has a great dynamic range, combined with long durability of tone. It blends 
well with the low register of brass instruments. 

The gong must be very moderately used, as it is the last resource of main 

climaxes. Too frequent use of this startling tone-quality neutralizes its character 

in the listener’s impression. If the sound of the gong must be shorter than its 
natural fading period at a given intensity, it is damped out by the hand. Other¬ 
wise the term commonly used is written out above the note: “laisser vibrer” 

(let vibrate). 

Gong laisser vibrer 

Figure 72. Allowing the gqng to fade naturally 
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souml'surccssive attacks require 

2. PIATTI (Cymbals) 

I( yfnibals C0nsist °f a pair °f t,isrs approximately 18” in diameter. They are 
made of sem.-prec.ous and precious metals. Each disc has a leather handle in 
the form of a short loop, by which it is held. 

C>mbals are played in two basic ways: 

(1) by striking one cymbal over the other (for louder and more prolonged sounds 
with a certain amount of friction); sounds, 

(2> rtT ,7al+ 3 tr™olo°} a|ternating attacks over one suspended cymbal 
(held in horizontal position); for this purpose either hard drumsticks (result 

aretft and l'ty h*her'Pitched> or kettle-drum sticks (which 
are soft, and render lower-pitched softer tones) are used. 

comoTehxesanBC °f T Cy,ebalSl UlC t0ne 0f wh!cl‘consists of rich inharmonic sound- 

smaU rh aS ?eu g.0n thP f°rm °f attack- When the friction surface is 
rf tromt “T*1 ? ,uBhe,jP,tchcd- The partials c°ver approximately the range 
very weil ‘ ^ Peda‘ tone5> and trumpets, with which they blend 

in,™1- Cf,mbals ar° l° ^ s]tn,ck fay onc another, it is usually not necessary to 
indicate anything other than the temporal values and the dynamics wished. That 

a suspended cymbal is to be played tremolo is indicated by placing the sign 

tamburn r7°r t lCr"0tr' Th,C USC of hard sticks >s marked; colla bacchetta da 

timtTZ USC *S markcd: Colh or colla bacchetta da 

use Jh'S 5tandard terminology is notoriously clumsy. I recommend that students 

tzzsr** - — ■— 
a suspended cymbal: 

(a) hard sticks: —• 
(b) soft sticks: —O 

two cymbals in hand*: O 

oSy^/°T^: * th,° ^ianing; of my scores explaining the moaning 
y • made the first use of this nomenclature in 1921. 

Threw lnstr,umen,• whidl at once belongs to Group Two (discs) and Group 
Three (membranes) is the well-known P 
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3. TAMBURINO (Tamburin) 

This instrument consists of a circular wooden frame over which a skin mem¬ 
brane is stretched, covering one side of it. Thus the form of the membrane is a 
circle. In addition to this, there are small (about 1.5” in diameter) metal double 

discs, loosely mounted on perpendicular pegs in the frame of the tamburin. The 

tamburin viewed from above appears as follows: 

This instrument, associated with Italian and Spanish folk dancing, is played 

either by striking the skin with the palm, which at once produces a high-pitched 

inharmonic drum sound and the jingling of the discs (high-pitched “metallic” 

inharmonic sound); or by shaking the tamburin in the air (held by the left hand), 
which produces the jingling of the discs alone; or by producing an oscillatory 

frictional movement over the skin, with the thumb of the right hand, which 
results in a scintillating type of tremolo. Often these ways of playing the tamburin 

are combined in effective dynamic and rhythmic sequences. Much initiative in 
varying the attack forms is left to the performer. 

The parts are commonly written on one line, and simply indicate durations 

and dynamics. Tremolo is marked as usual by: 

C. Group Three. Sound via Skin Membrane. 

1. TIMPANI (Kettle-Drums) 

Kettle-drums are the first percussive instrument to occupy a lasting place 
in symphonic scoring. It was Josef Haydn, who introduced them [Stnfonie mil 

Paukenschlag (Symphony with kettle-drums)]. Since that time, they have be¬ 

come a standard ingredient in symphonic and operatic scoring. 

Kettle-drums are ordinarily used in groups of three and four. The original 
selection of three kettle-drums usually furnished the tonic, the subdominant and 

the dominant. Today they are used in any pitch-group combination that satisfies 

the harmonic need. 
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hr™7*? kettl^drum.consists of a hollow copper hemisphere, with a skin mem- 
brane stretched over its equatorial circumference. The tension of the membrane 

' adjustable: m other words, kettle drums can be tuned. This is accomplished 

sbuyrf~K;n,r T the“S (°f Which there are *-eral around the skin 
surface) controlling the tens,on of the membrane. Tuning calls for a keen sense 

of pitch since it may have to be done quietly while the orchestra is playing KetUc- 

fromm whic °lymrn,StB)eUra"y kn°W tHe PSrt! f the -ighborh,gyinsgtruments, irom which they borrow the necessary pitch. 

Each kettle-drum produces one pitch at a time. To obtain many pitches 
at a time would require as many kettle-drums. Berlioz, in one of his Scores 

used as many as 16 of them. Considering the usual equipment of The larle 

symphony orchestra, it is advisable not to use more than four. In some instances 

can * ^ -sre 
ranged' Stan<Wdized sizes usuall>' tuning within the following 

F’gure 74. Ranges of the three standardized kettle-drums. 

each end: ** COnsidered Practical even if one semitone is added at 

F^ure 75. Total range of kettle-drums. 

tssr *■=- ■ 

s —— —i" 

the 8 °f ^ ,n8trUment (the actual time required largely depends Z 
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The parts are written in the bass clef (F] on a regular five-line staff; two 
staves can be used if necessary. Kettle-drums are played by two special sticks 

having soft spheroid-like ends. The whole technique consists, of individual 
and rolling attacks (i.e., alternating tremolo attacks; the latter may affect one 

or two instruments). 
This instrument has an enormous dynamic range and in ff can pierce the 

entire tutti of an orchestra. Big crescendi are particularly effective in tremolo 

(marked: ). . 
Sometimes, though very seldom, delicate sounds are obtained by muting. 

Flannel or other soft cloth is put over the skin of a kettle-drum. The use of 
such mutes is indicated by: timpani coperti (i.e.,, covered kettle-drums). To 

restore the normal effect, “modo ordinare” is used as a term. 
The pitches of the kettle-drums leave something to be desired with respect 

to precision. This is due to the abundance of lower inharmonic tones; The in¬ 

strument has a quickly fading tone. The pitch, owing to the presence of low in- 

harmonics, seems lower to the ear than it is written. 

2. GRAN CASS A (Bass-Drum) 

This instrument usually has a cylindrical frame of very large diameter. The 

skin-membranes are stretched on both sides. It is considered to be an instrument 

without definite pitch, as the inharmonic tones predominate and all frequencies 

are very low. 
The bass-drum is usually played with a special stick made for this instru¬ 

ment. The part is usually very simple, is written on one line, and consists 
of merely individual attacks. Of course other sticks can be used, and the exe¬ 

cution of tremolo is also possible. Some of the bass-drums used by dance-bands 
have a narrow frame and only one membrane. The bass-drum blends naturally 

with low pitches. 

3. TAMBURO MILITARE (Snare-Drum) 

This is the most alert instrument in the entire third group. Although in 

shape it is the same as the bass-drum, it is considerably smaller in size. While 

the bass-drum is played in vertical position, the snare-drum is played in an 
almost horizontal position (there is a small angle to the horizon). It is played 

by a pair of hard sticks known as drum-sticks. The snare-drum derives its name 

from the snares, a pair of thin gut strings stretched across its lower head which 

produce a rattling sound. Sometimes the tamburo is used without snares (it is 

quite customary with dance bands), in which case a notation is made: no snares . 
This instrument produces middle-high inharmonic sounds. It has a wide 

dynamic range. The speed of rolling is the main feature of this instrument. 

Even the equivalent of grace-notes is often extended into rolls (marked: f J , 

i.e., the small note is the roll and the large note is the attack). It is suitable for 
the most intricate rhythmic patterns, which can be executed practically at any 

speed. 
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_ Thc c.rahas crcatcd many outstanding drummers in America Yet tho 
patterns of their improvised rhythms are still very one-sided and limitH 
pared to their cannibal colleagues in Belgian Conco Thp » i 3S c.om" 

arcastrSSS 
4. BONGO DRUMS 

Tliis usually consists of a pair of drums. The shape of thc frame is a 
ho low inverted cone (it can be played on either side), which has skin membranes 
t its open ends. One of the drums is somewhat larger than the other, but there 

is no fixed ratio. Bongo drums are played by hand. Though probably of African 
origin they are widely used in Cuban rhumbas and congas. Rhythmic patterns 

“ingVf the ftrie^T °™erS ^ ^ '— 

5. TOM-TOM 

wiAh:S;rtrUmr, COnSiSt5, °f a 3ma" which i, relatively 
e for its size. It has one skin membrane over its frame. It is ordinarily used 

(one or more) in jazz bands and played with a stick. Its inharmonic sound 
blends with the middle register of the ensemble. 

D. Group Four. Sound via Other Materials. 

No instrument can be considered standard in this group. All special 

StTf'effZl ln,frUTntS beI°ng th‘S *™UP- U is "“ther necessary nor possible 
“ al1 such >n8truments, as new types are being developed ancUntro- 
ed every year. Some of these instruments have a brief popularity, after 

which most of them become obsolete. 

tinn V'r P“rp°fe of bringing sound-effect instruments to the composer's atten¬ 
tion is to stimulate his resourcefulness and to suggest that he too can use special 
materials for sound effects. It is also advisable for him to study the nisto^of 

himrHme'ltS ^ t0 attet*d tHe mUS‘C dePartments of museums, as this will telp 
him develop proper perspective and orientation in the subject 

sheJltTl T T nnmmordy Iknown instruments of this group is an ordinary 

o^enri T“iT V T French:/““» defer). By holding such a sheet at 
one end and shaking it, one obtains thunder-like sounds. Single strokes and trem- 

standardSticks. °" ^ "“P“ded ^ types™ 

nf h.fT bMu ^ USCl!°m"?meS as a musical instrument for descriptive music 
co ic character. The bells can be either shaken or struck with a hard stick 

the ruraT‘nS " Ummp°rtant’ as the use of th“" is supposed merely to suggest 
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Emery boards (I used them in my Symphonic Rhapsody October to produce 
a steam engine effect) are sometimes used in symphonic and dance scoring. 

Rubbing of the surfaces of two emery boards (i.e., the sound is obtained by 

friction and not by attack) produces a powerful sound. It is an excellent descrip¬ 

tive medium for locomotive or train effects. 
The musical saw was once very popular. It was used as an instrument of 

the melodic type. Two methods of playing were used: striking it with a stick 
or a small hammer, or stroking it with the bow (usually a long stroke ending with 

staccato). It is an extremely effective instrument, whose tone-quality resembles 
an idealized soprano voice and whose vibrato can be controlled by the performer. 
The handle is held rigidly between the knees and the end of the saw is sup¬ 

ported by the middle finger of the left hand. While the finger presses the end of 
the saw, the entire saw bends: the greater the curvature, the higher the pitch. 

Bow or hammer produce attacks and either is held in the right hand. 
Today composers have begun to use phonograph records with sound effects 

(birds, animals and other sounds of the surrounding nature); the latter are in¬ 
cluded as component parts of a score. Program and background music in radio 

and cinema utilize such recordings and often simply transfer them to a sound¬ 
track. There are several sound-effect renting record libraries containing any 
imaginable sound effects (there are more than 10,000 items now). The firms are 

located in New York, but they supply the entire country. 

1. HUMAN VOICES (Vocal Instruments) 

The human voice is one of the original natural musical instruments. It is 

by no means standardized. There are too many types of voices and too many 
ways of using them. Each national culture has different types of voices and 

different methods of singing. Even different styles of music within one national 
culture often call for totally different manners of execution. Just to use a bold 

illustration, compare the bel canto style of operatic vocal art with popular croon¬ 
ing or “torch-singing” of today. The contrasts in singing of different nations 
are at least as great. Compare, for instance, French folk singing with Siamese 
folk singing or with Abkhasian choral singing (some of the Black Sea Caucasian 

shore; the mythical land of the Golden Fleece [Jason]) which has a unique instru¬ 

mental character of its own. 
Even in so-called European musical culture, we find such different styles as 

the Italian bel canto, the Russian vocal style (as in Chaliapine), the German 

lieder-singing, etc. Then we find such contrasting styles as vocal jazz ensembles 

and the plain chant of the Catholic Church. No doubt new styles will appear in 

the future. 
Beside the necessity of considering all these stylistic and national differences 

in the voice as musical instrument, there are also biological differences and modi¬ 
fications, which take place as time goes on. One of such modifications is the ap¬ 
pearance of greater differentiation o! ranges and characters. Some time ago male 

voices were mostly tenor and bass. Later it became necessary to single out 
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the intermediate type: baritone. Now we have bass-baritones, tenor-baritones 
etc. Standard parts of the classical repertoire are not written for them; so they 
have either to sing the parts which are too high or too low for them, or else to 
look for composers who would write for these new vocal instruments. 

Sometimes we also encounter biological aberrations producing such voices 
as altino, which is not only higher than the male tenor, but also has a peculiar 
quality of its own, not to be confused with a boy’s alto or a female’s contralto. 

Rimsky-Korsakov even wrote a part for an altino (the astrologer in Coq d'Or), 

for which Russia found only two performers. 

There are also other cases of vocal travesty, like the Russian Gypsy singer, 
Varia Panina, who possessed a genuine baritone; or another Russian singer,' 

Anna Meichick, who had such a massive and wide-ranged contralto that she 
sang the part of the Demon, in Rubinstein’s opera of the same name. Anna Mei¬ 

chick was the first contralto at the Metropolitan Opera House in New York 
for many years. 

With all this in view, the problem of describing standard human voices seems 

insoluble. What the composer has to be aware of is that in writing for an oboe 
he has a pretty well-defined auditory image in his mind, whereas in writing for 
a tenor, he can not know what he is likely to get in actual performance. 

There are other considerations of equal importance. One of them is the effect 
of language upon the style of vocal execution. And this often involves such 

important considerations that the very nature of the Italian language (i.e., the 
type and the distribution of vowels and consonants) makes singing easy and nat¬ 

ural and articulation clear, as compared with the English language. A number 

of good singers whose native tongue is English, sing better in Italian. Certain 

English sounds, like /A, do not permit a proper air impact. On the other hand, 

the entire manner of singing in French, owing to its phonetic and articulatory 
nature, acquires a nasal character (on, en, un, in, etc.). All this naturally cannot 

be neglected by the composer. Thus, in order to present a somewhat practical 

description of human voices as orchestral instruments, I have to resort to some¬ 
what specialized generalities. 

Among these are the standard choral ranges, as they are traditionally used 
m our scoring for a c&ppdla or accompanied chorus. Soloists sometimes have 
wider ranges. But it is not always the case. Another generalization can be 

drawn with respect to basic timbres of vowels, in which case I shall use the Latin 
pronunciation of vowels. 

No other components can be generalized, as all tone-qualities are ndividual; 
their forms of vibrato are also individual. Physically, each sound produced by 
the same voice on different vowels of the same pitch, or on the same vowel dif- 

erently pitched, not to speak of different vowels differently pitched, has a dif- 
ierent character. But this we cannot take into consideration, as even the violin 
changes its character (and in many instances even timbre) on different strings. 

Among components which cannot be generalized is dynamics. The volume 
ol voice and its dynamic range varies individually. Powerful voices, if combined 

with pleasing quality, are considered valuable, as such voices can produce a 

powerful impression by their dynamic versatility. Nowadays timbre, character 
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and volume can be considerably modified either by using a microphone or by 
acoustical modification of the sound-track, which is constantly done in the radio 
and the cinema field. 

Neither can individual articulating quality be generalized, (which, strictly 

speaking, belongs to the field of vocal attacks), even when we consider only one 

particular language. Some outstanding singers have magnificent articulation 
in addition to their vocal quality and general technique. I can mention two, as 

examples of perfect articulatory technique, though these singers belong to two 
different national cultures: one is Mattia Battistini (an Italian baritone); an¬ 

other, Feodor Chaliapine (the Russian basso). 
Now after making all these necessary warnings, I can proceed with the de¬ 

scription of choral ranges and basic timbres of the latinized vowels. 

In some cases composers write certain solo, or even choral parts for a def¬ 
inite performer or a definite organization of performers. In such a case,- of 

course, he can do a better job, as his parts are likely to fit the individual charater- 
istics of the soloist or the ensemble. 

Female ranges: 

Standard Choral Ranges 

Soprano I (usually Dramatic Soprano) 

Soprano II (Mezzo-Soprano, Mezzo-Contralto) 

Alto (usually boys) 

Figure 76. Standard choral ranges (continued). 

HUMAN- VOICES 1573 

Male Ranges: 

Tenor II (Baritone) 

Basso II (usually Basso Profundo) 

Figure 76. Standard choral ranges (concluded). 

The parts for male voices, when written in treble clef, sound one octave lower than 

written. The so-called lyric sopranos and tenors usually have the range of soprano 
II and tenor II respectively, but with lesB developed lower register. 

Latin English Phonetic Timbre 

u oo open O 
o oh reed R 
a ah stopped © 
e eh double reed RR 
i ee closed • 

Figure 77. Timbral scale of the five basic Latin vowels. 

This scale relates'the vowels to five basic timbral groups, with which each 

vowel blends itself respectively. Thus, O corresponds to flutes, R to clarinets, 
© to horns, RR to oboes and bassoons, # to nasal timbres and muted instruments 
(muted brass, celli, muted stringed instruments in general). 
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This scale can be extended to nine units, by means of combined vowels. 
The latter can be obtained by mixing the adjacent vowels of the basic scale. 

A nine-unit scale may be extremely helpful in evaluating general timbral char¬ 

acteristics of the English, French, German and Scandinavian vowels. 

Latin English Timbre 

u -+• 0 u (up) O+R 

o 4 a o (cod) R 4 © 
a 4 e a (as) © 4 RR 

e 4 i i (it) RR 4 • 

Figure 78. Timbral scale of the four combined (intermediate) vowels. 

Further supplements, which may still be necessary, derive from combinations 

of the non-adjacent vowels. The most important of these are somewhat common 

to Latin, English, French, German and Scandinavian. 

Latin English (Phonetic) French German Timbre 

oe e (alert) oe eu 6 R -f RR 
i (bird 
u (fur) 

y u ii O 4 • 

Figure 79. The two additional combined vowels. 

1 

! 

All other u-vowels, as in the English word "you”, or the sound of Russian 

character “JO" (pronounced: you), have an attack of the attack of the English 
“y” (as in “yoke”), or German “j” (yot), or Russian “u” (brief “ee” [in Russian: 

ee kratkoye]) and the duration of the Latin “u", or English “oo”. 

This information is sufficient to. guide the student in the field of basic vowel 
characteristics and to help him understand the reason for selecting one or an¬ 
other instrumental timbre in the accompaniment to vocal parts. Selection is 

based on coincidence (similarity) or juxtaposition (contrast) of the basic timbral 
characteristics, such as “u” (Latin), for flute, “o” (Latin), for clarinet, etc. 

Part Two: Instrumental Techniques 

CHAPTER 7 

NOMENCLATURE AND NOTATION 

rTHE following symbols represent a new system of notation, whose compactness 

and clarity may be of assistance in orchestral analysis and synthesis. 

We shall use this system only if and when there seems to be a decided ad¬ 
vantage in doing so. In the meantime, such notation will educate the composer 
to think of orchestral techniques through the medium of a unified system of 
concepts, thereby reducing his associational effort to a minimum. 

The field covered by this system of symbols is as follows: 

(1) orchestral forms (generalities); 

(2) orchestral components (resources); 
(3) orchestral tools (instruments); 

(a) groups; 

(b) families; 

(c) members; 

(d) auxiliary members 

Some of the symbols, such as the last character of the Greek alphabet 

(omega) which is an equivalent of the Latin “o”, are employed to designate the 

final stage of musical synthesis: orchestral form; thus, a symbol of finality is 
employed. 

Other symbols are abbreviated idioms, like “q” for quality and “a” for 

attack. Still other symbols are simplified pictographs, like R for gong and <*) 
for tamburin. 

In some cases it was necessary to resort to somewhat more complex symbols. 

Sometimes they are combinations of abbreviated idioms, such as Q ("H” super¬ 

imposed upon “0”) for Hammond organ; and sometimes they are combinations 
of xdioms and pictographs, as inc^for xylophone,t#afor marimba andctofor 

vibraphone, where the pictograph of a bar is combined with the abbreviated 
idioms of X (xylophone), M (marimba) and V (vibraphone) respectively. 

One group of symbols plays a particularly important part in the process of 
unifying the system. This group relates orchestral components (resources) to 
orchestral tools (instruments of execution). It is in this manner that the symbol 

of a simple open tone “O" becomes associated with the flute family, as its basic 

representative. The same concerns “R”, the symbol of a single-reed quality, 
which becomes associated with the clarinet family. 

Finally, the general use of horizontal lines added at different levels to basic 

idioms establishes range-register associations. Thus O- is the flute quality XT is 

the highest-sounding member of the flute family (piccolo), -©-is the basic type 
(grande) and -©. is the lowest-sounding member (contralto). Similarly, the 
violin family is designated by W for violin, "V for viola etc. 

[15751 
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Greater accuracy in designating members of one family is hardly possible, 
as the range-register correspondences for the different families vary. 

The nomenclature and symbols of orchestral components are identical with 

that of instrumental resources (see Theory of Composition, Part One*). For the 
present purpose this group of symbols must naturally be more complete. To 

make it more useful, each group is represented in the form of three- and five-unit 

scales. The latter can be extended still further if necessary. 

It may be added that this system of nomenclature and notation is well 
worth studying as, quite apart from its use in this Theory of Orchestration, it 

has a methodological value per se, as the first system capable of designating, by 
means of its symbols and numerical coefficients, any situation to be encountered 

in the planning and execution of an orchestral composition. 

A. Orchestral Forms (Generalities). 

Musical synthesis results from three operational stages: 

(1.) harmonic forms; 
(2.) instrumental forms; 
(3.) orchestral forms; 

These three stages are interrelated through their density forms. 

Symbols: 

(1) harmonic: 

p —part, a unit of an assemblage 
S —structure of an assemblage, stratum 

2 —sigma, compound structure 

2 (2) —compound sigma 

p —a neutral unit 
p—► —a descending directional unit 

p-* —an ascending directional unit 

p~^ —a two-directional unit 

S~* —sequent assemblage, stratum 
2~~* —compound sequent assemblage, sigma 

2“* (2) —compound sequent sigma 

H —harmony, a group-unit of harmonic continuity, chord 

H~* —sequent harmony, chord progression 

•See p. 1323. 
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(2) instrumental: 

a —an attack-unit 
A —an attack-group 

1 —simultaneous instrumental form 
I —sequent instrumental form 

p —simultaneous part 
P-* —sequent part 

(3) orchestral: 

p —simultaneous part, simultaneous unit 
p-> —sequent part, sequent unit 

« —simultaneous instrumental group, orchestral group (small omega) 
or-* —sequent instrumental group, orchestral group 

n —simultaneous instrumental combination, orchestra, tutti, (capi¬ 
tal omega) 

or* sequent instrumental combination, orchestration, orchestral score 

Density: 

d —density unit 

D . —simultaneous density-group 

D —sequent density-group 

A —compound density-group 

A_ —sequent compound density-group 
A (A~*;—sequent compound delta 

4 —phi, individual rotation-phase 

40 and dO in reference to t or T 

♦0 and in reference to p or P, or d or D 
0 theta, compound rotation-phase 

Density forms relating the three stages: 

(a) harmonic density: 

dJH) —simultaneous harmonic density-unit 
d (H) —sequent harmonic density-unit 

DJW —simultaneous harmonic density-group 
D (H) —sequent harmonic density-group 

A (H) —simultaneous compound harmonic density-group, harmonic 
density 

A (H) —sequent compound harmonic density-group, sequence of har¬ 
monic density 

likewise: 

d (H—*), d~* (H- ), D (H~*), D~> (H- ), A (H~>), A-* (H-*) 
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(b) Instrumental density 

d (I) —simultaneous instrumental density-unit 

d~* (I) —sequent instrumental density-unit 
D (I) —simultaneous instrumental density-group 
D~* (I) —sequent instrumental density-group 

A (I) —simultaneous compound instrumental density-group, instru¬ 

mental density 
A“* (I) —sequent compound instrumental density-group, sequence of in¬ 

strumental density 

likewise: 

d(m d-cr*). D(I-), D-a-), A(r*), (i-*). 

(c) orchestral density: 

d (ft) —simultaneous orchestral density-unit 

d—* (II) —sequent orchestral density-unit 

D (ft) —simultaneous orchestral density-group 

D"“* (0) —sequent orchestral density-group 
A (ft) —simultaneous compound orchestral density-group, orchestral 

density 
A""* (ft) —sequent compound orchestral density-group, sequence of or¬ 

chestral density 

likewise: 

d ( « ), d"* ( a ), D ( u ), D~~* ( u ), A ( « ), A~* ( u ) 

d (O. <r* (O, D («“*), (O, A (O. («“*> 

d (ft~*), d~* (ft**), D (ft-*), D~* (ft-*), A (ft-*), A~* (ft-*) 

Generalization: 

harmonic forms: p, S, 2 
density forms: d, D, A 

instrumental forms: a, A, l 
orchestral forms: p, w, ft 

density forms relating the three stages: A (H), A (I), A (ft) 

Musical Synthesis: 

transformation of harmonic 

density into instrumental 
density and, finally, into or¬ 

chestral density: A (H) —» A (I) —► A (ft) 
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B. Orchestral components (Resources) 

Five orchestral components constitute omega (ft) 

D -—orchestral density 
V —orchestral volume (loudness) 

Q —tone-quality 
I —instrumental form of orchestration 

A —instrumental form of attack 

n = DrV rQ-f I tA 

Scales of units in relation to their groups: 

D = d, 2d, 3d, ... nd; di , du , dni » , t 

V = v, 2v, 3v, ... nv; vi , vii , vm , rrr 
Q = q, 2q, 3q, ... nq; q£ , Qil » Qm » ... 
I = i, 2i, 3i, ... ni ; ij , ill . illl » ... 
A = a, 2a, 3a, ... na; ai , an * am , ... 

Scales of orchestral components 

(a) Scales of D: 

D = 3d: 

di low solo 
dn medium group 
dm high tutti 

D = 5d: 

dj low solo 
dn medium-low solos 
dm medium group 
djy medium-high groups 
dy high tutti 

(b) Scales of V: 

V = 3v: 

vi low PP P 
vii medium mf mf 

vm high ff f 

V = 5v: 

vi low PP 
vii medium-low P 
VIII medium mf 

viv medium-high f 
Vy high ff 
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(c) Scales of Q: 

Q - 3q: 

CJl low 0 

Qn medium © 

qjn high • 

Q - 3q; 

% medium-low R 

<lll medium © 

<1iii medium-high RR 

Q = 5qr 

<li low O 

% medium-low R 

medium © 

^iv medium-high RR 

<lv high • 

(d) Scales of 1: 

I - 3i: 

>i low 

*ii medium 

bn high 

I - 5i: 
' 

ii low 

in medium-low 

ini medium 

iiv medium-high 

iv high 

A.P. 
{A mplitudcs 

of 
Paritals) 

H.L. 
(Hammond 

Organ 
Levers) 

open 

r~=3 stopped 

closed 

A.P. H.L. 

v*—vi single-reed 

i—i r—i stopped 

^1 
double-reed 

A.P. H.L. 
open 

single-reed 

stopped 
double-reed 

closed 

ap ap 
aS anp 
a2 aS 

ap 
anp 
aS 

anS 

aS 

(e) Scales of A: 

A = 3a: 

ai low legatissimo legato 
an medium portamento portamento 

. am high staccatissimo staccato 

A « 5a: 
ai low legatissimo 
an medium-low legato 
am medium portamento 
aiv medium-high staccato 

av high staccatissimo 

C. Orchestral Tools (Instruments) 

Groups: 

SB stringed instruments bowed 

SP stringed instruments plucked 

W wood-wind instruments 

B brass-wind instruments 

P percussive instruments 

Families, members, auxiliary members: 

Stringed Instruments: 

(a) Violins: 

"V violin 

V viola 

-V* violoncello 
AL double-bass 

bowing (areo): 

A 
open: V ; muted: ^ 

D bowed 

U head (punta) 

-&■ middle (media) 

JL nut (talon) 

bowing in relation to fingerboard: 

\) fingerboard 
middle 

C| bridge 

plucking,'striking, slapping: 

J* plucked 
0 struck 

X slapped 

(tasto) 
(media) 

(ponticello) 

(pizzicato) 

(col legno) 
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(b) other instruments: 

piano (grand or upright) 

piano (electronic) 

guitar (Spanish) 

l±E guitar (electronic) 

mandolin 

balalaika 

(a) flutes: 

U piccolo 
“©■' grande 
■Q- alto 
Q basso 

Wood-Wind Instruments'. 

(b) clarinets: 

“IT piccolo 
It soprano 

R- alto 

JL basso 
R contrabasso 

jit bassethom 

(c) saxophones: 

TET soprano 

IB" alto 
-0 tenor 

baritone 
& bass 
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(d) double-reed instruments* 

W oboe 

'RR' English horn 

-RR- heckel phone 

-RR- fagotto (bassoon) 

RR contrafagotto (contrabassoon) 

Brass-Wind Instruments: 

(a) horns: 

XT horn (French) 

(b) trumpets: 

(T piccolo 

ty soprano 

alto 

XX. basso 

(c) trombones 

Q trombone 

Q trombone (extra crook: fourth J. ) 

(d) tuba: 

tuba (contrabassa) 

Closing: 

o 
O open 

9 

O stopped 

O muted 
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Organs: 

|J pipe-organ 

j|”|—- electronic organ (in general) 

Q Hammond organ 

Electronic Instruments: 

N novachord 
V solovox 
T theremin (space-controlled) 

Percussive Instruments: 

(a) bars: 

H celesta m bells & orchestra bells 

(chimes) (glockenspiel) 

xylophone r ^ marimba i V/J wood-blocks 

ryn vibraphone 

(b) plates: 

pi gong CD cymbals FF iron sheets 
(feuilles de f£r) 

(c) skins: 

kettle-drums 
(timpani) 

snare-drum (3 tamburin 

J3) snare-drum without snares 

(P) bass-drum 
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(d) rods and others: 

^ triangle G) castanets jL clavis 

(e) auxiliary percussive instruments: 

drumstick (hard stick) 

-o soft stick (kettle-drums) 

.d soft stick (gong) 

-4 brush (brushes) 

Human Voices: 

S soprano 

SA mezzo-soprano, mezzo-contralto 

A alto, contralto 

AT altino 
T tenor 

TB baritone 

B bass; B bass-baritone; B basso profundo 



CHAPTER 8. 

INSTRUMENTAL COMBINATION 

TN this age of progressively precipitating mutations of forms, it becomes 

necessary to think in terms of present mutations and of mutations to come. 
One of the attributes of current progress is the plurality of the individual. This 

concept implies versatility of a self-contained unit. While it has been considered 

a virtue for a creative artist to develop one particular style from which he could 
be recognized, it is no longer so—since the composer equipped with a scientific 
method of production (such as is offered by this System of Musical Composition) 

can afford to master a multitude of styles, and be equally proficient in all of them. 
We have accumulated sufficient factual evidence to this effect to substantiate 

this claim. 

In view of this consideration it becomes apparent that a certain style not 

only may become outmoded and obsolete, but the very idea of a composer being 
confined to one style no longer holds true. The character of progress affects not 

only the creators but also their tools. Musical instruments as types become 
outmoded and obsolete not only with regard to their design in general, but also 
with regard to the type of functions they are called upon to perform. It is not 

only important that a new method of sound-production has been discovered 

and put to use, but also that this new method transforms an instrument of a 

certain individual type into a versatile self-contained unit. 

Until very recently the piano was "just a piano". Now we have an electronic 

piano, an instrument with a versatile functionality. It may be percussive, yet 
it may have a sustained tone; it may sound like a harpsichord and again it may 

sound like an organ. Not only its attack-characteristics become variable, but 
also its tone-qualities. It was formerly impossible to control the tone after a 
stroke of the hammer. This, in the case of an electronic piano, is no longer true. 

Mutations affect not only individual instruments alone, but also the ways 

in which they are selected and combined in an instrumental combination. In 

view of this, hardly any combination can be considered standard, as what appears 
to be "standard" today, eventually may become an obsolete model of the vogue 
1942. 

This situation, over which we have no control, requires a broader basis for 
selecting individual instruments (though some of them may be of the plural 
type) and for combining them into groups. 

[15861 
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A. Quantative and Qualitative Relations between Individual Members 

and the Group in an Instrumental Combination. 

1. Quantitative relations of members belonging to an individual timbral group 

or family. 

Members of the flute family are represented either by an individual instru¬ 

ment or by a pair of identical instruments, in which case the characteristics of 
both members with respect to timbre, intensity, attack-forms and range are 

identical, providing that both members are used in unison or at least in close in¬ 

tervals. Opening of a harmonic interval destroys correspondences of registers 
and partly of intensities. 

The addition of a third flute, which is usually the piccolo, adds an upper 

octave-coupler which, for practical purposes, has a satisfactory correspondence 
of components with the large flutes. 

In certain rare cases symphonic and operatic scores include an alto flute 
which, in some instances, alternates with the piccolo. It is important to realize 

that the range of the alto flute is located a fourth or a fifth below the large flute. 
It is in such relations that this instrument corresponds to the large flute. Thus 

the quantitative and the range relations within the flute family may be represented 
as follows: 

Such quantitative relations are quite different in the oboe family. As there 
is no piccolo type of oboe, there are only the following possible combinations: 

The clarinet family, on the other hand, besides the lower octave-coupler 
(B.C.) has a special type of diminutive clarinet (in D and in Eb), which is an 
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upper second-or third-coupler. The quantitative relations of this family appear 

as follows: 

. r Picc. 3 f Picc. 

Cl ; 2 Cl ; "2 Cl. L 2 Cl.; L. 2 Cl. 

8 
B.C. 

8 J B.C. 

Figure 82. Clarinet family 

The bassoon family uses only two types at present. In this case there is only 

the basic type and the lower octave-coupler. 

Bssn.; 2 Bssn.; 2 Bssn. 
8 

_ C.B. (Contrabssn.) 

Figure 83. Bassoon family 

Thus we find no identical relations in four families of the wood-wind instru¬ 

ments, unless the basic types are used alone and only in even quantities. 
The comparative tuning-range characteristics of the wood-wind group ap¬ 

pear as follows: 

Flutes Oboes Clarinets Bassoons 

Figure 84. Wood-wind tuning range. 

In the absence of tuning-range correspondences, composers select the quan¬ 

tity and the type of supplementary instruments at random. In some cases an 
upper octave-coupler is added, in some a lower; in some other cases, the lower 
fifth-coupler is added, without adding any other couplers. More pretentious 

scores include four and even five members belonging to one group so that the 

quantitative relations of types vary greatly. Thus, we see that the quantitative 
relations within the wood-wind group are not based on any definite system of 

correspondences, unless only the basic types are used in equal quantities in each 

family. 
The lack of a system of quantitative correspondences is equally as noticeable 

in the group of brass-wind instruments. There are 2, 3 or 4 French horns or¬ 
dinarily used. In spite of the fact that they have identical tuning-range, they are 
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often used as mutual octave-couplers. The quantitative and the range relations 
of the horns appear aS follows: 

H.; 2 H.; 3H.; 4H. 

Figure 85. French horn family 

As we are not discussing the use of instruments at present, we shall not in¬ 

clude horns as mutual octave-couplers. A natural octave-coupler to this group 
is the tuba. It is customary to couple two horns with one tuba because the 
quality of the latter is so dense. 

Trumpets, in their quantitative and tuning-range relations, represent a 

mixture of the flute and the clarinet family. The piccolo coupler is located a 
major second or a minor third above the basic type (as in the clarinets) and the 
lower coupler is an alto type (as in the flutes). 

The quantitative and range relations of trumpets are as follows: 

Picc. Picc. 
3 3 

Tr.; 2 Tr.; 3Tr.; 2 Tr.; |_3Tr.; 

3 T p»cc. 

" 2 Tr. | 2 Tr. 

5 5 

_ Alto _ Alto 

Figure 86: Trumpet family 

The trombone family consists of identical type-instruments only. Their 

quantities vary but their tuning-range relations are identical, though variable: 

Tromb.; 2 Tromb.; 3 Tromb. 

Figure 87. Trombone tuning range * 

In the customary type of symphonic scoring, 3 trombones are generally used 
—and ordinarily in association with the tuba as lower octave-coupler of the third 
trombone. 

The comparative tuning-range characteristics of the B.-W. group appear 
as follows; 

Horns Trumpets Trombones Tuba 

Figure 88. Brass tuning range. 



1590 THEORY OF ORCHESTRATION 

These relations apparently do not disclose any system. 
Quantitative and timing-range relations in the string-bow group possess 

their own characteristics. It is customary to join groups of instruments of one 

type for the unison playing of one part. Thus from the composer’s standpoint, 
one flute or one clarinet usually corresponds to a whole group of violins playing 

in unison. Whether such a method is justified is another matter. 
It is customary to arrange the S.-B. instruments into four-part harmonies 

with a coupled bass (octave coupling). Their actual tuning-ranges, however, 

appear as follows: 

"1st Vlns. •+• 2nd Vlns. 

5 I 
Violas 

8 
Cellos 

8 
_ Basses 

Figure 89. String-bow tuning ranges. 

In actual use, however, 1st Vlns. are frequently placed at some interval with 2nd 

Vlns. Inasmuch as stnng-bow instruments are of identical design and identical 
sound production, they can be considered to be of one type, though of a different 

tuning-range. 

2. Quantitative relations between the different timbral groups or families. 

We shall consider our classification on the basis of single, double, triple, 

etc., participation of each type of instrument in its respective group. 
Coefficients of coupling are not used ordinarily with the lower octave- 

couplers—and very seldom with other couplers. 
In the single combination there is only one representative of each family 

for each tuning-range. The assortment for a single instrumental combination, 

including the three orchestral groups (S., W.-W. and B.-W.) assumes the follow- 

ing form. 

FI. 
Ob. 
Cl. Quartet Quartet 

Bssn. 
Horn 

Tr. ("Trio 

Tromb. Quartet 
8 

Tuba [_Codpler 

Vlns. 
Violas fTrio 

Cellos Quartet 
8 

Basses • [_Coupler 

Figure 90. The single instrumental combination. 

3 FI. (Pice., Alto) 

3 Ob. (E.H.) 

3 Cl. (Basso, Picc.) 
3 Bssn. (C.-B.) 

3 Homs 

3 Trump. (Alto, Picc.) 
3 Tromb. 

Tuba 
1st Vlns. 

2nd Vlns. 
Violas 

Cellos 
Basses 

12 parts 

10 parts 

5 parts 

Figure 92. The triple instrumental combination. 

Here W.-W. may have two or three octave-couplers (C.-F., Cl.-B., FI. Picc.); 

B.-W. may have one or two octave-couplers (Tuba, Horn or Tromb.) S.-B., one 
octave-coupler (Basses). 
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4 FI. (Pice, and Alto) 
4 Ob. (E.H. and B.O.) 
4 Cl. (Pice, and B. Cl. [Bassethorn]) 

4 Bssn. (Contrafag.) 
4 Horns 

4 Trump. (Alto, Pice.) 
4 Tromb. 

Tuba 
lstVlns. 

2nd Vlns. 
Violas 

Cellos 
Basses 

16 parts 

13 parts 

5 parts 

Figure 93. The quadruple instrumental combination. 

Upper and lower octave-couplers can be used as in the previous combination. 
These classified instrumental combinations do not always correspond to the 

actual selections of instruments, which sometimes are a matter of tradition and 

routine, and sometimes the result of a random selection by the composer himself. 

As a result of this, many combinations used during the last century are of the 
intermediate, mixed type. In the latter, some groups contain only one member, 

while other groups consist of two, three and even four members. 
One of the most standardized instrumental combinations of symphonic 

scoring for a large orchestra is as follows: 

FI. Picc. 
FI. I 

FI.'II 
Ob. I 

Ob. II 
(E.H.) 

Cl. I 
Cl. II 

(B. Cl.) 

Bssn. I 
Bssn. II 

4 Horns 

Tr, I 
Tr. II 

Tromb. I 
Tromb. II 

Tromb. Ill 
Tuba 

lstVlns. 

2nd Vlns. 

Violas 
Cellos 

Basses 

9 parts 

10 parts 

5 parts 

Figure 94. The standard symphonic combination. 
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In some cases the English Horn and/or the Bass Clarinet are added to this standard 
combination. Extra players may be required for these instruments but more! 
often the second oboist is left free to play the English Horn as the second clarinet¬ 
tist plays the Bass Clarinet. 

Radio orchestras are often reduced and modified versions of the symphonic 

combinations. They are by no means standardized. However, certain instru¬ 
mental combinations are preferred by leading radio stations. We refer to the 
following combination merely as a prevailing one: 

FI. I 

FI. II (Pice.) 
Ob. I 

Ob. II (E.H.) 
Cl. I (Sax) 

Cl. II (Sax) 

B. Cl. (Sax) 
Bssn. 

2 Horns 

3 Trump. 

2 Tromb. 

Violins 

Violas 
Cellos 

Basses 

Figure 95. Radio orchestras. 

Since the development of jazz, doubling on a saxophone has become quite 

customary. In addition to the plural aspects of an individual instrument, per¬ 

formers begin to develop plurality in mastering several instruments. All ac¬ 

complished saxophonists are expected to play clarinets of various types, and 
some of them play also the double-reed instruments. 

The distribution of groups in a score has undergone a number of modifi¬ 
cations. It is somewhat standardized in each type of scoring, but different for 
the different types. 

In symphonic scoring, at present, the parts for the wood-wind instruments 
are written at the top of the score; brass-wind parts appear below these; the per¬ 
cussive and solo parts (harp, piano, voices) follow; the lowest section is reserved 
for the string parts. The customary distribution is shown in Figure 94. 

It is easy to see that the quantitative diversity of instrumental combinations 
Ppses a great many problems for the orchestrator or the composer. Since com¬ 

binations vary, it is not sufficient simply to master any specific combination, 
as is required in the existing academic training. It becomes more and more 

important, as the diversity of instrumental combinations grows, to master the 
principles of this art. 
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3. Qualitative relations of members and groups or families. 

In addition to quantitative diversity, there is a great qualitative diversity 

which is noticeable even in one instrument of a certain type, not to mention the 

different types and, particularly, the different families of instruments. We shall 
now discuss these qualitative relations which concern correspondences of timbre, 

intensity, attack-forms and pitch-range. 

In the wood-wind group, we find a close timbral similarity between the mem¬ 

bers of one family. The density of the timbre varies with the individual types, 

the lower instruments being denser than the higher, This, of course, is due to 
the fact that when more partials are within the audible range, the resulting 

quality appears denser. Timbral density, as a consequence, decreases in all 

instruments as frequencies increase. 
The following subgroups of the wood-winds arc those that arc most homo¬ 

geneous: 
flutes and clarinets; 
oboes and bassoons; 

clarinets and oboes; 
clarinets and bassoons. 

There is a greater timbral similarity between the two families of the double¬ 

reeds than between any other combinations. We can establish, for purely meth¬ 
odological reasons, a scale of decreasing timbral similarities for combinations of 

wood-wind families by two: 

oboes and bassoons; 
clarinets and bassoons; 

flutes and clarinets; 

clarinets and oboes; 
flutes and bassoons; 
flutes and oboes. 

Timbral characteristics of the brass-wind group are more homogeneous 

than that of the wood-winds. 

Trumpets have at least as much timbral similarity with trombones, as 

oboes with bassoons. In addition to this, it is more common to find several 

brass instruments of one type (like 3 trumpets, 3 trombones, 4 horns), than it 
is to find several wood-wind instruments of one type, except in very large com¬ 
binations. The French horns used today are all of one type. Their timbral 
characteristics can be considered as corresponding with trumpets and trombones 

to at least the same extent as that of flutes when combined with* clarinets. The 

tuba bears a great timbral similarity to horns, but its quality is considerably 

denser. Thus we acquire two naturally blending subgroups: 

trumpets and trombones; 

horns and tuba. 
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The scale of decreasing timbral similarities, which is less pronounced in the 
case of brass instruments, appears as follows: 

horns and tuba; 

trumpets and trombones; 
trombones and tuba; 

horns and trombones; 
trumpets and horns; 
trumpets and tuba. 

Of course, in the case of brass-wind instruments, timbral similarities are 
often variable, smee they largely depend on execution. As mentioned in the 

description of instruments, trombonists can produce a very mellow tone, which 
remaining nch in the content of its partials, approaches the timbre of a French 

horn_ The same is true of trumpets, which can be made to sound like cornets. 

Though the individual timbral differences between the different strings of 
one string-bow instrument exist, they are not sufficiently pronounced to pro¬ 
duce an undesirable timbral heterogeneity. Although the different strings are 
differently tuned in the sense that the degree of the tension in a string varies, 

ependmg on whether its material is gut, metal, or metal-wrapped gut, these 

different stnng-bow instruments can be accepted as members of one timbral 
family. 

It follows from this discussion that though there is a relative timbral cor¬ 
respondence lx tween the various families of one instrumental group, such cor¬ 

respondence is very remote between the three basic orchestral groups, i.e , the 
strings, the wood-winds and the brass-winds. 

fn ^ ^en 8Uch a Iack of similarity or correspondence may be very beneficial 
^Producing contrasts. It is not only a matter of basic timbraj characteristics 

but also of the manner of tone production. In this rqspect there are really two 
basic groups: the wind instruments and the string instruments. Both groups of 

the wind instruments give closer blends with each other than they give (parti¬ 
cularly the brass group of higher register) with strings. 

B. Correspondence of Intensities. 

fwr 1hC nGXt proble? t0 discuss the correspondence of intensities within 
iamilies, groups and instrumental combinations. 

At this point we are not interested in the physical aspect of intensities, but 
merely m their basic relations which are conditioned by the various types and 
families of instruments. 

The general characteristic of intensity in the flute family is such that there 
is a gradual increase of intensity in the direction of increasing frequencies and 
a. broader dynamic range available in the middle register. 

In the clarinet family there is an increase of intensity in both frequency- 
unctions, with a sufficiently broad dynamic range. The exception is the upper 

part of the chalumeau where the sound is weak and weakening toward the upper 
end of that register. 
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The oboes must be described apart from the bassoons as these two types of 

double-reeds have different dynamic characteristics. The lower register of oboes 
has naturally increasing dynamics in the direction of decreasing frequencies 

From the middle range upward the dynamic range is quite flexible, but that 

flexibility gradually disappears in the higher register which is loud, though the 

sound loses its density. 

Bassoons have a powerful and dynamically flexible low register; they weaken 

gradually toward the higher register, which again becomes fairly strong, though 
lower in density and harsh in quality; this harshness disappears toward the 

upper end of the whole range, where the dynamics are quite narrow in range and 

of a low intensity. 

It is to be remembered that outstanding performers succeed in neutralizing 

the registral differences of dynamics. 

The dynamic correspondences of the wood-wind group as a whole appear 

as follows: 

Flute 

Oboe 

Clarinet 

Bassoon 

Figure 96. Dynamic correspondences of wood-wind group 

INSTRUMENTAL COMBINATION 

There is a greater dynamic correspondence among the different types of 
brass-wind instruments. 

Trumpets have iow intensity in their lower register with a fairly wide dyna¬ 

mic range in the middle register and a high intensity in the high register. Thus 

the general tendency of the range is increasing intensity in the direction of in¬ 

creasing frequencies, with a fairly stable middle register and a fairly wide dynamic 
range. 

Trombones grow in natural intensity with the increasing order of natural 

tones. The dynamic range of the middle register is fairly wide and stable. The 
pedal tones are weaker than the rest of the range. 

French horns have the same natural tendency of increasing dynamics in the 

upward pitch direction. It is the upper half of the range that is dynamically most 
flexible. 

The tuba has similar characteristics. Its lower register appears to be re¬ 

latively loud, but this impression is really due to the high density of its tone in 
the lower register. 

Summing up the dynamic characteristics of the brass-wind instruments, 
we obtain the following group of correspondences: 

Horns 

Trombones 

Figure 97. Correspondences of intensity in brass-wind group 
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As in the case of wood-winds, a great deal depends on the performer's skill. 

All types of string-bow instruments have generally corresponding dynamic 
ranges, which give in all registers the same degrees of intensity and the same 
dynamic range. This statement, of course, is a simplification of the actual phy¬ 

sical situation, but it is sufficiently accurate for the purposes of orchestration. 
In practice, the dynamic balances of string parts are often accomplished by sel¬ 
ecting identical instruments (playing one part) in appropriate quantities. Here, 

however, we are chiefly interested in the correspondences of dynamic character¬ 
istics and not their equivalence with regard to the composition of balances. 

It follows from the above discussion that string-bow instruments dynami¬ 

cally constitute the most homogeneous group. Strings, in homogeneity of dyna¬ 

mic correspondences, are followed by the brass-winds; the wood-winds, in this 

respect, occupy the last place. 

C. Correspondence of Attack-Forms. 

Next we shall be concerned with correspondences of attack-forms Which 
exist between the different families of one group and among the groups. 

Different families of the wood-winds have different attack characteristics. 
The flutes have legato, portamento and staccato. The latter is of one kind but 

can be obtained in piano and in forte, thus approaching only to some extent the 
distinctly different soft and hard staccato of the double-reeds. Two other special 

forms of attacks are available on the flute: the flutter-tongue (frulato) and the 
multiple tongue (double, triple etc.) The latter are not found in common with 
any other wood-wind instrument. 

Clarinets have a perfect legato, a well-expressed portamento and a good 

soft staccato. The hard staccato is not characteristic of this instrument. It is 
more pronounced on the saxophone. 

Oboes and bassoons have identical attack-characteristics but different mo¬ 

bility. Oboes are generally slower than bassoons. All double-rceds have an ex¬ 
cellent legato, a perfect portamento and two distinct forms of staccato: the 
soft and the hard. 

The attack characteristics of the wood-wind group may be summarized 
as follows: 

Flutes: legato, portamento, staccato, frulato, multiple tongue 
Clarinets: legato, portamento, ataccato 

Oboes: legato, portamento, soft stacc., hard stacc. 

Bassoons: legato, portamento, soft stacc., hard stacc. 

In the brass-wind group we find the following attack characteristics. 

French horns have an excellent legato, a perfect portamento and a staccato 
which is closer to soft than to hard. The latter is due to the time period necessary 
for the transmission of attack through the long air column. 

T 

■ 

l i 

f 
■-JJl 
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Attack-forms available on the trumpet are similar to those available on the 
flute; in addition to legato, portamento, and staccato (the trumpets somewhat 
emphasizing the distinction among these forms) trumpets, like flutes, can execute 
mu 1 tiple-tonguing and flutter-tongue attacks. 

Trombones offer only the first three of tfiese forms, i.e., legato, portamento, 
and staccato; the individuality and distinction they bring to these attack-forms 
is analagous to that of the trumpets. 

Attack-forms for tuba resemble those available on the horns. 
In tabular form, attack-forms available from the brass and wood-wind 

instruments may be summarized as follows: 

Boms: Legato, portamento, staccato. 
Tuba: the same as above*. 
Trombones: the same as above except that the subdivision between the soft and hard 

staccato is more pronounced. 
Trumpets: the same as above except that, in addition, miiltiple-tongumg and flutter- 

ton (frulato or flaUenunge) are also available. 

Richest of all in attack-forms is the string group, all instruments of which 
afford the same attack-forms. In nearly all cases, each attack-form available 
from the brass and wood-wind instruments is paralleled by more than one attack- 
form available from the strings—it is as if it were a question of two different 
languages, one of which might have but one word for a certain concept, while 
the other would have more than one word in order to describe minor shadings 
of meaning. 

String attack-forms* w'.re classified in the chapter on the violin, the whole 
manifold forming a series that can be arranged into a decreasing scale with respect 
to tone duration: starting with the legato and proceeding through the detached 
(detache, or non-Iegato), the portamento, spiccato, staccato, martellato, saltando, 
and sometimes the col legno to the pizzicato at the extreme of minimum duration. 
Strings can imitate all the attack-forms available from the brass and wood-wind 
Instruments (although the imitation of the frulato is least exact); certain attack- 
forms available from the strings, on the other hand, cannot be obtained from the 
wind instruments. In establishing correspondences, then, between the attack- 
forms available from the strings on the one hand and the wind instruments on the 
other, the strings will exhibit a greater variety of form and of terminology than 
the wind-instruments. It should be useful to establish a table of these corre¬ 
spondences, listed as to general characteristics. 

Legatissimo in general: obtained from the strings (S) wood-wind (W) and brass (B) 

playing very legato. . 
Legato: obtained from the S, W and B by producing several notes with the same bow 

or breath. 
Detached (or detachi) available from S, W and B with a separate attack on every note. 
Portamento: obtainable from S, W and B. 
Staccato (soft): from the S in spiccato,. mezzo-staccato, saltando or col legno; also from 

the W and B. 
Staccato (hard): from the S in staccato, martellato, pizzicato; also from the W and B. 
Multiple-tongue effects: from the S by measured tremolo in mezzo-staccato; from the W 

(flute) or B (trumpet) as double, triple or multiple-tonguing. 
Flutter-tongue effects: the nearest approximation on the S is obtained from an unmeasured 

tremolo; from the W (flute) by flutter-tonguing or frulato and frem the B (trumpet) by frulato. 

Figure 98. Correspondence of attack-forms 
•See p. 1499. 
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D. Correspondence of Fitch-Ranges. 

The last form of correspondences to be discussed concerns instrumental 
pitch-ranges. 

The individual range-characteristics of the different instruments, families 
and groups are the main source of difficulties encountered by the composer, or 
the orchestrator in his work on a score. If all instruments had been designed to 

produce the same range (in different zones of the general acoustical range, of 
course) and had the same register-distribution characteristics, such difficulties 

would be completely eliminated, and the composer would have felt greater free¬ 
dom in conceiving an orchestral work. But with present instrumental combina¬ 

tions, such is not the case. 

To get a clearer picture of ranges, we shall represent them in semitones. 
We shall confine all ranges to the practical limits in which the respective instru- 

ments are used. 

Flutes: 
Alto 

31 

Clarinets: 

Grande 
38 

Piccolo 
27 

Bass Alto Soprano Piccolo 
38 (34) 

Saxophones: 
34 39 39 

Bass Baritone Tenor Alto Soprano 
30 30 

Oboes: 

Baritone Alto 
27 28 

Bassoons: 
Coutrabassoon 

34 

30 

Soprano 

31 

Bassoon 
40 

30 30 

Figure 99. Semitone range of wood-winds 

As we can see, only the saxophones have a balanced assortment of ranges. • 
No other family gives such a correspondence and there is no definite correspon- 
dence between the families. 
Horns; 

44 

Trumpets: 
Bass Alto Soprano Piccolo 

25 

Trombones: 

25 32 30 

Tenor-Bass Tenor-Bass 

(with valve) (without valve) 

3 + (-lfeapl) + 38 3 + (-5[gap]) + 34 
Tuba: 

39 

Figure 100. Brass-wind ranges in semitones 
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As we can see, no obvious correspondences of ranges exist in this group. 
The stringed-bow instrumental group, though homogeneous in other respects, 

is entirely heterogeneous with regard to the instrumental ranges of its membere. 

Orchestra Solo Pizzicato 

Violins: 52 52 33 
Violas: 33 40 28 
'Cellos: 40 47 40 
Basses: (31) 27 41 (28) 24 

Figure 101. Bange of string-bom group 

It follows from the above three tables that a definite range-correspondence 

is not to be expected when instruments are combined in families and groups as 
they appear in a standard instrumental score. 

It is particularly important to note the extreme difference between the 
violins and the basses; however, since basses are primarily used as octave-couplers 
to cellos, they have very little range similarity with the latter. 

E. Quantitative and Qualitative Relations Between the Instrumental 

Combination and the Texture of Music. 

1. Quantitative relations 

One of the chief obstacles the composer encounters in translating his music in¬ 

to orchestral form is the lack of quantitative correspondences between the harmonic 

and the density forms of music, on the one hand, and the instrumental combination, 
on the other. 

In scoring of the Mozartian type, where harmony consists of two parts with 

added bass, the problem of quantitative correspondences is very simple. Instru¬ 
ments of identical type are matched by pairs, thus supplying the two harmonic 

functions. On the other hand, the same pairs, when functioning in the low reg¬ 
ister, are assigned to represent the harmonic bass. 

Unfortunately this happy situation does not exist in more developed forms 
of orchestral writing. Existing forms of harmony seldom correspond to the se 
lection of members in a family, to combinations of families and groups. Often 

double instrumental combination's used to represent so-called four-part harmony, 
which, as we know, in actuality is 3p + p. Such a harmonic structure basically 

requires a homogeneous instrumental combination of three with the addition of 
one instrument which is of the same or of a different timbral family from the 
first three. 

My purpose in discussing this matter now is to call the student’s attention 

to the fact that harmonic forms of music have developed independently of the 
quantitative aspect of instrumental combinations. It is natural for this reason to 
expect all kinds of quantitative discrepancies in translating music into orchestral 

language. From the subjective view of the composer, this discrepancy becomes a 

source of never-ending struggle. The elimination of quantitative discrepancies 
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and the establishment of quantitative correspondences between the harmonic 
and the density forms of music, on the one hand, and the instrumental com¬ 
binations, on the other, is one of the major tasks of my Theory of Orchestration. 

All such problems in this system are solved by a different methodological 
approach, which in this case is the translation of special harmony into a specified 

form of general (strata) harmony in correspondence with the selected instrumental 
combination. This methodological approach also allows for the use of new har¬ 

monic forms, as well as new instrumental combinations. Thus the problem is 
solved both for the orchestration and the orchestral composition. This method 
gives a fully satisfactory solution to all the situations concerned with the balance 

within harmonic groups (i.e., the balance of p’s within S) and between such 
groups (i.e., the balance of S's within 2). 

2. Qualitative Relations 

Qualitative relations between the harmonic and the density group, on the 
one hand, and the instrumental combination, on the other, often compel the 

composer to draw his musical texture from the instrumental combination instead 
of from its own components. 

For example, a high density harmonic group which would at its best be 
represented by a homogeneous timbral group, cannot be properly assigned be¬ 
cause a certain (more or less) standard instrumental combination does not con¬ 
tain as many members as are necessary in a certain specified timbral group. 

The reverse is true: in some cases there may be more members in a homogene¬ 
ous timbral group than is required by the status of a harmonic structure and its 
presupposed density. Of course such situations are easily solved by employing 
only some of the members belonging to one timbral family. But suppose this 
situation is more or less prevalent in a given score. Then it would result in an 

unjustified waste of instruments and performers, which just does not agree with 
the universally accepted idea of the economy of resources necessary in artistic 
expression. 

To refer to one of the previous discussions of composition (Theory of 

Composition: Part Two) it is important to estimate the qualitative relations 
between the musical and the orchestral texture. This means that any com¬ 

position achieves its optimum only under a certain group of corresponding 
conditions, which affect both the musical and the orchestral textures. Otherwise 

it may happen that the selected instrumental combination is not capable of ex¬ 

pressing a certain tonal texture. For example, it may not be possible for the 
French horns to execute a highly mobile fugato even if such timbre is desirable; 

or it may not be possible for a small instrumental combination of monodic in¬ 

struments of any type to execute a diversified texture of high harmonic density. 
Generally speaking, musical textures and instrumental combinations are 

closely interrelated. And though nearly every piece of music can be adapted, 

arranged or orchestrated with varying degrees of skill, the optimum of a synthesis 

can be achieved only under a certain specified group of conditions for nearly 
every instrumental combination that has been more or less standardized. 

CHAPTER 9 

ACOUSTICAL BASIS OF ORCHESTRATION 

The problem before us is to define and describe the material of orchestration. 

But in what terms can such a definition and description be adequately accom¬ 

plished? Certainly not in terms of violins, clarinets, trumpets and drums. To 
do so would mean to repeat once more the methodological error made by music 

theorists of the past. The description of orchestral devices in terms of musical 
instruments leads to the dogmatism of assorted recipes which presuppose a certain 

type of musical texture. If the composer is fortunate enough to apply them to 
just such a texture, he may meet with success. In all other cases he is bound to 
be a failure. Should then the elements of orchestration be described, perhaps, 

in physical terms, i.e., as frequencies, amplitudes, phases, energies, air compres¬ 
sions, and rarefactions? In a way such a description would be highly accurate. 
Yet it would be erroneous to assume that frequencies, amplitudes and air com¬ 

pressions constitute the material of orchestration. Such a viewpoint would be 

very one-sided, and description based on it would be insufficient. 

On the receiving end, phasic stimuli produced by instruments encounter a 

metamorpkic auditory integrator. This integrator represents the auditory apparatus 

as a whole and is a complex interdependent system. It consists of two receivers 
(ears), transmitters, auditory nerves, and a transformer, the auditory brain- 
center. The response to a stimulus is integrated both quantitatively and selec¬ 

tively. The neuronic energy of response becomes the psychonic energy of auditory 

image. The response to stimuli and the process of integration are functional 

operations and, as such, can be described in mathematical terms, i.e., as syn¬ 
chronization, addition, subtraction, multiplication, etc. But these integrative 

processes alone do not constitute the material of orchestration either. The audi¬ 

tory image, whether resulting from phasic stimuli of an excitor or from self- 
stimulation of the auditory brain-center, can be described only in Psychological 
term,* of loudness, pitch, quality, etc. This leads us to the conclusion that the 
material of orchestration can be defined only as a group of conditions under which 

an integrated image results from a sonic stimulus subjected to an auditory response. 

This constitutes an interdependent tripartite system, ih which the existence of 

one component necessitates the existence of two others. The composer can 
imagine an integrated sonic form, yet he cannot transmit it to the auditor (unless 

telepathicaliy) without sonic stimulus and hearing apparatus. The transmission 
of a sonic form by an instrumental stimulus necessitates the existence of such a 

form and of a hearing apparatus capable of reacting to it. Finally, the hearing 
apparatus itself produces an auditory image out of a sonic form executed by an 

instrument. 
The study of sound and hearing is not complete for the present. Since 

Helmholtz’s work on Tone-Sensations, certain facts have had to be added and 

certain others rectified. Some aspects of acoustics require further experimental 

study and verifications. No final clarity has been achieved in the matter of 
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subjective and objective. Yet too many processes of importance pertain to this 
field. Among them are the striking tone, the combination tones, the auditory 
illusions, etc. Under these circumstances our definition, classification and de¬ 

scription of the components of an auditory image, must necessarily lack the 
precision which might have been attained if the physical and the psychological 

study of sound were more complete. Nevertheless, even with what can be offered 

now, the acoustical basis of orchestration can be considered established for any 
practical purpose. Our main achievement is a methodological one. The definition 

of auditory image as a function of physical stimulus and the integrative process 

of hearing, with further progress of physical and psychological knowledge, will 
become more accurate and will permit a more adequate description of the material 

of orchestration. The present description of this material and the deductions 
based upon it are true only within the scope of the present knowledge of sound. 

Editors’ Note: 

The original manuscript of the SchiUinger System of Musical Composition 
does not end at this point. But the editors, after consultation with the publisher, 
deem it wise to terminate at this point because the material that follows is not 
complete and because much of the material on orchestration has already been 

presented by SchiUinger in earlier books. 

In Book I, for example, the application of resultants to Instrumental Forms 
(Chapter 7) foreshadows the procedure for developing scores of unprecedented 

richness and complexity from rhythmic raw material. In Chapter 8, Coordination 
of Time Structures, SchiUinger describes the synchronization of an attack group 
with an instrumental group. In Book VII, Chapter 5, SchiUinger considers the 

composition of a counterpart to a given melody by means of axial correlation—a 

technique indispensable in modem ‘'arranging” and in virtually all good orches¬ 
tration. 

Book VIII, Instrumental Forms, covers comprehensively one of the most 

important aspects of orchestration. As SchiUinger himself described the purpose 
of this book: “Instrumental forms will mean, so far as this discussion is concerned, 

a modification of the original melody and/or harmony which renders them fit for 

execution on an instrument. , . Depending on the degree of virtuosity which can 

be expected from singers, instrumental forms may be appUed to vocal music as 
well as orchestral.” An examination of chapter headings in this book quickly 
reveals how basic the material is for orchestration: Chapter 5. Strata of Four 

Parts; Chapter 6. Composition of Instrumental Strata; Chapter 8. The Use of 
Directional Units In Instrumental Forms of Harmony, etc. 

Book IX, General Theory of Harmony, likewise is concerned with matters 

fundamentally orchestral. “My general theory of harmony,” SchiUinger writes, 

“denotes the whole manifold of techniques which enable the composer to write 

directly for groups of instruments or voices..In this book, SchiUinger develops 

two of his most original orchestral techniques: the 2 concept as it relates to orches¬ 

tral strata (Chapters 2, 7) and the composition of density as it relates to strata 
(Chapter 15). These techniques were largely responsible for the rich and arrest¬ 
ing arrangements made by SchilUnger students. 

ACOUSTICAL BASIS OF ORCHESTRATION 

From Schillinger's notes, it is clear that he planned to integrate the ideas of 

Books VIII and IX in Book XII. Other-matters which he planned to consider and 
had in part written down include: instrumental media lor achieving variation of 
true color; forms of attacks (such as durable, abrupt, bouncing, oscillating, etc.) 

as they relate to instrumental forms; curvature of a melodic line in instrumental 

performance; and other related material. In addition to Acoustical Basis of 
Orchestration, Sqhillinger had planned to include a section called Theory of Inter¬ 
pretation. 

As previously stated, the original manuscript contains some of these materials 

in incomplete form. The editors also had before them notes taken by students 
who had studied personally with him. These notes covered various topics in¬ 
cluded in a table of contents prepared by SchiUinger for Book XII. 

For a time the editors and the publisher considered the possibility of re¬ 
working all of these materials and including them in the present volume. Since 
the major aspects of Schillinger’s theory of orchestration are covered in earlier 
books and in Book XII as it appears here, it was decided to confine the published 
work in its first edition to Schillinger’s manuscript as he had completed it. 

[L. D.-A.S.J 
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GLOSSARY 
Compiled by LYLE DOWLING and ARNOLD SHAW 

(Terms appearing in bold face within a definition arc explained 
elsewhere in this glossary and will be found in alphabetical order. 
Students should consult the index in order to discover the pages 

on which terms appear in the text itself.) 

A 

A Symbol ordinarily used for Attack. 

AT* Symbol for Attack Continuity. 

a Denotes an a axis; see Axes. 

a See Attack. 

(S) Denotes one of the positions in Quadrant Rotation. 

a 4- b Symbol for Resultant of a and b. See the footnote: Vol. I, p. 4. 

a 4- b Symbol for another Resultant of a and b, fractioned with symntetty around an axis. 

a, b, c, These letters frequently denote Chordal Functions when the exact name of the func¬ 
tion need not be specified. 

ABSCISSA. In the Graphing of music the measurements horizontally, left to right, denoting 

the time dimension. 

ACCELERATION SERIES. Any series in which there is an increasing or decreasing differential 
between successive terms. The decreasing series is sometimes known as a Retardation 
Series. Prime number series, summation series, etc., are ordinarily used for this purpose. 

A positive series may be synchronised with its reverse to produce a Resultant. 

ACOUSTICAL CLARITY. In Orchestration, the result of (a), differentiation of overlapping 
Strata by tirabral and/or Attack-Form variety, and (b) proper relationship of Clockwise 

and Counterclockwise positions of strata. 

ACOUSTICAL EQUIVALENTS. Intervals differently named in diatonic nomenclature but con¬ 
sisting of an identical number of semitones, hence sounding the same. 

ACOUSTICAL PROPERTIES OF INTERVALS. The critical properties are Density and 
Tension, as applied to Harmonic Intervals. See Vol. I, p. 700. 

ACOUSTICAL RANGE. The range of an instrument as it actually sounds. 

ACOUSTICAL SET. A distribution of tones corresponding exactly or approximately to the 
series of Harmonics. 

ALIEN MEASURE-GROUPING. The grouping of a durational continuity (especially, a Re¬ 
sultant) by measures consisting of a number of units which does not correspond to any 
generator or product of generators, uSfed in making the resultant. 

AMPLITUDE. A measure of intensity (loudness) of sound. When a sound wave is graphed, the 

amplitude is the distance between the highest and lowest points of the track of the sound wave, 
and the intensity of the tone is related to this measurement in a logarithmic ratio. 

ANTICIPATED TONE(S). In harmony, a tone of one structure caused to sound before other 
tones of the structure,and while tones of the preceding structure are still sounding. 

ANTI-CLIMAX. Not to be confused with negative climax; refers to a segment of a composition 

in which the tension or magnitude of a climax is relaxed; see CHwiaX., 
ARITHMETICAL MEAN. An average found in the ordinary way by adding a series of num¬ 

bers, then dividing the total by the number of terms in the series. 

ARITHMETICAL PROGRESSION. A series in which each term is the previous term plus 
some constant number, n. For example, l, 3, 5, 7, 9 is an arithmetical progression in which 
the constant is 2. 

ASCRIBED MOTION. A type of melodic movement produced by constructing .the. melodic 
steps on a graph so that they are outside the Secondary Axis, that is, so that the secondary 
axis is between the pitch-line and the primary axis. When the steps are constructed inside, 
the motion is called Inscribed Motion. More strictly, ascribed motion is sine motion; in¬ 
scribed cosine motion. 

ATTACK. In this system, a very general term meaning both an instance of some musical event 
and the moment in time when the event begins. It is not to be confused with Attack-Form, 
which is an instrumental matter. When one says ‘'three attacks per measure,” one means 
that there are three events—of whatever kind—occurring in the measure, without specifying 
in exactly what rhythm they occur. The term need not refer always to tonal material; two 
attacks of Oi would mean “two instances or occurrences of orchestral group number one,” for 
example. The abbreviation for attack is A or some form of it, often a. Attacks may be 
grouped into Attack-Groups, consisting of various numbers of attacks in series. Such 
attack-groups may further be grouped into Attack Continuity. 

ATTACK CONTINUITY. A Continuity composed of Attack-Groups which are, in turn, 
composed of Attacks. 

ATTACK-FORM. The pattern of tonal material assigned to an instrument: for example, an 
arpeggio is one of many attack-forms for a chord. 

AUTOMATIC CHROMATIC"CONTINUITY. Produced by subjecting an initial chord, usual¬ 
ly in the diatonic system, to a process whereby one or more voices move by semitones in but 

one direction at a time. See Vol. I, p. 544. 

AUXILIARY TONE OR UNIT. A type of Directional Unit consisting of a chordal tone (or 
Neutral Unit) preceded by a tone that is one semitone, or two semitones, or a diatonic step 
removed. Distinguished from other types by the fact that the auxiliary need not belong to 
any pre-set scale or harmonic structure. 

AXES. In general, lines of reference. 1. Key-axis: the particular pitch-level representing the 
first tone of the Real Scale in which the music is written. A shift in key-axis involves Modu¬ 
lation in the modem sense of the term. 2. Primary axis is the pitch-level, not necessarily the 
same as the key-axis, around which a melodic line moves; it is usually the pitch sounded for 
the greatest total duration in the course of a melody; a shift in primary axis involves modula¬ 
tion in the 16th century sense, or modal modulation. 3. Secondary axis in melody is an axis 
that has a specific direction and that describes the movement of the melodic line: specifically; 
o axis, up from the primary; b, down to the primary; c, up to the primary; and d, down from 
the primary. 4. Balancing axes are those leading toward the primary, that is, the b and c 
axes. 5. Unbalancing axes (a and d) lead away from the primary. 6. Binary axes are simul¬ 
taneous pairs of secondary axes. 7. Ternary axes are sets of three simultaneous secondary 
axes. 7. Axis of symmetry is the “center,” or line of reference around which a symmetrical 
structure is constructed. 8. Axis of inversion is the line of reference from which inverted in¬ 
tervals are reckoned in Inversion. 

AXIAL COORDINATION. In melody, the process of composing a continuity of Secondary 
Axes; in counterpoint, the composition of properly interrelated groups of secondary axes 
for two or more Correlated Melodies. 

AXIS RELATIONS. In general, the relations between two or more axes of two or more simul¬ 
taneous parts or tftrata in music. Hence it may refer to the relation between melody and 
harmony, or, in counterpoint, to the relations between any pair of correlated melodies; spe¬ 
cifically: (1) UU, unitonal-unimodal, that is, same key-signature, same mode (displacement) 
for both melodies; (2) UP, unitonal-polymodal, same key-signature, different displacements; 
(3) PU, polytonal-unimodal, different key-signatures, same displacements; (4) PP, polytonal- 
polymodal, different key-signatures, different modes. 
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B 

b Denotes one of the secondary axes. See Axes. 
(g) Denotes a position in Quadrant Rotation. 
B Symbol used for balancing axis (see Axes). 

BALANCING. The process of adding to a Resultant a duration such that, if the generators are 
a and b, the duration added is a (a—b); especially, in Contraction Groups. 

BALANCING AXIS, See Axes. 

BRAT TONES. See Differential Tones. 
BINARY AXES. See Axes. 
BINOMIAL. A group consisting of two elements. 
BLOCK HARMONY. An arranger’s term referring to the result of a process in which a melodic 

line is subjected to Coupling at the octave, after which the remaining functions, whatever 
they may be, of a chord-usually S(5) with the 13th added or S(7)—are inserted between the 

extremes of the octave. 

C 

c Denotes one of the secondary axes; see Axes. 
(c) Denotes a position—backwards and upside down—in Quadrant Rotation. 

Co Abbreviation for Zero Cycle. 
C« Abbreviation for Cycle of Thirds. 1 Positive Cm 1 Negative 
C8 Abbreviation for Cycle of Fifths. Cycles C-s Cycles 
C7 Abbreviation for Cycle of Sevenths. J C-9 J 

CADENCE. A configuration in melody and/or harmony, used very frequently, which has the 
effect of halting or retarding the movement and which, hence, is used to mark ends of divisions 
and subdivisions of form. Melodic: essential form of a melodic cadence is the tone of the Pri¬ 
mary Axis immediately preceded by the next lower or next higher tone. Harmonic: essential 
form of a harmonic cadence is the key-axis root (Tonic) immediately preceded by the next low¬ 
er or next higher root in the particular cycle in which the roots are moving; thus, each cycle 
<C», Cg> etc.), has its own two essential forms of cadencerthe root above, or the root below, 
in the particular cycle or, many times, in some cycle foreign to the continuity. Combined 
forms, either for melodic cadences or harmonic cadences, are made of some combination of 
these elements, but with the axial element always last. In cases of so-called half-cadence or 
deceptive cadence, an axis other than the normal one is used. 

CANTUS FIRMUS. A term from old contrapuntal theory, now used to designate what is given 
in a contrapuntal problem, usually reduced to abstract form by noting it in whole notes. 

CF Symbol for Cantus Flrmus. 
CHORDAL FUNCTION 0, 0. In a structure, or chord, each tone may be denoted in relation 

to the root by a number—for example, the 3rd by a 3, and so forth. The term function is 
used to denote a 3 or a S or some other such interval consistently, and is used especially 
when Transformations of structure make it important to be able to identify the same in¬ 
terval in a series in which the position of the function may be constantly changing. 

CHROMATIC ALTERATION MODULATION. See Modulation. 
CHROMATIC GROUP. The fundamental group of three chords in Chromatic Harmony in 

which the first is diatonic, the second is chromatic, and the third is diatonic but not neces¬ 
sarily diatonic with respect to the key of the first. Shapes of these three are S(5) or S(7) in 
Special Harmony, but the second is preferably of S(7) structure. 

CHROMATIC HARMONY. Not to be confused with harmony of some other type that has 
been subjected to Chromatization. The essence of chromatic harmony is the group 
of three tones chromatically related, expressible by x — xft'— y (or: x — xb — y). Around 
each tone a Chord is built, a requirement being that the middle chord be of the S(7) shape. 

Thus the motion of chords in the continuity is determined by these groups of three. The 
same technique may be applied to two chromatic lines simultaneously, to three, or, in ex¬ 
ceptional cases, to four. The groups of three may be consecutive or may overlap or may, 
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in special cases, be simultaneous. The first and third chords are ordinarily diatonic, although 
they need not be diatonic*with respect to the same Pitch-Scale, From this arises harmonic 
Modulation as a special case of chromatic harmony. 

CHROMATIZATION. A process in which all whole steps (two semitones) in a part, whether 
the part is melodic or harmonic, are broken into two steps of one semitone each by insertion 
of the required chromatic. 

CIRCULAR PERMUTATION. A type of Permutation produced by displacing the original 
, group one step at a time until the original returns, as when abc is permuted circularly to 

produce bca, cab, and again abc. 
CLIMAX. This, in terms of any given continuity, is the point at which the quantities are at 

maximum magnitude (negative magnitude producing a negative climax), no matter what the 
continuity is. Generally, it is the segment or segments in a composition where one or more or 
all continuities reach a maximum magnitude. Attack climax: maximum number of At¬ 
tacks. Dynamic climax: maximum volume of tone. Harmonic dimax: maximum number 
of strata and maximum number of parts with maximum permissible Tension. Melodic 
dimax: maximum in time and in distance of pitch from the primary axis (see Axes). The 
psychological effect of the climax is heightened if the maximum magnitude is reached in a 
series of increasing “waves,” each "wave” being higher than the last but falling back only to 
be succeeded by a greater magnitude until the maximum is reached (see Resistance Forms). 
The reverse of Climax so far as this “wave” movement is concerned is Anti-Climax. 

CLOCK TIME. Time as measured on the clock, usually in seconds. 

CLOCKWISE C Circular motion in the same direction-as that of the hands of a clock; used 

to differentiate in Transformations those in which, for example, 1-3-5 changes to 3-5-1, 

which is clockwise (as in C ) fronf those in which 1-3-5 changes to 5-1-3, which is counter- 
( l } BK-'8 

clockwise (as in * ' ). 
5v_j»3 

CLOCKWISE POSITIONS.These are positions of structures which correspond to so-called open 
positions of chords. The functions of a positive structure are reckoned downwards. 

CLOSED TONE. Timbre characterized by presence of relatively high number of Harmonics. 
COEFFICIENT. A number by which some element in a series (which element may or may not 

be a number) is multiplied. Coefficients of recurrence: a series of coefficients used to control 
the number of times some element in music—a theme, or duration, or interval, or timbre, 
etc.—recurs. 

COMBINATION TONES. See Differentia! Tones. 

COMBINED HARMONIC CONTINUITY. A form of harmonic continuity consisting of seg¬ 
ments of the various basic types—diatonic, chromatic, symmetric, diatonic-symmetric— 
the segments being frequently linked in some pattern by other segments. A Hybrid form, 

COMMON CHORD. A term used in modulatory technique to denote a common-name chord, 
i.e., a chord the names of the pitches of which are the same as the names of the pitches of, 
another chord without regard to accidentals. 

COMMON PRODUCT. In rhythm, the number obtained by multiplying two or more numbers 
together, especially when Resultants are being derived. 

COMMON UNIT METHOD OF MODULATION, See Modulation. 
COMPLEMENTARY FACTOR. In calculating Resultants, the number of times a particular 

Generator recurs; found by dividing the particular generator into the Common Product 
of all the generators. 

COMPOUND SIGMA. Two or more Sigmae interrelated by some form of Interval Symmetry. 

CONFIGURATION. A general term meaning about the same as pattern, but including a time 
dimension; a selection of a specific number of specific elements arranged in a specific design. 

CONSTANT B TRANSFORMATION. A special case of Transformation. The function de¬ 
noted by b (usually the 3rd) remains constant while the other functions permute. 

CONSTANT STRUCTURES. In harmony, use of the same chordal structure (or S) throughout 
a continuity. Characteristic of some types of Symmetric Harmony. 
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CONSTANT TRANSFORMATIONS. A type of Transformation of three or more functions, 
according to which one or more functions remain constant (limited by the total number of 
functions minus 2) while the others permute. 

CONTINUITY. In music, a sequence of elements organized in time, usually of the same kind. 
For example, harmonic continuity is the sequence of harmonies considered as a whole; orches¬ 
tral continuity is the sequence of Orchestral Groups considered as a whole, dynamic con¬ 

tinuity is the sequence of degrees of loudness or softness considered as a whole. The princi¬ 
pal continuities of which a composition is composed are denoted as follows: 

A~* Attack continuity. Density group continuity. 
T~+ Durational or rhythmic continuity. Q~~+ Orchestral group continuity. 
I”4 Instrumental attack-form continuity. \ * Dynamic group continuity. 

Harmonic continuity, complete, or sigma continuity. 

CONTINUOUS IMITATION. In counterpoint, what is meant by canonic imitation; a single 
melody coexisting in two or more different strata of the continuity in different phases and at 

a constant velocity. See p. 778. 
CONTINUUM. A Continuity, but with special emphasis on the concept of the continuity as 

a whole. 
CONTRACTION GROUP. A rhythmic group consisting of two parts, the first of which is the 

resultant of two uniform periodicities with fractioning (ra -s- b) and the second 'o( which 

is the resultant of simple synchronization (ra -j- b). More generally, any complex rhythmic 
group inwhich movement is from a longer to a shorter duration group, which groups contain 
only durations derived from the same style series. An expansion group consists of the same 
two elements, but with the longer one coming after the shorter one. 

E ~ ra-5- b 4* Ht-r b- 
CONTRAPUNTALIZED HARMONY. Contrapuntal continuity produced by (a) writing a 

harmonic continuity; (b) controlling the entrance and dropping out of individual parts by 
various density patterns; (c) subjecting individual parts to various kinds of melodic figura- 

CONTttAPUNTAL OSTINATO. Persistent recurrence of a segment of counterpoint accompanied 
in each repetition by some changing set of other musical elements, usually harmonization 

or additional contrapuntal lines. 

CONTRARY CORRELATION. See Correlation. 
CONTRARY MOTION. Simultaneous movement of two or more melodic lines in contrary 

directions. 
CORRELATED MELODIES. Sehillinger's term for counterpoint, but used in a somewhat 

broader sense including many types of counterpoint not known to classical writers on the 
subject. Two or more melodic lines correlated as to (1) rhythmic continuities; (2) axial and 
Other melodic characteristics; (3) tonal and modal relations; (4) harmonic relations. 

CORRELATION. There are three main types of correlation of (a) pitch-time ratios in melody; 
(b) density-time displacements in composition of variations of density groups. The three 
types are: parallel when quantities increase simultaneously at the same rate; obltque when one 
series of quantities increases or decreases while the second series remains constant; contrary 

when one series increases in value while the other series decreases. 
CORRELATION OF PRIMARY AXES. The planning ot the interval or intervals separating 

two or more primary axes (see Axes), especially in counterpoint. See Axis Relations. 

COS MOTION. Means cosine motion; see Sine Motion and Ascribed Motion. 

COSINE MOTION. See Ascribed Motion. 
COUNTERCLOCKWISE O See Clockwise. 

COUNTERCLOCKWISE POSITION. "Close” positions of chords; see Clockwise position. 

COUNTERMELODY. A second melody written in counterpoint to a given melody; an arrang¬ 

er’s term is counterpart. 
COUNTERPOINT. See Correlated Melodies. 
COUNTERPOINT TO GROUND MELODY. See Gstlnato. 

GLOSSARY 1611 

COUPLING. Adding to any sequence of tones, usually a melodic line, a parallel sequence either at 
some diatonic or absolute interval. Diatonic: the particular diatonic scale in use controls the 
exact shape of the interval of coupling. Absolute: the interval of coupling is measured in semi¬ 
tones rather than diatonically and remains constant throughout. Playing a melcdy in octaves 
is diatonic coupling at the octave. Inward coupling: the coupling lies below the upper parts 
and above the lower. Outward coupling: the couplings are constructed downward from the 
lowest part and upward from the uppermost part. 

CP. Symbol ordinarily used for counterpoint or countermdody; occasionally for Common Prod- 
> net. a 

CROSSWISE TRANSFORMATION Denoted by d<t>b; and, as the figure illustrates, 

c 
function a transforms into function c while o transforms into a, the other pair, b and d, 
meantime changing places in the same way. See Transformations. 

CYCLES. These are the Cs, C«, C7 and their negative counterparts in the system of Diatonic 
Harmony and, by extension, in Symmetric Harmony as well. 

D. 

d Denotes one of the secondary axes; see Axes. 
(3) Denotes the fourth position—forward and upside down—in Quadrant Rotation. 
A, 5, A“* See Delta; symbols used in composition of Density. 
D, d Symbols sometimes used in density formulae. 
do Symbol for "zero displacement” of a Pitch-Scale. See Displacement. The zero displace¬ 

ment is no displacement at all; di, dj, etc., indicate successive displacements. 
di 1. Ordinarily indicates a scale Displacement. 2. Occasionally used in Correlated Melodies 

to indicate a dissonance as part of a pattern. 

DELAYED RESOLUTION. A reduction of tension of a pitch assemblage accomplished, in con¬ 
trast to direct resolution, with some other assemblage intervening. For example, the direct 
resolution in counterpoint of a 7th may be to a 6th; when a 3rd intervenes between the 7th 
and 6th, the resolution is delayed. 

DELTA. The Greek letter A, referring to "Density (textural). 

DENSITY. Aside from density in the general sense of Saturation, or of instrumental density 
as a part of Orchestration, the term refers very specifically to the patterns made by the 
Strata actually sounding in music from moment to moment, in relation to the maximum 
number of Strata in the Sigma Continuity. The simplest patterns, or Density Groups, 
are developed into compound density groups (denoted by the Greek letter, delta) and these in 
turn are composed into Density Continuity (denoted by A-*) which, when further com¬ 
pounded, becomesj'the delta of a delta” (analogous to the Sigma of Sigma) denoted by 
A-* (A-*). A density group or compound may be subjected to phasic rotation by techniques 
which are fully explained in the text. These rotations are symbolized by the Greek letter, phi, 
or <j>. Wh€h compounded, the rotations are symbolized by the Greek letter, theta, or 0. 
The technique permits utmost control over the texture of orchestral sound.. Essentially, it is 
the Displacement technique applied to two dimensions rather than one. 

DENSITY OF INTERVAL. A quality similar to sonority measured roughly by the average 
number of tones sounding per octave of total range. 

DIAD. A structure in harmony of but two parts. 

DIATONIC. Used as an adjective, it denotes that the Pitch-units in question all correspond 
to those in some one Diatonic Scale. 

DIATONIC HARMONY. In general, any harmony all the pitch units of which are members 
of, at any one time, the same Diatonic Scale. Specifically, one of the main types of 
which Special Harmony is composed. This is a type of harmony in which both the pro¬ 
gressions of chords and the structures of the chords themselves are derived from the first 
Expansion of whatever scale is in use (Ei). But the term refers not alone to the seven-tone 
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scales in general use, but also to scales (usually primitive scales) of fewer than seven tones. 
Root movement in diatonic harmony takes place in positive (reckon downward) or negative 
(reckon upward) cycles, the cycles being: Cj ("cycle of the third"), downward by diatonic 
thirds; C#, downward by diatonic fifths; C?t downward by diatonic sevenths—which is the 
same as upward by diatonic seconds, of course. Negative forms of these cycles are measured 
upward instead of downward. Selection of these cycles, and the proportions and pattern in 
which they are used, influence profoundly the harmonic style of the resulting music. Terminal 
roots in the cycles constitute Cadences. Structures or chord shapes are selected from the Ei 
of the scale so that the pitch-units conform to the given scale, whatever it may be. Voice¬ 
leading h effected by Transformations and Doublings, with occasional use of special 
pre-set Groups of Chords. 

DIATONIC INTERVAL. An interval denoted conventionally—as a second, or third, etc,—the 
number of semitones in it being determined by the particular scale in effect at the time. 

DIATONIC NOMENCLATURE. Naming of intervals as unisons, seconds, thirds, etc., in the 
conventional way. See Symmetric Nomenclature. 

DIATONIC SCALE. A Pitch-Scale with the following characteristics: (1) it has but one Tonic;. 
(2) its range is not more than one octave, as a scale; (3) no pitch-name (A, B, C, D, etc.) is 
used more than once In the scale; (4) the scale may have any one set of accidentals in its Real 
Signature at a time. The conventional form is that of the seven-tone major or minor scale; 
but the definition also includes (a) scales of fewer than seven tones conforming to the require¬ 
ments given above; (b) modal scales that conform to the requirements. 

DIATONIC-SYMMETRIC HARMONY. A Hybrid form, in which the Roots move in the 
Cycles of Diatonic Harmony but the chordal structures, as in Symmetric Harmony, 
follow a pattern independent of the diatonic system, being chosen usually for their particu¬ 
lar sonorities. Schillinger calls this harmony Type II and bases it on chord structures em¬ 
ploying variants of the diatonic triad 4 -f- 3—that is, 3 + 4 (minor), 4 + 4 (augmented) 
and 3+3 (diminished). 

DIFFERENCE TONES. See Differential Tones. 

DIFFERENTIAL TONES. Tones produced by a pair of tones Bounding together. The Fre¬ 
quency of a differential tone is equal to the frequency of the higher tone of the pair minus 

the frequencv of the lower tone. 
DIRECTIONAL UNIT. A group of tones attached to and including a Neutral Unit in General 

Harmony. A neutral unit is a chordal tone of a structure. The directional unit always has 
the neutral unit as a member and must consist of at least one other tone. This other tone is 
either a semitone, or two semitones, dr a diatonic step removed from the neutral unit—and 
any additional tones in the directional unit must either lead into the neutral unit or into 
some other tone which itself is a leading tone. Using these directional units sequently, the 
requirement is that the neutral unit or chordal tone be sounded hut. Directional units in vari¬ 
ous forms constitute the general form of all melodic figuration and, indeed, of melody itself. 
What is important about them, so far as style is concerned, is the answers to these ques¬ 
tions: (1) which neutral units are equipped with directionals? (2) what is the interval or 

intervaHic pattern of the directional unit? (3) in what direction (upward or downward) are 
they constructed? 

DISPLACEMENT. The process of forming new groups by rearranging (permuting) the elements 
Of the original group one place at a time, as when cdefg becomes defgc. Each element is shifted 
one place to the left, and the leftmost element is shifted to the extreme right. In this case 
c, d, e, f, g would be indicated by do, and called icro displacement, while d, e, f, g, c would, 
be indicated by d», called first displacement. Displacement scales of the natural major scale 
on C yield the various so-called ecclesiastic inodes. 

DISSONANT INTERVALS. In classical theory, the diatonic unison, octave, fifth, sixth and 
third (sometimes the fourth, especially when occurring in inner voices or when supported by 
a third below it) are regarded as consonant; ill other intervals are regarded as dissonant. 
For these older concepts, however, Schillinger substitutes the notion of tension of interval; 
substitutes the notion of reduction of tension for the classical concept of resolution; requires 
reduction only of such intervals as are acoustically of higher tension than the diatonic third; 
and points out that conventionally consonant intervals become dissonant in low register and 
that conventionally dissonant intervals become acoustically consonant in high register. 
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F. 

FORMS OF RESISTANCE. See Resistance Forms. 

FRACTIONING. The process of splitting a Duration into fragments, usually in proportion to 
some polynomial of the Style Series. 

FRAGMENTATION. In composition of thematic continuity, the use of a selected fragment of 
the total theme in order to shorten the duration of a particular thematic group. 

FREQUENCY. In acoustics, the rate of vibration of a vibrating medium; expressed in terms of 
vibrations per second. 

FRULATO. Flutter-tonguing. 

FUNCTION. See Chordal Function. 

FUNDAMENTAL HARMONY SCALE. See Harmony Scale, Fundamental. 

FUNDAMENTAL TONE. In acoustics, the pitch produced by vibration of the whole of the 
vibrating medium, in contrast to Harmonics produced by vibrations of segments of the 

medium. 

G. 

G6 In Diatonic Harmony a special Group of Chords used as a unit. See p. 415. 

G-f- A special Group of Chords used as a unit. See p. 427. 

GENERAL HARMONY. Schillinger's term for his technology for the development of Pitch- 
Assemblages and for organization of these into sequent groups. It is a technology embracing 
all the tonal material of music—tonal, as distinct from temporal (rhythmic) or instrumental 
material. A pitch-assemblage is any set of Pitch-Units or tones taken together; it means 
what is meant by chord, except that (1) a pitch-assemblage frequently includes a great many 
more tones than are found in the chords of conventional harmony. (2) the arrangement of 
these tones need not correspond to the conventional structures built on diatonic thirds. 
The tones of a pitch-assemblage may sound sequently—one after the other—as well as simul¬ 
taneously. The complete harmonic continuity is denoted by 2 (to be read, “sigma contin¬ 
uity"). It is made up of a series of individual pitch-assemblages, each denoted by the Greek 
letter, sigma, £. Each sigma is, In turn, composed of a number of substructures or strata, 
each denoted by S, and each S consists of one or more units (usually called parts, denoted 
by P)• The significarit factors are: (1) the movement of the root tones of each stratum; 
(2) the pattern of intervals by which the various tones of each stratum are grouped around the 
root; (3) the spacing of strata; (4) the Transformations to which strata sue subjected; and, 
finally, (5) the presence or absence of Directional Units within each stratum. Special as¬ 
pects of general harmony are discussed under Special Harmony and under other subheadings 
in this glossary. 

GENERATOR. A pattern of durations (usually a monomial) used in combination with another 
pattern to produce a new durational pattern, known as a Resultant. More simply, a series 
of sounds, notes or attacks of given duration. 

GEOMETRICAL MUTATIONS. See Geometrical Projections. 

GEOMETRICAL PROJECTIONS. A fundamental technique for variation. Any theme may 
be subjected to Quadrant Rotation to produce four forms: the original; the original back¬ 
ward in time; the original upside down as to pitch and backward in time; and the original 
upside down as to pitch and forward in time. Thepitch may be multiplied by some factor, 
such as 2, 3, 4, etc., resulting in Expansion. The reverse process results in Contraction; 
but often this cannot be realized in our tuning system. Durations may also be increased or 
contracted. When the process of pitch expansion is done precisely, that is, with a graph 
divided into semitones, the results are called geometrical; when it is done diatonically, that is, 
with a graph divided according to some diatonic scale, the results are called tonal. The special 
forms resulting from these processes are thus: Geometrical Expansion, Geometrical Con¬ 
traction, Tonal Expansion, Tonal Contraction, Quadrant Rotation. Temporal con¬ 
traction and expansion art terms for operations on the time dimension as noted above. 

GRAPH. A means of representing music by denoting the pitch of each tone according to the 
distance measured vertically and the duration of each tone by the distance measured hori¬ 
zontally. Paper ruled in small squares is usually used. Graphing may be (and preferably 
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should be) absolute, that is, pitches should be measured in semitones in the 12-tone system; 
but it maybe done diatonically, that is, having each pitch-line represent a tone of a Diatonic 
Scale. 

GRAPHING. Specifically, notation of music in graph form, with the ordinate (up-down co¬ 
ordinate) representing pitch and the abscissa (left-right coordinate) representing time. 

GROUND BASS. See Ostkiato. 
GROUND MELODY. See Ostinato. 

GROUP. Used in the usual sense, except that it should be kept in mind that a group may consist 
of but one element and even, under some circumstances, of zero elements. 

GROUP OF CHORDS. In Diatonic Harmony and occasionally in Symmetric Harmony, 
a group is a pre-set sequence of chords handled outside the prevailing system of cycles. They 
represent progressions influenced strongly by contrapuntal considerations. See page 415 ff. 

H. 

H Symbol used ordinarily for a harmonic structure, or chord. 
H * Symbol used for Harmonic Continuity. 

HARMONIC. Used to refer to tonal materials in their mathematical connotation, i.e., pertaining 
to simple ratios. Not to be confused with "harmony” in its musical connotation, i.e., simul¬ 
taneous pitch-assemblages varied in sequence. 

HARMONIC CONTINUITY. A series of sequent Pitch-Assemblages arranged after each 
other in time in a certain order. Denoted either as H~> or, more fundamentally, as IT* 

HARMONIC CORRELATION. See Correlation of Primary Axes. 

HARMONIC INTERVALS. Two tones sounding simultaneously, in contrast to. Melodic In¬ 
tervals. 

HARMONIC PROGRESSION. The pattern in which Pitch-Assemblages (Chords) follow 
one another, controlled especially by the pattern of roots; see General Harmony. 

HARMONICS. Subcomponents of a sound wave, often called Partials, resulting from physical 
factors which convert a simple sound wave (or Sine wave) into a wave of more complex form. 
In music the term is used ordinarily to refer to one or more members of the Natural Har- 

monic Series in relation to a particular Fundamental Tone, and, in orchestration, to 
ton$s produced by stringed and certain other instruments. 

HARMONIZATION OF HARMONY. A process by which, to a given harmonic continuity, 
one or more additional harmonic continuities are developed. 

HA*?\0N7\}n ,the comP°8ition of music> the science of Pitch-Assemblages treated both 
mdhviduaHy (one by one) and in sequent groups (one after another). The foundation of 
Schilhnger s harmony is General Harmony, which is the technology of all possible systems 
of harmony. A speciaI variety of General Harmony is the kind of harmony usually (but 
not exclusively) found m Western music. Special Harmony in turn consists of four main 
types: Diatonic Harmony; Diatonic-Symmetric Harmony; Symmetric Harmony; 
and Chromatic Harmony. 

““"““ft ™®AMENTAL. The El (first Expansion) of any scale in 5 position 
as to Quadrant Inversion; from this are derived the various cyclic forms of root progression. 

__ k “ c-d-e-f-^b'c’ «hen Ei is c-e-g-b-d-f^.c, and Ei © is c-a-f-d-b-g-c-c. 
HARMONY, TYPES OF. Schillinger classifies harmony by types as follows: Type I. Dia- 

HETyp« IV. Chromatic. 
HETEROGENEITY. Characteristic of Groups when the timbres in a single group are different 

in contrast to Homogeneity. ’ 
HEXAD. A chord of six tones. 

HOMOGENEITY. A characteristic of Groups of timbres when the timbres are similar, in 
contrast to Heterogeneity. 

HYBRID. A term used to denote mixtures of type, as in hybrid rhythmic style (a mixture of groups 
deriving from more than one style-series); hybrid harmonic continuity (a mixture of more 
than one type of harmonic continuity). Hybrid S-paH harmony ordinarily consists of normal 

_4-p3rt harmony to which an extra stratum (of one part; Sp = 1) has been added 
HYBRID HARMONIC CONTINUITY. Continuity ^pojed of mot SS onelain type 

of harmonic continuity; as in the mixture of diatonic and chromatic, for example. 
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I Abbreviation for interval. 

I Abbreviation ordinarily used for Instrumental Group. 

IDENTICAL MOTIF One of three methods of melodic Modulation; a melodic pattern 
in one key is followed by the same pattern in the new key. 

IDENTITY OF INTERVAL METHOD. A means of deriving from a given Pitch-Scale one 
or more additional scales that possess the same intonational characteristics; the intervals of 
the original scale are permuted so that all appear in the derivative scale but in a different 

order. 

IDENTITY OF PITCH-UNITS METHOD. A method of deriving additional and related 
Pitch-Scales from a given scale. Some or all of the pitch-units of the given scale are used, 
but in different sequence. Displacements (“modes") of scales, for example, have the same 
pitch-units as the scales from which they are derived, but in a different order. 

INDIRECT MODULATION. Any type of sequence in which the ultimate Key-Axis is reached 
by way of one or more intermediate keys in some fashion other than that by which the inter¬ 
mediate keys represent a one-by-one accumulation of flats or sharps. The one-by-one move¬ 
ment toward a "sharp” key is along the pattern, C-G-D-A-E-B-F#-C#-G#, and there 
is a similar pattern, in fifths downward, rather than upward, for "flat" keys. Any modula¬ 
tory movement that departs from this pattern is called indirect. 

INDIRECT RESOLUTION. See Delayed Resolution. 

INSTRUMENTAL FORM. Schillinger never uses this term to indicate what is commonly 
known as "musical form,” but rather to suggest the modification of a tonal continuity by 
various sequences of attack for actual performance on an instrument. It is a factor of great 

importance in composition. See Attack-Form. 

INTERFERENCE. A phenomenon observed in all fields of wave motion—sound, light, radio. 
It refers to the crossing or synchronization of two waves which results in a third wave that 
is the summation of the two. Schillinger uses the term to refer to the combination of two 
continuously repeating sounds of different durations. The Theory of Rhythm (Book I) is 
based on this phenomenon . Interference is also used by Schillinger in another sense. 
When two or more groups of elements consisting of nonidentical numbers of terms are com¬ 
bined by pairing, the two do not "come out even,” so that the process must be repeated a 
number of times until the two terminate together. This is the fundamental form of inter¬ 
ference and may be applied on many levels in music. 

INTERLUDE. Although Schillinger occasionally uses this term in the conventional way to in¬ 
dicate a "bridge" or "passage" connecting two Exposition® of a Thematic Unit, he prefers 
to treat all segments, no matter how episodic, as Thematic Groups. 

INTERVAL SYMMETRY. Used of Strata or Sigmae, this term means that two or more 
strata or sigmae are separated as to pitch level so that the pattern of intervals determining 
the degree of separation is symmetrical. 

INTONATION. Schillinger regards the fundamental material of music as being essentially tem¬ 
poral (that is, consisting of time elements), or tonal (that is,dealing with frequencies or pitches). 
Intonation or "intonational” are used throughout the text to refer to the pitches and pitch 
material in contrast to the temporal or durational material. 

INTONATIONAL MODIFICATION. A generalized description of the several techniques of 
producing variations based on changes in the Pitch-Units of a Thematic Unit, specifically 
permutation of pitch-units; modal transposition or other scale modification by change of 
accidentals in Real Signatures; Tonal Expansions, Quadrant Rotation and Geometrical 
Projections in general; development of Directional Units; change in range of Tension in 
relation between harmony and melody, or Reharmonixation. 

INVARIANT OF INVERSION. In inversions (see Geometrical Projections), especially of 
chords, the element (tone) which does not change—i. c., the axis around which inversion 
takes place. 

INVERSION. See Quadrant Rotation, Geometrical Projections and Tonal Inversion. . 

K. 
KEY-AXIS. See Axes. 

Lb 

LEADING TONE. A tone which inevitably moves to an adjacent tone, especially to a Tonic, 
a primary axis (see Axes), or a Neutral Unit. See p. 1169. 

LINEAR COMPOSITION. Assembly of Pitch-Units and Durations into a Melody by the 
axial method, usually by Graphing. 

LOGARITHM. A mathematical term referring to the Power to which a certain constant base 
must be raised to produce a given number. 

LOGARITHMIC RELATION. Interrelation between two series corresponding to the inter¬ 
relation between the series of cardinal numbers and their logarithms. 

M. 

M Symbol used ordinarily for a melodic form, or Sectional Scale. Also used occasionally to 
indicate a major tetrackord. 

Mi M, meaning melody, is used with subscript numerals when more than one melody is in question, 
as in Correlated Melodies. 

mi, m* Abbreviations for two minor tetrachord forms. 

MAJOR GENERATOR. In the making of Resultant rhythms, the larger of two generators. 

MANIFOLD. A set of elements which is itself the result of selection and from which further 
selection can be made; the manifold determines the limitations on musical material of some 
kind. 

MEAN, ARITHMETICAL. See Arithmetical Mean. 

MELODIC FIGURATION. A process by which a Harmonic Continuity is converted into 
continuity having some characteristics of counterpoint but less highly organized; used by 
Schillinger in contrast to Melodlzation. The technique consists of subjecting one or more 
parts of the continuity to alteration by means of Directional Units developed for each 
Neutral Unit. The elements of melodic figuration may be classified according to 1) di¬ 
rection (ascending, descending), 2) chordal function (1-13), 3) adherence to scale, and 4) 
number of elements employed simultaneously. 

MELODIC INTERVAL. Two tones considered as sounding one after the other. 

MELODIC PATTERN. Specifically in Schillinger’s system, the pattern of secondary axes (see 

m m!!ody without ®Pecial n*5*”1 to the pitch and time dimensions; denoted by MP. 
MELODIZATION. Construction of a melodic continuity in correlation with a given harmonic 

continuity. 

MELODY. A special case of a Pitch-Scale possessing a higher degree of organization, especially 
a primary axis and a number of secondary axes (see Axes) arranged with a view to Climax 
and with a view to certain general forms of Trajectorial Motion. Melodies may differ as 
to the degree of organization introduced into them; they may take complex forms related 
to the patterns used for Thematic Continuity. 

MINOR GENERATOR. In the synchronization of two generators (usually two uniform period¬ 
icities), the generator of lower numerical value. 

MODAL TRANSPOSITION. Alteration of the mode (or scale displacement), effected prac¬ 
tically by changing the Real Signature. 

MODERNIZED PRIMITIVE. An Original Primitive scale subjected to development by a tech¬ 
nique that converts span of the original scale into a span for a symmetrical harmonic scale. 

MODmED RECURRENCE GROUP. In composition of thematic sequences, a sequence in 
which some one polynomial group recurs but with the elements of the polynomial subjected 
to permutations in each recurrence. 

MODULATION. A general process for shift of primary and/or key-axes (see Axes). Melodic 
modulation affects the melodic tine only and may involve only a change or Displacement of 
mode. Harmonic modulation involves a shift of key axis and of Real Signature. The general 
process is called configurational modulation, aiming at neutralization of the previous key 



1618 GLOSSARY 

and establishment of the new; it takes practical form in three general methods: (1) Common 
Unit Method, emphasis of tones common to the two keys; (2) Chromatic method, singling 
out of the tones not in common and chromatic alteration of these; (3) Identical Motif 
Method, sounding of a conspicuous motif in one key and then in the second key, uniting the 
two by the common motif. In harmony the method takes practical form in (1) chromatic 
modulations, discussed as a variety of Chromatic Harmony; ahd (2) symmetrical modu¬ 
lations. Choice of key-axis is determined by pattern; see Indirect Modulations. 

MONOMIAL. A group consisting of but one element. 
MONOMIAL PERIODICITY. A series composed of a repetition of the same (Monomial) 

number, applied usually to Durations. 
MONOTHEMATIC. A composition with but a single Thematic Unit. 

N. 

NATURAL HARMONIC SERIES. This is the set of overtones or partials produced by a single 
tone, the original tone (or fundamental) being included in the series as the first term. 

NEGATIVE CYCLES. The standard cycles of diatonic harmony, but measured in an upward 
direction rather than downward. See Cycles. 

NEGATIVE FORMS OF STRUCTURES. A chord reckoned downward .instead of upward. 
In harmony of negative cycles, negative forms are used; they derive from positive-cycle 
harmony in the b (backward) quadrant inversion. See Negative Cycles. 

NEUTRAL MELODIC FIGURATION. Melodic figuration achieved without regard to any 
pre-set melodic forms, but rather developed by selection of devices used in any combination. 
A term used in contrast to Thematic Melodic Figuration. 

NEUTRAL UNIT. A chordal tone in a Structure in General Harmony. 
NOMOGRAPH Y. Any scientific system of recording natural phenomena; in particular, graphic 

notation of music. 
O. 

oi Symbol for Omega (small). Q Symbol for Omega (capital). 
OBLIQUE CORRELATION. See Correlation. 
OCTAVE DUPLICATION. Derivation of one pitch from another so that the derived pitch is 

distant by one or more octaves from the initial pitch. 

OMEGA. The Greek letter used in its capital and small forms to designate orchestral groups and 
orchestral thematic units. 

OPEN POSITION. A structure is said to be in closed position when the numbers of its functions 
when read downward proceed in a counter clockwise direction; any other distribution of these 
functions, especially in a clockwise direction, is called an open position. Extra-open position 
means that there is room for two such intermediate functions. 

OPEN TONE. A timbral description, denoting a tone characterized by a very small quantity 
of partials, ideally with no partials at ail. 

ORCHESTRAL CONTINUITY. A Continuity formed of one or more sequent Orchestral 
Groups. 

ORCHESTRAL GROUP. A group of timbres in orchestration, selected (a) with regard to 
Homogeneity or Heterogeneity; and (b) with regard to one or more of these three factors: 
1, a type of a Umbra; 2, Dynamics; 3, Durability of tone. 

ORCHESTRATION. In music, the science of individual characteristics of sound-producing in¬ 
struments and ways of combining them; specifically, in this system, the science of composing 
Orchestral Continuity and correlating it with the other Continuities of which music is 
made. Subject to the limits of what is practically possible for the instruments used. Orches¬ 
tral Groups are formed in various combinations or for*various purposes. These are assem¬ 
bled into the continuity. 

ORDER. A practical term referring to the way one thing comes after another, but difficult to 
define rigidly. Higher order refers to a process of any kind which is performed on the results 
of another process of the same kind; for example, squaring a square, or grouping a gr&up, is a 
higher order operation. 
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ORDINATE. In Graph, the measurement vertically, up and down, denoting pitch in music. 
ORGAN POINT. See Pedal Point. 

ORIGINAL PRIMITIVE. A term denoting a Pitch-Scale or scales used in some type of primi¬ 
tive music, the scale being in its original form (usually of fewer than seven pitches) but being 
subjected, for purposes of contemporary music, to adjustment to equal temperament tuning. 

OSTINATO. Persistent repetition of a group of any land, while other musical components change; 
usually, a melodic ostinato (repeated melody with changing harmonic continuities), a contra¬ 
puntal ostinato (repeated contrapuntal continuity i.e., a repeated melody combined with 
changing countermelodies), a harmonic ostinato (repeated configuration of successive chords, 
variously melodized) or a rhythmic ostinato (repeated durational group). 

P 

<t> See Phi. 
p Symbol ordinarily used for part, either in orchestration or in harmony. 
P Abbreviation occasionally for Permutation. 
P. A. Abbreviation for primary axis; see Axes. 
PARALLEL CHROMATICS. See Chromatic Harmony. 
PARALLEL CORRELATION. See Contrary Correlation. 
PART. In harmony, a specific layer in the harmony, such aB the “second from the bottom", 

“third from the bottom," etc. A part (p) is an element of a Stratum in General Harmony, 
and also an element in instrumental continuity. 

PARTIALS. See Harmonics. 

PART-MELODIZATION. Use of one or more parts of one or more strata in general harmony, 
as a source of melodic shapes. 

PASSING TONES. Chromatic passing-tones are the result of inserting a half-step movement into 
a Melodic Interval originally of a whole step; diatonic passing tones are tones inserted into 
an interval of a third or more, and converting the interval into seconds. All passing tones, 
whether diatonic or chromatic, are special forms of Directional Units. 

PEDAL POINT. Used by Schillinger for the most part in the conventional sense, but with special 
observations as to location in the thematic continuity, use in producing Climax, and means 

determining what structures are permissible for use in a pedal point. 
PENTAD.. A chord of five tones. 
PENTANOMIAL. A group consisting of five elements. 
PERIODICITY. The continuous repetition of notes, sounds, or attacks. Uniform periodicity 

means that the groups of attacks are of identical duration. Such groups may include one or 
more terms. When they include only one term—a series of quarter notes, eighth notes, etc., 
then we have monomial periodicity. Uniform periodicity may, however, involve groups of 
more than one team. 

PERMUTATION. The process of rearranging the members of a group as to sequence. General 
permutations (or logical permutations) are exhaustive, that is, they involve every possible 
arrangement that can be made. Circular permutations constitute a special set within the 
general set involving clockwise or counterclockwise patterns of alteration; see Circular Per¬ 
mutations. Permutation is a fundamental process (applied to Fitch-Units, intervals, 
chordal structures, durations, or any element) for development of groups. 

PHASIC ROTATION () 0 O O • In the composition of densities, a process for 
variation by displacement of any given group, the displacement taking place along the time- 
axis, or along the density axisr or both. 

PHI 4> The Greek letter used to refer to phasic rotation; see Density. 

PITCH. The “highness" or “lowness" of a tone as measured by its Frequency. “Concert u" 
today is 440.6 per second. 

PITCH-AGGREGATIONS. See Structure. 

PITCH-NAME. The name of a pitch in alphabetical terminology (A, B, C, etc). 
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PITCH-SCALES. A sequence of pitch-units in order of increasing or decreasing frequency of 
pitch. Schillinger's classification of scales is in four groups. Group One: Scales with one tonic 
and not more than one octave in range. Group Two: Scales with one tonic and more than one 
octave in range; they are obtained by Expansions of scales in the first group. Group Thru: 
Scales of more than one tonic and of not more than one octave in range. Scales are symmet¬ 
rical, containing equal number of semitones between tonics. Group Four: Scales of more 
than one tonic, and more than one octave in range; these scales are symmetrical. In the most 
generalised form, scales of groups one and two are regarded as special cases of symmetrical 
scales in which the points of symmetry are one or more octaves apart. Groups three and four 
are further classified according to the number of tonics. 

PITCH-TIME RATIO. In melody, the ratio between the maximum pitch to which a secondary 
axis (see Axes) rises or falls, and the time it takes the axis to reach this point. See also Con¬ 
trary Correlation. 

PITCH-UNIT. A Pitch or tone; any one of the tones that go to make up a Manifold of pitches, 
usually determined first by a Tuning System and then by Pitch-Scale. 

PLOTTED MELODY. A melody constructed by the graphing (or plotting) method: one or 
more primary axes are located; groups of secondary axes are developed to the primary axis 
or axes; a rhythm is constructed; the rhythm is superimposed on the secondary axes, the re¬ 
sult being interpreted in terms of a selected scale or of a given harmonic continuity. 

POLYMODAL. In describing interrelations of two melodic lines, this term indicates that the 
two are not in the same mode or displacement. See Unimodal. 

POLYNOMIAL. A group consisting of more than one element. 

POLYTHEMATIC. A composition with more than one Thematic Unit. 

POLYTONAL. In describing interrelations of two or more melodic lines, this term indicates 
that the Real Key of each line is different. Note that Schillinger's concept of PolyUmal is 
somewhat different from the conventional use of the term to describe music in which different 
keys are used simultaneously. 

POWER. The result of multiplying a number by itself a designated number of times. A aero 
power of any number is the number, 1. The first power of a number is the number itself. A 
negative power is the power of the number divided into the integer, 1. In Schillinger’s system, 
powers are almost always used as Distributive Powers. 

POWER SERIES. A Series in which the terms are successive Powers of some constant number. 
PP, PU. See Axis Relations. 

PRESELECTION. Same as Selection, but with emphasis on the fact that the decisions are 
mack some time in advance of actual composition. See Pre-Set. 

PRE-SET. This adjective, of considerable importance in Schillinger’s system, means that the 
characteristics of some factor in a musical continuity are determined in advance of actual 
composition, the “settings" being chosen according to specific desired effects. 

PRIMARY AXIS. See Axes. 

PRIME NUMBER SERIES. A series composed of cardinal numbers which are divisible with¬ 
out remainder only by the integer 1 and themselves. 

PRIMITIVE. See Original Primitive, Stylized Primitive, Modernized Primitive. 
PROGRESSION. See Harmonic Progression. 

PROGRESSIVE SYMMETRY. A form of Thematic Sequence in which the successive groups 
first “grow” by the addition of more and more themes, then “decline” by the subtraction 
of more and more themes, the whole being arranged symmetrically. 

PYRAMIDS. An arrangers' term denoting an orchestral arpeggio, each tone of which, once 
sounded, is sustained—the whole being produced by successive entrances of instruments on 
various chordal tones. 

O 

Q Symbol ordinarily used for quality in construction of Quality Scales. 
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QUADRANT ROTATION. Once music has been reduced to graph form, the original graph 
(denoted as (§)) will produce three additional forms. These are: (g) the original backward in 
time; (C) the original backward in time and upside down as to pitch; 0 the original forward 
in time but upahk down in pitch. In this process the intervals are calculated exactly in semi¬ 
tones and they are reckoned from some specific tone selected as the Axis Of Inversion. 
When the intervals are calculated in the diatonic manner, the result is Tonal Inversion. 

QUADRUPLE PARALLEL CHROMATICS. Special form used in Chromatic Harmony. 
v QUANTITATIVE SCALE. A scale developed from a chromatic (or occasionally symmetric) 

harmonic continuity, the scale consisting of a selected set of (fitch units occurring in the 
continuity. It is enough that tones selected be frequent enough to afford a good choice in 
melodization; this means that in some cases a tone appearing frequently may be omitted in 
order to simplify the scak finally chosen. This is also a technique for diatonic melodization 
of chromatic harmonic continuity. 

R. 

r Symbol for Resultant. 

R Abbreviation for single-reed tone in Orchestration. 

HR Abbreviation for double-reed tone in Orchestration. 

RANGE OP TENSION. In melodization of harmony or in harmonization of melody, the maxi¬ 
mum variation permitted in Tension. Minimum tension is present so far as this relation is 
concerned when the melodic tone is a tone also present in the harmony. The range of tension 
may be Pre-Set as a means of controlling the harmonic style of the music. 

REAL SCALE. See Real Signature. 

REAL SIGNATURE. In conventional music notation, all signatures used are those associated 
with major diatonic scales, and these constitute the key-signatures as they appear on the 
staves. When scales other than major or natural minor are used, however, the written notes 
acquire a uniform set of accidentals which, if arranged in signature form, would constitute 
the real signature. A melody written in harmonic minor starting on c, for example, has a con¬ 
ventional signature of three flats (as forEb major) but has a real signature consisting of Eb, 
and Ab only. There is no reason, except convention, for not making the real signature function 
as the actual signature on the staff—and, indeed, a very few composers sometimes do this. 
Real signatures may have both flats and sharps. See page 123. 

RECTIFICATION. 1). Chromatic alteration of a chordal tone in chromatic harmony made 
necessary by the chromatic alteration of some other tone. .The necessity arises from the need 
to avoid major seconds or augmented thirds (perfect fourths). The tone that has been recti¬ 
fied is not required to resolve, by a further semitone, in contrast to the requirement for the 
tone originally modified. 2). In rhythmic treatment of harmonic continuity, rectification 
refers to thqt point in time where all voices finally arrive together at the points required by 
the new chord .after various movements of voices and mixtures of adjacent chords resulting 
from different rhythms in the several parts have occurred. 

RESISTANCE FORMS. Melodic or harmonic (stratum) motion that corresponds to the in¬ 
creases and decreases of movement characteristic of a specific force overcoming a specific 
resistance. Ordinarily, some type of Rotary Movement. 

RESOLUTION OF DISSONANCES. In Schillinger’s generalized contrapuntal technique, the 
practice of dividing intervals into hard-and-fast classes labelled “consonance” and “disson¬ 
ance" is abandoned in favor of a graded classification according to tension. With this he 
introduced the principk of "resolution” of high-tension intervals by reduction of tension. 
Unless intentionally dissonant counterpoint is desired, intervals of a tension higher than the 
thirds need only to have their tensions reduced, not necessarily in the classical manner. But 
for production of counterpoint of the classical type, various additional procedures are to be 
followed, the set of procedures depending on the period-style of counterpoint desired. The 
main criteria are (1) judgments at various periods in musical history as to what intervals 
require resolution; (2) judgments as to the period of time in which the resolution must be 
accomplished; (3) judgments as to what movements of parts constitute an acceptable reso¬ 
lution. 

RESOLUTION OF INTERVALS, See Resolution of Dissonances. 
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RESULTANT. In Rhythm, the pattern of Durations that results when two or more Period¬ 
ic! ties (usually but not always Monomial) are Synchronized. The periodicities are called 
generators. 

RESULTANT OF ACCELERATION. A special form of Resultant in which an Acceleration 
Series is synchronised with itself backwards. 

RHYTHM. The organization in time of the durations involved in music. In Schillinger's system, 
rhythm refers not only to what is ordinarily called rhythm, that is, the division of time 
within a single measure or small group of measures (Fractional Rhythm), but also to the 
way in which the measures themselves are organized into groups (Factorial Rhythm). 
According to the fractional technique, a single duration of time of any length is subdivided 
binomially (into two parts), trinomially (into three parts), or polynomially (into n parts) 
according to one or more Style-Series. The results of this subdivision, or fractioning, are 
the rhythm. The results may be subjected to factorial technique, by which a group of 
durations is developed into larger groups. Such results may he distributed in a number of 
ways over a number of simultaneous instrumental parts. Every aspect of music is, in 
Schillinger's system, controlled fundamentally by his rhythmic techniques.Schillinger 
does not restrict the concept of rhythm to time and the durations of attacks. He deals also 
with 1). instrumental rhythm—the pattern according to which instruments enter and leave 
an ensemble; 2). intonational rhythm—the pattern of pitches in a phrase; and 3). har¬ 
monic rhythm—the pattern of harmonic groups in a sequence. 

RHYTHM OF CHORD-PROGRESSION. The pattern that consists, one after the other, of 
the durations in which each successive chord or pitch-assemblage is being sounded, simul¬ 
taneously or sequently. Practically, the rhythm of changes in the pitch of the root. 

ROOT (ROOT TONE). The particular tone from which all other tones of a Pitch-Assemblage 
or Pitch-Scale are derived and/or reckoned. Used of a Pitch-Scale, it refers always to the 
Real Key. 

ROTATION. See Quadrant Rotation. 
ROTARY MOVEMENT. Movement of a melody or a stratum circulating above and below an 

Axis which, when graphed, produces a wave-like curve. May be based on simple circular or 
Sine forms, or on spirals of various sorts, mainly those representing some Summation 
Series. 

RUBATO. An alteration in the durations of tones, ordinarily accomplished by the performer in 
deviation from the written notation. Regarded by Schillinger as best denoted in actual no¬ 
tation, and as best accomplished by introducing a standard unit of deviation, by which unit 
a balanced binomial may be unbalanced, or an unbalanced binomial may be balanced. 

S. 

2 See Sigma. 

S(5). A structure (chord) corresponding to the normal triad of conventional diatonic harmony. 
Si(5) is the major triad (a major third topped by a minor third, or, in Symmetric No¬ 
tation, 4 -j- 3); Sj(S), minor triad; Sj(5), augmented triad; S4(5), diminished triad. 

S(7). This denotes a seventh-chord shape. In Spedal Harmony the specific varieties, correlated 
with their normal terminology aud intervals (reading upward in semitones), are: S(7)i or 
Si(7), major seventh, 4-3-4; S(7)*, minor seventh, 3-4-3; S(7)*, large seventh, 4-3-3; S(7)*, 
small seventh, 3-3-4; S(7)s, diminished seventh, 3-3-3; S(7)«, augmented I, 44-3; S(7)7, aug- 
mented II, 3-4-4 

Sp. To be read, "stratum equals (or consists of) one part.” 
S2p. A stratum consisting of two parts. 

SATURATION. The degree of concentration of some element in a given continuity. Complete 
saturation refers to presence of the element in maximum possible quantity. Temporal satur¬ 
ation refers specifically to concentration of an element in time. See Temporal Saturation. 

SATURATION OF WAVE. The degree to which Harmonics are present, taken along with 
their intensities, in characterizing Timbre. 
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SCALE. As used by Schillinger, scale does not necessarily refer to Pitch-Scale, but rather to 
any scalewise arrangement of elements according to increase or decrease in some character¬ 
istic, as, for example, a quality scale in orchestration—in which timbral elements are arranged 
according to increase of some timbral characteristic, such as closed tone. 

SCALE FAMILIES. See Pitch-Scales. 

SCALE OF TENSION. Tension as measured in harmony by the distance of the Function 
representing the melodic tone from the functions in the harmony on a scale 1-3-5-7-9-11-13 

t ■ For a J-3-5 chord, for example, lowest tension is 1-3-5, as functions in the melody; next 
higher are the adjacent functions, 7 and 13; with 9 next higher and 11 highest of all. Different 
ranges of tension result in different melodic styles. 

SCORED INTERFERENCES. See Interference. 
SECONDARY AXIS. See Axes. 

SECTIONAL SCALE. A Pitch-Scale built in the symmetric fashion by selecting a number of 
Tonics that symmetrically split one or more octaves, then attaching to each such tonic an 
identical mtervallic pattern of semitones and/or whole tones or larger intervals so that no 
pattern overlaps the next higher tonic. 

SELECTION. Used in the usual sense of the xvord, but denoting the act in composition of music 
by which the composer, confronted by all possible choices arranged in a systematic way, 

ectdes which particular resources he will use. In a selective continuity of any kind, for 
example, certain elements are chosen deliberately by reason of their effects and are combined 
ir. proportions that correspond to the relative emphasis the composer wishes to give them. 

SELECTIVE. See Selection. 

SELECTIVE CYCLIC CONTINUITY. Harmonic continuity in which certain cycles are chosen 
and used in selected quantities in order to produce continuity of desired characteristics; used 
;n ootttaMt to non-selective or casual continuity, in which the "selection" is made literally 

t0 Ch0rd' “ ^ °,dCr mUSiC (16th Century) Which is’ 38 to in *Bneral ***- 

SELECTIVE SYSTEM. Music is composed by successive steps of selection, that is to say, from 
the total manifold of all possible frequencies, certain frequencies are selected to comprise the 
manifold known as the tuning system; then, from the tuning system itself, certain pitch- 
units ore selected to form a scale; and from the scale, certain other selections are made. Schil- 
lmger refers particularly to two types of selective systems—primary and secondary. The 
primary system is a given system of tuning while the secondary system is a scale or 
melody within the primary or tuning system. 

SEMANTIC. Used by Schillinger to refer simply to meaning, and not necessarily to the evolution 
of meaning. 

SEQUENCE. A group or set of elements arranged and considered with special regard to the 
order in which they come after each other, and usually without regard to the Durations 
attached to each. 

SEQUENT GROUP. A group of elements that occur one after the other in time. 

SERIES. A group of quantities, one after the other; or a group of any elements consecutively; 
usually each element is related in some constant way to the other elements. 

SIGMA. The Greek letter (2) used essentially to denote a large structure, as distinct from 
smaller structures (usually of not more than four tones or Neutral Units) in General Har¬ 
mony. The sigma is the same as some Tonal Expansion (or, sometimes, Geometrical 
Expansion) of a Pitch-Scale. Ordinarily, the E, (either tonal or geometric, depending on 
the type of harmony) of a diatonic scale is used. 

SIGMA CONTINUITY. Denoted by (2~*). A sequent group of sigmae, used to denote the 
full tonal score and frequently to denote the patterns in which instrumental Attack-Forma 
are grouped. 

SIGMAE. Plural form of Sigma. 

SIGM* FAMILIES. Denoted by 2 (13), these are sigmae which consist of a root, 3rd, 5th, 7th, 
9th, 11th, and 13th, the thirds involved being of all possible shapes. The result of various 
pattermngs of intervals is a series of different sigmae, each of which may become the source 
of a complete harmonic style through application of the techniques of General Harmony. 

SIGMA OF SIGMA. See Compound Sigma, 2 (2). 
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SIMPLE HARMONIC MOTION. Melodic motion corresponding to the simple harmonic 
series (as used mathematically), or, practically, scalewise motion. 

SIN MOTION. Sin is the conventional abbreviation for the mathematical ratio, sine. In the 
Schillinger System, sin motion is the same as Ascribed Motion. Used in contrast to cos 
motion, meaning cosine motion, which is the same as Inscribed Motion. 

SINE. A mathematical ratio used in analysis of soundwaves and other types of cyclic motion. 

See Sin Motion. 
SPECIAL HARMONY. The harmony associated with most of Western music, based on the Ej 

of those scales which use all seven Pitch-Names with but one set of accidentals at a time. 
Schillinger uses this term, in contrast to General Harmony, to denote a narrow range of 
harmonic techniques corresponding to “classical” harmonic practice, but with considerable 
amplification of the range of device. His General Harmony includes Special Harmony 
as one type, and it, in turn, embraces Diatonic Harmony, Diatonic-Symmetric Harmony 

Symmetric Harmony and Chromatic Harmony. 
SPEED. Tbd number of Attacks in relation to total time; specifically, the number of basic time 

units, t, contained in the total duration. 
SPLIT UNITS. In rhythm, the result of dividing a single duration by some divisor; extended 

to a technique by which the selection of units to be split is controlled by permutation or by 
coefficients of recurrence, 

STATISTICAL SCALE. See Quantitative Scale. 
STOPPED TONE. In Orchestration, Quality Scales or Tlmbral Scales, one of three general 

timbre intermediate between Open and Closed Tone. 

STRATA. Plural form of Stratum. 
STRATA HARMONY. A term meaning harmonic continuity in which a large number of parts 

are grouped into Strata and handled accordingly. See General Harmony. 

STRATUM. One of the elements in General Harmony (or strata harmony, as it is frequently 
called), A stratum consists of one or more Neutral Units (rarely more than four, however), 
each neutral unit being a tone. From one or more of these neutral units, Directional Units 
may be developed. The pattern of neutral units within a single stratum is denoted in relation 

to the root of the stratum itself. 
STRUCTURE. In general, any pattern of elements, organized either in pitch or in time, or both. 

Specifically, when denoted by S, a Pitch-Assemblage or chord consisting of Neutral Units 
and sometimes Directional Units, with emphasis on the exact shape (pattern of intervals, 
binding together the Neutral Units. One or more such structures (which are, of course, the 
equivalent in General Harmony of Strata) constitute a Sigma. 

STYLE. In the Schillinger system, the style of a composition is the result of the individual 
styles of the component continuities, the main factors being tnUmatiopal style, controlled 
by Pitch-Scale and its expansions into Sigmae; and temporal style, or Rhythm, controlled 
by Style Series. .But many other aspects are also factors in the final style, especially those 
connected with General Harmony. 

STYLE SERIES. This is a series which functions, in the Schillinger system, as the source of all 
families of temporal or rhythmic style, and consists of the following: 

n.1* 4* 4» i* i * 4.f 
It may be compressed into simply: 

1. !■ 1- I- I- »• 1' I.n 

The denominators control Fractional Rhythm; the numerators, Factorial Rhythm. The 
manner in which generation of a family of Durational Groups takes place is the following: a 

Monomial, such as 4 (for $ series), is split asymmetrically (or 3-1) by the smallest unit of 
deviation the number affords; it is then synchronized with itself run backward (i. e., 3-1. is 
synchronized with 1-3) to produce a trinomial (1-2-1). All permutations of the trinomial are 
combined to produce a new polynomial (in this case, l-l-l-l). The terms of the new poh’ 
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nomial (up to the point where uniformity is reached) are again permuted and “interfered”— 
and so on. The resulting durational groups constitute the raw material of the style. The 
numerators function as multiplicands in making larger continuities. Schillinger tends to 
use the term time-series of this process when it controls details of larger form, reserving the 
terra style-series for fractional rhythms. 

STYLIZED PRIMITIVE. An Original Primitive scale developed according to techniques 
that are essentially diatonic. 

SUBTRACTION TONES. See Differential Tones. 

SUMMATION SERIES. Any series of numbers in which the third and all subsequent terms are 
the total of the two immediately preceding terms; or, by extension, the total of any pre-set 
number of immediately preceding terms. First summation series: 1, 2, 3, 5, 8 13 21 etc 
Second summation series: 1, 3, 4, 7, 11, 18 etc. Also known as Fibonacci Series. * 

SYMMETRICAL NOMENCLATURE. Naming of intervals by the number of semitones, rather 
than as seconds, thirds, etc. That is to say, what by symmetric nomenclature is a S would be 
a 4 (perfect 4) in diatonic nomenclature. 

SYMMETRIC HARMONISATION. Harmonization of one or more melodies, the resulting har- 
monic continuity being of the symmetric type. 

SYMMETRIC HARMONY. A system of harmony in which the roots of the chords move by 
patterns outside the diatonic system and computed in semitones; more specifically, a variety 
of the above in which the roots move in typical patterns,Jhe patterns being: movement 
by semitones, denoted as V 2 ; by whole steps, denoted as\/2 ; by minor thirds (3 semitones), 
denoted as V 2 ; by major thirds (4 semitones, denoted as \ by augmented fourths (6 semi¬ 
tones), denoted as V2 • Movement of the root by an octave or unison b also technically a 
symmetric movement under the most generalized form. With the root moving as described, 
the specific tonal structures or chords are pre-set without relation either to any diatonic scale 
or to the tonal material of the pattern of roots, the chord forms being chosen usually for their 
acoustical sonority. Transformations (“voice leading”) take place by permutation. 

SYMMETRIC ROOTS. Patterns of root movement in Symmetric Harmony. 

SYMMETRIC SCALES. Pitch-Scales, frequently of mare than one octave in range, formed 
by a senes of Tonics arranged symmetrically to which tonics are added one or more ad¬ 
ditional tones in a standard, pre-set interval relation. Schillinger describes two types of 
symmetric scales: Group III: range of less than one octave and containing equal number of 
semitones (2, 3, 4, 6) between tones; Group IV: range of more than one octave and contain¬ 
ing equal number of semitones (8, 9, 10. 11) between tones. 

SYMMETRY. A characteristic appertaining to any pattern, requiring that the whole pattern 
be susceptible to reversal without the pattern being thereby changed. 

SYNCHRONIZATION. The process of making two series (usually Durational Groups) 
occupy the same period of time; performed by reducing each to a common denominator. 
Interference results unless the series are identical. 

T. 

T. Symbol ordinarily used for time. Occasionally a symbol for Tonic. 
0. See Theta. 
t. See Tau. 

SZmbo1 useJ for Optional Continuity, or sequent group of durations. 

U8f: fo'denote a unit of deviation in the notation of durations, 
especially in dilating Rubato, Fermata, minor changes in tempo, etc. 

IBffO^^ArazmON. The organization of all detail, of a composition or section 

llThyth^ particular, the organization of factorial and fractional continuities; 
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TEMPORAL SATURATION. See Saturation in general. In the Schillinger System, in¬ 
creasing temporal saturation is achieved by having more and more Thematic Group# in a 
given continuity. This sometimes involves contrapuntal arrangements of the groups of the 
type known as stretto in older counterpoint, in which the thematic group has not yet come 
to an end before Another thematic group (usually the same as the first) begins. 

TENSION. The degree of dissonance (1) in a Harmonic Interval, or (2) between melody and 
harmony. The latter varies as to Range of Tension, which may be set narrowly or broadly, 
and as to degree of tension, itself, which may be kept high—around the 7, 9, 11 functions— 
or low—around the 1,3,5. The harmonic aspects of tension derive from the simpler intervallic 

aspects. 
TERNARY AXES. See Axes. 
TETRAD. A structure in harmony of four parts. 
THEMATIC CONTINUITY. A sequence of Thematic Groups, organized in some pattern: 

direct recurrence, modified recurrence, symmetrical recurrence, etc.- It controls the funda¬ 
mental musical form of the composition as well as the emphasis given to various types of 
Thematic Units. 

THEMATIC GROUP. A Thematic Unit existing in one of its potential forms in a specific 

period of time. 
THEMATIC MELODIC FIGURATION. A process for melodic figuration of harmony whereby 

pre-set melodic forms are introduced into the successive chords of the given harmonic con¬ 

tinuity. 
THEMATIC SEQUENCE. A Thematic Continuity, but with special emphasis on the serial 

order in which Thematic Groups, follow one another, and without regard to the durations 

attached to each. 
THEMATIC UNIT. A configuration of elements in music chosen for its susceptibility to tem¬ 

poral and intonational modification. It may or may not be composed exclusively of tonal 
elements; it may also consist of Density or Orchestral groups; or of any other element in 
music. It may be rhythmic, melodic, harmonic, or contrapuntal. It may consist of some 
combination of elements, in which case it will have one element as a major component, 
around which the other elements (minor components) are organized. It is the basic ingredi¬ 
ent of Thematic Groups. 

THEME. In a composition, a Thematic Group in which the Thematic Unit is exhibited at 
its maximum duration in time; a subject. 

THETA. The Greek letter referring to a compound rotation group in Density, and in general, 

to a Density Continuity with emphasis on phasic rotation. 
TIMBRAL. The adjective refers to timbre. 
TIMBRE. The quality or "color" of tone resulting from the interaction of all frequencies 

and intensities constituting a sound wave. 
TONAL EXPANSION. Expansion carried out in terms of a specific diatonic scale. Contrast 

with the result of carrying out the same Expansion process geometrically, i.e., measuring in 
semitones rather than in diatonic intervals. Various degrees of expansion are denoted as Et 
("first expansion”), Es ("second expansion”), etc,, especially when referring to expansions 
of diatonic scales. The first expansion is obtained through circular permutation over one pitch- 
unit of the original scale; the second expansion, over two pitch-units; etc. 

TONAL INVERSION. A process for variation proceeding in much the same way as that used 
in Quadrant Rotation, except that the intervals are calculated diatonically rather than 
absolutely, so that the result—in contrast to the result of some of the quadrant rotations— 
is adjusted to the key of the original. 

TONE SYMBOLS. O See Open Tone. • See Closed Tone. © See Stopped Tone. 
TONES OF THE DIFFERENCE. See Differential Tones. 
TONIC. The first tone of a Pitch-Scale and, occasionally by extension, the first tone or root 

of a sigma. Treo-tonic system; a system of Pitch-Scales or Harmonic Progressions based 
on two tonics, usually related as C to F# Or \/1 ■ Three-tonic system: relationship usually 
as C, E, Ah, or 2 • Four-tonic system: relationship as C, Eh, G h, A, or v2. A five-tonic 
system does not exist in eaual temperament tuning. Six-tonic system: relationship usually as 
C, D, E, F#, G#, A#, or v 2 • Twelve-tonic system: relationship usually as all tones of the 
chromatic scale in succession, or V^. 
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TRAJECTORIAL MOTION. Melodic motion analyzed from the viewpoint of the trajectories 
it outlines when graphed; more specifically, these trajectories analyzed in relation to Pri¬ 
mary Axes and Secondary Axes. 

TRANSFORMATIONS. The general form of what is conventionally called "voice leading," 
out used in a much broader sense of the transformation of any Pitch-Assemblage (abcde, 
for example) into another (a'b'c'dV, for example). Parallel transformations lead each func¬ 
tion in the initial assemblage to the corresponding function in the next assemblage; in all 
other transformations, the initial set of functions transforms to a set of functions that repre¬ 
sents some Permuration of the second set. In so-called Constant Function Trans¬ 
formational in which one (or more) functions lead by parallels, the remaining functions 
leading by permutation. In general, transformations are classified as Clockwise or Counter¬ 
clockwise, with Crosswise appearing as a special form of both. 

TRIAD. A structure in harmony of but three parts; conventionally, but not necessarily, the 
familiar triad of ordinary diatonic harmony. 

TRINOMIAL. A group consisting of three elements. 

TRIPLE PARALLEL CHROMATICS. One variety of Chromatic Harmony. 

TRUE PRIMITIVE. See Original Primitive. 

TUNING RANGE. The range of tones as they actually sound that an instrument can produce 
for orchestral use. 

TUNING SYSTEM. In music only certain pitches from among all the possible pitches are 
utilized. The particular set of pitches selected for use is the tuning system, or primary selec¬ 
tive system. Various systems have been or are in use, but the system known as Equal 
Temperament is the basis of the notation of most Occidental music and is the basis of the 
Schillinger system. See pp. 101, 102 and 144. 

U. Symbol used for unbalancing axis (see Axes).' 

UNBALANCING AXIS. See Axes. 

UNIMODAL. Describes axial relations of two melodic lines when each is in the same mode 
of its particular key; the keys need not necessarily be the same, but the modes (displace¬ 
ments) must be identical. ^ 

UNITONAL. Describes interrelation of two or more melodic lines (especially in counterpoint) 
as to the Real Key of each, and means that each is in the same key, although not necessarily 
m the same mode. See Poiytonal. See. Unimodal. 

UU, UP. See Axis Relations. 

V. 

V * Symbol for Dynamic Continuity. 

V. A symbol used in orchestration for volume, or dynamics. 

v. A dynamic unit, See V. 

VARIABLE DIFFERENCE SERIES. A Series In which each term is composed of a base that 
increases to some pattern, to which is added a second number that also increases according to 
some pattern; essentially, the sum of two series. 

VARIABLE DOUBLINGS. In harmony, a technique by which varying chordal functions (the 
1, 3, or 5 usually) are selected for doubling. 

VARIABLE STRUCTURES. In harmony, the use of more than one structure (or "shape”) 
of chord in a continuity. 

VOICE LEADING. The trajectory or path followed by a Part; see especially Transformations. 
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A 

abscissa, l, 187, 245, 302 
acceleration, in non-uniform groups, 93 

in uniform groups, 92 
acceleration groups, 1341 
acceleration series, XVII 
accompaniment, harmonic, 1204 
acoustical fallacies, 697 
Alexander, Jeff, XII 
alto clarinet, 1516 
amplitudes, 2 
anticipation-fulfillment pattern, 1415 
anticipations, 579-83, 1296 
Aria on the G-string (Bach), 1354 
Aristotle, XVIII 
arithmetical mean, 315, 317, 352 
arithmetical progressions, 352, 365 

with variable differences, 91, 365 
ascribed motion, 301,303 
Aj 1 Remember (R, De Maria), 1409 
atonality, 247, 739 
attack, forms of, 1323, 1327, 1598 
attack-group, synchronization of an, 36 
attack-groups, development of, 912, 951 

in two-part counterpoint, 726 
melodic, composing, 642 

attacks, bowing, 1499 
composition of, 1281 
multiplication of, 883 

Auer, Leopold, 1489 
Auric, 173. 1265 
auxiliary tones, 584-96,1198 
auxiliary units, application of, 1202 

distribution of, 1198 
Ave Regina Coelonm, 368 
axes, centrifugal, combination of two, 287 

centripetal, combination of two, 288 
of melody, 246 
secondary, 247, 252, 299, 302,312 
secondary parallel, 290 
simultaneous combination of three, 289 

axial combinations, 253,1292 
polynomial, 757 

axis, balancing, 252 
binomial, 259, 754 
monomial, 259, 753 
primary, 125, 246, 312 
quadrinomial, 260 
quintinomial, 261 
trinomial, 260, 756 

axis-relations, 126, 758 

B 

Bach, J. S., 34, 145, 194, 211, 215, 217, 312, 
317, 374, 437, 461, 495, 552, 795, 796- 
801,875, 1277,1330,1331,1352,1520,1523 

balance, 21 
Banshee (Cowell), 1557 
bass, setting of the, 1011 
bass drum, 1568 
bass clarinet, 1516 
bassethom, 1516 
bassoon (fagotto), 1521 
Battistini, Mattia, 1572T 
Beautiful Dreamer, 1460 
Beethoven, 34, 112, 196, 211, 244, 247, 299, 

314, 374, 507, 561, 1349, 1366, 1523 
Bellini, 283 
bells, church, 1560 

cow, 1569 
orchestra (glockenspiel), 1559 

Benedida Tu, 369 
Berg, 211 
Berlioz, 1567 
biner, 314 
B-minor Sonata (Liszt), 211 
binomials, reciprocating, 1297 

temporal, 1296 
Blanton, Jimmy, 1510 
Blues, 1510 
Bolero (Ravel), 1556 
boogie-woogie, 94, 1044 
Bongo drum*, 1569 
Boris Godounoo (Moussorgsky), 375 
Borodin, 73, 495, 506, 508, 666, 686 
Bradley, Will, XII 
Brahms, 524 
But I Only Have Eyes for You, 316 

C 
Caccini, Giulio, music example by, 369 
cadences, 363, 370, 371 
Cad man, 1255 
Cahill, Thaddeus, 1543 
canons, 777 

composition from strata harmony, 1216 
cantus firm us, 708, 801 
Caruso, Enrico, 1456 
Casella, 175, 1265 
castanets, 1563 
celesta, 1558 
Chaconne in D-minor (Bach), 375 
Chaikovsky, 569, 586, 627 
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Chaliapine, Feodor, 1570, 1572 
Charleston rhythm, 85, 86, 91, 94, 648 
Chausson, 173 
Cheek to Cheek, 73 
chimes, 1560 
Chopin, 211, 438, 506, 552, 569, 586, 627, 633, 

666, 1044, 1047, 1331, 1332 
chordal function, 376 
chords, 168 

altered, 542 
eleventh, 469 
fourth-sixth, S(®), 427 

ninth, 460 
passing, 415 
passing fourth-sixth, 427 
passing seventh, 531 
passing sixth, 415 
seventh, 436, 446 
sixth, 406 

Christmas Night (Rimaky-Korsakov), 1508 
Christmas Oratorio (Bach), 1520 
Chromatic Fantasy and Fugue (Bach), 211 
chromatic groups, coinciding, 514 
chromatic system, enharmonic treatment of, 

508 
chromatics, double parallel, 503 

triple and quadruple parallel, 506 
ebromatization of diatonic two-part meiodiza- 

tion, 828 
Church, Professor, 24 
Churchill, Dr. Wm., 332 
circular permutation, 46,51,116,161,166,1913 

claves, 1564 
clarinet, (darinetto) in Bi> and A, 1514 

alto, 1516 
clarinetto basso, 1516 

contralto, 1516 
piccolo in D and Eh, 1516 

Clementi, 461, 1047 
climax. 279 
climaxes, distribution of, 1361 
close position, 381 
coda, 807 
coefficients of duration, 736 
coefficients of recurrence, XVI, 108, 110, 308, 

459, 665, 912, 951, 980-3 
common degrees, 141 
common unit method of modulation, 129 
components, orchestral, 1579 
composition, 

duration of a, 1353 
instrumental, 1369 
monothematic, 1370 
planning a, 1351 
polythematic, 1401 

semantic (connotative), 1410 
temporal saturation of a, 1354 
theory of, 1279 

Concerto for Oboe (Coppola), 1409 
Comow, Wilford, S., 24, 332 
consonances, chromatic, 701 

diatonic, 701 
continuity, 46 

automatic chromatic, 544 
canonic, composition of, 787 
composition of, 843 
contrapuntal, 742, 750, 1212 
factorial, 70, 74 
fractional, 70, 74 
harmonic, 176, 384, 419, 442, 554, 1164 
harmonic, composition of, from strata, 1200 
harmonic, distribution of, through strata, 

1164 
harmonic, of diads, 170; triads, 170; tetrads, 

171; pentads, 171; hexads, 172 
harmonic, translation into strata, 1166-8 
harmonic, variation of, 1202 
homogeneous rhythmic, composition of, 67 
hybrid harmonic, 552 
melodic, 126, 134, 154, 159, 677 
melodic, composition from strata, 1194 
melodic, composition of, 152, 313 
melodic, variation of, through auxiliary 

tones, 1198 
modulatory, 131 
of Gs, 416, 430 
of generalized G$, 418 
of melodic forms through permutations 107 
or S(5) and S(6), 412 
realization of, 1363 
semantic, composition of, 1461 

contra bassoon (contrafagotto), 1522 
contraction, 21, 23, 165, 211 

tonal, 138 
Contractus, Hermannus, 237 
contrasts, harmonic, continuity of, 70 
Convertible Counterpoint in Strict Style (Taneiev) 

777 
Conus, IX 
Coppola, Carmine, XII, 1477 
Cog d'Or (Rimsky-Korsakov), 138, i46, 508, 

1509, 1571 
comet (cometto), 1528 
coma, see horn 
corno di bassetto (bassethom), 1516 
correlated melodies, 697, 1209 
correlation, harmonic, forms of, 709 

of melody and harmony, 619 
of time and pitch ratios of secondary axes, 

275 
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correspondences, contrary, 276 
oblique, 277 
parallel, 275 

counterpart to a given melody, composition 
of, 770 

counterpoint, 
ais major component of thematic units, 1311 
chromatic, 739 
chromatic, diatonic harmonization of, 863 
chromatic two-part, symmetric harmoniza¬ 

tion of, 869 
constant and variable, 791 
diatonic, 739 
diatonic, chromatization of, 739 
diatonic two-part, symmetric harmonization 

of, 865 
modulating, 811 
symmetric two-part, symmetric harmoniza¬ 

tion of, 872 
theory of, 697, 708 
two-part, 708 
two-part diatonic, 862 
two-part, harmonization of 
two-part symmetric, 879 
two-part, with symmetric scales, 772 

couplings, 883, 1010, 1018, 1032,1087 
Cowell, Henry, IX, 1556 
Craft of Musical Composition, The (Hindemith), 

XI, XVI, XXII 
Crawford, Jesse, XII, 1477 
Crosby, Bing, 1454 
Curves of Life (T. A. Cook), 331 
cycle, of the fifth, 370, 373 

of the seventh, 369, 374 
of the third, 368, 370 

cycle styles, 368 
cycles, binomial, 365-6 

negative, 443 
tonal, diatonic, 362, 410 
trinomial, 367 

cymbals, 1565 

n 

Daphnis and Cklot (Ravel), 1141 
da Vinci, Leonardo, XXIII, 331 
Debussy, 135,145,146,173,217, 552, 655, 1047, 

1164, 1559 
De Divina Proportions (Pacioli), 330 
Deep in a Dream, 682 
De Harmonica Institutione (Hucbald), 236 
Del age, 1164 
Delius, 506 
dc Mnchauit, 370, 709 

Demon (Rubinstein), 1571 

density, 700, 844, 1010, 1200, 1323 
as major component of thematic unitB, 1314 
compositon of (in application to strata), 1226 
variable, composition of, from strata, 1242 
variation of, 1201 

density-groups, composition of, 1228, 1315 
compound sequent, 1232 
permutation of sequent, 1232 

Deutsches Lied, 369 
diatonic harmony, 361 
diatonic-symmetric harmony, 393 
directional units, 160, 164, 165, 1265, 1271 

composition of, in strata, 1187 
general theory of, 1169 
reversal of, 1191 
sequent groups of, 1192 
use of, in instrumental forms of harmony, 

1027 
displacement scales, 121 
dissonances, chromatic, 701 

diatonic, 701 
distributive powers, 70, 74 
Dittersdorf, 373 
Dixie, 1460 
Dorsey, Tommy, 1533 
double bass (contrabass), 1508 
doublings, of S(6) 

variable, in harmony, 401 
Dowling, Lyle, see "Acknowledgment", XI, 1607 
Drink to Me Only with Thine Eyes, 730 
Duet for Two Clarinets and Piano (Bradley), 

1409 

duration-group, distribution of a, 37 
synchronized, distribution of a, 37 

durations, composition of, 838, 1281 
direct composition of, 650, 733, 838, 841 

dynamics (volume), 1323, 1324, 1597 

Dywimarhythmic Design (Edwards), 332 

E 

ecclesiastic modes, 121 
Einstein, XVIII 
Electrification of Music (Schillinger), 1486 
El Greco, 210 
Ellington, Duke, 1510 
Elman, Mischa, 1489 
emery board, 1570 
English horn (corno inglese), 1520 
equal temperament, 101, 24Q> 359, 700 
Elude for Orchestra (Van Cleave), 1400 
Elude in C (R. De Maria), 1400 
Evolution of Harmony from the Authentic Ca¬ 

dence (A. Casella), 371 
Everything I Have Is Yours, 163 

\ 

■1 

expansion, 21, 22, 212 
tonal, 133, 135, 361 

expansions, geometrical, 208 
exposition, 790 

composition of the, 806 
preparation of the, 802 

F 

fagottino (teneroon), 1522 
Fanfare for the New York World's Fair (Ger- 

schefski), 1409 
Fantasia (Disney), 1428 
fermata, 94 
feuille defer, 1569 
Fibonacci series, 329, 332, 333 
figuration, instrumental, 1202 

melodic, 569, 1264 
neutral, 597 
thematic, 599 

First Airphonic Suite, The (Schillinger), 1S44 
First Piano Concerto (Cherepnin), 1053 
flute (flauto grande), 1511 

alto (flauto contralto), 1513 
form, musical, 1330 
forms, instrumental, 883, 1323 

melodic, combinations of, 105 
melodic, in two-part counterpoint, correla¬ 

tion of, 755 
orchestral, 1576 
organic, use of, 320 

Forms in Primitive Music, 72 
Fourier, 2 
Foiirth Symphony (Beethoven), 1523 
fox-trot, 29, 73, 94, 648 
fractioning, the techniques of, 15 
fragmentation, of a subject, 1344 

schemes, 1345 
Franck, Cesar, 506,524 
fugue, 790 

assembly of the, 813 
double, 790 
form of a, 790 
single, 790 
steps in composing a, 794 

Fugue No. 8 (Bach), 194 
Fugue (R. Benda), 103 
Funeral March (Schillinger), 1379 

G 

G6 (group with passing sixth-chord), 415 
generalization of, 417 

Galli-Curci, Amelita, 1454 
general harmony, 10S7 
Generation Harmonigue (Rameau), 360 

generators, major, 12, 15, 84 
minor, 12, 15, 85 
utilization of three or more, 24 

geometrical expansion, 208 
geometrical projections, 185 
Gerschefski, Edwin, XII, 1409 
Gershwin, Ceorge, XII, 111, 164, 179, 195, 

506, 87,5 
Giles, Howard, 331 
glockenspiel, T559 
gong, 1564 
Goodman, Benny, XII, 88 
Goossens,'Eugene, 1456 
gran cassa (bass drum), 1568 
graphing music, t 
grouping, 7 

the techniques of, 12 
groups, by pairs, composition of, 21 

overlapping chromatic, 511 
with passing chords, 414 

Guido or Arezzo, 237 
guitar, 1558 

Hawaiian, 1558 

H 

Hambidge, Jay, 331 
Hammond, Lawrence, 1549 
Hammond organ, 1549 
Hampton, Lionel, 1560 
Handel, 437, 1523 

harmonics (on string instruments), 1502 
harmonization 

chromatic, of a chromatic melody, 685 
chromatic, of a diatonic melody, 670 
chromatic, of a symmetric melody, 681 
diatonic, of a chromatic melody, 687 
diatonic, of a diatonic melody, 666 
diatonic, of a symmetric melody, 684 
symmetric, of a chromatic melody, 688 
symmetric, of a diatonic diatonic, 671 
symmetric ,of a symmetric melody, 675 
of melody, 666 

harmony 

as a major component of thematic units, 1296 
chromatic, 495 
chromatic, melodization of, 833 
chromatization of, 862 
diatonic, 361, 1258 
diatonic-symmetric, 393, 452, 1261 
four-part, 548, 996, 1124, 1145, 1148, 1150 
four-part, additional data on, 1139 
general theory of, 1063 
hybrid five-part, 171,451, 1293 
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harmony 
hybrid four-part, 170, 478, 623 
hybrid three-part, 170, 1080,1260. 
negative forms of, 386 
of fourths, 1134 
one-part, 1065 
one-part, one stratum of, 1065 
rhythmization of, 1299 
special theory of, 357 
strata, 1063 ff. 
symmetric, 388, 396, 431, 1262 
symmetric, melodization of, 829 
three-part, 544, 937, 1103, 1110, 1114, 11: 
two-part, 905, 1083, 1089 
two-part, one stratum of, 1066 

harp, 1536 
harpsichord, 1558 
Haydn, 173, 196, 214, 243, 373, 1566 
Hayton, Lfennie, XII 
heckelphone (baritone oboe), 1520 
Heifetz, Jascha, 1489 
Helmholtz, 230, 698, 1514, 1603 
Heroic Poem (Schillinger), 1352 
Herzog, George, 231 
High on a Windy HiU, 163 
Hindemith, XI, XVI, XXII, 211, 217, 317, 

552, 1332 
Honeysuckle Rose (Waller), 612 
Honegger, 1265 
horn, French, 1523 
Hymn to the Sun, 138 

I 

identical motifs, 131 
identity of pitch-units method, 116 
I Cot Rhythm, 164, 179 
imitation, 751 

continuous, temporal structure of, 778 
forms of, 792 

Improvisation and Scherzo (Van Cleve), 1400 
inscribed motion, 301, 303 
indirect modulation, 524 
instrumental combination, 1586 

double, 1591 
quadruple, 1592 
relations between members and the group in 

an, 1587 
relations between the, and the texture of 

music, 1601 
single, 1590 
standard symphonic, 1592 
triple, 1591 

instrumental forms, 883, 1323 
definition of, 884 
for piano compositions, 1043 

of accompanied melody, 1018 
of duet with harmonic accompaniment, 1023 
of S=2p, 901 
of S =3p, 931 
of S=4p, 988 
of two-part counterpoint, 1032 
sources of, 881 

instrumental group, synchronization of an, 39 

instrumental groups, 35 

instrumental resources as a major component 
of thematic units, 1322 

instruments 
brass, 1523 
brass-wind, 1583 
electronic, 1544, 1584 
electronic, with conventional sources of 

sound, 1547 
electronic, with varying electromagnetic field, 

1544 
musical, evolution of, 1487 
percussive, 1555} 1584 
special, 1536 
string-bow, 1489, 1581 
woodwind, 1511, 1582 

intensities, instrumental, correspondence of, 
1595 

intensity, 2 

interference, of axis groups, 760 
principles, of, 29 

interludes, 793 
modulating, 809 
non-modulating, 808 
preparation of, 807 

intervals 
augmented, 701, 705 
chromatic, 701 
chromatic, resolution of, 705 
diatonic, 701 
diatonic, resolution of, 703 
diminished, 701, 705 
harmonic, 697 
harmonic, classification of, 700 
harmonic, resolution of, 702 
harmonic, theory of, 697 
melodic, 697 

intonational modification, 334 

inversions, geometrical, 185, 385, 744, 749, 751, 
787,1139 

of the S(5) chord, 406 

of <he S(7) chord, 436 
involution-groups, 1338, 1341 

involution series, 352 

Isolde's Love-Death (Wagner), 234 
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J 

jazz, 73, 86, 299, 1044, 1255, 1528, 1S32 

K 

Kaleidophone (Schillinger), 1160, 1169, 1264 
Koschey (Rimsky-Korsakov), 152 
kettle-drums (see timpani), 1566 
key-axes, composition of, 1367 
key-axis, 126 
Khovanschina (Moussorgsky), 508 
Kircher, XI 
Kitesh (Rimsky-Korsakov), 243, 1492, 1502 
Koshetz, Mine, XII 
Koussevitzky, Sergei, 1509 
Krenek, 211 
Kraanopolsky, 1510 

L 

La Fille aux Cheoeux de Lin, 138 
Lavalle, Paul, XII 
Levant, Oscar, XII, 1177 
Li Hey, Joseph, XII 
limits, of four-part strata 

compound symmetric, 1153 
diatonic, 1151 
symmetric, 1152 

limits of three-part strata 
compound symmetric, 1122 
diatonic, 1120 
symmetric,1121 

limits of two-part strata, diatonic and sym¬ 
metric, 1096 

limits of 2, compound symmetric, 1102, 1122 
Liszt, Franz, 112, 146, 666, 1047 
logarithmic series, 352 
Lohengrin, 372 

M 

Malipiero, 173, 1165, 1265 
Man I Love, The (Gershwin), 111, 506 
Manual for Playing Space-controlled Theremin, 

A (Schillinger), 1544 
marimba, 1561 
Marks, Pranklyn, XII 
Mass for the Coronation of Charles V (de Ma - 

chault), 370, 709 
Mathematical Basis of the Arts (Schillinger), 

XII, XXII, 1461 
May Night (Rimsky-Korsakov), 1523 
Mayers, Bernard, 1477 
mazurka, 648 

MacDowell, 1255 
mean, arithmetical, 317, 352 

geometrical, 352 
golden, 330 

mean temperament, 145 
Medtner, Nicholas, 1047 
Meichick, Anna, 1571 
melodic figuration, 1264 
melodies, correlated, 697, 1209 

correlated, with harmonic accompaniment, 
1224 

melodization 
as a major component of thematic units, 1305 
diatonic, 622, 1268 
of harmony, 619, 1045, 1268 
statistical, 663 
symmetric, 654, 876, 1290 
symmetric, chromatic variation of, 661 
symmetric two-part, chromatization of, 832 
two-part, attack-groups for, 836 
two-part contrapuntal, of a given harmonic 

continuum, 823 
two-part diatonic, 824 

melody 

as a major component of thematic units, 1291 
definition of, 230, 235, 301, 303 
coupled, 901 
harmonization of, 666, 728 
theory of, 223 
transcribing from one expansion into another, 

134 

translation into various expansions, 823 
with harmonic accompaniment, 1018, 1204 
with three couplings, 989 
with two couplings, 932 

melody-harmony relationship in symmetric 
systems, 168 

Mendelssohn, 524,1047 
Merry Ghost (Oka-Schillinger), 1558 
Michelangelo, 331 
Milhaud, 173 
Miller, Jack,XII 
Miller, Glenn, XII 
Milstein, Nathan, 1489 
Mine (Gershwin), 875 
Mlada (Rimsky-Korsakov), 152, 1567 
mobility, 844 
modes, 121, 361, 375 

ecclesiastic, 121 
modification, of a subject 

intonational, 1347 
temporal, 1343 

Modigliani, 209 

modulation 
indirect, 524 
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modulation 
melodic, 125 
through chromatic alteration, 130, 326 
through common units. 129, 326 
through identical motifs, 131, 327 

modulations in the chromatic system, 518 
Monteverdi, 373 
Moonlight Sonata, 211, 
Moore, Douglas, 234 
motion, trajectorial, forms of, 305 
Moussorgsky, 362, 375, 508, 686, 1456 
Mouoement Electrique et Pathitique (SchiUinger), 

1373 
Mozart, 34, 173, 243, 374, 461, 569, 627, 1063, 

1164, 1523 
Murray, Lyn, XII, 1477 
music 

Arabian, 144 
Balinese, 144 
Chinese, 231, 243 
German, 372 
Javanese, 144 
Oriental, 144 
Siamese, 144 

My Own, 674 

N 

natural harmonic series, 90, 352, 365 
Nature of Physical World, The (Eddington), 

1351 
Neto Musical Resources (Cowell), 1556 
Night and Day, 163 
Noces,Les (Stravinsky), 1141, 1255,126S, 1556 
Nocturne (Bradley), 1400 
Norvo, Red, 1561 
notation 

geometrical (graph), 244 
mathematical, 239 
musical, 236 
of intensity, 241 
of pitch, 240 
of quality, 242 

notation system, 1 
novachord, 1553 
Nutcracker Suite, 1559 

O 

oboe, 1518 
d’amore, 1520 

October, Symphonic Rhapsody (SchiUinger), 
1409, 1557, 1570 

One, Two, Button Your Shoe, 316 
open position, 381 
orchestra, radio, 1593 
orchestration 

acoustical basis of, 1603 
theory of, 1479 

ordinate, 1, 245, 302 
organ, 1541 
Organ Grinder’s Swing, 85 
orientation, configurational, 1411 
ostinato 

basso, 877 
contrapuntal, 876 
harmonic, 876 
melodic, 874 
soprano, 878 

P 

Pagan Dance (Coppola), 1409 
Paganini, 243 
Palestrina. 437, 552, 1063 
Panina, Varia, 1571 
Parsifal (Wagner), 152, 372, 506 
passing tones, 575-8 

chromatic, 514, 537 
Pathitique (Beethoven), 247, 561, 1349, 1366 
Paul, Charles, 1477 
pedal point, 559, 1065 

chromatic, 565 
symmetric, 566 

Pennies from Heaven, 50, 55, 62, 79 
Pergolesi, 373 
periodicities, interferences of, 4 
periodicity, forms of, 3, 1333 

monomial, 3, 11 
uniform, 3 

permutations, 110, 266, 726, 733, 1297 
general and circular, 46, 51, 116, 117, 161 

162, 163, 166, 1913 
of the higher order, 63 

permutation-groups, 1337 
Petrouchka (Stravinsky), 147, 1171, 1265 
phases, 2 

periodicity of, 2 
phasic rotation of density groups, 1227, 1234 
piano, 1555 

electrified, 1548 
Piastre, Michael, 1489 
piatti (see cymbals), 1513 
piccolo (fiauto piccolo), 1513 
Piston, Walter, XII, XX 
pitch, American concert, 243 

musical, 230 

pitch-axes, variable, 125, 137 
pitch-families, evolution of, 1253 
pitch-intervals, 101 

. m 
pitch „ relations, symmetric system of, 173 

pitch-ranges, 1600 
pitch-ratio, polynomial, 273 
pitch-ratios of the secondary axes, 268 
pitch-rhythm, superimposition, on the second¬ 

ary axes, 302 
| pitch-scale 

as a major component of thematic units, 1286 
styles, evolution of, 115 

pitch scales, 101 
as a source of melody, 1255 
evolving, through the method of interfer¬ 

ence, 119 
evolving, through the selection of intervals, 

119 
relating, through identity of intervals, 115 
relating, through identity of pitch-units, 116 

pitch-time ratios of the axes, correlation of, 762 
. pitch-units, 101 

, symmetric distribution of, 144 
plotted melody, 318, 320 
Plucked Again, 1510 
Poem of Ecstasy (Scriabine), 135 
polka, 19 
polymodality, 656 
polytonality, 146, 710, 1141, 1265 
Porgy and Bess (Gershwin), 195 
position of hands with respect to keyboard, 

1048 
Poulenc, 173, 1265 
Powell, Edward, XII 

power series, 90,365 
Prelude in C^-minor (Rachmaninov),' 1053 
Prelude No. 1 (R. De Maria), 1400 
Previn, Charles, XII 
prime number series, 91, 352, 365 
primitive, modernized, 1255 

true, 1255 
stylized, 1255 

Prince Igor (Borodin), 508 
Principles of PhyUotaxis (A. H. Church), 331 
progressionsj 413,554, 1094, 1108 

arithmetical, 90 
chromatic, 663 
diatonic, 362, 555 
diatonic-symmetric, 1070-72 
generalized, 1072-4 
geometrical, 90, 352, 365 
harmonic, 376, 407, 452 
harmonic, melodization of, 1305-10 
in two strata, 1085 
monomial, binomial and trinomial, 363 

symmetric, 391, 430, 489, 492, 555, 65S, 1083 
with variable sigma, 1163 
with variable structures, 1075 

progressive additive series, 352 
projection, geometrical, 181 
Prokofiev, 218, 1165 
psychological dial, 1411 
Pythagoras, XI 

O 

quadrant rotation, 185, 252, 744, 792, 823 
quantitative scale, 663 
Quintet for Wind Instruments (Coppola), 1409 

R 

Rachmaninov, 1047, 1053 
Rameau, XI, 360 
Ratios of Bodily Symmetry, The (Conrow), 332 
Ravel, 135,146,173, 552, 655, 1047,1063,1164, 

1554 
rebab, 1489 
repetition, 284 
resistance, 279, 1366 
resistance forms, 283 
resolution- 

delayed, 714, 725 
of S(7), 439 

response-patterns translated into geometrical 
configurations, 1418 

resultant of interference, 4, 41, 1336 
resultants, applied to instrumental forms, 27 
Rey, Alvino, XII 
rhumba, 29, 73, 648 
rhythm, 34 

instrumental, 27 

temporal, as major component of thematic 
units, 1281 

theory of, 1 
rhythms of variable velocities, 90 
rhythm styles, evolution of, 84 
Riegger, Wallingford, 317 
Rimsky-Korsakov, 73, 122, 123, 146, 495, 506, 

666, 686, 1528 
Rites of Spring (Stravinsky), 6, 1521 
Roger- Ducasse, 1164 
Rollini, Adrian, 1560 
roots, symmetric, of strata, transposition of, 

1265 
Rosenkavalier, 86 
Rossini, 373 
rotation, 

full periodic, 286 
of phases, 1227, 1234 
one phase, 284 
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rotation, 
quadrant, T44, 792, 823 

Royal, Ted, XII 
rubato, 03 

S 

S(5), inversions of the, 406 
S(5), structures of, 388 
S(6), doublings of the, 410 
Sacre du Printemps (Stravinsky), 1141, 126S, 

1528 
Sadko (Rimsky-Korsakov), 123 
Salome (R. Strauss), 1520 
Salzedo, Carlos, 1541 
saw, musical, 1570 
saxophone family, 1517 
scale 

Aeolian, 122, 123, 303 
Arabian, 152 
Balinese, 1258, 1266 
Chinese, 121, 135, 305 
chromatic, symmetric harmonization of, 539 
Dorian, 121, 123, 236 
harmony, 361 
Hungarian major or “Blue", 113, 199 
Hungarian minor, 113, 146 
Ionian, 122 
Locrian, 122, 123 
Lydian, 122, 123, 236 
melody (pitch-scale), 361 
Mixolydian, 122, 123, 236 
Neapolitan minor, 113, 146 
Persian or double harmonic, 114,1401 
Phrygian, 121, 123, 198, 236 

scales 
four-unit, 109 
four-unit, harmonic forms of, 992 
historical development of, 121 
in expansions, 133 
major, 112 
minor, 112 
one-unit, 103 
partial, 120 
quantitative, 663 
symmetric, 148, 749 
symmetric use of, 322 
three-unit, 105 
three-unit, harmonic forms of, 935 
two-unit, 103 
two-unit, harmonic forms of, 903 
with 2, 3,4, 5, 6 or 12 tonics, 152-3 

Scarlatti, 173, 373, .1047 
Schaeffer, Dr. Myron, XII 
Skeherasade, 560 

Schillinger, Joseph, XII, XXII, 1160, 1169, 
T264, 1352, 1370, 1373, 1379, 1383, 1388, 
1409, 1461, I486, 1544, 1557, 1558, 1570, 
sea also “Vita”, 1639 

Schoenberg, Arnold, IX, 1332, 1557 
Schramm, Rudolph, 1477 
Schubert, 373, 524, 569 
Schumann, 627, 666, 1044, 1047 
Scriabme, 315, 552, 586, 627, 1047, 1331 
Second Hungarian Rhapsody (Liszt), 91 
Seidel, Toscha, 1489 
selective systems, 302 
semantics of melody, 231 
Sensations of Tone (Helmholtz), XI, 1603 
Shaw, Arnold, see '‘Acknowledgment”, XI, 

1607 
Shostakovich, 1332, 1535 
sigma (2), 169 

compound, 1096, 1097, 1266 
diatonic families of, 1159 
variable number of parts in the strata of a, 

1155 
sigmae, construction of, 1158 
Sinfonie mil PaukcnscMag (Haydn), 1566 
simultaneity, homogeneous, 46 
sine motion, 301, 305 
Sinfonia Domestica, 1520 

Skinner, Frank, XII 
Slonimsky, Nicolas, XX 
snare-drum, 1568 
SokolofF, Nicolai, 1370 
Solfeggietto (Gerachefski), 1400 

solovox, 1549 
Sonata-Rhapsody (Schillinger), 1353 
Song from The First Air phonic 5«ile(Schillinger), 

1370 

sonic symbols 
composition of, 1432 
coordination of, 1471 
evolution of, 1410 
modulation of, 1462 
table of combinations of, 1472 

spatio-temporal associations, 1426 

special harmony, 357 

Spencer, Herbert, XII 

split units, 49, 54, 59 
Sprung ueber den Schaiten (Krenek), 1520 

Sterrett, Paul, XII, 1477 

Stevens, Leith, XII, 1477 

stimulus-clock 
lower quadrants of other zones, 1453 
normal position, 1433 
upper quadrant of negative zone, 1436 
upper quadrant of positive zone, 1443 

stimulus-response configurations, complex 
forms of, 1421 

stimulus-response patterns, classification of, 
1473 

Stokowski, Leopold, 6, 1546 
Stone Guest (Dargomishky), 146 
Stork, Karl, 231 
Stormy Weather, 317 
Stradivari us, Antonio, 1489 
strata 

hybrid, 1076, 1087, 1089, 1141 
instrumental, the composition of, 1003 
of lour parts, 948 
of one part, 886 
of three parts, 910 
of two parts, 890 
reciprocating, 1139 

strata composition of assemblages containing 
directional units, 1187 

strata harmony, 1063, 1263 
Strauss, Richard, 1520 
Stravinsky, 173, 1165, 1255, 1265 
StringQuartet (W. Bradley), 1409 
String Quartet (R. De Maria), 1409 
structures 

hybrid three-part, 1076 
temporal, 778-82 
variable, sequence of, 1074 

Study in Rhythm, I (Schillinger), 1383 
Study in Rhythm, II (Schillinger), 1388 
style (pitch-families), evolution of, 1253 
summation series, 24, 91, 332-4, 336, 352, 365, 

901, 1337 

suspensions, 5734, 1296 
development of, 570 

superimposition of pitch and time on the axes, 
299 

swing, 73, 85, 299, 1044, 1255 

symbols of orchestral components, 1576 
symmetric harmony, 388 
symmetric roots, 396, 1265 
symmetry of pitch, 14447 
Symphonic Rhumba (P. Lavalle), 1344, 1400 
synchronization, binary, 4, 760 

the technique of, 25 
systems, symmetric, within tyj, 148 

T 
tamburin, 1566 

tamburo, (see snare-drum), 1568 
Taneiev, XI, 777 
TannhAuser, 371, 554, 685, 1349, i456 
Tchaikovsky, see Chaikovsky 
technique, right-arm, of violin playing, 1499 
techniques, instrumental, 1575 

temperament, equal, 101, 240, 359, 700 
tension, 168, 619, 656, 700, 701 

scale of, 619 
ranges of, 621, 667 

temer, 314 

tetrachord, harmonic, 112 
tetrachords, 111, 112 
thematic continuity 

axial synthesis of, 1349 
composition of, 1330 
int^ration of, 1342 

thematic groups 
composition of, 1367 
selection of, 1355 
temporal distribution of, 1358 

thematic sequence 
forms of, 1333 
selection of, 1356 

temporal coordination of, 1335 
thematic units 

composition of, 1365 

transformation of, into thematic groups, 1342 
theremin 

fingerboard—, 1546 
keyboard—, 1547 
space-controlled, 1544 

Theremin, Leon, XII, 1370, 1486, 1544, 1545, 
1546 

third, passing, generalization of the, 418 
time ratios of the secondary axes, 261 
time-rhythm, superimposition of, 108 
time structures, coordination of, 34 
timpani, 1566 
tom-tom, 15,69 
tonal expansion, 133, 135, 361 
tonal inversion, 198 
tone-quality, 1323, 1326 
tonics, 152 
tools, orchestral, 1581 
Toscanini, Arturo, 1456 
Tovey, Sir Donald Francis, 698 
trajectorial motion, 305 

transformations, 407,479-87,497,1106,1127-30 
constant and variable, 382 
of S(5), 376 

transposition, modal, 385, 533 
triangle, 1562 
triangles, pyramid, 330 
Tristan und Isolde, 569, 1520 

Treatise on Harmony (Rameau), XI 
tromba, (trumpet), 1526 

bassa, 1529 
control ta, 1528 
piccola, 1528 

trombone, 1529 
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trumpet, 1526 
tuba, 1534 
tuning range 

brass. 1589 
string-bow, 1590 
woodwind, 1588 

Two-part Invention, No. 8 (Bach), XIX, 193, 
312 

U 

unbalancing axes, 252 

V 

Valse in C# minor (Chopin), 93 
Van Cleave, Nathan L., XII, 1400, 1477, 1558 
variation, chromatic, of diatonic melodization, 

652 
variation techniques, generalization of, 63 

variations, 46, 134 
of harmony, contrapuntal, 606 

Varieties of Musical Experience (Schillinger), 
1487 

Verdi, 283, 373 
vibraphone, 1560 
viola, 1505 
violin, 1490 
violoncello, 1506 

voice-leading, XII, 169, 377, 378, 987, 1106-7, 
1135-8 

voices, human, 1570, 1585 
female, 1572 
male, 1573 

von Webern, Anton, 211, 214, 218, 1321, 1456 

W 

waltz, 85, 86, 88, 648 
Wagner, 146, 243, 314, 352, 370, 506, 524, 552, 

569, 1347 
Weber-Fechner law, 241, 280 
Weiner, Lazar, XII 
Well-tempered Clavichord (Bach), 314, 374, 495, 

795,1332,1352 
Werckmeister, Andreas, 102, 145 

Without a Song, 138 
wood-blocks, 1563 

X 
xylophone, 1561 

Y 

You Hit the Spot, 138 

Z 
Zarlino, XI 
zero cycle, symmetric, 391, 446 
Zimbalist, Efrem, 1489 

VITA 

Joseph Schillinger was born in Kharkov, Russia, September 1, 1895, and died 

in New York on March 23,1943. At the age of 5 he manifested interest in design, 

dramatics and verse; at 10 he was experimenting in play-writing and music. 

He was educated at the Classical College and entered the St. Petersburg Con¬ 
servatory in 1914. In 1917 he was graduated from the class in composition, after 
which he studied conducting under*N. N. Cherepnin. 

In 1918 he was appointed senior instructor in composition at the Kharkov 
Academy of Music; in 1920 he was made professor, and the following year, dean 
of the faculty of composition. In the same period he served as head of the music 

department of the Board of Education of the Ukraine. From 1922 to 1926 he 

acted as consultant to the Leningrad Board of Education. Beginning in 1925, 
and for three years thereafter, he served as professor and member of the State 

Institute of the History of Arts at Leningrad. In 1927 he was commissioned to 
make phonograms of the folk music of the Georgian tribes in the Caucasus, and he 

succeeded in recording folk songs previously unknown to the world of music. In 
this period his pedagogical responsibilities multiplied and he also served as 
senior instructor of the State Central Technicum of Music. From 1926 to 1928 

he was vice-president of the Leningrad branch of the International Society for 

Contemporary Music. During this period he organized and directed the first 
Russian jazz orchestra. 

In November 1928 Schillinger came to the United States on invitation of the 

American Society for Cultural Relations with Russia. Shortly after his arrival 
he began collaborating with Leon Theremin on research in musical acoustics, 
and the application of electronics to tonal production. For six years, from 1930 

to 1936,he taught at various American universities and schools of art and music. 

From 1930 to 1932 he was a lecturer at the David Berend School of Music. 

In 1932 and 1933 he lectured at theNewSchool for Social Research. In 1934 he gave 
lectures at the Florence Cane School of Art, American Institute for the Study of 

Advanced Education, and American Institute of the City of New York. In 1934 

he became a member of the faculty of Teachers College, Columbia University, 
serving in three different departments: music, fine arts and mathematics. The 
Mathematics Museum of Teachers College placed on permanent exhibition, in 
1934, certain geometrical designs which he evolved as part of his Theory of 

Design. In 1936 he lectured at New York University. In July of the same year 
he became an American citizen. 

Schillinger s major musical compositions include works for orchestra, voice, 
string instruments and piano. March of the Orient, Op. 11, was composed in 1924, 

and performed by the Leningrad State Philharmonic, as well as the Persymphans; 
during the seasons of 1926-27 and 1927-28 it was played by the Cleveland Sym¬ 

phony, Nikolai Sokoloff conducting. Symphonic Rhapsody, Op. 19, was com¬ 
posed on commission to celebrate the tenth anniversary of the Soviet Union. 

After performances in Moscow and Leningrad, it was given its premiere in the 

Western hemisphere by the Philadelphia Orchestra under Leopold Stokowski. In 

11639] 
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1929 Schillinger wrote First Airphonic Suite, Op. 21, for RCA Theremin and 
orchestra. The first performances were given by the Cleveland Orchestra under 

Sokoloff. The following year, on commission by RCA, Schillinger wrote the North 

Russian Symphony, Op. 22, for radio performances. 

Among his outstanding piano works are the Five Movements for Piano, Op. 12; 

Excentriade, Op. 14; Sonata Rhapsody, Op. 17; and Funeral March. His SoncUa 

for Violin and Piano, Op. 9, received its first performance in Kharkov in 1922 

with Nathan Milstein. 

Sohil finger’s two major theoretical works are the Mathematical Basis of the 
Arts, and the Schillinger System of Musical' Composition. The former work repre¬ 

sents the first scientific theory of the arts, and presents the application of his foun¬ 

dation ideas to the spatial as well as tonal arts. Kaletdophone, a manual ot pitch 
scales in relation to chord structures, was published in 1940. Articles on various 
subjects may be found in Modern Music, Experimental Cinema, Tomorrow, Metro¬ 
nome, 1938 Proceedings of the Music Teachers National Association and 1938 
Annual Meeting Papers of the American Musicological Society. Schillinger left 

in manuscript,essays and articles, including Musofun (a book of musical games) 

and Graph Method of Dance Notation. 

The publication of the Schillinger System of Musical Composition has been 

long awaited because of Schillinger's influence on American music for radio and 
motion pictures—an influence exerted through the prominent composers, con¬ 

ductors, arrangers and music directors who studied privately with him. 


